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Abstract

It is common practice in wireless communications to assume strict or wide-sense stationarity of

the wireless channel in time and frequency. While this approximation has some physical justification,

it is only valid inside certain time-frequency regions. This paper presents an elaborate characterization

of the non-stationarity of wireless dual-polarized channels in time. The evaluation is based on urban

macrocell measurements performed at 2.53 GHz. In order to define local quasi-stationarity (LQS)

regions, i.e., regions in which the change of certain channel statistics is deemed insignificant, we resort

to the performance degradation of selected algorithms specific to channel estimation and beamforming.

Additionally, we compare our results to commonly used measures in the literature. We find that the

polarization, the antenna spacing, and the opening angle of the antennas into the propagation channel

can strongly influence the non-stationarity of the observed channel. The obtained LQS regions can be

of significant size, i.e., several meters, and thus the reuse of channel statistics over large distances is

meaningful (in an average sense) for certain algorithms. Furthermore, we conclude that, from a system

perspective, a proper non-stationarity analysis should be based on the considered algorithm.
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I. INTRODUCTION

In wireless communications, it is common to assume the wireless channel to be a randomly

time-variant linear channel. Besides the assumption on linearity, the random process describing

the channel is mostly assumed to follow strict or wide-sense stationarity in time and frequency.

A wide-sense stationary channel in time/frequency has constant first- and second-order statistics

over time/frequency. However, the statistics of realistic channels change over time and frequency.

Statistical signal processing algorithms that rely on knowledge of second-order statistics of the

channel thus have to update this knowledge when their performance is degraded due to the

statistical mismatch. Therefore, it is crucial to assess the size of the time-frequency regions

inside which the change of the channel statistics is not significant with respect to a certain

performance measure.

A wide-sense stationary channel in time and frequency is equivalent to the wide-sense station-

ary and uncorrelated scattering (WSSUS) channel commonly encountered in the literature. Based

on the WSSUS assumption, the so-called quasi-WSSUS channel model is introduced for wireless

channels in [3]. It considers the fact that channel statistics change on a large scale and thus it

separates the channel fluctuations into fast and slow variations. This results in local WSSUS

channels, i.e., WSSUS channels valid in local time-frequency regions. In [4], a framework for

the stochastic treatment of non-WSSUS channels is proposed. The assumption of any form of

stationarity is dropped, while it is highlighted that typical wireless channels are doubly under-

spread (DU), i.e., underspread in dispersion and correlation. Dispersion underspread channels are

well known in the context of WSSUS channels; they are characterized by a maximal effective,

i.e., relevant, delay and Doppler frequency shift whose product is much smaller than one. The

correlation underspread property arises in the context of non-stationary channels; it states that

the product of the effective correlation length in delay and the effective correlation length in

Doppler is much smaller than the product of the maximal effective delay and the maximal

effective Doppler. The DU property implies that the time-frequency regions of approximately

constant channel statistics are much larger than the time-frequency coherence regions of the
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channel. This fact yields substantial theoretical simplifications of practical importance, such as

a proper definition of a time-dependent power spectral density (PSD) for non-stationary random

processes.

Recently, multiple-input and multiple-output (MIMO) systems that exploit the polarization

domain [5]–[7] have received increased attention. The main advantage is the high decorrelation

that occurs over orthogonally polarized antennas. This allows for compact antenna array designs

by making use of, e.g., co-located dual-polarized (DP) antennas. The choice of the polarization

at the transmitter (TX) and the receiver (RX) can result in substantially different propagation

conditions. Depending on the polarization combination, different multipath components of the

channel will determine the propagation conditions. For an extensive literature overview of

experimental results related to DP channels, we refer the reader to [8]. It is thus of interest

to extend the non-stationarity analysis to DP channels. We expect the polarization to have a

noticeable impact on the non-stationarity of the channel. However, other parameters like the

antenna spacing or the opening angle of the antennas into the propagation channel will influence

the non-stationarity of the channel as well.

Early empirical investigations of non-stationary wireless single-input and single-output (SISO)

channels in time and frequency can be found in [9] for an indoor channel and in [10] for an

outdoor channel. The non-stationarity is typically characterized by comparing selected channel

statistics over time/frequency with certain measures. The choice of the measure is obviously

critical in assessing the degree of non-stationarity. Typically, one resorts to measures based on

the standard Euclidean inner product. For a MIMO channel, in [11] and [12], the by now very

popular correlation matrix distance (CMD) is introduced. It characterizes only the dissimilarity

of the spatial properties of the channel and neglects the time-frequency ones for simplicity. In

the literature, various contributions study the degree of non-stationarity of the wireless channel,

see [1], [2], [9]–[18]. However, an extensive and thorough measurement-based characterization

of the non-stationarity of wireless channels is still lacking. Moreover, most contributions do not

consider the impact of the polarization of the channel on the degree of non-stationarity.
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The choice of a proper measure, used to determine the region in which the change of the

channel statistics is deemed insignificant, depends on the considered wireless communication

algorithm. The reason is that the measure defines which channel statistics are being considered

and how they are being used. Typically, a subset of the second-order channel statistics is

considered, e.g., only some spatial properties in the form of correlation matrices. Consider,

e.g., [14], where a MIMO prefiltering technique is used to simulatively compare the bit error

rate to the CMD in an indoor scenario. This approach can be extended by assessing the degree of

non-stationarity based on the performance degradation due to outdated knowledge of the channel

statistics. One can then define a maximal performance degradation above which the change of

the channel statistics is considered substantial and thus its knowledge has to be updated. We

name the resulting regions local quasi-stationarity (LQS) regions. Such an approach has been

exemplarily demonstrated in [19] for the mean square error (MSE) degradation of a channel

estimation algorithm.

In [1], we performed an exemplary analysis of the degree of non-stationarity of the channel

for the spatial domains and the joint delay-Doppler domain by studying LQS regions based

on reference measures from literature. The work [2] extended the analysis of the degree of

non-stationarity of the spatial domains by comparing the resulting LQS regions to those of an

approach based on the performance degradation of a beamforming technique.

Contributions: In this paper, we perform an elaborate analysis of the local quasi-stationarity

of measured DP MIMO wireless channels in time. Our approach is connected to selected

algorithms that are commonly used in wireless communications; as such our results are important

to the operation of these algorithms. The analysis is based on urban macrocell measurements at

2.53 GHz relevant to 3GPP Long Term Evolution (LTE). As wireless communication algorithms

typically only use a subset of the channel statistics, we perform our LQS analysis in several

different domains, i.e., Doppler, delay, and space. The resulting LQS regions in time are mapped

to the traveled distance of the mobile terminal (MT); they thus reflect the partial non-stationarity

of the channel over distance in different domains. Our detailed contributions are as follows:
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• We analyze the LQS regions in the delay and the Doppler domain for DP channels by

comparing the results of the collinearity measure to the ones of an MSE-based measure of

a channel estimator.

