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Abstract—In wireless sensor networks (WSNs), the network lifetime7
(NL) is a crucial metric since the sensor nodes usually rely on lim-8
ited energy supply. In this paper, we consider the joint optimal design9
of the physical, medium access control (MAC), and network layers to10
maximize the NL of the energy-constrained WSN. The problem of NL11
maximization can be formulated as a nonlinear optimization problem12
encompassing the routing flow, link scheduling, transmission rate, and13
power allocation operations for all active time slots (TSs). The resultant14
nonconvex rate constraint is relaxed by employing an approximation of15
the signal-to-interference-plus-noise ratio (SINR), which transforms the16
problem to a convex one. Hence, the resultant dual problem may be17
solved to obtain the optimal solution to the relaxed problem with a zero18
duality gap. Therefore, the problem is formulated in its Lagrangian form,19
and the Karush–Kuhn–Tucker (KKT) optimality conditions are employed20
for deriving analytical expressions of the globally optimal transmission21
rate and power allocation variables for the network topology considered.22
The nonlinear Gauss–Seidel algorithm is adopted for iteratively updating23
the rate and power allocation variables using these expressions until24
convergence is attained. Furthermore, the gradient method is applied for25
updating the dual variables in each iteration. Using this approach, the26
maximum NL, the energy dissipation per node, the average transmission27
power per link, and the lifetime of all nodes in the network are evaluated28
for a given source rate and fixed link schedule under different channel29
conditions.30

Index Terms—Author, please supply index terms/keywords for yourAQ1 31
paper. To download the IEEE Taxonomy go to http://www.ieee.org/32
documents/taxonomy_v101.pdf.33

NOMENCLATURE34

• Number of nodes: V = 10.35
• Total number of TSs per link: N = 18.36
• Path-loss exponent: m = 4.37
• Euclidean distance between consecutive nodes: d[m] = 1.38
• Maximum affordable transmit power per node:39

(Pυ)max.[W] = 50.40
• Spatially periodic link scheduling parameter: T = {3, 4, 5, 6,41

7, 8, 9}.42
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• Initial battery energy per node: Eυ[J] = 5000. 43
• Spectral noise power density: N0[dBm/Hz] = 1. 44
• Power amplifier inefficiency: α = 0.01 [26]. 45
• Set of all directed links: L. 46
• A directed link spanning from transmitter i to receiver j: li,j . 47
• Set of all sensor nodes: V . 48
• Network topology incidence matrix: A. 49
• Emerging link of node υ: l ∈ O(υ). 50
• Incoming link of node υ: l ∈ I(υ). 51
• Network-channel-gain matrix: G. 52
• Fading gain of the link between transmitter i and receiver j: 53

Hi,j = |hi,j |2. 54
• NL: Tnet. 55
• Reciprocal of NL: z. 56
• Transmission rate of link l in TS n: rl,n. 57
• Transmit power of link l in TS n: Pl,n. 58
• Logarithm of the transmit power of link l in TS n: Ql,n = 59

log(Pl,n). 60
• A set of dual variables for energy conservation constraint in 61

(5): Ω. 62
• A set of dual variables for transmission rate constraint in (4): Ψ. 63
• A set of dual variables for transmit power constraint in (6): ϑ. 64
• A set of dual variables for flow constraint in (3): μ. 65
• Convergence tolerance of the iterative algorithm: ε = 10−5. 66

I. INTRODUCTION 67

A wireless sensor network (WSN) is composed of a large number 68
of nodes that monitor physical and environmental conditions and pass 69
their accumulated data through the network to a sink node. There are 70
numerous attractive applications for WSNs, including, for example, 71
designing intelligent highways, controlling air pollution, providing 72
remote health assistance for disabled or elderly people, monitoring 73
river level variations, etc. Each of these applications may be composed 74
of many sensor nodes, each of which consumes considerable amount 75
of energy with sensing, communication, and data processing activities. 76
Since each sensor node drains its limited energy supply as time elapses, 77
the network lifetime (NL) is a crucial metric for these applications and 78
has a major impact on the achievable performance of WSNs. Hence, 79
we aim for analyzing and optimizing the NL of the WSNs under 80
different channel conditions. 81

The NL defines the total amount of time during which the network is 82
capable of maintaining its full functionality and/or achieves particular 83
objectives during its operation, as exemplified in [1] and [2]. Specifi- 84
cally, the authors of [3]–[5] defined the expiration of the NL as the time 85
instant at which a certain number of nodes in the network depleted 86
their batteries. As a further example, the NL was defined in [6] as 87
the lifetime of the specific sensor node associated with the highest 88
energy consumption rate, whereas the authors of [7]–[9] considered 89
the lifetime of the network to be expired at the particular instant, when 90
the first node’s battery was depleted. The NL in [8] was also defined 91
as the instant when the first data collection failure occurred. In this 92
paper, the NL is deemed to be expired, when at least one of the nodes 93
fails due to its discharged battery. Therefore, extending the lifetime 94
of a single node becomes an important and challenging task due to 95
the battery-dependent characteristics of the wireless sensor nodes. 96
This common NL definition is used in this paper since we consider 97
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a network of linearly connected sensor nodes, where a single node’s98
failure may destroy the entire string topology of nodes and, hence,99
the information of the source cannot be relayed to the sink. When100
considering the energy dissipated at a sensor node, the battery life101
is predominantly related to the node’s communication activity, where102
the transmission rate and power must be optimized, while taking into103
account the battery capacity, the efficiency of the power amplifiers, the104
receiver and transmitter circuit energy consumption, and other physical105
layer parameters, including the modulation and coding schemes, the106
attainable coding gain, the path loss, and so on.107

It is widely recognized that transmission at a high transmission rate108
requires the use of high transmit power, which potentially leads to109
strong interference among the transmission links [10]. Therefore, the110
battery depletion of an individual sensor node may become inevitable;111
hence, the NL may be reduced. However, in large networks, spatial112
reuse may be adopted for improving the attainable transmission rates at113
the cost of imposing interference on the network [11]. In this case, link114
scheduling [12] and multiple-access schemes [13] play a significant115
role in coordinating the resultant interference. More explicitly, we will116
demonstrate that scheduling weakly interfering links simultaneously117
allows the network to maintain a given sum rate at a reduced per-node118
transmit power, which hence extends the battery life of the nodes and119
the NL [10]. This is one of the methods routinely employed for taking120
advantage of spatial reuse to control the level of interference imposed121
on the network [11]. This method extends the NL since mitigating122
the interference imposed implies that each transmission requires less123
power. Therefore, intelligent scheduling should carefully balance the124
number of simultaneous active links and their transmission duration125
to keep the required transmit power at a minimum. Furthermore,126
multihop relaying [14] is capable of conserving the energy of the127
source node (SN) since intermediate nodes may be employed for128
reducing the transmission power necessary for maintaining a given129
end-to-end rate. Hence, we consider the joint optimal design of the130
transmission rate, transmission power, and scheduling to maximize the131
NL of energy-constrained WSNs.132

There is a paucity of contributions in the literature on the issue of133
cross-layer NL optimization in the context of WSNs. Hoesel et al.134
[15] proposed a cross-layer approach for jointly optimizing the135
medium access control (MAC) and routing layer to maximize the136
NL. Chen and Zhao [8] proposed an efficient MAC protocol that137
relies both on the channel state information and on the MAC’s138
knowledge of the residual energy to maximize the NL. In [16],139
Kwon et al. investigated the NL maximization problem of WSNs,140
which jointly considers the physical layer, the MAC layer, and the141
routing layer in conjunction with the transmission success probability142
constraint. Additionally, the tradeoff between NL maximization and143
application performance was studied in [17] by using cross-layer144
optimization. A similar study also investigated the tradeoff between145
the energy consumption and application-layer performance with the146
aid of cross-layer optimization of WSNs [18]. Another cross-layer ap-147
proach conceived for maximizing the NL was proposed in [19], where148
MAC-aware routing optimization schemes were designed for WSNs149
that are capable of multichannel access. In [20], Li et al. invoked150
random linear network coding for the lifetime maximization of wire-151
less networks within a fixed-rate system for communicating over both152
additive white Gaussian noise (AWGN) and Rayleigh fading channels.153
A different approach to NL maximization was introduced in [21],154
where both contention and sleep control probabilities of the sensor155
nodes were utilized for formulating the NL maximization problem,156
while guaranteeing both the required throughput and the signal-to-157
interference-plus-noise ratio (SINR) requirements. Najimi et al. [4]158
proposed a node selection algorithm for balancing the energy usage of159
the sensors in a fixed-mode cognitive sensor network. A similar idea160

Fig. 1. String topology with V = 10 nodes, including an SN and a DN.

to that of the optimal control approach invoked for maximizing the NL 161
with the aid of a carefully selected routing probability was exploited 162
in [9], where all the sensors were configured to deplete their energy 163
exactly at the same time for lifetime maximization. Another similar 164
study advocating an effective transmission scheme was proposed in 165
[22], where both the maximum possible energy efficiency and the best 166
possible energy balancing were maintained with the aid of ant colony 167
optimization. 168

