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Abstract—This paper proposes a novel tractable approach4
for accurately analyzing both the coverage probability and the5
achievable throughput of cellular networks. Specifically, we de-6
rive a new procedure referred to as the equivalent uniform-7
density plane-entity (EUDPE) method for evaluating the other-cell8
interference. Furthermore, we demonstrate that our EUDPE9
method provides a universal and effective means to carry out the10
lower bound analysis of both the coverage probability and the11
average throughput for various base-station distribution models12
that can be found in practice, including the stochastic Poisson13
point process (PPP) model, a uniformly and randomly distributed14
model, and a deterministic grid-based model. The lower bounds15
of coverage probability and average throughput calculated by our16
proposed method agree with the simulated coverage probability17
and average throughput results and those obtained by the existing18
PPP-based analysis, if not better. Moreover, based on our new19
definition of cell edge boundary, we show that the cellular topology20
with randomly distributed base stations (BSs) only tends toward21
the Voronoi tessellation when the path-loss exponent is suffi-22
ciently high, which reveals the limitation of this popular network23
topology.24

Index Terms—Achievable throughput, cellular coverage, cellu-25
lar networks, deterministic grid-based model, Poisson point pro-26
cess (PPP) model, uniformly and randomly distributed model.27

I. INTRODUCTION28

29 S INCE cellular systems are under growing pressure to in-30

crease the volume of data delivered to consumers, es-31

tablishing an accurate performance prediction model is of32

prime significance [1]. Cellular systems are evolving into a33

large-scale heterogeneous network architecture, constructed by34

overlapping network tiers, such as macrocells, picocells, fem-35

tocells, etc. [2]–[4]. The traditional cellular analysis relying on36

an idealized hexagonal model does not realistically represent37

the actual distribution of cells. Clearly, such a simplistic model38
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cannot be used for accurately modeling real-world cellular 39

networks and for analyzing the coverage probability and the 40

achievable throughput. Two mathematical models, i.e., the cel- 41

lular system interference model and the base station (BS) or cell 42

distribution model, are fundamental in the coverage analysis. 43

A. Related Work and Motivation 44

According to [5], the interference models can generally be di- 45

vided into two types: empirical models and statistical–physical 46

models. The construction of an empirical interference model 47

relies on first measuring the interference and then fitting a 48

mathematical model to the data. By contrast, the derivation of 49

a statistical–physical model usually relies on the mathematical 50

modeling of the interference. The classic Wyner model [6] was 51

proposed in 1994, and since then, it has been widely adopted in 52

the analysis of cellular networks. This model assumes that the 53

interference is constituted by the sum of the signals transmitted 54

from the adjacent cells (typically only considering two neigh- 55

bors), which is often multiplied by a fixed scaling factor or gain 56

to represent the specific intensity of the interferers [6]–[9]. 57

Determining the most beneficial positions of the BSs rep- 58

resents a critical planning problem in cellular networks. 59

Traditional methods usually place the BSs deterministically on 60

a regular grid, despite the fact that, in practice, the positions 61

of BSs are influenced by many random factors. Taking into 62

account the randomness of BS locations, in [10] and [11], a 63

stochastic-geometry-based method for modeling the positions 64

of the BSs was derived, whereas in [12] and [13], it was 65

proposed that the BSs be placed according to a homogeneous 66

Poisson point process (PPP) associated with a given intensity 67

[12], [13]. However, since the cellular network is gradually 68

evolving into a large-scale heterogeneous network associated 69

with multiple-tier random BS locations, the design challenge 70

becomes more grave. A recent contribution [14] has demon- 71

strated that the BS locations may be drawn from a PPP, partic- 72

ularly for single-tier networks. In [5], the statistical–physical 73

modeling of cochannel interference (CCI) was investigated 74

by assuming that the geographic distribution of interferers is 75

known a priori and that the interferers belong to a Poisson 76

field, with each individual interferer having a random session 77

life time. In [15], a mathematical theory based on a spatially 78

homogeneous PPP was provided to analyze the effects of 79

interference, which models the spatial distribution of the nodes 80

over the 2-D infinite plane by PPP theory. 81

The PPP model was used in [12] for establishing a hetero- 82

geneous network model of a single-tier macrocell network. 83
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Based on this PPP model, the calculation of the cumulative84