• We analyze the LQS regions in the spatial domain at the BS and the MT side, for several

4× 4 and 2× 2 MIMO setups that are single-polarized (SP) or DP. Here, we compare the

results of the collinearity measure, i.e., the CMD, to the ones of a measure based on the

signal-to-noise-ratio (SNR) of a beamforming algorithm. We further give an algorithmic

interpretation of the CMD in terms of an SNR.

• The results reveal that LQS regions can be quite large, i.e., several meters long, and thus

the reuse of channel statistics over a distance defined by the LQS regions is meaningful (in

an average sense) for certain algorithms.

• We find that a proper analysis of the non-stationarity of the channel requires the use of a

measure adapted to the specific purpose. From a system perspective, this measure should

reflect the performance degradation of the considered algorithm due to the non-stationarity

of the channel.

Compared to our previous works [1], [2], we provide a thorough and extensive measurement-

based evaluation of DP MIMO channels covering the complete reference scenario of the mea-

surement campaign. Here, the methodology to obtain the LQS regions is based on measures

averaged over the whole reference scenario; thus, we obtain LQS regions that are representative

for this scenario. Moreover, we compare the LQS distances using algorithmic measures and

measures based on the standard Euclidean inner product for all domains, i.e., the delay, the

Doppler, and the spatial domain at the BS and the MT side. We further characterize the standard

deviation of the measures and the correlation between all measures.

Structure: After introducing the basic characterization of non-stationary channels in Section II,

we present the theoretical basis of the analysis of the non-stationarity of the wireless channel

in Section III. In Section IV, we introduce the definition of LQS regions used in the present

work. The measurement campaign, the considered antenna setups, and the processing of the
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measurement data are discussed in Section V. In Section VI, we show and evaluate the obtained

results. Finally, in Section VII, we conclude our work.

Notation: The n-dimensional convolution of x(·) and y(·) is represented by (x ∗n y)(·).

The cardinality of the set A is denoted by |A|. We use lowercase and uppercase boldface

letters to designate vectors and matrices, respectively. For a matrix A, the (element-wise)

complex conjugate, the transpose, and the conjugate transpose are denoted by A∗, AT , and

AH , respectively. The trace of a square matrix A is written as tr {A}. For a matrix A, ||A||F

denotes the Frobenius norm. We use [A]k,l to denote the element in the k-th row and the l-th

column of A. The expectation of a random variable x is denoted by E {x}. The imaginary unit

is designated as j.

II. NON-STATIONARY CHANNELS

As the wireless radio channel is continuous in the time domain t and the frequency domain

f by nature, we first present the baseband channel and the corresponding statistical parameters

as such. In a second step, we derive a description of the statistical channel paraemeters based

on a discretized channel in time and frequency. The resulting expression can be directly applied

to measured channel data.

The local scattering function (LSF) is an extension of the scattering function in the context

of WSSUS channels to the non-stationary case [4]. It is thus a time- and frequency-dependent

PSD in the delay and Doppler domain. For a channel H, the LSF is defined as

CH(t, f ; ν, τ) =

∫ ∞
−∞

∫ ∞
−∞

RH(t, f ; ∆t,∆f )e
−j2π(ν∆t−τ∆f)d∆td∆f (1)

with the Doppler shift ν, the correlation function

RH(t, f ; ∆t,∆f ) = E {LH(t, f + ∆f )L
∗
H(t−∆t, f)} (2)

and the time-varying transfer function

LH(t, f) =

∫ ∞
−∞

h(t, τ)e−j2πfτdτ. (3)
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A second-order stationary channel in time and frequency has a constant LSF over t and f ,

respectively. Furthermore, note that, in the context of zero-mean random processes, second-

order stationarity over time and frequency is equivalent to uncorrelatedness in Doppler and

delay, respectively [3].

A. Doubly Underspread Channels

In [4], the class of DU channels is introduced. These channels are, on the one hand, dispersion

underspread with a maximal delay-Doppler product τmaxνmax � 1. Here, τmax and νmax denote the

maximal (effective) delay and Doppler, respectively. This property is well known from WSSUS

channels. On the other hand, they are correlation underspread with ∆τ,max∆ν,max/(τmaxνmax) �

1, where ∆τ,max and ∆ν,max denote the maximal (effective) correlation in delay and Doppler,

respectively. This essentially means that the time-frequency coherence region of size (τmaxνmax)
−1

is much smaller than the time-frequency stationarity region of size (∆τ,max∆ν,max)
−1. We refer

to [4] for further details. While the dispersion underspread property arises in the context of

WSSUS channels, the correlation underspread property is specific to non-stationary channels.

For (zero-mean) WSSUS channels, different delay and Doppler components are uncorrelated per

definition; therefore, the correlation underspread property is not meaningful in this context.

The LSF has some deficiencies, e.g., it is not guaranteed to be non-negative. For DU channels,

it is possible to define generalized local scattering functions (GLSFs) [4]

C
(Φ)
H (t, f ; ν, τ) = (CH ∗4 Φ)(t, f ; ν, τ) (4)

with

Φ(t, f ; ν, τ) =
S∑
s=1

γs

∞∫
−∞

∞∫
−∞

L∗Gs(−t,−f + ∆f )LGs(−t−∆t,−f)e−j2π(ν∆t−τ∆f )d∆td∆f . (5)

Here, LGs(t, f) are windowing functions in time-frequency normalized to unit-energy, γs ≥ 0

normalizing constants, and S the number of used windows. From this, it can be seen that a

GLSF is a smoothed version of the LSF. The GLSFs have practically important properties: they
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are real-valued and non-negative and, for DU channels, approximately equivalent. For further

details, we refer to [4]. An alternate form of the GLSF can be obtained by rewriting (4) as

C
(Φ)
H (t, f ; ν, τ) =

S∑
s=1

γs E
{∣∣H(Gs)(t, f ; ν, τ)

∣∣2} (6)

with

H(Gs)(t, f ; ν, τ) =

∫ ∞
−∞

∫ ∞
−∞

L∗Gs(t
′ − t, f ′ − f)LH(t′, f ′)e−j2π(νt′−τf ′)dt′df ′. (7)

In case we only want to study the Doppler or the delay properties, we can define the PSDs

in Doppler and delay as

C(Φ)
ν (t, f ; ν) =

∫ ∞
−∞

C
(Φ)
H (t, f ; ν, τ)dτ (8)

C(Φ)
τ (t, f ; τ) =

∫ ∞
−∞

C
(Φ)
H (t, f ; ν, τ)dν (9)

respectively.

