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Abstract—This paper addresses the problem of decoding in
large scale MIMO systems. In this case, the optimal maximum
likelihood detector becomes impractical due to an exponential
increase of the complexity with the signal and the constellation
dimensions. Our work introduces an iterative decoding strategy
with a tolerable complexity order. We consider a MIMO system
with finite constellation and model it as a system with sparse sig-
nal sources. We propose an ML relaxed detector that minimizes
the euclidean distance with the received signal while preserving
a constant ℓ1-norm of the decoded signal. We also show that
the detection problem is equivalent to a convex optimization
problem which is solvable in polynomial time. Two applications
are proposed, and simulation results illustrate the efficiency of
the proposed detector.

Index Terms—MIMO systems, low-complexity detector, convex
optimization, sparse decomposition.

I. INTRODUCTION

Due to its ability to increase the achievable capacity in

a point-to-point communication, research interests have been

steered towards Multiple Input Multiple Output (MIMO)

transmission. The performance of MIMO systems is nonethe-

less conditioned to a wise management of the multi-antenna

interference [1]. Maximum likelihood (ML) joint detection

is an optimal strategy that decodes at once the transmitted

signals [2]. It has been proved to minimize the probability of

error for medium to high signal-to-noise ratio (SNR) values.

However, its complexity grows exponentially with the antenna

dimensions and the constellation size, which makes it imprac-

tical. Linear equalizers such as minimum mean square error

(MMSE) and zero-forcing (ZF) present rather low complexity

at the expense of a high performance-loss, specially when used

in underdetermined1 MIMO systems. Alternative solutions

have been proposed, among which the sphere decoder (SD)

achieves near-optimal performance provided that the spherical

search is well defined [3]. However, SD suffer from a variable

computational complexity that depends heavily on the SNR

value, the signal dimensions, and the sphere radius initial-

ization. The computational complexity order has been upper-

bounded by O(MγN), where γ ∈ (0, 1], N is the transmit

antennas number, and M is the constellation size [4], [5].

1The number of transmit antennas is larger than the number of receive
antennas

The aforementioned optimal detectors are based on an

exhaustive search of the desired signal. This implies a high

computational complexity order that does not suit practical

systems. In this paper, we address the problem of detection

for MIMO systems with finite constellation size, and propose

an ML detector with relaxed constraints. This detector is

based on an iterative strategy, and is proposed for both

cases: determined and underdetermined systems. This iterative

strategy of decoding aims to maintain a low computational cost

even with the increase of the signal and/or constellation size.

We rewrite the MIMO channel model with inputs selected

from a finite alphabet set, as a MIMO channel with sparse

inputs belonging to the binary set {0, 1}. Then, we formulate

the ML decoding problem as a minimization problem of a

quadratic objective function under well-defined constraints.

One of the constraints consists in maintaining a constant

ℓ0-norm, which makes the problem NP-hard. Exploiting the

sparsity property of the signal to decode, we relax the ℓ0-

norm by the ℓ1-norm in order to reduce the computational

cost. This relaxation requires a solution belonging to the

intersection of a lozenge with unit diameter and an explicit

plan. However, the equality constraint involving the ℓ1-norm is

not convex. Therefore, we prove that for our particular problem

the relaxed ℓ1-norm constraint amounts to ensuring that all

components of the variable vector are positive. This reduces

our problem to a quadratic minimization problem under linear

equality constraints and positive variable constraints, which

define a convex set. Such a problem can be solved iteratively

using first order optimization algorithms (i.e. gradient descent)

or polynomial time algorithms e.g. primal-dual point interior

method [6].

Related works have been presented in [7], where the authors

have proposed a detector based on the minimization of an ℓ1-

norm iteratively within a sphere of radius ǫ. The dependency

on ǫ makes the problem harder to solve, specially that the per-

formance are far from the optimal as shown in our simulation

results hereafter. In the problem proposed herein, we ensure

that detection performance only depends on the equivalence

between the ℓ1-norm and the ℓ0-norm.

It is shown hereafter, that our detector is reliable when

applied to the underdetermined MIMO systems as well as the

determined MIMO systems, which is not the case for the linear

detector. The main points are threefold: i) Transforming the
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Fig. 1: Sparse decomposition of the vector with symbols

belonging to a finite alphabet set.

