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Abstract—Modern engines feature a considerable number of 

adjustable control parameters. With this increasing number of 

Degrees of Freedom (DoF) for engines, and the consequent 

considerable calibration effort required to optimize engine 

performance, traditional manual engine calibration or 

optimization methods are reaching their limits. An automated 

engine optimization approach is desired. In this paper, a 

self-learning evolutionary algorithm based multi-objective 

globally optimization approach for a Homogenous Charge 

Compression Ignition (HCCI) engine is developed. The 

performance of the HCCI engine optimizer is demonstrated by 

the co-simulation between an HCCI engine Simulink model and 

an Strength Pareto Evolutionary Algorithm 2 (SPEA2) based 

multi-objective optimizer developed in Java. The HCCI engine 

model is developed by integrating the physical gas exchange 

model, in-cylinder volume model and statistical combustion 

model. The model has been validated from 1500 rpm to 2250 rpm 

with different Indicated Mean Effective Pressure (IMEP). The 

model is able to simulate the performance of in-cylinder pressure, 

Indicated Specific Fuel Consumption (ISFC) and Indicated 

Specific Hydrocarbon (ISHC) emissions with acceptable accuracy 

in real-time within a wide engine operation window. The SPEA2 

optimizer has been validated by the classic evaluation function 

SRN with constrains. The validation results show that the 

optimizer can find the Pareto Front of SRN efficiently. The 

introduced Intelligence optimization is an approach to optimize 

the engine ISFC and ISHC simultaneously by adjusting the engine 

actuators’ settings automatically through SPEA2. For this study, 

the HCCI engine actuators’ settings are Intake Valves Opening 

(IVO), Exhaust Valves Closing (EVC) and relative air to fuel ratio 

(𝛌). The co-simulation study and experimental validation results 

show that the intelligent multi-objective optimizer can find the 

optimal HCCI engine actuators’ settings with acceptable 

accuracy, and much lower time consumption than usual. 

 
Index Terms—Model-based engine optimization, co-simulation, 

strength Pareto evolutionary algorithm 2. 

I. INTRODUCTION 

n order to improve the engine performance, more and more 

new technologies have been applied to modern engines, such 

as Variable Valve Timing (VVT), Gasoline Direct Injection 

(GDI), Exhaust Gas Recirculation (EGR), multiple injection, 

etc. As a result, the number of adjustable engine settings which 

can affect engine performance are becoming considerable. 

Moreover, due to the increasingly stringent emissions’ 

regulations and the fierce competition between automotive 

manufactures, the number of performance references 

(Particulate Matter (PM) emissions, unregulated emissions, 

fuel consumption, noise, comfortability etc.) for modern 

engines are increasing[1]. With the increasing complexity of 

engines, and the combinatorial explosion of the parameter 

space, the traditional engine calibration approach is thus 

becoming more complex, expensive and time consuming. 

Vehicle manufactures have to spend more money and time on 

the engine optimization process [2]. Most calibrated set-points 

are trade-offs made within the limited time of engine testing, 

rather than globally optimization, to allow acceptable engine 

performance over a wider variety of operating conditions. It is 

desired to have an automated and intelligent engine globally 

optimization approach to replace the traditional manual 

optimization approach [3-5]. 

As a promising method to reduce nitrogen oxides (NOx) 

emissions and fuel consumption, Homogenous Charge 

Compression Ignition (HCCI) is attracting increasing 

attention[6]. Owing to low temperature multi-points 

combustion and throttle-free operation, HCCI engines can 

provide ultra-low NOx emissions and up to 30% improved fuel 

consumption. However, the lean and low temperature 

combustion also causes higher Hydrocarbons (HC) emissions 

[7-9]. For this study, a developed HCCI engine model is 

considered as the objective to test the intelligent self-learning 

optimization approach. The HCCI engine model has been 

validated from 1500 rpm to 2500 rpm with different Indicated 

Mean Effective Pressure (IMEP) by experimental data. 