However, all related work aforementioned considers either non- 169
adaptive, i.e., fixed-mode system, or nonfading channel characteristics. 170
An adaptive system conceived for NL maximization was studied by 171
Wang et al. [23], who considered only an interference-free scenario 172
for an AWGN channel by employing the Karush–Kuhn–Tucker (KKT) 173
optimality conditions [24] to the optimal time-division multiple-access 174
(TDMA) NL maximization problem of [12] to derive the analytical 175
expressions of the optimal NL. Madan et al. [12] considered an 176
interference-limited scenario relying on an adaptive system, operating 177
in an AWGN channel, but the impact of the fading channel charac- 178
teristics on the NL was not presented. Wang et al. [23] obtained a 179
closed-form solution for a specific network topology. By contrast, a 180
generalized string network topology consisting of an arbitrary number 181
of nodes is considered in our treatise, where we employ the KKT 182
optimality conditions for obtaining the optimal solution to the NL 183
maximization problem using closed-form expressions. Therefore, we 184
are able to derive analytical expressions of the globally optimal NL for 185
a string network operating in an interference-limited scenario, while 186
communicating either over an AWGN or over fading channels for 187
a given link schedule. Furthermore, the maximum NL, the energy 188
dissipation per node, the average transmission power per link, and the 189
lifetime of all nodes in the network may be obtained. We quantify how 190
the maximum NL decreases as a function of the fading statistics due to 191
the poor channel conditions. Furthermore, it is demonstrated that given 192
a certain network sum rate, the simultaneous scheduling of weakly 193
interfering links benefits from the associated spatial reuse by allowing 194
each node to transmit at a lower rate, which requires a reduced 195
transmission power and hence results in a higher NL. Against this 196
backdrop, the novel contributions of this paper can be summarized as 197
follows. 198

1) The KKT optimality conditions [24] are invoked for deriving 199
the analytical expressions of the globally optimal NL for an 200
interference-limited string topology. 201

2) In addition to the line-of-sight (LOS) AWGN channel model, 202
the non-LOS Rayleigh block-fading channel model is adopted 203
for studying the effects of fading on the NL. 204

3) The maximum NL is evaluated, and the energy dissipation per 205
node, the average transmission power per link, and the lifetime 206
of all nodes in the network are quantified for a given link 207
schedule and source rate in both LOS AWGN and non-LOS 208
Rayleigh block-fading channels. 209

4) The substantial effect of the distance among the consecutive 210
nodes on the NL is also analyzed for lower source rates, when 211
operating in a Rayleigh fading channel. The impact of the inter- 212
ferers is also investigated in the context of higher source rates. 213

The remainder of this paper is organized as follows. Section II de- 214
scribes our system model and the constraints of the optimization 215
problem considered. Our problem formulation and solution approach 216
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Fig. 2. Spatially periodic link schedule with time sharing parameter T = 3 and T = 9 when N = 18 and V = 10.

are presented in Section III, and our numerical results are shown in217
Section IV. Our conclusions are provided in Section V.218

II. SYSTEM MODEL219

Here, we first describe the network model,1 which relies on a string220
topology.2 Second, we detail our transceiver model in Section II-B,221
where we evaluate the NL for transmission over both AWGN and222
block-fading channels. Moreover, our transmission scheduling strategy223
is also described and exemplified at the end of Section II-B.224

A. Network Model225

We consider a string topology composed of V sensor nodes, where226
the SN and the destination node (DN) are linearly connected by227
intermediate nodes. An example of this string topology for V = 10228
is shown in Fig. 1; hence, the number of links is L = V − 1 = 9.229

Each link is unidirectional, and the antenna of each node is om-230
nidirectional. The network can be modeled as a directed graph G =231
{V,L}, where V = {1, 2, 3, . . . , V } is the set of all sensor nodes,232
and L = {l1,2, l2,3, . . . , lV −1,V } is the set of all directed links in233
the network. Here, li,j represents the directed link spanning from the234
transmitter node i to receiver node j. Therefore, the topology can be235
modeled with the aid of an incidence matrix of the graph G given by236
A ∈ R|V|×|L|. The entries aυ,l of A are given by237

aυ,l =

{
1, if υ is the transmitter of link l
−1, if υ is the receiver of link l
0, otherwise.

(1)

We consider a single commodity flow. Therefore, by the conser-238
vation of flow, the constraint

∑
l∈O(υ)

(
∑N

n=1
rl,n) =

∑
l∈I(υ)

×239

(
∑N

n=1
rl,n) may be written for each node υ in the absence of an240

external source or sink, where N is the total number of time slots241
(TSs) per TDMA frame, and rl,n is the transmission rate of link l in242

1Our network model is a centralized one, where the sink node is assumed to
be a control center.

2A string topology is chosen since, in this simple scenario, the effect of
transmission variables on the NL can be explicitly exposed and analyzed. Our
string topology scenario is also capable of providing insights concerning a
randomly distributed network with many nodes since a specific set of nodes can
be assumed to constitute a single route of the randomly distributed network.

TS n. Additionally, l ∈ O(υ) denotes the emerging link, and l ∈ I(υ) 243
represents the incoming link of node υ. 244

B. Channel Model and MAC Layer Scheme 245

In each TS n, each node can only act as a transmitter or a receiver. 246
Each transmitter is only allowed to communicate with a single receiver, 247
which cannot receive from other nodes in the same TS. This is due to 248
the half-duplex nature of the transceivers, where nodes communicate 249
on the same shared wireless channel. The channel gain of the link 250
between transmitter i and receiver j is given by Gi,j = 1/(di,j)m, 251
where di,j is the distance between nodes i and j, whereas the path- 252
loss exponent is m = 4. These channel gains are arranged into a 253
network-channel-gain matrix denoted by G. Each node υ is capable 254
of transmitting at a power less than the maximum power of that node 255
denoted by (Pυ)max. The total energy dissipation at a node cannot 256
exceed the initial battery energy of that node. No node is allowed to 257
simultaneously transmit multiple data packets, and the link quality is 258
defined by the SINR. 259

The LOS AWGN channel is modeled by a certain propagation path- 260
loss law and a fixed noise power at the receivers. Given a specific link 261
l, the SINR is denoted by Γl in the AWGN channel model. The maxi- 262
mum achievable rate per unit bandwidth is rl = log(1 +K · Γl) given 263
in nats/s/Hz, where K = −1.5/ log(5BER) [25], and BER represents 264
the target bit error ratio (BER) required by the system. Therefore, the 265
SINR is given by [13] Γli,j ,n = Gi,jPi,n/(

∑
i′ �=i

Gi′,jPi′,n +N0), 266
where Pi,n is the transmission power of node i in TS n. Furthermore, 267
K is assumed to incorporate the coding gain and any other gain 268
factors, which is a suitable model for M -ary quadrature amplitude 269
modulation (MQAM) associated with M ≥ 4 [25]. The factor K is 270
assumed absorbed into the gain matrix G. 271

On the other hand, when considering fading channels, the channel 272
of each link is modeled as a multiplicative Rayleigh fading channel 273
contaminated by the noise added at the receivers. We consider block 274
fading or quasi-static fading, where the fading gain is kept constant 275
throughout the TDMA frame for the link, which represents slowly 276
fading channels, i.e., low Doppler pedestrian speeds. This requires a 277
modification of the SINR used in AWGN channels, which is formu- 278
lated as [25] Γ̃li,j ,n = Hi,jGi,jPi,n/(

∑
i′ �=i

Hi′,jGi′,jPi′,n +N0), 279

where Hi,j = |hi,j |2 is the fading gain of the link between transmitter 280
i and receiver j. 281
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We assume a link scheduling associated with spatially periodic282
time sharing [12], where we consider a distance T between links283
that are transmitting in the same TS, and the link is reactivated after284
every T TSs. Fig. 2 shows the spatially periodic link scheduling for285
T = 3 and T = 9. For T = 3, at the first TS, links l1,2, l4,5, l7,8 are286
simultaneously scheduled, and each link is activated six times in total287
in TSs of 1, 4, 7, 10, 13, and 16. On the other hand, for T = 9, each TS288
has only a single active transmission, and each link is activated twice,289
as shown in Fig. 2.290

III. PROBLEM FORMULATION AND SOLUTION291

Having discussed the assumptions and constraints in Section II, the292
NL maximization problem [12] can be formulated as in293

min. z (2)

s.t. A(r1 + r2 + · · ·+ rN ) = s ·N (3)(
N0

Gi,j

· erli,j ,n−Qli,j ,n

+
∑

li′,j′∈Ln,i′ �=i

Gi′,j

Gi,j

· erli,j ,n+Ql
i′,j′ ,n

−Qli,j ,n

)

− 1 ≤ 0 ∀n, l ∈ Ln (4)

N∑
n=1

⎛⎝ ∑
l∈O(υ)∩Ln

(
(1 + α) · eQli,j ,n + Pct

)

+
∑

l∈I(υ)∩Ln

Pcr

⎞⎠ ≤ z ·Eυ ·N ∀υ (5)

Qli,j ,n ≤ log((Pi)max), l ∈ Ln (6)

rn ≥ 0 ∀n (7)

rli,j ,n = 0 ∀l �∈ Ln (8)

where (4) has been modified, so that it constitutes a strictly convex294
constraint. See the Nomenclature list on the first page of this paper for295
the specific parameters utilized in our simulations.296

The links that are active in TS n are denoted by the set Ln,297
and s = [s1, 0, . . . ,−s1]

T is the source rate vector, where the first298
and last elements are nonzero but the remaining elements are set to299
zero because the first node is the SN and the last node is the DN,300
and the other nodes act as relay nodes (RN). The variables of the301
optimization problem are z, Ql,n, and rl,n, for l ∈ Ln, n = 1, . . . , N .302
The vector of rate variables associated with TS n is given by rn =303
[rl1,2,n, rl2,3,n, . . . , rlV −1,V ,n]

T . Assuming that the transmitter and304
receiver circuits do not dissipate energy, we can setPct=0 andPcr=0,305
where Pct and Pcr denote the power required by the transmitter306
and receiver circuits, respectively. Furthermore, we denote the power307
amplifier inefficiency as α [26]. The lifetime of a node in the network308
is denoted by Tυ , which corresponds to the time during which the309
node runs out of battery. The NL is defined as the time during which310
at least one node completely drains its battery, i.e., we have Tnet =311
min .