MIMO decoding problem into a sparse input recovering prob-

lem, ii) Detecting the desired signal via quadratic minimization

under convex constraints, iii) Applying the proposed detector

to large-scale antenna on non-selective channels and to MIMO

systems on frequency selective channel.

The remaining of the paper is organized as follows. Sec-

tion II describes the MIMO transmission model with finite

constellation size and its transformation into a MIMO model

with sparse input. Section III proposes the iterative decoding

scheme that minimizes the euclidean distance with the received

signal preserving a constant norm ℓ1. In Section V, the

simulation results enable the evaluation of our contribution.

Finally, Section VI concludes the paper.

Notations: boldface upper case letters and boldface lower

case letters denote matrices and vectors, respectively. For the

transpose, transpose conjugate and conjugate matrices we use

(.)T , (.)H and (.)∗, respectively. ||.||p denotes the norm ℓp,

and ⊗ is defined as the Kronecker product. Ip is the p × p

identity matrix and 1p is the ones vector of length p.

II. SYSTEM MODEL

We first consider a MIMO transmission over a flat fading

channel, where the transmitter and the receiver are equipped

with N and n antennas, respectively. We assume no prior

knowledge of the channel state information (CSI) at the

transmitter and a perfect CSI knowledge at the receiver.

The received signal in MIMO single user channel is defined

as

y = Hx+ z, (1)

where H is an n×N random channel matrix (n ≤ N ), x is the

N ×1 data vector, and z is the n×1 complex circularly sym-

metric additive white Gaussian noise vector with zero mean

and covariance matrix equals to σ2In. The components of x

belong to a finite alphabet defined as Q = {q1, q2, · · · , qM}.

For example, a 4-QAM constellation is defined as M = 4 and

Q = { 1+i√
2
, 1−i√

2
, −1+i√

2
, −1−i√

2
}.

The goal of our work is to find out an efficient detection

scheme of the received data samples with moderate compu-

tational complexity order over the whole SNR region. This

requires a priori knowledge on the transmitted information.

Therefore, we exploit the fact that the original symbols belong

to a finite alphabet, and we decompose each symbol on

the basis of the vector space in which the finite alphabet

vector q = [q1, q2, · · · , qM ] can be cast. The decomposition

of the vector with symbols belonging to the finite alphabet

set is illustrated in Fig. 1. In this example, we assume a

constellation set Q with three elements {q1, q2, q3}, and we

define the dictionary that matches each element of Q to its

proper sub-vector in the set {(0 0 1)T , (0 1 0)T , (1 0 0)T }.

Each sub-vector in the dictionary associated to an element

qi ∀i ∈ {1, 2, 3} and denoted by si contains only one non-

zero component at the position i. This means that any element

qi can be written as its associated sub-vector si projected

on the finite alphabet vector q, i.e. qi = qsi. Using this

decomposition, any vector with symbols belonging to Q can

be written as a block diagonal matrix Bq , with q repeated

on its diagonal, multiplied by a sparse vector. This latter is

constructed by stacking all the sub-vectors associated to the

transmitted symbols.

The model in (1) can be then viewed as an equivalent

MIMO channel with sparse input vector. In other words, the

data vector with N entries in the MIMO transmission can

be modeled as an equivalent sparse data vector s with NM

entries. The jth component xj of x is decomposed as

xj = q sj ,

where si = [δq1(xj), δq2(xj)), · · · , δqM (xj)]
T
,

and δqi(xj) =

{

1 if xj = qi
0 otherwise

. (2)

The vector x can be then written as a function of s as

x = Bq s,

where s = [sT1 , s
T
2 , · · · , sTN ]T , and Bq = IN ⊗ q.(3)

Bq is a block diagonal matrix with dimensions N × (NM).
Substituting (3) into (1) yields

y = HBq s+ z. (4)

The transmitted signal x in (1) can be detected by seeking

the optimal solution s in (4). In next section, we formulate

the ML detection problem as the minimization problem of

the Euclidean distance between the received signal y and

the received constellation HBqs under linear and ℓ0-norm

constraints. Then, we relax the constraints of the equivalent

ML minimization problem in such a way that first order

optimization and polynomial algorithms can be used to detect

the desired information.