interference imposed by all surrounding BSs can be carried85

out with the aid of the Laplace transform and the probability86

generating function [12], [14]. Furthermore, the coverage prob-87

ability expression was deduced for the specific scenario, when88

the interference experiences Rayleigh fading, and the results89

of [12] and [14] demonstrated that the analysis based on the90

PPP-aided modeling represent the lower bound of simulation91

results.1 Similarly, the achievable average rate was also calcu-92

lated. Although the PPP model is adopted for the analysis of93

cellular networks, it is only accurate for sparse networks. By94

contrast, it suffers from a lack of realism in the case of dense95

networks since it may place several BSs far too closely together,96

which does not make practical sense as such a situation will not97

occur in a real BS deployment. It may impose excessive CCI if98

too many BSs are deployed too densely. Noting this weakness99

of the PPP model, some balanced measures are suggested to100

alleviate this drawback in [12], but this weakness cannot be fun-101

damentally eliminated by these measures. Moreover, the PPP-102

based analysis relies on the assumption that the transmitters are103

independently distributed [16].104

A range of alternative stochastic-geometry-based methods105

have also been used in the analysis of wireless networks [17],106

[18]. For example, in [17], the Matérn hard-core process was107

invoked for modeling the classic carrier sense multiple access108

(CSMA) protocol and for analyzing its throughput, where the109

presence of interferers within a given radius around any trans-110

mitter was prevented. The Matérn point process [19] was modi-111

fied in [18] to model the CSMA with collision avoidance, which112

yields more realistic results by applying the aforementioned113

interference-exclusion zone around all possible transmitters.114

However, coverage analysis based on a Matérn hard-core pro-115

cess is difficult to carry out [20] since the probability generating116

functional of a Matérn hard-core process does not exist. It was117

argued in [20]–[22] that only the Matérn type II process causes118

a level of interference comparable to that predicted by a PPP119

and, therefore, for interference-based performance analysis, the120

Matérn type II process may be safely approximated by the121

corresponding nonhomogeneous PPP [20]–[22].122

B. Our Approach and Contributions123

Against the above background, we propose a novel universal124

approach for tractable and accurate coverage analysis of cellu-125

lar networks. Our contributions are as follows.126

1) Physical Analysis of Hexagonal/Voronoi Cells: To inter-127

pret the various geometric-based cellular models from a physi-128

cal perspective, we provide a tangible generic definition of the129

cell edge boundary for our theoretical analysis, where the cell130

boundary is directly linked to the path-loss exponent. Specif-131

ically, we show that the traditional hexagonal topology natu-132

rally emerges from the grid-based model, given a sufficiently133

high path-loss exponent, whereas the Voronoi tessellation nat-134

urally emerges from the random BS distribution model, again135

1The simulation results are referred to as “experimental” or “actual” in [12],
which is inappropriate.