B. Non-Stationary MIMO Channels

We are also interested in the analysis of non-stationary MIMO channels, therefore, we could

extend the above definitions to the MIMO case. However, for MIMO channels, we focus only

on the study of the channel statistics in the spatial domains. Furthermore, note that we only

consider the case of non-stationarity in time and frequency, i.e., the non-WSSUS case, and do

not consider stationarity over the TX or the RX antenna array [12]. In order to study the time-

frequency dependency of the channel statistics in space only, we can define the TX and the RX

correlation matrices as

RTX(t, f) = E
{
HT (t, f)H∗(t, f)

}
(10)

RRX(t, f) = E
{
H(t, f)HH(t, f)

}
(11)

with the NRX × NTX channel matrix H(t, f). Here, [H(t, f)]k,l for k = 1, . . . , NRX and l =

1, . . . , NTX is the time-varying transfer function of the MIMO sub-link from the TX element l

to the RX element k. NTX and NRX denote the number of antennas at the TX and the RX side,

respectively.
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III. NON-STATIONARITY ANALYSIS

In the previous section, we introduced the second-order moments of the channel we consider

when analyzing the non-stationarity of the channel. Now, we describe the analysis of the non-

stationarity based on these channel statistics using commonly used measures from literature

[12], [15], [16] as well as measures that are more suitable from a system engineer’s point of

view. Note that all the measures presented here only characterize the non-stationarity based on

second-order moments of the channel. For the remainder of this work, we generally omit the

frequency argument since we do not study the non-stationarity of the channel in frequency.

A. Measures Based on an Inner Product

1) Doppler and Delay Domain: As a basis for the non-stationarity analysis in the Doppler

and the delay domain, we use the standard inner product for square-integrable functions between

two PSDs at different time instants as a measure. For the PSD in the Doppler domain, we have∫ ∞
−∞

C(Φ)
ν (t, f ; ν)C(Φ)

ν (t′, f ; ν)dν. (12)

Due to the correlation underspread property of the DU condition, we have an effectively finite

correlation in time and in frequency. The maximal effective correlation in time and in frequency

is denoted by ∆t,max and ∆f,max, respectively.1 Thus, using a sinc expansion, it can be shown

that∫ ∞
−∞

C(Φ)
ν

(
m

Bν

,
q

Bτ

; ν

)
C(Φ)
ν

(
m′

Bν

,
q

Bτ

; ν

)
dν ≈ 1

B∆t

Bp−1

2∑
p=−Bp−1

2

C(Φ)
ν [m, q; p]C(Φ)

ν [m′, q; p] (13)

holds with C
(Φ)
ν [m, q; p] = C

(Φ)
ν

(
m
Bν
, q
Bτ

; p
B∆t

)
, Bν > 2νmax, Bτ > τmax, and B∆t > 2∆t,max,

where Bν and B∆t are chosen such that Bp = BνB∆t is an odd integer. Based on (13), we

define the collinearity of the PSD in the Doppler domain between different time instants m and

1By effectively finite correlation in time and frequency, we mean that the autocorrelation function of the channel drops below

a small threshold value outside a region defined by the lengths 2∆t,max and 2∆f,max in time and frequency, respectively.
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m′:

ηcol,C(Φ)
ν

[m,m′] =
tr
{

C
(Φ)
ν [m, q]C

(Φ)
ν [m′, q]

}
∥∥∥C(Φ)

ν [m, q]
∥∥∥
F

∥∥∥C(Φ)
ν [m′, q]

∥∥∥
F

(14)

where the diagonal Bp×Bp matrices C
(Φ)
ν [m, q] are defined by

[
C

(Φ)
ν [m, q]

]
k,k

= C
(Φ)
ν [m, q; k−

(Bp + 1)/2] for k = 1, . . . , Bp. We can then similarly define ηcol,C(Φ)
τ

[m,m′] with the diagonal

Bn ×Bn matrices C
(Φ)
τ [m, q] defined by

[
C

(Φ)
τ [m, q]

]
k,k

= C
(Φ)
τ [m, q; k − 1] for k = 1, . . . , Bn.

Here, we have C(Φ)
τ [m, q;n] = C

(Φ)
τ

(
m
Bν
, q
Bτ

; n
B∆f

)
, B∆f

> 2∆f,max, and the odd integer Bn =

BτB∆f
.

2) Spatial Domains: In order to analyze only the spatial properties of the channel, we again

consider the collinearity for the time instants m and m′:

ηcol,Rk
[m,m′] =

tr {Rk[m, q]Rk[m
′, q]}

‖Rk[m, q]‖F ‖Rk[m′, q]‖F
(15)

where the Hermitian and positive semidefinite matrix Rk[m, q] is either the TX correlation matrix

RTX[m, q] = RTX(m/Bν , q/Bτ ) or the RX correlation matrix RRX[m, q] = RRX(m/Bν , q/Bτ )

for m, q ∈ Z. Similarly, we have H[m, q] = H(m/Bν , q/Bτ ). Therefore, with (15), one can

choose between analyzing the spatial properties at the TX or at the RX. The collinearity can be

represented in terms of the CMD proposed in [11], [12]:

CMDk[m,m
′] = 1− ηcol,Rk

[m,m′] (16)

where k stands for “TX” or “RX”.

B. Measures Based on an Algorithmic View

We now introduce measures that relate the characterization of the non-stationarity to an

algorithmic view. Therefore, the resulting non-stationarity analysis will not represent the pure

channel anymore, but it will be connected to the chosen algorithm.
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1) Doppler and Delay Domain: For the Doppler and the delay domain, we consider pilot-

based channel estimation over time and frequency, respectively. Here, the pilot symbols are

represented by the measurement samples. We start with the Doppler case, i.e., we consider

estimation of a frequency-flat fading channel over time. Consider the received signal y[m] =

h[m]x[m]+n[m], where {h[m]} is the proper complex zero-mean channel process, {x[m]} is the

transmitted sequence that consists of random data symbols and periodically inserted deterministic

pilot symbols with power σ2
p , and {n[m]} is a zero-mean white proper Gaussian noise process

with known variance σ2
n > 0. The processes {h[m]}, {x[m]}, and {n[m]} are assumed to be

mutually independent. Furthermore, we define the ratio γ = σ2
p/σ

2
n. From [19], we have the MSE

of the linear minimum MSE channel estimate in terms of the PSD of the underlying (zero-mean)

random process. The mismatched MSE at time instant m using statistical knowledge from time

instant m′ with a pilot spacing L and the interval length N is given by σ̃2
ν,N,L[m,m′], see [19]

for the corresponding derivation. The matched MSE at time instant m follows as σ2
ν,N,L[m] =

σ̃2
ν,N,L[m,m]. An approximate expression for the mismatched MSE is [19]:

σ̃2
ν,ap,L[m,m′] =

1

Bp

Bp−1

2∑
p=−Bp−1

2

γ−2BνC
(Φ)
ν [m; p] + γ−1B2

ν

(
C

(Φ)
ν [m′; p]

)2

(
BνC

(Φ)
ν [m′; p] + γ−1

)2 . (17)

The approximate matched MSE at time instant m is σ2
ν,ap,L[m] = σ̃2

ν,ap,L[m,m]. For further details,

we refer to [19]. In order to characterize the loss in MSE at time instant m due to mismatched

statistical knowledge from time instant m′, we define the relative MSE

ηMSE,ν,k,L[m,m′] =
σ2
ν,k,L[m]

σ̃2
ν,k,L[m,m′]

(18)

where k is to be substituted by N or “ap”. The relative MSE in the delay case, i.e., considering

estimation over frequency, follows analogoulsy as ηMSE,τ,k,L[m,m′].