III. DETECTION OF SPARSE TRANSFORMED MIMO VIA

MINIMUM DISTANCE MINIMIZATION

A. ML detection problem relaxation

The ML detector requires an exhaustive search over all

possible transmitted symbol vectors, and selects the solution

that corresponds to the closest point to the received signal in

the received constellation. In other words, it selects the symbol

vector that minimizes the euclidean distance between y and

Hx. Hence, the ML detection problem is defined as

[ML] : arg min
x

||y −Hx||2 subject to x ∈ Q
N . (5)

2



The main drawback of the ML problem is that it suffers from

a high computational complexity because of the exhaustive

search required over the set QN . Herein, we propose an

equivalence to this constraint using the following proposition.

Proposition 1: The components of x belong to the finite

alphabet constellation Q if and only if the following equality

hold: B1s = 1N and ||s||0 = N , where the norm ||s||0
represents the weight of s and the N × NM matrix B1 is

defined as

B1 = IN ⊗ 1M , (6)

where 1M is the ones row vector of length M .

Proof: Assuming first that the components of a N -

dimensional vector x belong to a finite alphabet set, x can

be sparsely decomposed as x = Bqs (see section II), where

s consists of N sub-vectors with only one non-zero element

equals to one for each. This means that the sum over each sub-

vector is equal to one i.e. B1s = 1N , and the total number

of non-zero elements in s is equal to N i.e. ||s||0 = N .

Let us now assume B1s = 1N and ||s||0 = N . The first

equality B1s = 1N , i.e.
∑M

p=1 s(j−1)M+p = 1 for all

j ∈ {1, · · · , N}, implies that at least one non-zero element

exists in any sub-vector j ∈ {1, · · · , N}, with a minimum total

non-zero elements number N . The second equality ||s||0 = N

imposes the total non-zero elements number to be equal to

N , thus along with the first equality each sub-vector can

contain only one element different from zero and equal to

one. Thereby, the projection of the whole vector s onto the

decomposition matrix Bq yields a vector x = Bqs in the

finite alphabet constellation Q
N .

Using proposition 1, the [ML] minimization problem in (5)

becomes

arg min
s∈RNM

||yk − H̄kBqs||2

subject to B1s = 1N , ||s||0 = N. (7)

The first constraint given by B1s = 1N is linear and the

second constraint given by ||s||0 = N is discrete i.e. s

belongs to a finite discrete set, thereby making the problem

NP-hard. Such problems necessitate exhaustive search to be

solved yielding an exponential increase of the computational

complexity with the signal dimension. To overcome this

drawback, we exploit the fact that the new signal vector to

decode s is sparse, and we propose to relax the ℓ0-norm

by the ℓ1-norm which is widely used in the literature, e.g.

[8]–[10]. The relaxed constraint yields ||s||1 = N . Such

a constraint is not convex, thus, a global optimum is not

necessarily achieved. In order to transform the problem into a

quadratic minimization problem subject to convex constraints,

we introduce the following lemma:

Lemma 1: Let s an NM -dimensional real vector satisfying

B1s = 1N . Then all components of s are positive if and only

if its ℓ1-norm equals N i.e. ‖s‖1 = N .

Proof: Let B1 = IN ⊗ 1M . The non-zeros elements of

the kth row of B1 are all equal to one and are those whose

indexes range from (k − 1)M + 1 to kM . Thus B1s = 1N

implies

M
∑

p=1

s(k−1)M+p = 1, ∀k ∈ {1, · · · , N} (8)

By successive additions with respect to k, we obtain

NM
∑

i=1

si =
N
∑

k=1

M
∑

p=1

s(k−1)M+p = N. (9)

Let us first assume that all components of s are positive.

Then si = |si| and using (9), we deduce that
∑NM

i=1 |si| = N ,

i.e. ‖s‖1 = N .

Let us now assume that ‖s‖1 = N . According to (9), we

can thus write
NM
∑

i=1

(|si| − si) = 0. (10)

Let N(s) 6= ∅ denote the set of indexes corresponding to all

nonzero negative elements of s. Then
∑NM

i=1 (|si| − si) =
2
∑

i∈N(s) |si|. It follows from (10) that si = 0 for every

i ∈ N(s) which is in contradiction with N(s) 6= ∅. We thus

deduce that N(s) = ∅ and all components of s are positive.