provided that the path-loss exponent is sufficiently high. How- 136

ever, such a high path-loss exponent is unrealistic in real trans- 137

mission environments. Therefore, our physical analysis reveals 138

the fundamental limitation of these purely graphic-based cellu- 139

lar topologies, namely, lack of the connection to the underlying 140

signal transmission medium. In fact, we demonstrate that the 141

cell edge boundary shows irregular near-circular shapes, given a 142

more realistic path-loss exponent of around 3, which cannot be 143

modeled accurately by either hexagonal or Voronoi tessellation. 144

2) EUDPE-Based Other-Cell Interference Model: We pro- 145

pose a universal model for evaluating the other-cell interfer- 146

ence, which we refer to as the equivalent uniform-density 147

plane-entity (EUDPE) method. This generic EUDPE model can 148

be used to calculate the cumulative other-cell interference for 149

all the existing BS distribution models that can be found in 150

practice, including both stochastic and deterministic cellular 151

network models, such as the stochastic Poisson distributed (PD) 152

and uniformly distributed (UD) BS models and the determinis- 153

tic grid-based BS model. 154

3) Lower Bound Analysis for Coverage Probability and 155

Average Achievable Rate: Based on the proposed generic 156

EUDPE interference model, we perform the low-bound anal- 157

ysis of both the coverage probability and the average achiev- 158

able rate for various BS distribution models, specifically, the 159

stochastic PD and UD BS models and the deterministic grid- 160

based BS model, which may be viewed as a degenerated or spe- 161

cial case of the UD BS model. For realistic path-loss exponents, 162

the coverage probability and average achievable throughput 163

results provided by our proposed analysis approach agree with 164

the simulated coverage probability and achievable throughput. 165

In fact, their match is as good or better than that of the PPP- 166

based analysis. The results also show that the noise only has a 167

modest effect on the coverage probability and achievable rate. 168

The remainder of this paper is organized as follows. In 169

Section II, the downlink cellular system model is briefly in- 170

troduced, which is followed by our new physical analysis of 171

cell edge boundary. Section III is devoted to the derivation of 172

our EUDPE-based interference model. The low-bound analysis 173

of the coverage probability based on the EUDPE method is 174

deduced in Section IV for both stochastic BS distribution 175

models and deterministic grid-based BS models, whereas the 176

corresponding low-bound analysis is presented in Section V. 177

Our conclusions are offered in Section VI. 178

II. DOWNLINK CELLULAR SYSTEM MODEL 179

Throughout our discussions, the index set of the BSs, which 180

are deployed according to some distribution, is denoted by Φ, 181

whereas the serving BS’s index is denoted by b0. Furthermore, 182

the average density of BSs is ρ. Let P be the transmitted power 183

of a BS, R be the serving BS’s coverage radius, Rnw be the 184

distance from the serving BS to the edge of the network, and 185

ri denotes the distance from the ith BS to the user equipment 186

(UE) concerned. If we denote the average coverage area of a 187

BS by E[As] with E[ ] representing the expectation operator, 188

then E[As] = 1/ρ. We will also use 2R to denote the average 189

distance between two neighboring BSs, and we have R ∝ 190√
E[As]. 191
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A. SINR Model192

The wireless channel linking the ith BS and the UE con-193

cerned is modeled by a complex-valued channel tap that takes194

into account the path loss with a path-loss exponent of α, the195

fast Rayleigh fading coefficient with an instantaneous power196

or a squared magnitude of hi, and the channel’s additive white197

Gaussian noise (AWGN) with noise power of σ2. The average198

of the random variable hi is denoted by h̄; therefore, hi follows199

the exponential distribution with the mean h̄.200

Let us assume that the intracell UE-to-UE interference is neg-201

ligible. Then, the signal-to-interference-plus-noise ratio (SINR)202

experienced at this UE can be expressed as follows:203

SINR =
Ph0r

−α
0

Ir + σ2
(1)

where the interference arriving from all the interfering cells is204

given by205

Ir =
∑

i∈Φ\b0

Phir
−α
i . (2)

If the target SINR value is T , then the actual SINR must obey206

SINR > T , which requires207

h0 > P−1Trα0
(
σ2 + Ir

)
. (3)

Thus, the probability distribution of h0 should be taken into208

account in the analysis of both the coverage probability and the209

average rate. Furthermore, intuitively, the given SINR model210

determines the coverage area of each BS; therefore, it influences211

the cell shape or boundary.212

B. Physical Analysis of Cell Edge Boundary213

As aforementioned, the grid-based cellular model is conve-214

nient but is too idealistic. By contrast, the Voronoi tessellation is215

considered to match the random BS deployment in relative flat216

urban areas reasonably well [12], [23]. Hence, cellular networks217

can be analyzed using Voronoi diagram theory, albeit this has218

not been explained with the aid of a physically tangible per-219

spective. More specifically, both the energy efficiency and cov-220

erage of cellular networks may be analyzed based on Voronoi221

tessellation [24], [25]. Fig. 1 shows a random distribution of222

the BSs with the cell boundaries corresponding to a Voronoi223

tessellation. Note that in both the grid-based and Voronoi-based224

cellular topologies, the cell boundaries are determined purely225

by the geometric property of the BS distribution, and they are226

completely independent of the actual physical interference that227

the network is experiencing.228

To interpret the cell edge boundary from a physical percep-229

tively, namely, linking it better to the underlying physics of230

signal transmission medium, let us now introduce the following231

definition that formally defines the cell edge boundary.232

Definition 1: The cell edge boundary is constituted by the233

group of points where the strength of the desired signal received234

from the serving BS equals to the interfering signal’s strength.235

In other words, at the cell edge boundary, the desired signal-236

to-interference ratio (SIR) is equal to 1. This definition of cell237

Fig. 1. Random distribution of the BSs marked by +, with the cell boundaries
corresponding to a Voronoi tessellation.