υ �=V,υ∈V
Tυ . The objective function (OF) and the constraints of the312

optimization problem are as follows.313

1) Objective function—Minimization of reciprocal of the NL: In314
(2), we minimize z so that the NL is maximized. Here, we315
used a minimization technique in our problem. We can re-316

write (5) as
∑N

n=1
(
∑

l∈O(υ)∩Ln
((1 + α) · eQli,j ,n + Pct) +317

∑
l∈I(υ)∩Ln

Pcr) ≤ (1/Tnet) ·Eυ ·N , and we can multiply 318
the left-hand side of the inequality by Tnet, but the multiplication 319
of the two optimization variables is in general nonconvex. There- 320
fore, we use a change of variable and minimize z = 1/Tnet, 321
which keeps the right-hand side of the inequality linear and left- 322
hand side convex. 323

2) Flow conservation constraint: In (3), using matrix A with 324
entries given by 1 ensures that flow conservation is preserved, 325
and physically, this means that the information generated at the 326
SN has to arrive at the DN. 327

3) Transmission rate constraint: We have to satisfy the rate con- 328
straint of our interference-limited scenario for each link of the 329
same TS in (4). 330

4) Energy conservation constraint: Each sensor node can dissipate 331
at most the initial amount of battery energy, which we set to 5000 J. 332
Therefore, in (5), the energy conservation constraint is given for 333
each node. 334

5) Transmit power constraint: Equation (6) represents the transmis- 335
sion power at a node, which has to be less than the maximum 336
affordable transmit power of that node. 337

6) No transmission: Finally, the transmission rate of nodes that are 338
not scheduled for transmission is set to zero in (8). 339

The optimization problem is solved for the sake of finding the optimal 340
scheme for transmission over each link for a given link schedule, 341
which is defined by the spatially periodic time sharing discussed in 342
Section II-B. However, to obtain the globally optimal solutions, we 343
wish to show that (2)–(8) represent a convex optimization problem, 344
composed of a convex OF, convex inequality constraint functions, and 345
affine equality constraint functions. It is clear that (3) and (8) are affine, 346
(2) and (5)–(7) are convex, and (4) is strictly convex [24]. Therefore, 347
(2)–(8) define a strictly convex optimization problem that has a unique 348
solution. We can convert the problem into its Lagrangian form and 349
rely on the KKT optimality conditions [24] for deriving the analytical 350
expressions of the globally optimal transmission scheme for the string 351
network topology of Fig. 1. 352

A. Karush–Kuhn–Tucker Optimality Conditions 353

Lets us define the sets of the optimization variables and of the 354
Lagrangian multipliers as R={rl1,2,1, . . . , rlV−1,V,N}, Q={Ql1,2,1, 355
. . . , QlV −1,V ,N}, μ={μ1, . . . , μV }, Ψ={ψl1,2,1, . . . , ψlV −1,V ,N}, 356
Ω = {ω1, . . . , ωV −1}, and ϑ = {ϑl1,2,1, . . . , ϑlV −1,V ,N}. Thus, the 357
partial Lagrangian of (2)–(8) is given by (9), shown at the bottom of 358
the next page, where ωυ , ψli,j ,n, and ϑli,j ,n, μυ are the dual variables 359
associated with the constraints (3)–(6), respectively. Constraints (7) 360
and (8) are taken into account, when deriving the optimal primal 361
variables. 362

The KKT conditions for (9) are given by (10)–(16), shown at the 363
bottom of the next page, where I−1(l) denotes the node associated 364
with the incoming link l, and O−1(l) represents the node associated 365
with the outgoing link l. Since the primal problem is convex, if 366
z,R,Q,Ω,Ψ,ϑ,μ represent arbitrary points that satisfy the KKT 367
optimality conditions given by the primal feasibility in (3)–(6), the dual 368
feasibility of (16), the complementary slackness in (13)–(15), and the 369
first-order optimality in (10)–(12), then z,R,Q are primal optimal, 370
and Ω,Ψ,ϑ,μ are dual optimal3 with zero duality gap4 [24]. 371

3Optimal solution of the primal (original) problem is expressed as primal
optimal and the dual problem provides us a lower bound on the optimal value
of the original optimization problem. Hence, the dual optimal is a lower bound
on the primal optimal.

4The duality gap is defined as the difference between the optimal primal and
optimal dual solutions.
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B. Problem Solution372

From (11) and (12), the optimal values of Q and R in iteration373
(t+ 1) are given by (17) and (18), respectively, shown at the bottom of374
the next page. Note that, due to the interference terms in (11) and (12),375
each optimal variable in Q and R is dependent on the other variables376
of Q and R, which implies that they are interdependent, hence re-377
quiring a centralized solution approach.5 Therefore, the Gauss–Seidel378

5The calculation of both the transmit power and of the rate of a specific
node relies on the prior knowledge gleaned from other nodes, possibly from its
interferers. Therefore, a control center is required, which handles the variables
of the optimization problem and passes the near-instantaneous values of the
variables to each of the individual nodes. Compared with a distributed scheme,
this centralized solution will impose delay on the system since operations such
as channel estimation are required at the initial stage. The near-instantaneous
transmission rate and power values computed by the control center constituted
by the sink node should be forwarded to each individual node. Therefore, a
nonnegligible delay will be imposed on the reception of the sink node.

algorithm [27] is utilized for iteratively updating these variables in a 379
circular fashion. 380

The dual OF is defined as the minimum value of the Lagrangian 381
(9) over z,R,Q given by g(Ω,Ψ,ϑ,μ) = inf .

z,R,Q
L(z,R,Q,Ω,Ψ, 382

ϑ,μ), which is a linear problem even if the primal problem is 383
nonconvex. The dual function g(Ω,Ψ,ϑ,μ) may be maximized to 384
find a lower bound for the optimal value of the primal problem. Then, 385
we can write the dual problem as follows: 386

max .
Ω,Ψ,ϑ,μ

g(Ω,Ψ,ϑ,μ)

s.t. Ω ≥ 0, Ψ ≥ 0, ϑ ≥ 0

which is a linear optimization problem. When the primal problem is 387
convex, this lower bound is tight; therefore, the duality gap is zero. 388
Since the dual problem is continuously differentiable, the gradient 389
ascent algorithm [27] is utilized to solve the maximization problem 390
by simply evaluating a series of closed-form expressions. The gradient 391

L(z,R,Q,Ω,Ψ,ϑ,μ)= z+

V −1∑
υ=1

ωυ ·

⎡⎣ N∑
n=1

⎛⎝ ∑
l∈O(υ)∩Ln

(
(1 + α) · eQli,j ,n

)⎞⎠−z ·Eυ ·N

⎤⎦
+

N∑
n=1

∑
l∈Ln

ψli,j ,n ·

⎡⎣⎛⎝ N0

Gi,j

e
rli,j ,n

−Qli,j ,n +
∑

li′,j′∈Ln,i′ �=i

Gi′,j

Gi,j

e
rli,j ,n

+Ql
i′,j′ ,n

−Qli,j ,n
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of the Lagrangian function defines the search directions at the current392
point. Each dual variable is incremented in the direction of the positive393
gradient in (19)–(22), shown at the bottom of the page, where t is the394
iteration index, and [·]+ denotes max(0, ·). Provided that ΔΩ > 0,395
ΔΨ > 0, Δϑ > 0, and Δμ > 0 are sufficiently small positive step396
sizes, the dual variables Ωt, Ψt, ϑt, and μt converge to the dual397
optimal variables Ω∗, Ψ∗, ϑ∗, and μ∗, respectively, as t → ∞. In398
our case, the optimization problem shown in (2)–(8) is strictly convex;399
thus, the duality gap is zero, and the solution is unique.400

IV. EXPERIMENTAL RESULTS401

In our experiments, we use the parameters of d = 1 m, α = 0.01402
[26], K = 1, N0 = 1 dBm/Hz, Ev = 5000 J6, (Pi)max = 50 W, N =403
18, s1 = {0.2, 0.3, 0.4, 0.5, 0.6, 0.7} nats/s/Hz ≈ {0.29, 0.43, 0.58,404
0.72, 0.87, 1.01} bits/s/Hz, T = {3, 4, 5, 6, 7, 8, 9}, convergence toler-405
ance of iterative algorithm ε = 10−5.406

Fig. 3 shows the NL versus source rate trends for a fixed link407
schedule and for various spatially periodic time sharing parameters408
T , where the channel in each link is a LOS AWGN channel char-409
acterized by fixed noise power. As expected, the NL decays as a410
function of the source rate, as shown in Fig. 3. This is because a411
higher source rate requires a higher transmission rate and, hence,412
higher transmission power. Furthermore, in our model, the weakly413
interfering nodes are scheduled to transmit simultaneously; hence,414

6For example, this is the energy storage capacity of an AAA alkaline long-
life battery.