Using the lemma introduced above, the decoding problem

becomes

[Quad-min] : arg min
s∈RNM

||y −HBqs||2
subject to B1s = 1N , and s ≥ 0. (11)

This new optimization model is a quadratic programming

model with linear equality constraints and non-negative vari-

ables.

B. Computational complexity

The proposed detection problem is a convex quadratic

relaxation of the original non-convex ML detection problem.

It can be formulated as follows

(P) minimize
s

1

2
sHGs+ cHs

subject to As = b,

s ≥ 0,

s ∈ R
L, (12)

where A = B1, b = 1N , cH = −yHHBq, and G =
(HBq)

H(HBq), and L is the length of s. Various techniques

exist to solve the problem (P) among which the primal

dual interior point methods (PDIP) are characterized by high

accuracy level. Several algorithms have been proposed since

the publication by Kramarkar et al. of a practical polynomial

time interior projective algorithm [11]. Among the best known

is the algorithm introduced by Golfarb et al. in [12]. It defines

a reduced PDIP algorithm in which modified Newton steps are

used. For L variables, the algorithm has a total complexity

upper-bounded by O(L3), where at most O(
√
L) iterations

are required and all computations at each iteration require

O(L2.5) arithmetic operations (for more details see Section

5 in [12]). Applied to our problem, it yields a computational
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complexity of O(M3N3), where the variable vector consists

of N ×M elements si ∀i ∈ {1, · · · , N ×M} as detailed in

(2) and (3). For a given constellation, M is constant. Since

the constant multipliers do not affect the big O notation, the

complexity order is of O(N3) [13]. Other simple iterative

algorithms than the PDIP can also be applied such as the

projected gradient descent algorithm, however, such methods

are much less accurate and require a high iteration number to

converge.

Remark 1: The decomposition in Section II is important in

the sense that it allows to replace the original variable vector

in the ML problem with another binary variable vector in the

set {0, 1}, and to replace the constraint in (5) by a constant ℓ0-

norm constraint and other linear constraints. Then, the ℓ0-norm

constraint can be relaxed by the ℓ1-norm constraint thanks to

the sparsity property of the new variable vector. This relaxation

is widely used when dealing with sparse vectors and in some

cases the equivalence holds as e.g. in [8]–[10].

IV. APPLICATIONS

A. Massive MIMO systems on flat fading channels

We consider the uplink of a TDD transmission where K user

equipments transmit simultaneously and in the same band-

width to a base station. The assumptions are the following. No

restriction is imposed on the user equipment antenna number,

while the base station antenna number is assumed to be high.

The user equipments cannot coordinate and transmit reference

signals to the base station for channel state information (CSI)

estimation purpose. The overall CSI is perfectly known at

the receiver. We consider a large scale MIMO system [14]

where the user number as well as the base station antenna

number are high. In this respect, the optimal joint detection,

based on an exhaustive search, exhibits a huge computation

cost, which exponentially increases with the variable vector

length N and makes it unfeasible in practice. On the other

hand, the proposed detection problem [Quad-Min] is solvable

in polynomial time, which is suitable for an implementation,

even when applied to high-dimension MIMO systems, i.e. with

tens to hundreds antennas.

B. Frequency Selective MIMO channel

Another context is the frequency selective MIMO channel

where L+1 multipath interfere at every channel use. The trans-

mitter and the receiver are equipped with N and n antennas,

respectively. We consider a transmission over a frame with

length Tf , and for every transmitted symbol L+ 1 copies are

received through L+1 different paths. The frequency selective

channel output at instant t is expressed as

y(t) =

L
∑

l=0

Hlx(t− l)+z =

L
∑

l=0

HlBqs(t− l)+z(t), (13)

where Hl represents the lth path in the frequency selective

channel. In order to decode the original symbol vector, we
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Fig. 2: BER performance comparison of the proposed detector

versus the sphere decoder [18] and the [ℓ1-min] detector

propose a joint detection over the whole frame2. Thus, in-

stead of applying the decoding process Tf times per transmit

antenna, we only decode at once a concatenated vector that

consists of simultaneously transmitted vectors. The channel

model is reformulated as in (14).