edge boundary is both intuitive and practical since, within the 238

coverage area of a BS, the desired signal should be stronger than 239

the interfering signal, yielding SIR > 1. Let us denote the ith 240

BS location as the point zi, where i ∈ Φ. Furthermore, denote 241

the distance from zi to a point z as |z − zi|. The desired signal 242

power at the point z provided by the ith BS is given by 243

S(z) = E
[
Phi|z − zi|−α

]
= Ph̄|z − zi|−α (4)

while the interfering signal’s power at z is given by 244

I(z) =E [Ir(z)] = E

⎡⎣ ∑
j∈Φ\i

Phj |z − zj |−α

⎤⎦
=Ph̄

∑
j∈Φ\i

|z − zj |−α. (5)

Thus, with respect to the ith BS, the SIR at the point z is 245

given by 246

SIR(z) =
|z − zi|−α∑

j∈Φ\i |z − zj |−α
. (6)

Therefore, at the ith cell’s edge boundary, we have SIR(z) = 1. 247

In Figs. 2 and 3, the distribution of the BSs is based on the 248

same regular grid network model, and the number of BSs is 33. 249

As shown in Fig. 2, the shape of each cell in the network is 250

approximately a regular circle given the path-loss exponent of 251

α = 3. By contrast, observe in Fig. 3 that the cell shape changes 252

into a hexagonal one when the path-loss exponent is increased 253

to α = 10. 254

In Figs. 4 and 5, the locations of the 33 BSs are randomly 255

drawn from the uniform distribution across the entire network 256

area. The cells now approximately have irregularly circular 257

shapes when the path-loss exponent is α = 3, but interestingly, 258

it is the Voronoi tessellation that naturally emerges when the 259

path-loss exponent is increased to α = 10. 260
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Fig. 2. Cell edge boundaries of the grid network model with the 33 BS loca-
tions marked by dots, as determined by SIR(z) = 1. The path-loss exponent is
α = 3.

Fig. 3. Cell edge boundaries of the grid network model with the 33 BS loca-
tions marked by dots, as determined by SIR(z) = 1. The path-loss exponent is
α = 10.

The given results demonstrate that our Definition 1 of cell261

edge boundary is a physically plausible one for analyzing the262

network, and both the hexagonal topology and the Voronoi263

tessellation naturally emerge according to this definition, de-264

pending on whether the geographic distribution of BSs is deter-265

ministic or random and providing that the path-loss exponent266

is sufficiently high. Note that such a high path-loss exponent267

is unrealistic in real transmission environments. Therefore,268

our analysis of cell edge boundary reveals a weakness of the269

popular hexagonal and Voronoi network topologies, namely,270

they do not reflect the underlying signal transmission medium.271

Significantly, given a more realistic path-loss exponent of ap-272

proximately three, the cell edge boundary exhibits irregular273

Fig. 4. Cell edge boundaries of the randomly distributed network model with
the 33 BS locations marked by dots, as determined by SIR(z) = 1. The path-
loss exponent is α = 3.

Fig. 5. Cell edge boundaries of the randomly distributed network model with
the 33 BS locations marked by dots, as determined by SIR(z) = 1. The path-
loss exponent is α = 10.

near-circular cell shapes, for which neither hexagonal topology 274

nor Voronoi tessellation can be used to accurately model. 275

Furthermore, the “weak” coverage areas that are left outside 276

any cell boundary, where the desired signal is weaker than the 277

interfering signals, as shown in Fig. 4, highlight the benefits of 278

employing collaborative relaying techniques. 279

III. EQUIVALENT UNIFORM DENSITY PLANE-ENTITY FOR 280

CUMULATIVE INTERFERENCE CALCULATION 281

To accurately analyze the coverage probability and the 282

achievable rate, it is necessary to find an efficient means for 283
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Fig. 6. Proposed EUDPE method for calculating the other-cell interference.