Fig. 3. Network lifetime for different spatially periodic schedules and source
rates in the AWGN channel.

each link becomes capable of transmitting at a lower rate, while still 415
satisfying all the transmit requirements of the SN. This necessitates 416
lower transmission power. Using the T = 9 spatially periodic time 417
schedule of Fig. 2 corresponds to a TDMA scheme since there is only 418
a single transmission in each TS, as shown in Fig. 2. However, since 419
the time frame of Fig. 2 consists of 18 TSs, a specific link is scheduled 420
to transmit twice during the whole time frame. Despite the fact that the 421
T = 9 link schedule does not impose any interference, it results in the 422
lowest NL according to Fig. 3. Although interference is present in 423
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Fig. 4. Network lifetime for different spatially periodic schedules and source
rates in a block-fading channel.

the T = 3 scenario since each link can be activated three times more424
often than in the T = 9 scenario, each link in the T = 3 scenario can425
be activated at lower transmission power, while still satisfying the end-426
to-end rate constraint. Therefore, the spatial reuse assisted us in the427
T = 3 scenario for increasing the NL. We can follow Fig. 2 to find out428
how many transmissions there are per link for a given value of T . For429
example, the T = 3 schedule allows a link to be scheduled six times,430
which requires a reduced transmission rate, since the total source rate431
that is delivered over different TSs is using six transmissions. From the432
flow conservation equality constraint of the optimization problem seen433
in (3), we have A(r1 + r2 + · · ·+ rN ) = s ·N . For example, let us434
assume that the source rate equals to 0.29 bits/s/Hz. Then, we obtain435
18 · 0.29 = 5.22 bits/s/Hz, which has to be divided into six transmis-436
sions, corresponding to a 0.87 bits/s/Hz per link transmission rate for437
T = 3. However, when we have T = 9, we obtain a 2.61-bits/s/Hz438
per link transmission rate since a link is only activated twice during the439
whole time frame. Therefore, the transmission rate per link converges440
to 0.87 bits/s/Hz for T = 3 and 2.61 bits/s/Hz for T = 9. Hence,441
T = 9 requires three times as much transmission power as T = 3.442
The required transmit power in weakly interfering links is quite low443
compared with that for T = 9, which is the scenario requiring the444
highest transmission rate. Hence, again, we surmise that simultaneous445
scheduling benefits from reduced transmission power due to its re-446
duced transmission rate per link. This is because the spatially periodic447
schedule allows us to schedule more transmissions during the same448
TS or to activate the same link more than once in different TSs. This449
explains the steep decay of the NL for T = 9.450

When considering the effects of node density on a given fixed link451
schedule, we expect a network supporting less than V = 10 nodes to452
be exposed to less interference. Therefore, the transmission power of453
each link can be reduced without reducing the end-to-end transmission454
rate, which results in a higher NL. On the other hand, upon increasing455
the node density, we expect the NL to decrease since more interferers456
are introduced, but the same transmission rate is required.457

Fig. 4 represents the NL versus source rate tradeoff for a fixed458
link schedule and for various spatially periodic time sharing parameter459
values of T when each link obeys an independent and identically dis-460
tributed Rayleigh block-fading channel. Naturally, the NL was reduced461
compared with the results of Fig. 3 recorded for an AWGN channel462
due to requiring higher transmit power to combat the effects of fading.463
We also analyzed the impact of the internode distance on the NL for464
the T = 3-based link schedule, when communicating over a Rayleigh465
fading channel, as shown in Fig. 4. Increasing the distance between466
the consecutive nodes substantially reduced the NL, particularly for467

Fig. 5. Energy dissipation per node, average transmit power per link and
lifetime of all nodes in the network in both AWGN and fading channels for the
T = 3 link schedule at a source rate of 0.29 bits/s/Hz. (a) Energy dissipation
per node. (b) Average transmit power per link. (c) Lifetime of all nodes in the
network.

lower source rates. However, quite surprisingly, increasing the distance 468
between the consecutive nodes from 1 to 3 m resulted in an improved 469
NL for higher source rates. This is due to the reduced impact of 470
the interferers located at a higher distance. More explicitly, although 471
the transmit power required had to be increased to satisfy the rate 472
constraint, at the same time the interferers were moved a bit further 473
away. Therefore, the total energy dissipation of the d = 3 m scenario 474
is still lower than that of the d = 1 m scenario associated with higher 475
source rates. 476

Furthermore, we comprehensively study the energy dissipation per 477
node, the average transmission power per link, and the lifetime of all 478
sensor nodes in the network. Fig. 5 shows the energy dissipation per 479
node, the average transmission power per link, and the lifetime of all 480
nodes in the network in both AWGN and fading channels for the T = 3 481
link schedule of Fig. 2 at a source rate of 0.29 bits/s/Hz. In the network 482
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topology considered, the transmissions from the first three nodes suffer483
from the highest amount of interference. This is because their receiving484
nodes are closer to their potential interferers, when compared with485
any other sets of nodes. Therefore, to satisfy the flow conservation486
constraints, these nodes must transmit at higher power, as shown in487
Fig. 5(b). Thus, in an AWGN channel, the first three nodes in the488
network dissipate their 5000-J initial amount of energy faster than the489
other nodes since the energy dissipation is proportional to the transmit490
power, as shown in Fig. 5(a), whereas in the Rayleigh block-fading491
channel, the third node runs out of battery first, which also determines492
the lifetime of the WSNs. The required transmit power of the third493
link is higher than that in the AWGN channel scenario. This increase494
in transmit power is required to overcome the effect of fading.495

The average transmit power per link is calculated by summing the496
transmit power values per link and then by dividing it by the number of497
TSs that the same link was allowed to transmit. For the first three links498
operating in the AWGN channel, the required transmission power per499
link is higher than that of the rest of the links. Since requiring a high500
transmit power results in dissipating more energy, the lifetime of those501
nodes is reduced, as shown in Fig. 5(c).502

Upon comparing the AWGN and fading channel scenarios in Fig. 5,503
we observe that they follow a similar trend. An observation is that504
the average transmit power per link of the seventh, eighth, and ninth505
nodes in Fig. 5(b) is slightly lower for the fading channel than for the506
AWGN channel. However, interestingly, the average transmit power507
per link of the third node in Fig. 5(b) recorded for the fading channel508
is slightly higher than that of the AWGN channel. Therefore, the need509
for a high transmit power necessitates higher energy dissipation for510
that particular node. Hence, the NL is reduced, which can also be511
observed by comparing Figs. 3 and 4. Fig. 3 shows that the NL of512
the WSN in the AWGN channel recorded for the T = 3 link schedule513
and for 0.29 bits/s/Hz source rate is approximately 2 h. By contrast,514
Fig. 4 shows that the NL of the WSN operating in a Rayleigh fading515
scenario for the T = 3 link schedule and for 0.29-bits/s/Hz source rate516
indicates approximately an NL of 1.13 h. This earlier node failure of517
the fading scenario is due to the poor channel conditions, where the518
fading required higher transmit power in the third node, as shown in519
Fig. 5(b). Therefore, this earlier node failure shortened the NL of the520
WSNs in fading channels.521

To put the given results into context, we apply our analysis to the522
environmental sensor networks of [28], where the relation between523
glaciers and climate change was studied. In their work, Martinez et al.524
[28] transmit data only once per day for a 0.5-s time slot. In this525
specific application and considering our results in Fig. 5 for T = 3 and526
a source rate of 0.29 bits/s/Hz, the battery will serve communications527
for 7200 s, which means that the NL will be around four years and528
three months in the LOS AWGN channel. We also consider what NL529
we can achieve if the environmental conditions are more challenging530
and the channel is exposed to the severe environments mentioned in531
[28], which may be modeled by a non-LOS Rayleigh block-fading532
channel. Activating the communication channel once per day in fading533
conditions will lead us to an NL of around two years and six months.534

V. CONCLUSION535

We evaluated the optimal NL in an interference-limited scenario for536
an optimal transmit rate and power, when considering the so-called537
spatially periodic time sharing scheme of Fig. 2. The maximization538
of NL was formulated as a nonlinear optimization problem taking into539
account the link scheduling, the transmission rates, and transmit power540
of all active TSs. The original nonlinear problem was converted into541
a convex optimization problem by employing an approximation of the542
SINR. We then derived the Lagrangian form of the convex optimiza-543

tion problem and employed the KKT optimality conditions [24] for 544
deriving analytical expressions of the globally optimal transmit rate 545
and power for our specific network topology. Finally, we obtained the 546
maximum NL for both AWGN and Rayleigh fading channels. Our 547
numerical results illustrated that fading has a detrimental impact on 548
the achievable NL due to the poor channel conditions that require an 549
increased transmit power to combat the effects of the fading. Further- 550
more, the simultaneous scheduling of links that interfere only weakly 551
allowed us to take advantage of spatial reuse, where the activation 552
of simultaneous transmissions at reduced rates necessitates reduced 553
transmission power, which results in extending the NL. From this 554
paper, we can conclude that the choice of scheduling depends on the 555
application since a lower source rate favors infrequent transmissions 556
requiring low transmit power, which do not suffer from interference, 557
when aiming for extending the NL. However, for higher source rates, 558
a higher NL can be achieved by aggressive spatial reuse. 559

Given the limitations of the centralized solution approach men- 560
tioned in Section III-B, the focus of this paper is on the information 561
delay analysis. We also plan to extend our string topology model to a 562
random network topology, where a single string (SN–DN pair) can be 563
assumed to constitute a single route of the random topology. Nonethe- 564
less, conceiving distributed solutions for avoiding the limitations of our 565
centralized scheme constitutes attractive future research directions. 566
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• Initial battery energy per node: Eυ[J] = 5000. 43
• Spectral noise power density: N0[dBm/Hz] = 1. 44
• Power amplifier inefficiency: α = 0.01 [26]. 45
• Set of all directed links: L. 46
• A directed link spanning from transmitter i to receiver j: li,j . 47
• Set of all sensor nodes: V . 48
• Network topology incidence matrix: A. 49
• Emerging link of node υ: l ∈ O(υ). 50
• Incoming link of node υ: l ∈ I(υ). 51
• Network-channel-gain matrix: G. 52
• Fading gain of the link between transmitter i and receiver j: 53