Some academic researchers and commercial institutions of 

engine research have contributed their efforts on the related 

subjects [2-4, 10-14]. Vossoughi et al. developed two 

multi-objective engine optimizers for reducing Spark Ignition 

(SI) engines’ fuel consumption and emissions simultaneously 

in New European Driving Cycle (NEDC) [10]. One utilized the 

Distance-based Pareto Genetic Algorithm (DPGA), and the 

other one adopted Non-dominated Sorting Genetic Algorithm 

(NSGA) together with a supplementary algorithm named 

Entropy-based Multi-Objective Genetic Algorithm (EMOGA), 

i.e. NSGA-EMOGA. A neural-network engine model with an 

ADvanced VehIcle SimulatOR (ADVISOR) based vehicle 

model was applied as a virtual test bed. The inputs are 

requested engine speed and torque, and the adjustable 

objectives are λ  and spark timing. The outputs are Brake 

Specific Fuel Consumption (BSFC), sum of emissions 
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(HC+CO+NOx). It shows that the DPGA has a better 

performance to find the lowest emissions, and NSGA-EMOGA 

can provide better results on fuel consumption. However, each 

runs needed around 100 hours to complete and there are no 

validation results from real engine. 

Kesgin developed a simple Genetic Algorithm (GA) 

optimizer for optimizing a natural gas engine’s efficiency and 

NOx emissions at the same time [12]. An Artificial Neural 

Network (ANN) engine model was used to predict the thermal 

efficiency and NOx emissions. The equivalence ratio, charge 

pressure, charge temperature, combustion duration, combustion 

start position and Mass Fraction Burned (MFB) shape factor are 

the adjustable engine settings. The results showed an increase 

in efficiency, and the amount of NOx emissions being kept 

under a constraint value. However, the time consumption of 

one GA optimization case and the validation results of 

optimization were not given. Moreover, the combustion 

duration and MFB shape factor are impossible to be directly 

controlled in real engine. 

AVL’s CAMEO is a commercial tool for traditional Design 

of Experiments (DoEs) to help engine calibration engineers to 

optimize engine performance efficiently [15]. The engine 

parameters’ setting constrains can be found by tuning each 

parameter gradually, and the engine experimental data will be 

recorded at the same time. The automatic modelling module 

can automatically develop the mathematical engine model 

based on the obtained experimental data. Following this, the 

GA optimizer will start engine calibration work based on the 

developed engine model. The automatic Engine Control Unit 

(ECU) maps generator can generate ECU maps from the 

optimization results. It can be found that the optimization 

results rely strongly on the accuracy of the engine model 

accuracy. However, the mathematical engine model needs a 

large amount of experimental data to calibrate, and the 

simulation errors can be amplified by experimental 

uncertainties consequently. 

In this paper, an intelligence multi-objective globally 

optimization approach is introduced and tested on a real-time 

based HCCI engine model. A Simulink based control oriented 

HCCI engine model is used as a virtual engine test bed, and the 

Strength Pareto Evolutionary Algorithm 2 (SPEA2) based 

optimizer is developed in Java. From the co-simulation study 

and experimental validation results, the presented engine 

optimization approach is able to find the optimal engine 

parameters set, i.e. Intake Valves Opening (IVO) timing, 

Exhaust Valves Closing (EVC) and relative air to fuel ratio (λ), 

for the best Indicated Specific Fuel Consumption (ISFC) and 

Indicated Specific Hydrocarbon (ISHC), with good accuracy. 

Although the high HC emissions always lead to high fuel 

consumption, the relationship between them is not strictly 

linear. Each optimization case only takes around 20 minutes of 

computation time. 