2) Spatial Domains: For the spatial domains, we consider transmission over a frequency-flat

fading channel. We use a simple strategy with a single transmitted stream based on the knowledge

of the channel statistics at the TX. Specifically, we choose statistical transmit beamforming, i.e.,

linear rank-one precoding, with the precoding vector u∗TX,max[m]. Here, uTX,max[m] is an eigenvec-

tor of the (frequency-independent) TX correlation matrix RTX[m] corresponding to the maximal
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eigenvalue λTX,max[m]. We have the length-NRX received vector y[m] = H[m]u∗TX,max[m]x[m] +

n[m], where H[m] are NRX × NTX jointly proper complex channel matrices, x[m] are the

transmitted signals with power σ2
x > 0, and the length-NRX vectors n[m] are zero-mean white

(in time and space) jointly proper Gaussian noise vectors with known element-wise variance

σ2
n > 0. The processes {H[m]}, {x[m]}, and {n[m]} are assumed to be mutually independent.

At the RX side, we process the received vector with a matched filter. The advantage of using this

transmission technique lies in its simplicity since the MIMO channel reduces to a SISO channel.

Moreover, the TX only requires statistical knowledge in the form of a dominant eigenvector.

The (average) mismatched SNR at time instant m using statistical channel knowledge from time

instant m′ is [2], [13], [20]

SNRTX[m,m′] =
uHTX,max[m

′]RTX[m]uTX,max[m
′]

σ2
n/σ

2
x

. (19)

In the matched case, we have m′ = m. To characterize the loss in SNR, we define the relative

SNR

ηSNR,TX[m,m′] =
SNRTX[m,m′]

SNRTX[m,m]
=

uHTX,max[m
′]RTX[m]uTX,max[m

′]

λTX,max[m]
. (20)

In order to analyze the non-stationarity of the spatial RX domain, we consider the reverse link

with the channel HT [m]. We obtain analogously ηSNR,RX[m,m′]. Compared to the Doppler and

delay domains, this technique has the advantage that the non-stationarity analysis does not require

a suitable parametrization. Next, we show that the resulting measure is closely connected to the

CMD.

C. Algorithmic Interpretation of the CMD

We use the eigendecomposition of the Nk×Nk correlation matrix Rk[m] = Uk[m]Λk[m]UH
k [m]

where k stands for “TX” or “RX”. Additionally, we define the real and non-negative eigenvalue

as λk,l[m] = [Λk[m]]l,l for l = 1, . . . , Nk and the eigenvector which is the lth column of Uk[m]
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as uk,l[m] . We then obtain

tr {Rk[m]Rk[m
′]} = tr

{
UH
k [m′]Rk[m]Uk[m

′]Λk[m
′]
}

=

Nk∑
l=1

λk,l[m
′]
[
UH
k [m′]Rk[m]Uk[m

′]
]
l,l

=

Nk∑
l=1

λk,l[m
′]uHk,l[m

′]Rk[m]uk,l[m
′]. (21)

With (21), we can rewrite (16) as

CMDk[m,m
′] = 1−

∑Nk
l=1 λk,l[m

′]uHk,l[m
′]Rk[m]uk,l[m

′]√∑Nk
l=1 λ

2
k,l[m]

∑Nk
l=1 λ

2
k,l[m

′]
. (22)

We can thus give an algorithmic interpretation of the CMD since (21) represents the sum average

signal power over individual streams weighted by the eigenvalues of the correlation matrix

Rk[m
′]. When Rk[m] and Rk[m

′] are both rank-one matrices, then ηcol,Rk
[m,m′] = ηSNR,k[m,m

′],

i.e., the CMD is equal to one minus the relative SNR.

IV. LOCAL QUASI-STATIONARITY

In this section, we show how to obtain the LQS regions based on the introduced measures.

LQS regions are local time-frequency regions inside which the channel can be non-stationary

under some restriction, hence the name quasi-stationarity. Furthermore, we consider local regions

and thus we obtain the name LQS regions. We emphasize that our definition is different to the

quasi-WSSUS model introduced by [3]. The quasi-WSSUS model can be applied to the time-

frequency stationarity regions of size (∆τ,max∆ν,max)
−1 discussed in Section II-A. Inside these

regions the channel statistics exhibit only minor variations and thus the channel can be assumed

to be stationary. In contrast, the channel is generally non-stationary inside LQS regions, with

the restriction that the non-stationarity is limited in some sense, e.g., by a maximal performance

degradation of a selected algorithm. A visualization of the LQS regions in time and frequency in

comparison to the coherence regions and the stationarity regions relevant to the quasi-WSSUS

model is provided in Fig. 1.
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Fig. 1. Visualization of the time-frequency LQS regions in comparison to the coherence regions and the stationarity regions

relevant to the quasi-WSSUS model.

For every measure ηk[m,m + ∆m], where the index k indicates the considered measure, we

define the average measure

ηavg,k[∆m] =
1

|L|
∑
m∈L

ηk[m,m+ ∆m] (23)

with the set L containing all elements m over which we average the measure. By using measures

averaged over a measurement scenario defined by the set L, we characterize the degree of non-

stationarity of the entire scenario. This averages out effects due to specific propagation conditions,

e.g., the change from an open environment to a street canyon. As such, we obtain the degree of

non-stationarity in an average sense, which is more meaningful from an operational perspective

since it is valid for the entire scenario.

We can then define the sets Mk using a threshold ηth as

Mk = {∆m | ηavg,k[∆m] > ηth} . (24)

Note that ηk[m,m+ ∆m] ∈ [0, 1] holds, thus ηth has to be chosen in the interval [0, 1]. Here, the

value 1 represents stationarity and the value 0 represents the highest degree of non-stationarity.

For the algorithmic measures, this threshold immediately follows from the maximal tolerated
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performance degradation. These sets allow us to obtain time-independent LQS times as

TLQS,k = |Ck|T (25)

where T = 1/Bν denotes the spacing between the time samples, and Ck is the connected subset of

Mk with maximum cardinality and containing the element ∆m = 0. It is important to mention

that the average measures tend to exhibit a smoother behavior than the instantaneous ones.

Therefore, they are better suited for a thresholding operation and consequently the definition of

LQS regions.

Finally, we emphasize that we only study LQS regions and not the aforementioned stationarity

regions. We thus only perform a single thresholding operation. Moreover, the choice of the

threshold is clearly motivated for the algorithmic measures.