Hi,j = |hi,j |2. 54
• NL: Tnet. 55
• Reciprocal of NL: z. 56
• Transmission rate of link l in TS n: rl,n. 57
• Transmit power of link l in TS n: Pl,n. 58
• Logarithm of the transmit power of link l in TS n: Ql,n = 59

log(Pl,n). 60
• A set of dual variables for energy conservation constraint in 61

(5): Ω. 62
• A set of dual variables for transmission rate constraint in (4): Ψ. 63
• A set of dual variables for transmit power constraint in (6): ϑ. 64
• A set of dual variables for flow constraint in (3): μ. 65
• Convergence tolerance of the iterative algorithm: ε = 10−5. 66

I. INTRODUCTION 67

A wireless sensor network (WSN) is composed of a large number 68
of nodes that monitor physical and environmental conditions and pass 69
their accumulated data through the network to a sink node. There are 70
numerous attractive applications for WSNs, including, for example, 71
designing intelligent highways, controlling air pollution, providing 72
remote health assistance for disabled or elderly people, monitoring 73
river level variations, etc. Each of these applications may be composed 74
of many sensor nodes, each of which consumes considerable amount 75
of energy with sensing, communication, and data processing activities. 76
Since each sensor node drains its limited energy supply as time elapses, 77
the network lifetime (NL) is a crucial metric for these applications and 78
has a major impact on the achievable performance of WSNs. Hence, 79
we aim for analyzing and optimizing the NL of the WSNs under 80
different channel conditions. 81

The NL defines the total amount of time during which the network is 82
capable of maintaining its full functionality and/or achieves particular 83
objectives during its operation, as exemplified in [1] and [2]. Specifi- 84
cally, the authors of [3]–[5] defined the expiration of the NL as the time 85
instant at which a certain number of nodes in the network depleted 86
their batteries. As a further example, the NL was defined in [6] as 87
the lifetime of the specific sensor node associated with the highest 88
energy consumption rate, whereas the authors of [7]–[9] considered 89
the lifetime of the network to be expired at the particular instant, when 90
the first node’s battery was depleted. The NL in [8] was also defined 91
as the instant when the first data collection failure occurred. In this 92
paper, the NL is deemed to be expired, when at least one of the nodes 93
fails due to its discharged battery. Therefore, extending the lifetime 94
of a single node becomes an important and challenging task due to 95
the battery-dependent characteristics of the wireless sensor nodes. 96
This common NL definition is used in this paper since we consider 97
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a network of linearly connected sensor nodes, where a single node’s98
failure may destroy the entire string topology of nodes and, hence,99
the information of the source cannot be relayed to the sink. When100
considering the energy dissipated at a sensor node, the battery life101
is predominantly related to the node’s communication activity, where102
the transmission rate and power must be optimized, while taking into103
account the battery capacity, the efficiency of the power amplifiers, the104
receiver and transmitter circuit energy consumption, and other physical105
layer parameters, including the modulation and coding schemes, the106
attainable coding gain, the path loss, and so on.107

It is widely recognized that transmission at a high transmission rate108
requires the use of high transmit power, which potentially leads to109
strong interference among the transmission links [10]. Therefore, the110
battery depletion of an individual sensor node may become inevitable;111
hence, the NL may be reduced. However, in large networks, spatial112
reuse may be adopted for improving the attainable transmission rates at113
the cost of imposing interference on the network [11]. In this case, link114
scheduling [12] and multiple-access schemes [13] play a significant115
role in coordinating the resultant interference. More explicitly, we will116
demonstrate that scheduling weakly interfering links simultaneously117
allows the network to maintain a given sum rate at a reduced per-node118
transmit power, which hence extends the battery life of the nodes and119
the NL [10]. This is one of the methods routinely employed for taking120
advantage of spatial reuse to control the level of interference imposed121
on the network [11]. This method extends the NL since mitigating122
the interference imposed implies that each transmission requires less123
power. Therefore, intelligent scheduling should carefully balance the124
number of simultaneous active links and their transmission duration125
to keep the required transmit power at a minimum. Furthermore,126
multihop relaying [14] is capable of conserving the energy of the127
source node (SN) since intermediate nodes may be employed for128
reducing the transmission power necessary for maintaining a given129
end-to-end rate. Hence, we consider the joint optimal design of the130
transmission rate, transmission power, and scheduling to maximize the131
NL of energy-constrained WSNs.132

There is a paucity of contributions in the literature on the issue of133
cross-layer NL optimization in the context of WSNs. Hoesel et al.134
[15] proposed a cross-layer approach for jointly optimizing the135
medium access control (MAC) and routing layer to maximize the136
NL. Chen and Zhao [8] proposed an efficient MAC protocol that137
relies both on the channel state information and on the MAC’s138
knowledge of the residual energy to maximize the NL. In [16],139
Kwon et al. investigated the NL maximization problem of WSNs,140
which jointly considers the physical layer, the MAC layer, and the141
routing layer in conjunction with the transmission success probability142
constraint. Additionally, the tradeoff between NL maximization and143
application performance was studied in [17] by using cross-layer144
optimization. A similar study also investigated the tradeoff between145
the energy consumption and application-layer performance with the146
aid of cross-layer optimization of WSNs [18]. Another cross-layer ap-147
proach conceived for maximizing the NL was proposed in [19], where148
MAC-aware routing optimization schemes were designed for WSNs149
that are capable of multichannel access. In [20], Li et al. invoked150
random linear network coding for the lifetime maximization of wire-151
less networks within a fixed-rate system for communicating over both152
additive white Gaussian noise (AWGN) and Rayleigh fading channels.153
A different approach to NL maximization was introduced in [21],154
where both contention and sleep control probabilities of the sensor155
nodes were utilized for formulating the NL maximization problem,156
while guaranteeing both the required throughput and the signal-to-157
interference-plus-noise ratio (SINR) requirements. Najimi et al. [4]158
proposed a node selection algorithm for balancing the energy usage of159
the sensors in a fixed-mode cognitive sensor network. A similar idea160

Fig. 1. String topology with V = 10 nodes, including an SN and a DN.

to that of the optimal control approach invoked for maximizing the NL 161
with the aid of a carefully selected routing probability was exploited 162
in [9], where all the sensors were configured to deplete their energy 163
exactly at the same time for lifetime maximization. Another similar 164
study advocating an effective transmission scheme was proposed in 165
[22], where both the maximum possible energy efficiency and the best 166
possible energy balancing were maintained with the aid of ant colony 167
optimization. 168

However, all related work aforementioned considers either non- 169
adaptive, i.e., fixed-mode system, or nonfading channel characteristics. 170
An adaptive system conceived for NL maximization was studied by 171
Wang et al. [23], who considered only an interference-free scenario 172
for an AWGN channel by employing the Karush–Kuhn–Tucker (KKT) 173
optimality conditions [24] to the optimal time-division multiple-access 174
(TDMA) NL maximization problem of [12] to derive the analytical 175
expressions of the optimal NL. Madan et al. [12] considered an 176
interference-limited scenario relying on an adaptive system, operating 177
in an AWGN channel, but the impact of the fading channel charac- 178
teristics on the NL was not presented. Wang et al. [23] obtained a 179
closed-form solution for a specific network topology. By contrast, a 180
generalized string network topology consisting of an arbitrary number 181
of nodes is considered in our treatise, where we employ the KKT 182
optimality conditions for obtaining the optimal solution to the NL 183
maximization problem using closed-form expressions. Therefore, we 184
are able to derive analytical expressions of the globally optimal NL for 185
a string network operating in an interference-limited scenario, while 186
communicating either over an AWGN or over fading channels for 187
a given link schedule. Furthermore, the maximum NL, the energy 188
dissipation per node, the average transmission power per link, and the 189
lifetime of all nodes in the network may be obtained. We quantify how 190
the maximum NL decreases as a function of the fading statistics due to 191
the poor channel conditions. Furthermore, it is demonstrated that given 192
a certain network sum rate, the simultaneous scheduling of weakly 193
interfering links benefits from the associated spatial reuse by allowing 194
each node to transmit at a lower rate, which requires a reduced 195
transmission power and hence results in a higher NL. Against this 196
backdrop, the novel contributions of this paper can be summarized as 197
follows. 198

1) The KKT optimality conditions [24] are invoked for deriving 199
the analytical expressions of the globally optimal NL for an 200
interference-limited string topology. 201

2) In addition to the line-of-sight (LOS) AWGN channel model, 202
the non-LOS Rayleigh block-fading channel model is adopted 203
for studying the effects of fading on the NL. 204

3) The maximum NL is evaluated, and the energy dissipation per 205
node, the average transmission power per link, and the lifetime 206
of all nodes in the network are quantified for a given link 207
schedule and source rate in both LOS AWGN and non-LOS 208
Rayleigh block-fading channels. 209

4) The substantial effect of the distance among the consecutive 210
nodes on the NL is also analyzed for lower source rates, when 211
operating in a Rayleigh fading channel. The impact of the inter- 212
ferers is also investigated in the context of higher source rates. 213