II. CO-SIMULATION SYSTEM 

A. HCCI Engine Model 

The real-time HCCI engine model is developed by Simulink 

with fixed simulation step. In order to develop the intelligent 

multi-objective optimization approach for the HCCI engine, 

IVO, EVC and λ are designated as variables in the model. The 

model is organized to have three major parts:  1) gas exchange 

model, 2) combustion and emissions model and 3) performance 

evaluation model. For the implementation of HCCI combustion 

in this study, the Negative Valve Overlap (NVO) strategy is 

used for trapping the residual gas, which provides heat of the 

residual gas to promote the HCCI combustion for the next 

engine cycle [16, 17]. 

 

Fig. 1.  Block Diagram of the HCCI Engine Model 

Fig. 1 gives the flow chart of the whole HCCI engine model 

structure, which indicates the relationships between different 

engine parameters or modules. The model inputs and outputs 

modules are highlighted with green and red respectively. For 

more information about the model development methodology 

and validation results, please see reference [18]. 

 

B. SPEA2 Optimizer 

With a fast, reliable model of the engine in place, we can use 

an evolutionary search to find optimal operating points for any 

operating condition. A huge variety of algorithms based on 

evolutionary search (Evolutionary Algorithms, EA) have been 

developed. An in-depth discussion would be beyond the scope 

of this paper, in this section a rough overview of the elements of 

a typical EA, and a particular Multi-Objective EA (MOEA) 

will be presented. 

An evolutionary search is a trial-based stochastic search 

process, inspired by the process of natural evolution [19]. It 

maintains a population of potential solutions to the search 

problem (individuals), where each solution is typically 

represented in a predefined format, such as a vector of 

floating-point values (genotype). For each individual, the 

fitness is a measure of the performance of this solution with 

respect to one or more evaluation criteria. In an iterated 

process, a set of new individuals (offspring) are created from 

the current population (parents) through a process of selecting 

the best performing individuals (parents), and forming new 

individuals through information exchange between the 

genotypes of two or more parents (crossover) and stochastic 

changes to individual genotypes (mutation). The process to 
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form the population for the next iteration (generation) typically 

involves picking the better offspring and parents and discarding 

the worst performing parents, such that the population size 

remains constant. 

Evolutionary algorithms are most useful in situations where 

no conventional optimization knowledge exists. Because they 

are population based, they are particularly well suited in 

applications with a trade-off between two or more fitness 

criteria. Multi-objective EA can produce a whole set of 

solutions (Pareto front), allowing the user to analyse the 

trade-off and pick the preferred solution. Most multi-objective 

EA are based on the notion of dominance: one solution is said 

to dominate another if it is as good or better in all fitness 

criteria, and better in at least one. Dominance establishes a 

partial ordering, where it is possible to establish a preference 

only for some pairs of individuals. A number of evolutionary 

algorithms have been designed based on this partial ordering, 

including the Non-sorting Genetic Algorithm (NSGA) [20] and 

the Strength Pareto Evolutionary Algorithm (SPEA, 

SPEA2)[21, 22]. 

In SPEA and its variations, the dominance ordering is 

converted into a single performance value that is then used for 

selection. To do this, it first computes a strength value for all 

parents and offspring: a count of all other individuals 

dominated by this individual. In a second step, the raw fitness 

of an individual is the sum of the strength values for all other 

individuals that dominate this individual.  All non-dominated 

individuals have a fitness of 0, for all other individuals the 

fitness is higher (worse) the more they are dominated by other 

IV, and the stronger those other IV are.  

In order to encourage the population to cover the entire 

surface of the Pareto front of solutions, the algorithm also 

contains a fitness sharing method. Here, the raw fitness is 

scaled by a measure of the density of individuals in a particular 

area of the search space. For the next generation, SPEA first 

tries to preserve all non-dominated individuals. If there are 

more non-dominated IV than the population (archive) size, a 

clustering algorithm selectively removes individuals. On the 

other hand, if the number of non-dominated IV is smaller than 

the archive size, dominated individuals are added depending on 

their scaled fitness. Parent selection in SPEA is simply a 

tournament selection, based on the scaled strength fitness. 

In order to compensate the shortages of SPEA, SPEA was 

updated to SPEA2, which improved the domains of fitness 

assignment, individual density estimation and environmental 

selection [22]. 