One can notice that the performance of the proposed detec-

tor is dependent on the number of multipath. When there is

only one path (non frequency-selective channel), the channel

matrix Hfs in (14) becomes block diagonal, and the problem

(13) is then equivalent to decoding each N × 1 data vector

independently. In contrast, in presence of multipath, a joint

detection over the whole (or part of the) frame must be applied.

This implies an exploitation of the multipath diversity, and

results in a performance improvement and a total complexity

upperbounded by O(N3) when M and Tf are constant.

V. SIMULATION RESULTS

In this section, we evaluate the Bit Error Rate (BER)

and the computational complexity of the proposed detector

based on quadratic minimization. We consider N × n MIMO

systems, where N and n are the number of transmit and

receive antennas, respectively. The channel coefficients are

i.i.d. circularly symmetric complex Gaussian distributed with

zero mean and unit variance, and the data symbols belong to

a finite constellation. The number of transmitted symbols is

equal to N at one channel use. For our proposed decoding

scheme, we use the cvx toolbox, which is a Matlab-based

modeling system for convex optimization [15], [16]. We use

the Gurobi optimizer to solve the [Quad-min] problem under

convex constraints [17]. This optimizer employs the PDIP

methods for the quadratic programming. This method can

be implemented using the algorithm proposed in [12]. We

simulate this system using Matlab 7.10 on a processor Intel(R)

Core(TM) i5-3317U CPU at 1.70GHz and memory 6GB

RAM.

A. Comparison with optimal algorithms

For underdetermined large MIMO systems, Fig. 2 com-

pares the BER performance of the proposed detection scheme

2The joint detection can also carried out over only a part of the frame as
well.
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versus the viterbi decoder and the [ℓ1-min] detector when L =
4 and L = 3.
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Fig. 4: BER performance comparison of the proposed detector

with the MMSE and MMSE-SIC in a 64×64 MIMO channel.

[Quad-min] to the sphere decoder (SD), described in [18],

and to the [ℓ1-min] detector proposed in [7]. We assume a

QPSK constellation mapping known at both the transmitter

and the receiver. It can be observed that beyond 8dB, the

SD outperforms the proposed scheme, e.g. at BER 10−2, a

gain about 2dB and 2.5dB is obtained when the dimensions

are 16 × 14 and 24 × 21, respectively. Compared to the [ℓ1-

min] scheme in [7], the proposed scheme illustrates a gain

over the whole SNR region, e.g. at BER 10−2, the gain is

between 1.5dB and 2.5dB for the system dimensions 16× 14
and 24× 21, respectively.

In a frequency selective channel context, Fig. 3 compares

the BER performance of our proposed detector to the de-

tector based on the Viterbi algorithm [19], and to the [ℓ1-

min] detector. The Viterbi algorithm is known to exploit the

channel multi-paths, and achieves optimal performance over

a frequency selective channel. We assume a frame length
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Quad−min, SNR=8dB

Quad−min, SNR=14dB

Fig. 5: Runtime evaluation of the proposed detector for dif-

ferent SNR values with QPSK modulation

equal to Tf = 20, and a BPSK constellation. Over the entire

SNR region, the Viterbi detector outperforms the [Quad-min]

detector with 2dB to 3dB when L = 3 and L = 4, while

preserving a reduced computational complexity. The [ℓ1-min]

detector, however, suffers from a higher loss. As shown in Fig.

3, at BER 10−2, the gain of the Viterbi detector over the [ℓ1-

min] detector fluctuates between 1dB and 2.5dB, and at BER

10−3 the gain fluctuates between 3dB and 4dB, for different

multi-paths number.

B. Comparison with low-complexity algorithms

In order to compare the proposed receiver to low-complexity

receiver references in terms of error rate, we assume a deter-

mined 64× 64 MIMO single user configuration. We compare

in Fig 4 the proposed detector to the simple MMSE-based and

the MMSE Successive interference cancellation (MMSE-SIC)-

based described in [20]. One can observe that the [Quad-min]

detector exploits the receive diversity better than the two other

detectors. At BER 10−3, the [Quad-min] detector outperforms

the MMSE-SIC by about 1.5dB and the MMSE by 7dB. The

gain compared to the MMSE-SIC increases to reach 2dB

for a BER of 3.10−5. On the other hand, all detectors use

polynomial time algorithms, but their complexities differ from

one detector to another, as will be shown in Section V-C.