The remainder of this paper is organized as follows. Section II de- 214
scribes our system model and the constraints of the optimization 215
problem considered. Our problem formulation and solution approach 216
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Fig. 2. Spatially periodic link schedule with time sharing parameter T = 3 and T = 9 when N = 18 and V = 10.

are presented in Section III, and our numerical results are shown in217
Section IV. Our conclusions are provided in Section V.218

II. SYSTEM MODEL219

Here, we first describe the network model,1 which relies on a string220
topology.2 Second, we detail our transceiver model in Section II-B,221
where we evaluate the NL for transmission over both AWGN and222
block-fading channels. Moreover, our transmission scheduling strategy223
is also described and exemplified at the end of Section II-B.224

A. Network Model225

We consider a string topology composed of V sensor nodes, where226
the SN and the destination node (DN) are linearly connected by227
intermediate nodes. An example of this string topology for V = 10228
is shown in Fig. 1; hence, the number of links is L = V − 1 = 9.229

Each link is unidirectional, and the antenna of each node is om-230
nidirectional. The network can be modeled as a directed graph G =231
{V,L}, where V = {1, 2, 3, . . . , V } is the set of all sensor nodes,232
and L = {l1,2, l2,3, . . . , lV −1,V } is the set of all directed links in233
the network. Here, li,j represents the directed link spanning from the234
transmitter node i to receiver node j. Therefore, the topology can be235
modeled with the aid of an incidence matrix of the graph G given by236
A ∈ R|V|×|L|. The entries aυ,l of A are given by237

aυ,l =

{
1, if υ is the transmitter of link l
−1, if υ is the receiver of link l
0, otherwise.

(1)

We consider a single commodity flow. Therefore, by the conser-238
vation of flow, the constraint

∑
l∈O(υ)

(
∑N

n=1
rl,n) =

∑
l∈I(υ)

×239

(
∑N

n=1
rl,n) may be written for each node υ in the absence of an240

external source or sink, where N is the total number of time slots241
(TSs) per TDMA frame, and rl,n is the transmission rate of link l in242

1Our network model is a centralized one, where the sink node is assumed to
be a control center.

2A string topology is chosen since, in this simple scenario, the effect of
transmission variables on the NL can be explicitly exposed and analyzed. Our
string topology scenario is also capable of providing insights concerning a
randomly distributed network with many nodes since a specific set of nodes can
be assumed to constitute a single route of the randomly distributed network.

TS n. Additionally, l ∈ O(υ) denotes the emerging link, and l ∈ I(υ) 243
represents the incoming link of node υ. 244

B. Channel Model and MAC Layer Scheme 245

In each TS n, each node can only act as a transmitter or a receiver. 246
Each transmitter is only allowed to communicate with a single receiver, 247
which cannot receive from other nodes in the same TS. This is due to 248
the half-duplex nature of the transceivers, where nodes communicate 249
on the same shared wireless channel. The channel gain of the link 250
between transmitter i and receiver j is given by Gi,j = 1/(di,j)m, 251
where di,j is the distance between nodes i and j, whereas the path- 252
loss exponent is m = 4. These channel gains are arranged into a 253
network-channel-gain matrix denoted by G. Each node υ is capable 254
of transmitting at a power less than the maximum power of that node 255
denoted by (Pυ)max. The total energy dissipation at a node cannot 256
exceed the initial battery energy of that node. No node is allowed to 257
simultaneously transmit multiple data packets, and the link quality is 258
defined by the SINR. 259

The LOS AWGN channel is modeled by a certain propagation path- 260
loss law and a fixed noise power at the receivers. Given a specific link 261
l, the SINR is denoted by Γl in the AWGN channel model. The maxi- 262
mum achievable rate per unit bandwidth is rl = log(1 +K · Γl) given 263
in nats/s/Hz, where K = −1.5/ log(5BER) [25], and BER represents 264
the target bit error ratio (BER) required by the system. Therefore, the 265
SINR is given by [13] Γli,j ,n = Gi,jPi,n/(

∑
i′ �=i

Gi′,jPi′,n +N0), 266
where Pi,n is the transmission power of node i in TS n. Furthermore, 267
K is assumed to incorporate the coding gain and any other gain 268
factors, which is a suitable model for M -ary quadrature amplitude 269
modulation (MQAM) associated with M ≥ 4 [25]. The factor K is 270
assumed absorbed into the gain matrix G. 271

On the other hand, when considering fading channels, the channel 272
of each link is modeled as a multiplicative Rayleigh fading channel 273
contaminated by the noise added at the receivers. We consider block 274
fading or quasi-static fading, where the fading gain is kept constant 275
throughout the TDMA frame for the link, which represents slowly 276
fading channels, i.e., low Doppler pedestrian speeds. This requires a 277
modification of the SINR used in AWGN channels, which is formu- 278
lated as [25] Γ̃li,j ,n = Hi,jGi,jPi,n/(

∑
i′ �=i

Hi′,jGi′,jPi′,n +N0), 279

where Hi,j = |hi,j |2 is the fading gain of the link between transmitter 280
i and receiver j. 281
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We assume a link scheduling associated with spatially periodic282
time sharing [12], where we consider a distance T between links283
that are transmitting in the same TS, and the link is reactivated after284
every T TSs. Fig. 2 shows the spatially periodic link scheduling for285
T = 3 and T = 9. For T = 3, at the first TS, links l1,2, l4,5, l7,8 are286
simultaneously scheduled, and each link is activated six times in total287
in TSs of 1, 4, 7, 10, 13, and 16. On the other hand, for T = 9, each TS288
has only a single active transmission, and each link is activated twice,289
as shown in Fig. 2.290

III. PROBLEM FORMULATION AND SOLUTION291

Having discussed the assumptions and constraints in Section II, the292
NL maximization problem [12] can be formulated as in293

min. z (2)

s.t. A(r1 + r2 + · · ·+ rN ) = s ·N (3)(
N0

Gi,j

· erli,j ,n−Qli,j ,n

+
∑

li′,j′∈Ln,i′ �=i

Gi′,j

Gi,j

· erli,j ,n+Ql
i′,j′ ,n

−Qli,j ,n

)

− 1 ≤ 0 ∀n, l ∈ Ln (4)

N∑
n=1

⎛⎝ ∑
l∈O(υ)∩Ln

(
(1 + α) · eQli,j ,n + Pct

)

+
∑

l∈I(υ)∩Ln

Pcr

⎞⎠ ≤ z ·Eυ ·N ∀υ (5)

Qli,j ,n ≤ log((Pi)max), l ∈ Ln (6)

rn ≥ 0 ∀n (7)

rli,j ,n = 0 ∀l �∈ Ln (8)

where (4) has been modified, so that it constitutes a strictly convex294
constraint. See the Nomenclature list on the first page of this paper for295
the specific parameters utilized in our simulations.296

The links that are active in TS n are denoted by the set Ln,297
and s = [s1, 0, . . . ,−s1]

T is the source rate vector, where the first298
and last elements are nonzero but the remaining elements are set to299
zero because the first node is the SN and the last node is the DN,300
and the other nodes act as relay nodes (RN). The variables of the301
optimization problem are z, Ql,n, and rl,n, for l ∈ Ln, n = 1, . . . , N .302
The vector of rate variables associated with TS n is given by rn =303
[rl1,2,n, rl2,3,n, . . . , rlV −1,V ,n]

T . Assuming that the transmitter and304
receiver circuits do not dissipate energy, we can setPct=0 andPcr=0,305
where Pct and Pcr denote the power required by the transmitter306
and receiver circuits, respectively. Furthermore, we denote the power307
amplifier inefficiency as α [26]. The lifetime of a node in the network308
is denoted by Tυ , which corresponds to the time during which the309
node runs out of battery. The NL is defined as the time during which310
at least one node completely drains its battery, i.e., we have Tnet =311
min .

υ �=V,υ∈V
Tυ . The objective function (OF) and the constraints of the312

optimization problem are as follows.313

1) Objective function—Minimization of reciprocal of the NL: In314
(2), we minimize z so that the NL is maximized. Here, we315
used a minimization technique in our problem. We can re-316

write (5) as
∑N

n=1
(
∑

l∈O(υ)∩Ln
((1 + α) · eQli,j ,n + Pct) +317

∑
l∈I(υ)∩Ln

Pcr) ≤ (1/Tnet) ·Eυ ·N , and we can multiply 318
the left-hand side of the inequality by Tnet, but the multiplication 319
of the two optimization variables is in general nonconvex. There- 320
fore, we use a change of variable and minimize z = 1/Tnet, 321
which keeps the right-hand side of the inequality linear and left- 322
hand side convex. 323

2) Flow conservation constraint: In (3), using matrix A with 324
entries given by 1 ensures that flow conservation is preserved, 325
and physically, this means that the information generated at the 326
SN has to arrive at the DN. 327

3) Transmission rate constraint: We have to satisfy the rate con- 328
straint of our interference-limited scenario for each link of the 329
same TS in (4). 330

4) Energy conservation constraint: Each sensor node can dissipate 331
at most the initial amount of battery energy, which we set to 5000 J. 332
Therefore, in (5), the energy conservation constraint is given for 333
each node. 334

5) Transmit power constraint: Equation (6) represents the transmis- 335
sion power at a node, which has to be less than the maximum 336
affordable transmit power of that node. 337

6) No transmission: Finally, the transmission rate of nodes that are 338
not scheduled for transmission is set to zero in (8). 339