The fitness assignment and environmental selection of 

SPEA2 are presented as follows: 

Fitness assignment: in order to avoid the individuals who are 

dominated by external archive points, having the same fitness 

value, in SPEA2, the dominated solutions of every individual 

and the solutions which are dominated by every individual are 

considered. A strength value 𝑆(𝑖)  is assigned for each 

individual of the population and external archive, which 

indicates the number of the solutions which are dominated by 

the individual. The equation to calculate the strength value is 

given as: 

 ji

tt

j xxAPxjiS ,)( 
,    

(1)
 

The fitness value 𝑅(𝑖) of individual 𝑖 is equal to the sum of 

the strength values of all the individuals which dominates the 

individual 𝑖, i.e. 

𝑅(𝑖) = ∑ 𝑆(𝑗)𝑥𝑗∈𝑃𝑡+𝐴𝑡,𝑥𝑖≻𝑥𝑗   .           (2) 

The density information is used to distinguish the individuals 

who have the same raw fitness. The kth nearest neighbor method 

is adopted to calculate the density value 𝐷(𝑖) of individual 𝑖, 
and which is given by: 

𝐷(𝑖) =
1

𝜎𝑖
𝑘+2

  ,                    (3) 

where 𝜎𝑖
𝑘  indicates the space distance between the 

individual 𝑖 and the kth nearby individual, and k = √N + N . 

Finally, the fitness value F(𝑖) of individual 𝑖 is the sum of raw 

fitness value and the density value, i.e.: 

𝐹(𝑖) = 𝑅(𝑖) + 𝐷(𝑖)   .               (4) 

 

C. Co-simulation Structure 

The optimization approach is developed to optimize engine 

controllable parameters. For this paper, they are IVO, EVC and 

λ respectively. With respect to the EA, they represent these 

values by a three-element floating point vector, with each value 

restricted to the range of 0 to 1. These 'raw' values are scaled 

into the working ranges which has been specified in Table 2. 

Furthermore, IVO and EVC are discretized into all crank angle 

values. This is necessary as the model is implemented with a 

discrete time solver, with one-degree crank angle step. Since 

the representation is based on a floating point vector with a 

uniform range over all elements, we can use a simple Euclidean 

distance measure for the fitness sharing used in SPEA2. A 

simple one-point crossover with Cauchy mutation is applied. 

In the tests reported in this paper, two fitness values are 

computed by the model for the HCCI engine: ISFC and ISHC. 

Not all combinations of parameters lead to stable operation of 

the engine. For conditions that lead to unstable engine 

operations the optimizer will exit early and return an indication 

that the output values are invalid. 

The engine model is set up with a fixed, pre-defined speed, 

but variable IMEP outputs. In addition to the primary 

optimization objectives, the model produces an additional 

output value:  the engine's IMEP at the operating point. With 

respect to the optimization to be useful in real-world situations, 

it needs to be able to target a specific IMEP range.  The 

optimization therefore becomes a constraint optimization 

problem: minimize objectives ISFC and ISHC for HCCI mode 

subject to: 

𝐼𝑀𝐸𝑃_𝑚𝑖𝑛 <  𝐼𝑀𝐸𝑃 <  𝐼𝑀𝐸𝑃_ 𝑚𝑎𝑥    .    (5) 
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The SPEA2 algorithm has been modified to incorporate both 

constraints and individuals with invalid fitness values (engine 

misfire or unstable), such that: 

1. An invalid individual never dominates another individual, 

and a valid individual with an output IMEP constraint violation 

will never dominate an individual that does not violate the 

IMEP constraint. 

2. The archive is first filled with non-dominated individuals, 

then with dominated individuals without constraint violation, 

then with individuals with constraint violation. If spaces 

remain, they are filled out with invalid individuals. 

3. In the tournaments used in parent selection, individuals 

not violating the IMEP constraint always win against those that 

do, and valid individuals always win against invalid 

individuals. 