cumulative interference calculation. By considering the dis-284

tribution of the interference imposed by the BSs in the law285

of large numbers and combining it with the fluid model of286

[26], we propose the EUDPE method for calculating the cu-287

mulative interference. The basic idea of this EDUPE method288

is as follows. Although the actual geographic distribution of289

BSs always shows a certain degree of irregularity, we may290

define a group of equivalent and uniformly distributed BSs for291

approximating the other-cell CCI. Since, in real-world cellular292

networks, the actual geographic distribution of BSs is often293

close to a uniform random distribution, such an approximation294

is sufficiently accurate. It is worth emphasizing however that295

we do not assume a uniform and random BS distribution for296

the actual network to be modeled. More specifically, given297

a network having the average BS density of ρ, we approx-298

imate this network with an equivalent network whose BSs299

are uniformly distributed and whose BS density is also ρ.300

Such a network is termed the equivalent EUDPE of the given301

network. With the aid of our EUDPE method, we can calcu-302

late or approximate the cumulative interference for any given303

network.304

Fig. 6 illustrates the concept of the EUDPE, where the305

serving BS is assumed the origin of the polar coordinate plane.306

Since the coverage radius of a BS is R, the distance between307

two neighboring BSs is 2R, where R ∝ (1/
√
ρ). For notational308

simplification, we drop the subscript 0 from r0 and denote the309

distance from the serving BS to the UE as r, where 0 ≤ r ≤ R.310

Thus, the distance from the nearest interfering BS to the UE311

is (2R− r). As shown in Fig. 6, the network’s coverage area312

is partitioned by the Nr rings, and the distance from the UE313

to the lth ring is given by (2R− r + εl−1), where 1 ≤ l ≤314

Nr with ε0 = 0 and (2R− r + εNr
) = Rnw − r. The number315

of BSs within the area between the lth and (l + 1)th rings316

is approximately
∫ 2π

0

∫ 2R−r+εl
2R−r+εl−1

ρ z dz dθ when assuming the317

equivalent EUDPE having the BS density of ρ. Furthermore,318

each of these equivalent BSs has the same instantaneous319

fast fading channel power of h̃l, and the mean of h̃l is h̄.320

Thus, the cumulative interference Ir can be approximated 321

according to 322

Ir =

Nr∑
l=1

2π∫
0

2R−r+εl∫
2R−r+εl−1

Ph̃lz
−αρ z dz dθ

=

Nr∑
l=1

2πρP h̃l

α− 2

(
(2R− r + εl−1)

2−α−(2R− r + εl)
2−α

)
.

(7)

Theorem 1: The average of Ir is given by 323

E[Ir] =
2πρP h̄

α− 2

(
(2R− r)2−α − (Rnw − r)2−α

)
. (8)

Proof: According to the Campbell-Mecke theorem [27], 324

we have 325

E

[
Nr∑
l=1

2πρP h̃l

α− 2

(
(2R− r + εl−1)

2−α−(2R− r + εl)
2−α

)]

=

Nr∑
l=1

2πρPE[h̃l]

α− 2

(
(2R−r + εl−1)

2−α−(2R−r + εl)
2−α

)
=

2πρP h̄

α− 2

(
(2R− r)2−α − (Rnw − r)2−α

)
. (9)

� 326

Typically, the path-loss exponent is α > 2 in realistic net- 327

works. Noting that (Rnw − r)2−α → 0 as Rnw → +∞, we 328

have the following corollary. 329

Corollary 1: Given that the network’s boundary is suffi- 330

ciently far away, namely, Rnw → +∞, we have 331

E[Ir] =
2πρP h̄

α− 2
(2R− r)2−α. (10)

IV. COVERAGE PROBABILITY ANALYSIS USING 332

EQUIVALENT UNIFORM DENSITY PLANE-ENTITY 333

As mentioned earlier, the cellular system interference model 334

and the BS geographic distribution model are required in cov- 335

erage analysis. Our proposed EUDPE is a universal method 336

for evaluating the other-cell interference for all existing BS 337

distribution models, such as the stochastic PD and UD BS 338

models and the deterministic grid-based model. 339

A. Coverage Probability Analysis Using EUDPE-PD 340

Since a popular geographic BS distribution is the Poisson 341

distribution [12]–[15], we first consider the PD BS model. The 342

probability density function (pdf) of the Poisson distribution 343

can be derived using the method of [28]. Let λ be the intensity 344

of the Poisson distribution that models the BS geographic 345

distribution and R be the average coverage radius of a cell. 346

Then, the probability of having no BS that is closer than x is 347

given by 348

P{r > x} = P{No BS closer than x} = e−λπx2

. (11)
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The corresponding cumulative distribution function (cdf) is349

then given by350

P{r ≤ x} = F (x) = 1 − e−λπx2

. (12)