C. Computational complexity evaluation

We evaluate the the computational complexity in Big−O

notation. Big−O notation, also called Landau’s symbol, is a

well-understood symbolism widely used in complexity theory,

computer science, and mathematics to describe the asymptotic

behavior of functions [13], [21]. Basically, it tells how fast
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iteration number computational cost per iteration Total

MMSE 1 O(n3) O(n3)
Basic MMSE-SIC 1 O(N2n2) + O(Nn3) + O(N4) O(N2n2) + O(Nn3) + O(N4)

Improved MMSE-SIC 1 O(n3) + O(Nn2) + O(N2n) O(n3) + O(Nn2) + O(N2n)

Quad-min O(
√
N) O(N2.5) O(N3)

SD 1 O(
√
MγN) O(

√
MγN)

ML 1 O(
√
MN ) O(

√
MN)

TABLE I: Computational cost analysis

a function grows or declines. Table I summarizes the com-

plexity order of our proposed detector, the simple MMSE,

the basic and improved MMSE-SIC proposed in [20], and

the ML optimal detector. The ML based detector is NP-hard,

thus it is the least cost efficient. The simple MMSE-based

detector consists of a complex inversion of n×n matrix, and

some matrix multiplications and additions. As described in

[22], the MMSE filter matrix can be computed using a QR

decomposition, for which the complexity is given by O(n3),
thereby the MMSE computational complexity is of O(n3). The

computational complexity of the basic MMSE-SIC algorithm

is of O(N2n2) + O(Nn3) + O(N4), which is equivalent

to N4 when n = N . This complexity order decreases to

O(n3) + O(Nn2) + O(N2n), for the improved MMSE-SIC

i.e. to N3 when n = N . Comparing the improved MMSE-SIC

based detector to the [Quad-min] detector, similar complexity

order is obtained for determined MIMO systems. However, in

overdetermined MIMO configuration and for n >> N , the

complexity order of the [Quad-min] becomes much lower

than the MMSE-SIC. This is because the latter keeps a

complexity of O(n3), whereas the [Quad-min] complexity

order, total and per iteration, depends only on N [12].

The theoretical results are also supported by the runtime of

the proposed simulations that evaluate algorithms. The runtime

represents the average duration that needs a processor to

decode the received signal. Fig. 5 evaluates the runtime of the

proposed detection scheme [Quad-min]. It can be observed

that the runtime increases slightly with the system dimensions,

and independently of the SNR level. E.g. the runtime of the

[Quad-min] problem is equal to 0.017sec over the whole SNR

region using a 16 × 14 system dimensions, and when the

dimensions increase from 16 × 14 to 28 × 32, the runtime

entails an increase of only 0.023sec. The same observations

are made in the frequency selective case, where the proposed

iterative detection yields a runtime that increases slightly with

the number of multi-paths as shown in Fig. 6. For example,

increasing the number of multipath from L = 3 to L = 5
results in an increasing runtime only from 0.02sec to 0.03sec.

Remark 2: It is important to mention that the relaxed

constraints impose the subvector components to be in the

interval [0,1], with their sum equal to one. Thus interpreting

the solution subvector components as reliability values relative

to the associated alphabet symbols, a preliminary analysis,

which is still in progress, has shown that these output can

be used to provide soft input to a channel decoder.
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Fig. 6: Runtime evaluation of the proposed detector for SNR

= 14dB, assuming BPSK modulation

VI. CONCLUSION

In this paper we have addressed the problem of decoding

in high dimensional MIMO systems with finite constellation.

We have exploited the fact that the original symbols belong

to a finite alphabet, and we have modeled the transmission

channel as a higher-dimensional MIMO channel with sparse

input vector belonging to the binary set {0, 1}. Using this

decomposition, we have relaxed the ML problem with an-

other minimization problem that can be solved using iterative

method with polynomial complexity. Simulations carried out

in the cases of large-scale MIMO systems on flat fading

channel and MIMO on frequency selective channels, and have

enhanced the relevance of the proposed detector for practical

purposes. Beside the advantage of fitting underdetermined

MIMO systems, the superiority in terms of error rate perfor-

mance over other low-complexity receivers such as MMSE

and MMSE-SIC has been highlighted.
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