V. CHANNEL MEASUREMENTS AND DATA PROCESSING

Our MIMO channel measurement campaign [21] focused on gathering realistic channel data in

an urban macrocell scenario relevant to 3GPP LTE. Channel sounding, according to the principle

described in [22], was conducted at 2.53 GHz in two bands of 45 MHz. On the base station

(BS) side, a uniform linear array (ULA) with eight antenna elements was used. Each antenna

element consists of a stack of four DP patch antennas in order to form a narrow transmit beam in

elevation. At the MT (passenger car), two uniform circular arrays (UCAs), one above the other,

with twelve antenna elements, i.e., DP patch antennas, each were used. The antenna elements at

the BS ULA and the MT UCA represent vertical-polarized (VP) and horizontal-polarized (HP)

antennas. The BS and the MT antenna arrays are shown in Fig. 3. The BS served as the TX

and the MT as the RX. The measurement campaign sequentially covered measurements from

three BS positions with 25 m height to 22 MT tracks. In Fig. 2, an overview of the three MT

reference tracks and the three BS positions used in this work is shown. Table I summarizes the

properties of the measurement campaign, see also [23].
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Fig. 2. Overview of the MT reference tracks and the three BS positions

Fig. 3. Antenna array at the BS (left) and at the MT (right).
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A. Antenna Setups

At the BS side, we have the ULA at a height of 25 m, and, at the MT side, we have the

two UCAs that are mounted on top of each other, see Fig. 3. The elements chosen at the MT

TABLE I

PROPERTIES OF THE MEASUREMENT CAMPAIGN

GENERAL PROPERTIES

Scenario Urban macrocell

Location City center, Ilmenau, Germany

MIMO measurement setup 3 BSs, 22 tracks

BS 1-2: 680 m

Intersite distances BS 2-3: 580 m

BS 3-1: 640 m

CHANNEL SOUNDER PROPERTIES

Type RUSK TUI-FAU, Medav GmbH

TX power 46 dBm at the power amplifier output

Center frequency fc 2.53 GHz

Bandwidth 2 bands of 45 MHz

Time sample spacing Tm 13.1 ms

Frequency sample spacing Fm 156.25 kHz

MIMO sub-links 928 (16 BS, 58 MT antennas)

AGC switching In MIMO sub-links

Positioning Odometer and GPS

ANTENNA PROPERTIES

BS array MT array

Type PULPA8 SPUCPA 2x12

+ cube

Height 25 m 1.9 m

Beamwidth, azimuth (3 dB) 100° 360°

Beamwidth, elevation (3 dB) 24° 80°

Tilt 5° down 0

Maximal velocity |vmax| 0 ≈ 10 km/h
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correspond to the front (direction of motion), the back, and the two sides of the MT.2

1) 4 × 4 MIMO: In the following, we investigate 4 × 4 MIMO with two SP and three DP

antenna setups for a large BS array of length 3λc. The two SP antenna setups are a VP and an

HP setup, and, for the DP antenna setups, we consider two co-located and one spatially separated

antenna setup. For the SP antenna setups, the antenna separation at the BS is λc, while at the

MT it is 0.5λc across the two UCAs or 0.327λc on the same UCA. For the two co-polarized

DP antenna setups, we use two sets of co-located DP antennas at the BS and the MT; they are

separated by 3λc at the BS and, in one case denoted by DP-CL-1, by 0.5λc across the UCAs

or, in another case denoted by DP-CL-2, by 0.327λc on the lower UCA at the MT. Since the

neighboring antenna elements on the same UCA have a slightly different orientation (turned

by 30 degrees), the VP, the HP, and the DP-CL-2 antenna setups have a wider coverage, i.e.,

opening angle, into the propagation channel (for each polarization) than the DP-CL-1 antenna

setup. For the spatially separated DP antenna setup DP-SS, we use the same antenna patches

as in the SP case. However, we have a separation of 2λc for each polarization at the BS side.

At the MT side, we only use the VP excitation on the lower UCA and only the HP excitation

on the upper UCA. Note that the introduced SP and DP antenna setups result in the same array

length at the BS. Additionally, we study a small BS array of length 1.5λc for the same antenna

setups as before with the only difference that all spacings at the BS side are divided by two.

The properties of all antenna setups are summarized in Table II.

2) 2 × 2 MIMO: We also investigate 2 × 2 MIMO with two VP (VP-1 and VP-2), two HP

(HP-1 and HP-2), and two spatially-separated DP antenna setups (DP-SS-1 and DP-SS-2) for

a large BS array of length 3λc. The antenna separation at the BS is 3λc, while at the MT it is

0.5λc across the two UCAs (VP-1, HP-1, and DP-SS-1) or 0.327λc on the lower UCA (VP-2,

HP-2, and DP-SS-2). We again study a small BS array of length 1.5λc for the same antenna

2Due to the different lengths of the connections from the antennas to the multiplexer at both the BS and the MT, additional

phase shifts, different for every MIMO sub-link, are observed in the channel measurements. This effect is obviously not desired,

and we make sure that it does not influence the studied measures and thus the results. We discuss this effect in the Appendix.
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TABLE II

PROPERTIES OF THE ANTENNA SETUPS WITH A LARGE/SMALL BS ARRAY.

MIMO Antenna DP type BS array BS antenna spacing MT opening

system setup length for each polarization angle

4× 4 VP - 3λc / 1.5λc λc / 0.5λc wide

4× 4 HP - 3λc / 1.5λc λc / 0.5λc wide

4× 4 DP-CL-1 co-located 3λc / 1.5λc 3λc / 1.5λc narrow

4× 4 DP-CL-2 co-located 3λc / 1.5λc 3λc / 1.5λc wide

4× 4 DP-SS spatially separated 3λc / 1.5λc 2λc / λc wide

2× 2 VP-1 - 3λc / 1.5λc 3λc / 1.5λc narrow

2× 2 VP-2 - 3λc / 1.5λc 3λc / 1.5λc wide

2× 2 HP-1 - 3λc / 1.5λc 3λc / 1.5λc narrow

2× 2 HP-2 - 3λc / 1.5λc 3λc / 1.5λc wide

2× 2 DP-CL co-located 3λc / 1.5λc - narrow

2× 2 DP-SS-1 spatially separated 3λc / 1.5λc - narrow

2× 2 DP-SS-2 spatially separated 3λc / 1.5λc - wide

setups as before with the only difference that all spacings at the BS side are divided by two.

Additionally, we use a co-located DP antenna setup DP-CL for which we use the lower UCA.

B. Data Processing

For the subsequent non-stationarity analysis, we use a 20 MHz band between 2.495 GHz and

2.515 GHz. We preprocess the data by estimating a noise level in the time-delay domain and not

considering any values below it. For each time-frequency stationarity region, we normalize the

channel matrices H[m, q] with a scalar factor such that the condition E {||hco[m, q]||2F} = Nco is

emulated. Here, hco[m, q] is a vector containing only the elements of H[m, q] corresponding to

co-polarized sub-links and Nco denotes their number. We thus effectively remove the path loss

and the shadow fading, while accounting for the power loss in cross-polarized sub-links [24].