Therefore, the pdf is defined as351

f(r) =
dF (r)

d r
= 2πλ r e−πλr2 . (13)

Given the SINR threshold T , the intensity λ and the path-loss352

exponent α, the coverage probability is defined as353

pc(T, λ, α)=Er [EIr [P{SINR > T}]]

=

∫
r>0

EIr

[
P
{
h0>P−1Trα(σ2+Ir)

}]
2πλre−πλr2 dr

(14)

where Er[•] denotes the expectation with respect to the random354

variable r.355

1) Lower Bound for the Probability of SINR Larger Than356

Threshold: Noting that h0 obeys the exponential distribution357

with the mean h̄, the probability of the SINR larger than the358

threshold T (averaged over the interference) is given by359

EIr

[
P
{
h0 > P−1Trα(σ2 + Ir)

}]
= e−h̄P−1Trασ2

EIr

[
e−h̄P−1TrαIr

]
. (15)

Theorem 2: A lower bound for the probability of the SINR360

greater than the threshold T is expressed as361

EIr

[
P
{
h0 > P−1Trα(σ2 + Ir)

}]
≥ e−h̄Trαη(α,r) (16)

where362

η (α, r) = P−1σ2 +
2πρh̄
α− 2

(
(2R− r)2−α− (Rnw − r)2−α

)
.

(17)

Proof: According to Jensen’s inequality [29], we have363

EIr

[
e−h̄P−1TrαIr

]
≥ e−h̄P−1TrαE[Ir ]. (18)

Substituting (18) into (15) and noting E[Ir] of (8) leads to (16)364

with η(α, r) given in (17). �365

Corollary 2: Given that the network boundary is sufficiently366

far away, namely, Rnw → +∞367

EIr

[
P
{
h0 > P−1Trα(σ2 + Ir)

}]
≥ e−h̄Trαξ(α,r) (19)

where368

ξ(α, r) = P−1σ2 +
2πρh̄
α− 2

(2R− r)2−α. (20)

2) Lower Bound for the Coverage Probability: A lower369

bound for the coverage probability pc(T, λ, α) is given by the370

following theorem.371

Theorem 3: For the network where the BS geographic 372

distribution obeys the Poisson distribution of intensity λ, 373

a lower bound for the coverage probability pc(T, λ, α) is 374

given by 375

pcl(T, λ, α) = πλ

R2∫
0

e−h̄Tvα/2ψ(α,v)−πλv dv (21)

where R is the coverage radius of the serving BS, and 376

ψ(α, v) = P−1σ2 +
2πρh̄
α− 2

(
(2R− v1/2)2−α

− (Rnw − v1/2)2−α
)
. (22)

Proof: From (14) and Theorem 2, as well as noting that 377

r ≤ R, we have 378

pcl(T, λ, α) =

R∫
0

2πλre−h̄Trαη(α,r)−πλr2 dr. (23)

By defining r2 = v, (23) is transformed into (21) with ψ(α, v) 379

given in (22). � 380

Corollary 3: Given that the network boundary is sufficiently 381

far away, namely, Rnw → +∞, a lower bound for the coverage 382

probability pc(T, λ, α) is expressed as 383

pcl(T, λ, α) = πλ

R2∫
0

e−h̄Tvα/2χ(α,v)−πλv dv (24)

where 384

χ(α, v) = P−1σ2 +
2πρh̄
α− 2

(2R− v1/2)2−α. (25)