The SPEA2 optimizer is implemented in Java, while the 

engine model is developed in SIMULINK. Thanks to the fact 

that Java is supported directly in Matlab, linking the two is 

possible. However, as Matlab functions cannot be called from 

Java (only the reverse is supported), a slightly more complex 

interaction is required. The EA loop remains in the Matlab 

domain, and it calls Java to perform the genetic operations and 

SPEA2 selection. The population is stored in the Java domain, 

and then Matlab reads the genotypes and writes back fitness 

values. Fig. 2 shows the flowchart for one engine 

multi-objective optimization case. 

 

Fig. 2.  Flowchart for One Engine Multi-objective Optimization Case 

In Fig. 2, the “fitnesses” are the values of the target 

optimization objectives, for this study, they are ISFC and 

ISHC. The “genotypes” are the variables which are used for 

scaling engine model parameters, i.e. individuals, they are IVO, 

EVC and  λ . The genotype values are four decimal places 

between 0 and 1. 

III. EXPERIMENTAL APPARATUS AND PROCEDURE 

The experiments were performed on a Jaguar V6 SI/HCCI 

dual mode engine. The engine specifications are given in Table 

1. Cam Profile Switching (CPS) system is applied to switch 

between SI and HCCI modes. This system allows on-line 

switching of valve lifts from 9 mm (SI mode) to 3 mm (HCCI 

mode). The Variable Valve Timing (VVT) system is able to 

change the cam timing for the inlet and exhaust cams within 60 

crank angle degrees range. 

TABLE 1 

ENGINE SPECIFICATION SUMMARY 

Engine type Jaguar V6 GDI Compression ratio 11.3 

Displacement 3.0 Litres Max Valve Lift (SI/HCCI) 9/3 mm 

Engine speed 800~ 3500 rpm Valve Duration (SI/HCCI) 260/160 CAD 

Bore 89mm Intake valve timing Variable 

Stroke 79.5mm Exhaust valve timing Variable 

Rod 138mm Intake temperature Variable 

Fuel ULG95 Air/Fuel ratio Variable 

In order to assure stable and homogeneous condition, the fuel 

injection timing is located in TDC of recompression process. 

The gaseous emissions are quantified using a Horiba 

MEXA-7100DEGR emissions bench. Fuel consumption is 

obtained from an AVL 7131-06 fuel meter. The whole test bed 

is controlled by dSPACE system. The schematic of the engine 

test bed setup is shown in Fig. 3. 

 

Fig. 3. Schematic of Jaguar V6 HCCI Engine Test Bed 

The process of calibration of the engine model from 

experimental data is described in more detail in reference [18]. 

In this paper, the adjustable range of IVO and EVC which 

allows stable HCCI combustion without misfire or large 

cycle-to-cycle variation are 60-80CAD aTDC and 75-95CAD 

bTDC respectively. To create the experimental database for 

model development, there are 3 and 5 different settings of IVO 

and EVC respectively have been used, see Fig. 4. Because the 

EVC position mainly determines the trapped internal EGR 

fraction and thereby affects power output, the sampling interval 
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for EVC is only 5 CAD. In total, 3532, 90 combinations of 

engine parameters have been experimentally tested to derive 

the complete engine model.

 

Fig. 4. Schematic of Tested Valves Timing for HCCI Engine Model Development 

The adjustable ranges of each variable engine parameters in 

HCCI model are given in Table 2. 

TABLE 2 

ADJUSTABLE RANGES OF EACH ENGINE PARAMETERS IN HCCI MODEL 

 Engine Speed EVC (bTDC) IVO (aTDC) 𝝀 

Min 1500 rpm 75 CAD 60 CAD 1.0 

Max 2500 rpm 95 CAD 80 CAD 1.2 

Samples 1500,2000,2500 75,80,85,90,95 60,70,80 1.0,1.2 

To combine all the different variables sample points, there 

are 90 groups of experimental data are obtained and used to 

calibrate the engine combustion and emissions model. 