1) Doubly Underspread Condition: Before performing the estimation of the second-order

moments of the channel, we verify that the DU condition holds. For this, we need estimates
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of the stationarity regions; thus, we can only perform a rough check. The maximal velocity of

the MT is |vmax| ≈ 10 km/h. Since the base station is fixed and we assume the scatterers to

be fixed for now, we obtain a maximal Doppler shift |νmax| = |vmax|fc/c0 ≈ 23.4 Hz, with the

center frequency fc and the speed of light in vacuum c0. This results in a minimal coherence

time Tcoh,min = 1/|νmax| = 42.7 ms. We observe a maximal delay τmax ≈ 5 µs, which gives a

minimal coherence frequency Fcoh,min = 1/τmax = 200 kHz. Assuming a minimal stationarity

length of dstat,min ≈ 10λc = 10c0/fc = 1.19 m [25], a rough estimate of the minimal stationarity

in time is Tstat,min = 1/∆ν,max = dstat,min/vmax ≈ 0.43 s. If correlation of different delay-Doppler

components is only a result of scattering from the same physical object [4], this corresponds

to a maximum angular spread of δ = 25.8° when given by ∆νmax = 2νmax sin2(δ/2). Similarly,

we estimate the minimal stationarity in frequency Fstat,min assuming that the maximal size of

an object is wmax ≈ 15 m and that only components from the same object are correlated, i.e.,

Fstat,min = 1/∆τ,max ≈ c0/wmax ≈ 20 MHz. We thus obtain ∆τ,max∆ν,max ≈ 1.16 · 10−7 and

τmaxνmax ≈ 1.17 · 10−4 and thus the DU condition ∆τ,max∆ν,max � τmaxνmax � 1 is fulfilled

in our scenario. With the above estimates, the minimum number of coherent samples is 3 in

time and 1 in frequency. The minimum number of stationary samples is 32 in time and 128 in

frequency.

2) Estimation of the GLSF: For DU channels, an estimation of the GLSF, i.e., a spectral

estimator, using only a single measurement run is proposed in [26], [27]. Since the channel

measurements are available at discrete time and frequency instants, we are interested in a discrete

representation of the GLSF. By removing the expectation operator in (6), we can obtain a GLSF

estimator that is similar to the one used in [16]:

Ĉ
(Φ)
H

(
mTm, qFm;

p

B∆t

,
n

B∆f

)
=

S−1∑
s=0

γs
∣∣H(Gs)[m, q; p, n]

∣∣2 (26)

for |p| ≤ Bp−1

2
and 0 ≤ n ≤ Bn − 1 with

H(Gs)[m, q; p, n] =
√
TmFm

dNw,t/2e−1∑
m′=−bNw,t/2c

dNw,f/2e−1∑
q′=−bNw,f/2c

L∗Gs [m
′, q′]
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×LH ((m+m′)Tm, (q + q′)Fm) e
−j2π

(
pm′Tm
B∆t

−nq
′Fm

B∆f

)
(27)

where Nw,t and Nw,f denote the window lengths in time and frequency, respectively, and Tm =

1/Bν and Fm = 1/Bτ are the time and the frequency differences between consecutive samples,

respectively. For the windows in the GLSF estimation, we use a separation into time and

frequency windows, i.e., we have LG(a−1)J+b
[m, q] = ua[m]vb[q], with a = 1, . . . , I , b = 1, . . . , J ,

and S = IJ = 1/γs. Each window is created by a discrete prolate spheroidal sequence (DPSS)

[28] as proposed in [16], [26]. The chosen time-limited DPSSs have unit-energy and are optimally

concentrated in bandwidth; they are thus a good choice for a small MSE in a DU scenario, as

can be concluded from the bias-variance analysis in [26]. For the window lengths in time and

frequency, we use Nw,t = (Bp + 1)/2 = 32 and Nw,f = (Bn + 1)/2 = 128, respectively. We

choose all the values inside the minimal time and frequency stationarity region to obtain a

maximal amount of realizations. The time-halfbandwidth product of the DPSSs is set to 2 in

time and frequency, and the number of windows is set to I = J = 2 to limit the computational

complexity. No claims of optimality are made for the window parameters. The Doppler and the

delay PSDs are then obtained according to (8) and (9), respectively.

3) Estimation of the Correlation Matrices: In order to obtain estimates of the correlation

matrices, we approximate the ensemble averaging by an averaging in time and frequency. We

average over Nt = 16 samples in time and over Nf = 128 samples in frequency. Compared to

the GLSF estimation, we only take half of the samples in time since the Doppler resolution is

not of concern for the spatial domains. Therefore, we can better reproduce the time-variations

of the channel statistics. In total, we thus average over 2048 (≈ 500 non-coherent) realizations.

VI. RESULTS

Using the measurement data, we evaluate the LQS distances versus the threshold for the various

domains of the channel. One can thus obtain the LQS distances depending on the tolerated

degree of non-stationarity. The threshold to obtain the LQS distances is applied to the averaged

measures, where the averaging is performed over the whole reference scenario, i.e., all BSs,
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TABLE III

LQS DISTANCES FOR THE DOPPLER AND THE DELAY DOMAIN WITH A THRESHOLD ηTH = 0.9.

Polarization LQS distance [m] - Doppler LQS distance [m] - Delay

combination collinearity MSE MSE-ap collinearity MSE MSE-ap

V-V 2.900 4.200 3.100 6.400 7.200 5.100

H-H 2.600 3.500 2.700 4.400 5.700 4.100

V-H 2.400 2.700 2.100 8.500 3.700 2.500

H-V 2.300 2.300 1.800 6.200 2.700 1.900

TABLE IV

STANDARD DEVIATION OF THE MEASURES FOR THE DOPPLER AND THE DELAY DOMAIN FOR A DISTANCE OFFSET OF

−10 M.

Polarization Standard deviation [m] - Doppler Standard deviation [m] - Delay

combination collinearity MSE MSE-ap collinearity MSE MSE-ap

V-V 0.234 0.169 0.189 0.139 0.139 0.160

H-H 0.246 0.185 0.203 0.160 0.154 0.178

V-H 0.211 0.159 0.169 0.125 0.131 0.144

H-V 0.218 0.157 0.166 0.130 0.127 0.140

all MT positions on the reference tracks, and all orientations of the MT. For the MSE-based

measures, we use a (nominal) SNR γ = 10 dB and a pilot spacing L = 1. Furthermore, for

the exact MSE-based measure, we set the estimation interval length N to 30 in time and 120 in

frequency. We pick the four sub-links of the 2× 2 DP-CL antenna setup to define the vertical-

to-vertical (V-V), the horizontal-to-horizontal (H-H), the vertical-to-horizontal (V-H), and the

horizontal-to-vertical (H-V) polarization combination.

A. Delay and Doppler Domains

We first study the non-stationarity in the Doppler and the delay domain for the four polarization

combinations V-V, H-H, V-H, and H-V. In Table III, we give the LQS distances for a threshold

ηth = 0.9. we observe that mostly lower LQS distances are observed in the Doppler compared
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to the delay domain. We further find that the collinearity and the exact MSE-based measure

can yield significantly different LQS distances. Moreover, the approximate MSE-based measure

underestimates the LQS distances with respect to the exact MSE-based measure in all cases.