The optimization problem is solved for the sake of finding the optimal 340
scheme for transmission over each link for a given link schedule, 341
which is defined by the spatially periodic time sharing discussed in 342
Section II-B. However, to obtain the globally optimal solutions, we 343
wish to show that (2)–(8) represent a convex optimization problem, 344
composed of a convex OF, convex inequality constraint functions, and 345
affine equality constraint functions. It is clear that (3) and (8) are affine, 346
(2) and (5)–(7) are convex, and (4) is strictly convex [24]. Therefore, 347
(2)–(8) define a strictly convex optimization problem that has a unique 348
solution. We can convert the problem into its Lagrangian form and 349
rely on the KKT optimality conditions [24] for deriving the analytical 350
expressions of the globally optimal transmission scheme for the string 351
network topology of Fig. 1. 352

A. Karush–Kuhn–Tucker Optimality Conditions 353

Lets us define the sets of the optimization variables and of the 354
Lagrangian multipliers as R={rl1,2,1, . . . , rlV−1,V,N}, Q={Ql1,2,1, 355
. . . , QlV −1,V ,N}, μ={μ1, . . . , μV }, Ψ={ψl1,2,1, . . . , ψlV −1,V ,N}, 356
Ω = {ω1, . . . , ωV −1}, and ϑ = {ϑl1,2,1, . . . , ϑlV −1,V ,N}. Thus, the 357
partial Lagrangian of (2)–(8) is given by (9), shown at the bottom of 358
the next page, where ωυ , ψli,j ,n, and ϑli,j ,n, μυ are the dual variables 359
associated with the constraints (3)–(6), respectively. Constraints (7) 360
and (8) are taken into account, when deriving the optimal primal 361
variables. 362

The KKT conditions for (9) are given by (10)–(16), shown at the 363
bottom of the next page, where I−1(l) denotes the node associated 364
with the incoming link l, and O−1(l) represents the node associated 365
with the outgoing link l. Since the primal problem is convex, if 366
z,R,Q,Ω,Ψ,ϑ,μ represent arbitrary points that satisfy the KKT 367
optimality conditions given by the primal feasibility in (3)–(6), the dual 368
feasibility of (16), the complementary slackness in (13)–(15), and the 369
first-order optimality in (10)–(12), then z,R,Q are primal optimal, 370
and Ω,Ψ,ϑ,μ are dual optimal3 with zero duality gap4 [24]. 371

3Optimal solution of the primal (original) problem is expressed as primal
optimal and the dual problem provides us a lower bound on the optimal value
of the original optimization problem. Hence, the dual optimal is a lower bound
on the primal optimal.

4The duality gap is defined as the difference between the optimal primal and
optimal dual solutions.
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B. Problem Solution372

From (11) and (12), the optimal values of Q and R in iteration373
(t+ 1) are given by (17) and (18), respectively, shown at the bottom of374
the next page. Note that, due to the interference terms in (11) and (12),375
each optimal variable in Q and R is dependent on the other variables376
of Q and R, which implies that they are interdependent, hence re-377
quiring a centralized solution approach.5 Therefore, the Gauss–Seidel378

5The calculation of both the transmit power and of the rate of a specific
node relies on the prior knowledge gleaned from other nodes, possibly from its
interferers. Therefore, a control center is required, which handles the variables
of the optimization problem and passes the near-instantaneous values of the
variables to each of the individual nodes. Compared with a distributed scheme,
this centralized solution will impose delay on the system since operations such
as channel estimation are required at the initial stage. The near-instantaneous
transmission rate and power values computed by the control center constituted
by the sink node should be forwarded to each individual node. Therefore, a
nonnegligible delay will be imposed on the reception of the sink node.

algorithm [27] is utilized for iteratively updating these variables in a 379
circular fashion. 380

The dual OF is defined as the minimum value of the Lagrangian 381
(9) over z,R,Q given by g(Ω,Ψ,ϑ,μ) = inf .

z,R,Q
L(z,R,Q,Ω,Ψ, 382

ϑ,μ), which is a linear problem even if the primal problem is 383
nonconvex. The dual function g(Ω,Ψ,ϑ,μ) may be maximized to 384
find a lower bound for the optimal value of the primal problem. Then, 385
we can write the dual problem as follows: 386

max .
Ω,Ψ,ϑ,μ

g(Ω,Ψ,ϑ,μ)

s.t. Ω ≥ 0, Ψ ≥ 0, ϑ ≥ 0

which is a linear optimization problem. When the primal problem is 387
convex, this lower bound is tight; therefore, the duality gap is zero. 388
Since the dual problem is continuously differentiable, the gradient 389
ascent algorithm [27] is utilized to solve the maximization problem 390
by simply evaluating a series of closed-form expressions. The gradient 391

L(z,R,Q,Ω,Ψ,ϑ,μ)= z+

V −1∑
υ=1

ωυ ·

⎡⎣ N∑
n=1

⎛⎝ ∑
l∈O(υ)∩Ln

(
(1 + α) · eQli,j ,n

)⎞⎠−z ·Eυ ·N

⎤⎦
+

N∑
n=1

∑
l∈Ln

ψli,j ,n ·

⎡⎣⎛⎝ N0

Gi,j

e
rli,j ,n

−Qli,j ,n +
∑

li′,j′∈Ln,i′ �=i

Gi′,j

Gi,j

e
rli,j ,n

+Ql
i′,j′ ,n

−Qli,j ,n

⎞⎠−1

⎤⎦
+

N∑
n=1

∑
l∈Ln

ϑli,j ,n ·
[
Qli,j ,n−log ((Pi)max)

]
+

V∑
υ=1

μυ ·

⎡⎣ ∑
l∈I(υ)

(
N∑

n=1

rli,j ,n

)
−

∑
l∈O(υ)

(
N∑

n=1

rli,j ,n

)⎤⎦ (9)

∂L
∂z

= 1 −
V∑

υ=1

ωυ(Eυ ·N) = 0 (10)

∂L
∂rli,j ,n

=μI−1(l) − μO−1(l) + ψli,j ,n

⎛⎝ N0

Gi,j

e
rli,j ,n

−Qli,j ,n +
∑

li′,j′∈Ln,i′ �=i

Gi′,j

Gi,j

e
rli,j ,n

+Ql
i′,j′ ,n

−Qli,j ,n

⎞⎠ = 0 ∀l, n (11)

∂L
∂Qli,j ,n

=ωO−1(l)

(
(1 + α)e

Qli,j ,n

)
+ ϑli,j ,n

− ψli,j ,n

⎛⎝ N0

Gi,j

e
rli,j ,n

−Qli,j ,n +
∑

li′,j′∈Ln,i′ �=i

Gi′,j

Gi,j

e
rli,j ,n

+Ql
i′,j′ ,n

−Qli,j ,n

⎞⎠ = 0 ∀l, n (12)

0 =

V −1∑
υ=1

ωυ ·

⎡⎣ N∑
n=1

⎛⎝ ∑
l∈O(υ)∩Ln

(
(1 + α)e

Qli,j ,n

)⎞⎠− z ·Eυ ·N

⎤⎦ (13)

0 =ψli,j ,n ·

⎡⎣⎛⎝ N0

Gi,j

e
rli,j ,n

−Qli,j ,n +
∑

li′,j′∈Ln,i′ �=i

Gi′,j

Gi,j

e
rli,j ,n

+Ql
i′,j′ ,n

−Qli,j ,n

⎞⎠− 1

⎤⎦ ∀l, n (14)

0 =ϑli,j ,n ·
[
Qli,j ,n − log ((Pi)max)

]
∀l, n (15)

ωυ ≥ 0, ψli,j ,n ≥ 0, ϑli,j ,n ≥ 0 (16)
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of the Lagrangian function defines the search directions at the current392
point. Each dual variable is incremented in the direction of the positive393
gradient in (19)–(22), shown at the bottom of the page, where t is the394
iteration index, and [·]+ denotes max(0, ·). Provided that ΔΩ > 0,395
ΔΨ > 0, Δϑ > 0, and Δμ > 0 are sufficiently small positive step396
sizes, the dual variables Ωt, Ψt, ϑt, and μt converge to the dual397
optimal variables Ω∗, Ψ∗, ϑ∗, and μ∗, respectively, as t → ∞. In398
our case, the optimization problem shown in (2)–(8) is strictly convex;399
thus, the duality gap is zero, and the solution is unique.400

IV. EXPERIMENTAL RESULTS401

In our experiments, we use the parameters of d = 1 m, α = 0.01402
[26], K = 1, N0 = 1 dBm/Hz, Ev = 5000 J6, (Pi)max = 50 W, N =403
18, s1 = {0.2, 0.3, 0.4, 0.5, 0.6, 0.7} nats/s/Hz ≈ {0.29, 0.43, 0.58,404
0.72, 0.87, 1.01} bits/s/Hz, T = {3, 4, 5, 6, 7, 8, 9}, convergence toler-405
ance of iterative algorithm ε = 10−5.406

Fig. 3 shows the NL versus source rate trends for a fixed link407
schedule and for various spatially periodic time sharing parameters408
T , where the channel in each link is a LOS AWGN channel char-409
acterized by fixed noise power. As expected, the NL decays as a410
function of the source rate, as shown in Fig. 3. This is because a411
higher source rate requires a higher transmission rate and, hence,412
higher transmission power. Furthermore, in our model, the weakly413
interfering nodes are scheduled to transmit simultaneously; hence,414

6For example, this is the energy storage capacity of an AAA alkaline long-
life battery.