IV. THE VALIDATION RESULTS 

The validation of HCCI engine model-based intelligent 

multi-objective optimization approach will be presented and 

discussed here. The validation includes SPEA2 code and the 

HCCI engine optimization. In order to demonstrate the high 

speed of the new engine optimization approach, the simulation 

speeds of the HCCI engine model and optimization for one 

engine case are presented. A computer with 1.6G Hz processor 

and 2GB RAM is used to run the simulation. 

A. SPEA2 Optimizer Code Validation 

Although the performance of SPEA2 has been developed 

and validated by E. Zitzler et al. in their research, it is essential 

to validate the self-developed code which is used in this 

research. The SRN Multi-objective Optimization Problem 

(MOP) is used to validate the developed SPEA2 optimizer 

code. It is a classic MOP to validate MOEA. As a 

Multiple-Input and Multiple-Output (MIMO) MOP, the SRN 

has two inputs (x, y) and two outputs (𝑓1 , 𝑓2) which are 

given by [23]: 
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(6)

 

For simplicity, the inputs (x, y) are considered as integers 

as well. The 3-D map surfaces of 𝑓1 and 𝑓2 without constraint 

conditions are presented in Fig. 5. The found optimal solutions 

of SRN MOP are shown in Fig. 6.  

 

Fig. 5. f1 and f2 for SRN MOP 
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Fig. 6. Found Optimal Solutions of SRN MOP 

In Fig. 6, the red points are the solutions which are found by 

the SPEA2 based Java code, which are equally good from the 

view of MOEA. The found Pareto Front of SRN MOP is shown 

in Fig. 7, which shows the solutions space and the optimal 

solutions. 

 

Fig. 7. Founded Pareto Front of SRN MOP 

From Fig. 7, it is recognized that the SPEA2 based MOEA is 

able to find the Pareto front of SRN MOP efficiently. 

 

B. Engine Optimization Results and Validation 

Since the engine model and SPEA2 based optimizer code 

have been validated, it is time to validate the optimization 

approach by comparing the experimental data and 

co-simulation results. 

In order to test the approach within a wide range, the HCCI 

engine model-based intelligent multi-objective optimization 

approach is validated for 8 HCCI cases with different engine 

speeds and IMEP. The conditions for these cases are given in 

Table 3 below. 

TABLE 3 

OPERATING CONDITIONS FOR EACH HCCI CASE 

Case No. 1 2 3 4 5 6 7 8 

Engine Speed 1500 1750 2000 2250 

Min IMEP (bar) 3.5 4.0 3.5 4.0 3.0 3.5 4.0 3.0 

Max IMEP (bar) 4.0 4.5 4.0 4.5 3.5 4.0 4.5 3.5 

The optimizer needs to run 40 EA loops in order to find the 

optimal engine parameter settings. The validation results of the 

8 different HCCI cases are shown in the 4-Dimensional Fig. 8. 

There are two figures for each case to display the validation 

results; one figure is coloured by the ISFC map and the other 

one is coloured by the ISHC map. The surface in each figure is 

the map of all the HCCI engine parameter settings (IVO, EVC 

and  λ) which operates within the current engine speed and 

IMEP range. The 4th dimension of the figure is the different 

colour on the surface, which indicates a different ISFC or ISHC 

value. The corresponding values of ISFC and ISHC can be read 

from the colour scale bar beside the figures. The best 

performance region is in the dark area. The red points are the 

predicted optimal results (non-dominated solutions) which 

were found by the HCCI engine model-based intelligent 

multi-objective optimization approach. It is important to note 

that the ISFC and ISHC maps are derived from experimental 

data, with the HCCI engine operating with the specified engine 

parameter settings. The figures therefore provide an indication 

of the performance of the entire approach, and not just of the 

optimization step. 