Only for the MSE-based measures, we observe significantly lower LQS distances on the cross-

polarized links than on the co-polarized links. Additionally, only for the collinearity and the

delay domain, higher LQS distances are obtained on the cross-polarized links compared to the

co-polarized links. The choice of the polarization combination has a stronger impact on the

LQS distances of the delay domain than those of the Doppler domain. This can be explained

by the use of directional antennas at the MT; as the main source of the Doppler shift is the

movement of the MT, changing the polarization combination does not have a severe influence on

the Doppler domain. Regarding the delay domain, different multipath components with different

delays might be observed for each polarization combination. Next, we investigate the standard

deviation of the measures for the Doppler and the delay domain for a distance offset of −10 m,

i.e., from the past, in Table IV. It can be seen that the standard deviations of the measures are

rather high; this indicates that the measures can strongly vary over the scenario. We note that

the Doppler resolution is rather limited due to the short time window used in the estimation of

the GLSF. However, this is necessary to properly study the non-stationarity of the channel in

time, i.e., to reproduce the time variations of the channel statistics.

B. Spatial Domains

We now investigate the non-stationarity in the spatial domain at the BS and the MT for 4× 4

MIMO systems. In Table V, we give the LQS distances with the large BS array for a threshold

ηth = 0.9. In Fig. 4, we exemplarily depict the LQS distances vs. the treshold for the VP and the

DP-CL-2 antenna setup with the large BS array of length 3λc, see Section V-A. It can be observed

that, for the SP antenna setups, the LQS distances are quite high and thus the corresponding

channel statistics can be reused over large distances (in an average sense). This is especially true

for the spatial domain at the BS side due to its high elevation. The CMD overestimates the LQS
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b) Co-located DP antenna setup on the lower UCA (DP-CL-2)

Fig. 4. LQS regions vs. threshold for the spatial domain at the BS and the MT for 4 × 4 MIMO systems with a large BS

array. Exemplarily, the results for the VP and the DP-CL-2 antenna setup are shown.

distances with respect to the SNR-based measure; this should be considered when evaluating

the update rate of the channel statistics for applications such as statistical beamforming. For

the DP antenna setups, we mostly observe smaller LQS distances compared to the SP antenna

setups. This is especially true when considering the SNR-based measures since, in the DP case,

it is more probable for two eigenvalues to be of similar size; thus, the dominant eigenvector

can easily vary along a track and the SNR-based measure yields low LQS distances. Consider

now the CMD in the spatial domain at the MT of the DP-CL-1 antenna setup; here, we can

observe higher LQS distances. The reason is that the DP-CL antenna setup is the only setup

which does not use neighboring antenna elements at the MT; therefore, the MT can only see

multipath components of the channel inside a smaller opening angle, see Section V-A. At the
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TABLE V

LQS DISTANCES FOR THE SPATIAL DOMAIN AT THE BS AND THE MT FOR 4× 4 MIMO SYSTEMS WITH A THRESHOLD

ηTH = 0.9.

BS array Antenna LQS distance [m]

size setup BS: CMD BS: SNR MT: CMD MT: SNR

Large VP 24.900 16.000 19.500 8.000

Large HP 27.000 19.200 6.900 2.200

Large DP-CL-1 4.900 0.700 32.700 1.100

Large DP-CL-2 4.400 0.700 5.900 0.700

Large DP-SS 6.800 0.900 4.100 0.700

Small VP > 50 > 50 16.100 5.700

Small HP > 50 > 50 5.200 1.800

Small DP-CL-1 14.100 0.900 23.900 0.900

Small DP-CL-2 13.400 0.900 4.700 0.700

Small DP-SS 25.100 1.100 3.300 0.600

TABLE VI

STANDARD DEVIATION OF THE MEASURES FOR THE SPATIAL DOMAIN AT THE BS AND THE MT FOR A DISTANCE OFFSET

OF −10 M AND 4× 4 MIMO SYSTEMS WITH THE LARGE BS ARRAY.

Antenna Standard deviation of the LQS distance [m]

setup BS: CMD BS: SNR MT: CMD MT: SNR

VP 0.110 0.164 0.094 0.148

HP 0.107 0.164 0.106 0.156

DP-CL-1 0.097 0.172 0.064 0.139

DP-CL-2 0.097 0.172 0.092 0.170

DP-SS 0.106 0.185 0.098 0.178

BS side, the SP antenna setups result in much higher LQS distances due to the low spacing

between the individual antenna elements. In the DP-SS case, the antenna element spacing for

each polarization is doubled and for the co-located DP cases it is even tripled. Thus, the DP-SS

case yields lower and the co-located DP cases even lower LQS distances for the BS-related

measures. Additionally, we depict the LQS distances based on the CMD of the full correlation
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TABLE VII

LQS DISTANCES FOR THE SPATIAL DOMAIN AT THE BS AND THE MT FOR 2× 2 MIMO SYSTEMS WITH A THRESHOLD

ηTH = 0.9.

BS array Antenna LQS distance [m]

size setup BS: CMD BS: SNR MT: CMD MT: SNR

Large VP-1 34.600 11.000 > 50 > 50

Large VP-2 35.800 11.900 38.800 20.200

Large HP-1 32.300 14.100 > 50 > 50

Large HP-2 28.500 11.200 31.800 18.300

Large DP-CL > 50 1.300 > 50 1.100

Large DP-SS-1 > 50 1.100 > 50 1.100

Large DP-SS-2 > 50 1.500 > 50 1.500

Small VP-1 48.000 32.400 > 50 > 50

Small VP-2 48.800 33.400 36.900 18.300

Small HP-1 47.700 35.300 > 50 > 50

Small HP-2 47.200 34.800 30.600 17.700

Small DP-SS-1 > 50 1.100 > 50 1.100

Small DP-SS-2 > 50 1.500 > 50 1.500

matrix E
{

vec {H[m]} (vec {H[m]})H
}

, i.e., considering the spatial domain at the BS and MT

domains jointly, in Fig. 4. Obviously, the resulting LQS distances are much lower compared

to the ones when studying the spatial domain at the BS and the MT individually. We further

study the effect of the BS array length by evaluating the LQS distances of the small BS array of

length 1.5λc, see Section V-A, in Table V. It can clearly be seen that the same observations as

for the larger BS array can be made with the only difference that the BS-related measures result

in significantly larger LQS distances. On the MT side, we observe a small decline in the LQS

distances. We also study the standard deviations of the measures for the spatial domain at the

BS and the MT for a distance offset of −10 m for the larger BS array in Table VI. Again, we

can observe strong variations of the measures over the scenario, especially for the SNR-based

measures.



27

In Table VII, we give the LQS distances for a threshold ηth = 0.9 of the 2× 2 MIMO setups

with the large BS array. This allows us to confirm some of the observations made in the 4× 4

MIMO case. Consider first the SP antenna setups. By choosing the MT antennas on the same

UCA (VP-2, HP-2, DP-SS-2), the MT has a wider opening angle into the propagation channel.