Fig. 3. Network lifetime for different spatially periodic schedules and source
rates in the AWGN channel.

each link becomes capable of transmitting at a lower rate, while still 415
satisfying all the transmit requirements of the SN. This necessitates 416
lower transmission power. Using the T = 9 spatially periodic time 417
schedule of Fig. 2 corresponds to a TDMA scheme since there is only 418
a single transmission in each TS, as shown in Fig. 2. However, since 419
the time frame of Fig. 2 consists of 18 TSs, a specific link is scheduled 420
to transmit twice during the whole time frame. Despite the fact that the 421
T = 9 link schedule does not impose any interference, it results in the 422
lowest NL according to Fig. 3. Although interference is present in 423
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Fig. 4. Network lifetime for different spatially periodic schedules and source
rates in a block-fading channel.

the T = 3 scenario since each link can be activated three times more424
often than in the T = 9 scenario, each link in the T = 3 scenario can425
be activated at lower transmission power, while still satisfying the end-426
to-end rate constraint. Therefore, the spatial reuse assisted us in the427
T = 3 scenario for increasing the NL. We can follow Fig. 2 to find out428
how many transmissions there are per link for a given value of T . For429
example, the T = 3 schedule allows a link to be scheduled six times,430
which requires a reduced transmission rate, since the total source rate431
that is delivered over different TSs is using six transmissions. From the432
flow conservation equality constraint of the optimization problem seen433
in (3), we have A(r1 + r2 + · · ·+ rN ) = s ·N . For example, let us434
assume that the source rate equals to 0.29 bits/s/Hz. Then, we obtain435
18 · 0.29 = 5.22 bits/s/Hz, which has to be divided into six transmis-436
sions, corresponding to a 0.87 bits/s/Hz per link transmission rate for437
T = 3. However, when we have T = 9, we obtain a 2.61-bits/s/Hz438
per link transmission rate since a link is only activated twice during the439
whole time frame. Therefore, the transmission rate per link converges440
to 0.87 bits/s/Hz for T = 3 and 2.61 bits/s/Hz for T = 9. Hence,441
T = 9 requires three times as much transmission power as T = 3.442
The required transmit power in weakly interfering links is quite low443
compared with that for T = 9, which is the scenario requiring the444
highest transmission rate. Hence, again, we surmise that simultaneous445
scheduling benefits from reduced transmission power due to its re-446
duced transmission rate per link. This is because the spatially periodic447
schedule allows us to schedule more transmissions during the same448
TS or to activate the same link more than once in different TSs. This449
explains the steep decay of the NL for T = 9.450

When considering the effects of node density on a given fixed link451
schedule, we expect a network supporting less than V = 10 nodes to452
be exposed to less interference. Therefore, the transmission power of453
each link can be reduced without reducing the end-to-end transmission454
rate, which results in a higher NL. On the other hand, upon increasing455
the node density, we expect the NL to decrease since more interferers456
are introduced, but the same transmission rate is required.457

Fig. 4 represents the NL versus source rate tradeoff for a fixed458
link schedule and for various spatially periodic time sharing parameter459
values of T when each link obeys an independent and identically dis-460
tributed Rayleigh block-fading channel. Naturally, the NL was reduced461
compared with the results of Fig. 3 recorded for an AWGN channel462
due to requiring higher transmit power to combat the effects of fading.463
We also analyzed the impact of the internode distance on the NL for464
the T = 3-based link schedule, when communicating over a Rayleigh465
fading channel, as shown in Fig. 4. Increasing the distance between466
the consecutive nodes substantially reduced the NL, particularly for467

Fig. 5. Energy dissipation per node, average transmit power per link and
lifetime of all nodes in the network in both AWGN and fading channels for the
T = 3 link schedule at a source rate of 0.29 bits/s/Hz. (a) Energy dissipation
per node. (b) Average transmit power per link. (c) Lifetime of all nodes in the
network.

lower source rates. However, quite surprisingly, increasing the distance 468
between the consecutive nodes from 1 to 3 m resulted in an improved 469
NL for higher source rates. This is due to the reduced impact of 470
the interferers located at a higher distance. More explicitly, although 471
the transmit power required had to be increased to satisfy the rate 472
constraint, at the same time the interferers were moved a bit further 473
away. Therefore, the total energy dissipation of the d = 3 m scenario 474
is still lower than that of the d = 1 m scenario associated with higher 475
source rates. 476

Furthermore, we comprehensively study the energy dissipation per 477
node, the average transmission power per link, and the lifetime of all 478
sensor nodes in the network. Fig. 5 shows the energy dissipation per 479
node, the average transmission power per link, and the lifetime of all 480
nodes in the network in both AWGN and fading channels for the T = 3 481
link schedule of Fig. 2 at a source rate of 0.29 bits/s/Hz. In the network 482
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topology considered, the transmissions from the first three nodes suffer483
from the highest amount of interference. This is because their receiving484
nodes are closer to their potential interferers, when compared with485
any other sets of nodes. Therefore, to satisfy the flow conservation486
constraints, these nodes must transmit at higher power, as shown in487
Fig. 5(b). Thus, in an AWGN channel, the first three nodes in the488
network dissipate their 5000-J initial amount of energy faster than the489
other nodes since the energy dissipation is proportional to the transmit490
power, as shown in Fig. 5(a), whereas in the Rayleigh block-fading491
channel, the third node runs out of battery first, which also determines492
the lifetime of the WSNs. The required transmit power of the third493
link is higher than that in the AWGN channel scenario. This increase494
in transmit power is required to overcome the effect of fading.495

The average transmit power per link is calculated by summing the496
transmit power values per link and then by dividing it by the number of497
TSs that the same link was allowed to transmit. For the first three links498
operating in the AWGN channel, the required transmission power per499
link is higher than that of the rest of the links. Since requiring a high500
transmit power results in dissipating more energy, the lifetime of those501
nodes is reduced, as shown in Fig. 5(c).502

Upon comparing the AWGN and fading channel scenarios in Fig. 5,503
we observe that they follow a similar trend. An observation is that504
the average transmit power per link of the seventh, eighth, and ninth505
nodes in Fig. 5(b) is slightly lower for the fading channel than for the506
AWGN channel. However, interestingly, the average transmit power507
per link of the third node in Fig. 5(b) recorded for the fading channel508
is slightly higher than that of the AWGN channel. Therefore, the need509
for a high transmit power necessitates higher energy dissipation for510
that particular node. Hence, the NL is reduced, which can also be511
observed by comparing Figs. 3 and 4. Fig. 3 shows that the NL of512
the WSN in the AWGN channel recorded for the T = 3 link schedule513
and for 0.29 bits/s/Hz source rate is approximately 2 h. By contrast,514
Fig. 4 shows that the NL of the WSN operating in a Rayleigh fading515
scenario for the T = 3 link schedule and for 0.29-bits/s/Hz source rate516
indicates approximately an NL of 1.13 h. This earlier node failure of517
the fading scenario is due to the poor channel conditions, where the518
fading required higher transmit power in the third node, as shown in519
Fig. 5(b). Therefore, this earlier node failure shortened the NL of the520
WSNs in fading channels.521

To put the given results into context, we apply our analysis to the522
environmental sensor networks of [28], where the relation between523
glaciers and climate change was studied. In their work, Martinez et al.524
[28] transmit data only once per day for a 0.5-s time slot. In this525
specific application and considering our results in Fig. 5 for T = 3 and526
a source rate of 0.29 bits/s/Hz, the battery will serve communications527
for 7200 s, which means that the NL will be around four years and528
three months in the LOS AWGN channel. We also consider what NL529
we can achieve if the environmental conditions are more challenging530
and the channel is exposed to the severe environments mentioned in531
[28], which may be modeled by a non-LOS Rayleigh block-fading532
channel. Activating the communication channel once per day in fading533
conditions will lead us to an NL of around two years and six months.534

V. CONCLUSION535

We evaluated the optimal NL in an interference-limited scenario for536
an optimal transmit rate and power, when considering the so-called537
spatially periodic time sharing scheme of Fig. 2. The maximization538
of NL was formulated as a nonlinear optimization problem taking into539
account the link scheduling, the transmission rates, and transmit power540
of all active TSs. The original nonlinear problem was converted into541
a convex optimization problem by employing an approximation of the542
SINR. We then derived the Lagrangian form of the convex optimiza-543

tion problem and employed the KKT optimality conditions [24] for 544
deriving analytical expressions of the globally optimal transmit rate 545
and power for our specific network topology. Finally, we obtained the 546
maximum NL for both AWGN and Rayleigh fading channels. Our 547
numerical results illustrated that fading has a detrimental impact on 548
the achievable NL due to the poor channel conditions that require an 549
increased transmit power to combat the effects of the fading. Further- 550
more, the simultaneous scheduling of links that interfere only weakly 551
allowed us to take advantage of spatial reuse, where the activation 552
of simultaneous transmissions at reduced rates necessitates reduced 553
transmission power, which results in extending the NL. From this 554
paper, we can conclude that the choice of scheduling depends on the 555
application since a lower source rate favors infrequent transmissions 556
requiring low transmit power, which do not suffer from interference, 557
when aiming for extending the NL. However, for higher source rates, 558
a higher NL can be achieved by aggressive spatial reuse. 559

Given the limitations of the centralized solution approach men- 560
tioned in Section III-B, the focus of this paper is on the information 561
delay analysis. We also plan to extend our string topology model to a 562
random network topology, where a single string (SN–DN pair) can be 563
assumed to constitute a single route of the random topology. Nonethe- 564
less, conceiving distributed solutions for avoiding the limitations of our 565
centralized scheme constitutes attractive future research directions. 566
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