Remark 1: In the coverage analysis for the EUDPE-PD 385

model, the average coverage radius R is related to the average 386

cell area E[As]. Noting R ∝
√

E[As] and E[As] = 1/ρ, we 387

may use 388

R =
cf√
ρ

(26)

where cf is an empirically chosen factor. For example, if the 389

average cell is defined by a square shape, we have E[As] = 390

4R2; therefore, we have cf = 1/2 = 0.5. On the other hand, 391

if the average coverage area is calculated according to a hexag- 392

onal one, we have E[As] = 2
√

3R2, yielding cf = 1/
√

2
√

3 ≈ 393

0.54, whereas for the average circle-shape cell, we have cf = 394

1/
√
π ≈ 0.56. 395

B. Coverage Probability Analysis Using EUDPE-UD 396

For many practical cellular networks, the geographic BS 397

distribution is often close to a uniform random distribution. 398

Therefore, we next consider the UD BS model with the average 399
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density of BSs given by ρ. In this case, the corresponding cdf is400

given by401

P{z ≤ x} = F (x) =
x2

c2nm
ρ, 0 ≤ x ≤ R (27)

where c2nm is a normalization factor, and R is the coverage402

radius of the serving BS. Thus, the pdf is given as403

f(r) =
2ρ
c2nm

r, 0 ≤ r ≤ R. (28)

The normalization factor c2nm is determined as follows. Assume404

that E[As] = R2/c2f , where cf is defined in (26), and fur-405

ther note that E[As] = 1/ρ. From
∫ R

0 f(r) dr = 1, we obtain406

c2nm = c2f .407

The coverage probability is therefore defined as408

pc(T, ρ, α) =Er [EIr [P{SINR > T}]]

=
ρ

c2f

R∫
0

EIr

[
P
{
h0 > P−1Trα(σ2 + Ir)

}]
2r dr.

(29)

A lower bound of EIr [P{h0 > P−1Trα(σ2 + Ir)}] is given in409

Theorem 2. Similar to the case of the EUDPE-PD expressed in410

Theorem 3, therefore, a lower bound for the coverage probabil-411

ity pc(T, ρ, α) is given by the following theorem.412

Theorem 4: For the network where the BS geographic distri-413

bution obeys the uniform random distribution with an average414

BS density of ρ, a lower bound for the coverage probability415

pc(T, ρ, α) is given by416

pcl(T, ρ, α) =
ρ

c2f

R2∫
0

e−h̄Tvα/2ψ(α,v) dv (30)

where ψ(α, v) is defined in (22).417

Corollary 4: Given that the network boundary is sufficiently418

far away, a lower bound for the coverage probability pc(T, ρ, α)419

is expressed by420

pcl(T, ρ, α) =
ρ

c2f

R2∫
0

e−h̄Tvα/2χ(α,v) dv (31)

where χ(α, v) is defined in (25).421

Remark 2: How to set the average coverage radius R is422

explained in Remark 1. Specifically, we may use R = cf/
√
ρ,423

where cf is an empirically chosen factor.424

C. Coverage Probability Analysis Using EUDPE-Grid425

With the aid of the EUDPE method, it is straightforward to426

carry out the coverage probability analysis for all the traditional427

deterministic grid-based cellular network models, such as the428

squared and hexagonal ones. This is because the coverage429

probability analysis using the EUDPE-Grid model is simply a430

degenerated or special case of the EUDPE-UD-based analysis,431

where the density of BSs ρ is identical everywhere in the net- 432

work, and every cell has the identical shape with the same area 433

As. Therefore, the lower bounds of the coverage probability for 434

the finite-size and infinite-size grid-based network models are 435

given in Theorem 4 and Corollary 4, respectively. Moreover, 436

choosing R = 1/(2
√
ρ) corresponds to the grid-based network 437

with squared cells, whereas using R = 1/(
√

2
√

3
√
ρ) is related 438

to considering the grid-based network with hexagonal cells. In 439

general, we may use R = cf/
√
ρ for any deterministic grid- 440

based network by choosing an appropriate value for cf . It be- 441

comes obvious that, under the equivalent network environment 442

of the same ρ and R values, the coverage probability obtained 443

by the EUDPE-Grid-based analysis is identical to that obtained 444

by the EUDPE-UD-based analysis. 445

D. Numerical Results for Coverage Probability 446

We evaluated the coverage probability first by simulation and 447

used the simulated results as the benchmark for the comparison 448

with our theoretical analytic results. We considered two sce- 449

narios. The first case is a single-tier network constructed by 450

macrocells, obeying the uniform random BS distribution and 451

the cellular channel model described in Section II, whereas 452

the second network followed a Poisson BS distribution and 453

obeyed the same cellular channel model of Section II. Given 454

the SINR threshold T , the path-loss exponent α, and the SINR 455

value, the simulated coverage probability was calculated using 456

the pseudocodes presented in Algorithm 1. In the simulation, 457

we set the number of BSs to NBS = 80, the number of UEs to 458

NUE = 10 000, the network coverage area to Network Area = 459

1000 × 1000 m2, and the number of sample simulations to 460

Nmax = 100. The average density of BSs was then given as 461

ρ =
NBS

Network Area
[BSs/m2]. (32)