Thus, the corresponding LQS distances for the spatial domain at the MT side are smaller than

those of the antenna setups with the MT antennas on both UCAs (VP-1, HP-1, DP-SS-1), at

least in the SP cases. For the DP antenna setups, we do not observe this effect since the MT

has a slightly different but narrow opening angle for each polarization. Similarly, in [29], it was

found that the temporal variation of the channel is considerably decreased by using directional

instead of omnidirectional antennas. As for the 4× 4 MIMO case, the use of the small BS array

results in larger LQS distances regarding the BS side, while the LQS distances characterizing the

MT side slightly decrease. Note also that, in the 2×2 MIMO case, there is only one antenna per

polarization for all DP antenna setups. Therefore, there is no antenna spacing per polarization,

see Table II, and the LQS distances with the CMDs are very high in the DP cases.

C. Correlations

We also study the correlations between the spatial measures with the 4×4 MIMO VP antenna

setup (large BS array) and the delay and Doppler measures with the V-V polarization combination

for a distance offset of −10 m in Table VIII. It can be observed that all correlation coefficients

are positive or close to zero. The spatial measures at the BS side are mildly correlated to the

spatial measures at the MT side, whereas the correlation between the Doppler and the delay

measures is rather low. Moreover, the delay and Doppler measures are only slightly correlated

to the spatial measures. As expected, the measures characterizing the same domain are mostly

highly correlated.

VII. CONCLUSION

In this paper, we have presented an extensive measurement-based analysis of the non-stationarity

of DP wireless channels. The measurements performed at 2.53 GHz are representative for an
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TABLE VIII

CORRELATION COEFFICIENTS BETWEEN THE 4× 4 VP MIMO WITH THE LARGE BS ARRAY AND THE V-V SISO

MEASURES FOR A DISTANCE OFFSET OF −10 M.

Sp.-BS Sp.-MT Sp.-Full Doppler Delay

Measure CMD SNR CMD SNR CMD col. MSE MSE-ap col. MSE MSE-ap

Sp.-BS: CMD 1.000 0.921 0.396 0.315 0.822 0.138 0.125 0.115 0.286 0.144 0.106

Sp.-BS: SNR 0.921 1.000 0.305 0.259 0.749 0.098 0.077 0.070 0.195 0.052 0.022

Sp.-MT: CMD 0.396 0.305 1.000 0.911 0.742 0.230 0.174 0.159 0.252 0.199 0.163

Sp.-MT: SNR 0.315 0.259 0.911 1.000 0.664 0.219 0.112 0.096 0.210 0.136 0.104

Sp.-Full: CMD 0.822 0.749 0.742 0.664 1.000 0.204 0.158 0.146 0.258 0.176 0.138

Dop.: col. 0.138 0.098 0.230 0.219 0.204 1.000 0.666 0.609 0.137 0.081 0.077

Dop.: MSE 0.125 0.077 0.174 0.112 0.158 0.666 1.000 0.987 0.095 0.153 0.143

Dop.: MSE-ap 0.115 0.070 0.159 0.096 0.146 0.609 0.987 1.000 0.086 0.149 0.142

Del.: col. 0.286 0.195 0.252 0.210 0.258 0.137 0.095 0.086 1.000 0.395 0.376

Del.: MSE 0.144 0.052 0.199 0.136 0.176 0.081 0.153 0.149 0.395 1.000 0.965

Del.: MSE-ap 0.106 0.022 0.163 0.104 0.138 0.077 0.143 0.142 0.376 0.965 1.000

urban macrocell environment and pertinent to LTE. Our approach is practically relevant since

it connects the size of the LQS regions to the performance degradation of an algorithm due

to outdated knowledge of the channel statistics. Additionally to our algorithmic measures, we

used common measures from the literature as a basis for comparison. The analysis encompasses

the Doppler, the delay, and the spatial domains of the DP channel as well as several antenna

setups. The results demonstrate that LQS regions can be of significant size, i.e., several meters

long. This motivates the reuse of channel statistics over large distances (in an average sense)

for certain algorithms. We find that the polarization configuration of the BS and the MT array

can have a strong impact on the LQS regions, i.e., the degree of non-stationarity of the channel.

For example, the studied beamforming technique requires significantly higher update rates of the

channel statistics in the case of DP channels. Moreover, an increase in the antenna spacing at the

BS yields an increase in the degree of non-stationarity in the spatial domain at the BS. Due to

the directional antennas of the UCAs at the MT, we were able to study the effects of the opening
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angle into the propagation channel at the MT side; it was revealed that an increase in the opening

angle can substantially increase the degree of non-stationarity in the spatial domain at the MT.

Overall, it is shown that the LQS distances can be strongly dependent on the chosen measure

and threshold. Therefore, the choice of the measure and the threshold is crucial in assessing the

LQS distances. Using the proposed algorithm-specific approach to the non-stationarity analysis,

the measure and the threshold are naturally obtained from the considered algorithm and the

tolerable performance degradation. The introduced approach thus provides an effective method

to analyze the non-stationarity of the channel from a system perspective.

APPENDIX

In this appendix, we discuss the invariance of the measures to the phase offsets mentioned in

Section V-A. It is reasonable to assume that these phase offsets are approximately time-invariant.

There is, however, a frequency-dependency of the phase offsets since, e.g., at the TX (BS) element

k for k = 1, . . . , NTX the phase offset is φTX
off,k = 2πdTX

off,kfc/c0 + ∆TX
φ,off,k with the shift in the

phase offset ∆TX
φ,off,k = 2πdTX

off,k∆f/c0. Here, dTX
off,k is the additional distance between a selected

antenna and the multiplexer at the TX. Inserting realistic parameters as, e.g., ∆f = 20 MHz

and d = 0.1 m, we obtain ∆TX
φ,off,k = 0.042, which is a relatively small difference in the phase

offset. The same result holds for the phase offsets at the RX (MT) φRX
off,k for k = 1, . . . , NRX.

In the SISO case, we can thus ignore the phase offsets when, e.g., estimating the GLSF. In the

MIMO case, the influence of the different phase offsets is, however, not clear. We can define

the channel transfer matrix including the phase offsets as

Ȟ[m, q] = DRXH[m, q]DTX (28)

where DTX and DRX are diagonal matrices containing the transmit and the receive phase off-

sets, i.e., [DTX]k,k = exp(−jφTX
off,k) for k = 1, . . . , NTX and [DRX]k,k = exp(−jφRX

off,k) for

k = 1, . . . , NRX, respectively. We now study the influence of the phase offsets on the correlation
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matrices. With DTXDH
TX = INTX and DH

RXDRX = INRX , we obtain

ŘTX[m, q] = E
{
ȞT [m, q]Ȟ∗[m, q]

}
= DTXRTX[m, q]D∗TX (29)

ŘRX[m, q] = E
{
Ȟ[m, q]ȞH [m, q]

}
= DRXRRX[m, q]D∗RX. (30)

It can easily be checked that the CMDs are invariant to phase offsets since we have

tr
{
Řk[m, q]Řk[m

′, q]
}

= tr {Rk[m, q]Rk[m
′, q]} (31)

where k stands for “TX” or “RX”. Similarly, one can show that the SNR-based measure is

invariant to phase offsets.
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