 

 
Case 1 ISFC (g/kWh) 
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Case 1 ISHC (g/kWh) 

 
 

Case 2 ISFC (g/kWh) 

 
Case 2 ISHC (g/kWh) 

 
 

Case 3 ISFC (g/kWh)

 
 

Case 3 ISHC (g/kWh)  

 
Case 4 ISFC (g/kWh)  
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Case 4 ISHC (g/kWh)  

 
 

Case 5 ISFC (g/kWh)

 
Case 5 ISHC (g/kWh)  

 
 

Case 6 ISFC (g/kWh)

 
 

Case 6 ISHC (g/kWh)  

 
Case 7 ISFC (g/kWh)  



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <     9 

 
 

Case 7 ISHC (g/kWh)  

 
 

Case 8 ISFC (g/kWh)

 
Case 8 ISHC (g/kWh) 

Fig. 8. Validation Results of the 8 HCCI Cases 

From the validation results in the figure above, it is observed 

that most of the red points are located in the purple or blue 

areas. This implies that the HCCI engine model-based 

intelligent multi-objective optimization approach is able to 

optimize the HCCI engine for obtaining the best engine 

performance in terms of ISFC and ISHC simultaneously. These 

red points are equally good, from the EA based optimization 

point of view. For these points, some have better fuel 

consumption performance, some have better HC emissions 

performance and some are the compromise results between 

ISFC and ISHC. Engine designers need to determine which 

point is the best solution based on the particular design 

requirements. The most straightforward method is pick the 

point with the lowest fuel consumption with acceptable 

emissions level. 

In some cases, the validation results are very good, where the 

red points are just located at the centre of purple zone, such as 

cases 1, 2, 3, 4 and 6. For example, in case 1, the red points are 

evenly distributed in the purple zones of ISFC and ISHC 

surfaces. However, some of the cases do not show such good 

results, e.g. for cases 7 and 8. For case 8, it looks like the 

optimizer cannot find the best solution for each target 

optimization objective and only found some compromised 

points in the blue areas. This is mainly due to the simulation 

errors of the HCCI engine model. Another possible reason is 

that 40 EA loops are not enough to optimize the engine for 

achieving the best performance for this case. This case has a 

relatively wider surface than others which implies that there are 

more potential parameter settings for this case. 

The comparisons between the initial experimental data and 

the optimized settings for case 1 and 2 are shown in Fig. 9. 

 

Fig. 9.  Comparisons between the Simulation and Experimental Data 

In the figure, the Pareto front indicates the Pareto optimal 

solutions. This figure clearly demonstrates the value of the 

optimization. It can be observed that the optimized results for 

both ISFC and ISHC are significantly better than the 

performance of the experimental runs. The optimizer is able to 

optimize the engine parameters with limited experimental data. 

The Pareto front of case 1 and case 2 are encompassed by 

dashes in Fig. 9. The points in the Pareto front have the best 

fitness values for each case, i.e. at least one solution can be 

found which has lower ISHC and ISFC than any given 

experimental data point. 
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Furthermore, the SPEA2 based multi-objective optimization 

process can be observed in Fig. 10. Case 1 is used as an 

example. 

 

 

Fig. 10. SPEA2 Based Multi-Objective Optimization Process of Case 1 

In Fig. 10, the small black points, medium red points and big 

red points represent 10, 20 and 40 loops of Pareto optimal 

results respectively. It is found that as the EA running loops 

increase, the optimal points will “climb” to the practical 

optimal zone gradually. For the cases with 10 loops, the Pareto 

optimal points (black) are located somewhere around the 

practical optimal zone, and some of them even appear in the 

green and yellow zones in the figure. However, after 20 loops, 

most of the Pareto optimal points (blue) are found in the blue 

zones. After 40 optimization loops, all the Pareto optimal points 

(red) are located in the practical optimal zones (purple). 

However, the time consumption of 40 loops is twice as long as 

that of 20 loops. Therefore, a compromise between 

optimization accuracy and time consumption is needed for any 

engine type or operating conditions. Additionally, it is found 

that some points are overlapped by the Pareto surface of 

different running loops. The reason is that these points’ fitness 

values are so good that the SPEA2 optimizer chose to keep 

them for even more loops. 

 

C. Optimization Time Consumption 

The average time consumption of the HCCI engine 

model-based intelligent multi-objective optimization approach 

of case 1 is shown in Fig. 11, which has different EA running 

loops and the corresponding average engine performances 

improvements. 

 

Fig. 11. Time Consumption for Different Loops 

From this figure, it is found that a remarkable improvement 

is made when the EA running loops increase from 5 to 10. 

Although it is not as large as before, a considerable 

improvement is still achieved when the EA running loop 

number increases from 10 to 20. After 20 loops, the 

improvement is small. After that, further improvements from 

running more EA loops are limited. This implies that the 

improvement amplitude will decrease as the EA running loops 

increase. In general, no further improvement can be observed 

after 100 loops. As a compromise result between optimization 

standard and time consumption, the 40 EA running loops 

setting of HCCI cases is reasonable. It takes around 20 minutes 

to optimize one HCCI case. 

V. CONCLUSIONS 

In this Paper, a novel intelligence method of optimizing 

HCCI engine performance globally under given objectives has 

been developed. The performance of the HCCI engine 

optimizer is demonstrated by the co-simulation between an 

HCCI engine Simulink model and an Strength Pareto 

Evolutionary Algorithm 2 (SPEA2) based multi-objective 

optimizer developed in Java. 

The validation results of the model-based HCCI engine 

intelligence multi-objective optimization approach are given. 

The optimization approach is able to find the optimal engine 

parameters set (IVO, EVC and λ) for the best ISFC and ISHC 

with excellent accuracy and speed. It can be observed that the 

optimized results for both ISFC and ISHC are significantly 

better than the performance of the pre-obtained experimental 

data. There are 8 different operating cases which are tested for 
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the HCCI engine for validation, which covers a very wide range 

of engine speed and IMEP. The HCCI engine optimizer only 

needs around 20 minutes to obtain the best engine performance 

points for one case. 

For most of the cases, after 40 optimization loops, the Pareto 

optimal points are located in or very near the optimal zones. It 

means the optimizer is able to find the best performance points 

based on the limited experimental data, which suggests that the 

approach has great potential to help industries to reduce the 

engine calibration efforts, even for traditional gasoline and 

diesel engines. 
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NOMENCLATURE 

HCCI Homogeneous Charge Compression Ignition 

DoF Degrees of Freedom 

SPEA2 Strength Pareto Evolutionary Algorithm 2 

rpm Revolutions per minute 

IMEP Indicated Mean Effective Pressure 

ISFC Indicated Specific Fuel Consumption 

ISHC Indicated Specific Hydrocarbon 

IVO Intake Valves Open 

EVC Exhaust Valves Close 

GDI 

EGR 

Gasoline Direct Injection 

Exhaust Gas Recirculation 

PM Particulate Matter 

NEDC New European Driving Cycle 

NOx Nitrogen Oxides 

HC Hydrocarbons 

SI Spark Ignition 

DPGA Distance-based Pareto Genetic Algorithm 

NSGA Non-dominated Sorting Genetic Algorithm 

EMOGA Entropy-based Multi-Objective Genetic Algorithm 

ADVISOR ADvanced VehIcle SimulatOR 

BSFC Brake Specific Fuel Consumption 

GA Genetic Algorithm 

ANN Artificial Neural Network 

MFB Mass Fraction Burned 

DoE Design of Experiments 

ECU Engine Control Unit 

NVO Negative Valve Overlap 

MOEA Multi-Objective Evolutionary Algorithms 

CPS Cam Profile Switching 

VVT Variable Valve Timing 

CAD Crank Angle Degree 

aTDC After Top Dead Centre 

bTDC Before Top Dead Centre 

TDC Top Dead Centre 

MOP Multi-objective Optimization Problem 

MIMO Multiple-Input and Multiple-Output 
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