For the Poisson distribution, its intensity was λ = ρ. We com- 462

pared our low-bound coverage probability results based on the 463

EUDPE-PD and EUDPE-UD models with that of the PPP- 464

based analysis [12]. Since the PPP method can only consider 465

the case of an infinitely large network, we assumed the network 466

boundary Rnw → +∞. In the following comparison, the simu- 467

lation results obtained by the network with the uniform random 468

BS distribution are labeled as Simulated data 1, whereas the 469

simulation results yielded by the network with the Poisson BS 470

distribution are denoted Simulated data 2. 471

Algorithm 1 Network Simulation to Evaluate the Coverage
Probability.

1: Give the number of BSs NBS, the Network Area, and the 472

number of UEs NUE; 473

2: Give the maximum number of sample simulations Nmax; 474

3: Set Average Coverage Probability = 0; 475

4: for Nsm = 1 to Nmax do 476

5: Uniformly and randomly draw the NBS BSs over Net- 477

work Area, or draw the NBS BSs over Network Area by 478

the Poisson distribution; 479
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Fig. 7. Comparison of the coverage probabilities based on three different
models to the network simulation results, given the path-loss exponent of
α = 2.5 and no noise, i.e., the AWGN power σ2 = 0 and SINR = SIR.

6: Uniformly and randomly draw the NUE UEs over Net-480

work Area;481

7: Initialization: count = 0;482

8: for j = 1 to NUE, do483

9: if SINRj ≥ T then484

10: count = count + 1;485

11: end if486

12: end for487

13: Coverage Probability = count/NUE;488

14: Average Coverage Probability+ =489

Coverage Probability;490

15: end for491

16: Average Coverage Probability / = Nmax.492

Given the path-loss exponent of α = 2.5 and assuming no493

AWGN or σ2 = 0, which implies SINR = SIR, Fig. 7 shows494

the coverage probabilities calculated based on the three analytic495

models, in comparison to the coverage probabilities obtained by496

the two different network simulations, when varying the SINR497

threshold. It is shown in Fig. 7 that the coverage probability498

analysis results of our proposed EUDPE-PD and EUDPE-UD499

models agree with both simulation results well, better than the500

PPP-based analysis. When the path-loss exponent is increased501

to α = 3 and 4, the results obtained are shown in Figs. 8502

and 9, respectively, where it can be seen that the EUDPE-503

UD analysis agrees with the simulation result based on the504

network with the uniform random BS distribution better than505

the other two models, whereas the PPP-based analysis agrees506

better with the simulation result of the network with the Poisson507

BS distribution better than the other two models.508

It is worth emphasizing that because there exist no real509

network performance data to validate an analysis model, we510

can only rely on the simulated data. When we have an analysis511

model agrees with a particular simulation result better than an-512

other analysis model, it does not imply that the former is better513

than the latter. The particular simulation result may not actually514

represent the true real network performance and, moreover, the515

simulation conditions may not actually match those imposed516

on an analysis model. What we can claim however is that, if517

Fig. 8. Comparison of the coverage probabilities based on three different
models to the network simulation results, given the path-loss exponent of α = 3
and no noise, i.e., the AWGN power σ2 = 0 and SINR = SIR.

Fig. 9. Comparison of the coverage probabilities based on three different
models to the network simulation results, given the path-loss exponent of α = 4
and no noise, i.e., the AWGN power σ2 = 0 and SINR = SIR.

an analysis model agrees well with simulation data, it is a rea- 518

sonable tool for network analysis and planning. Similarly, if a 519

lower bound coverage probability derived by an analysis model 520

appears to be larger than a simulated coverage probability, it 521

does not imply that this analysis model is wrong. Again, the 522

simulation conditions may not actually match those imposed 523

on the analysis model. For example, we assumed that the 524

network boundary Rnw → +∞ for the proposed EUDPE-PD 525

and EUDPE-UD models and the PPP-based analysis for the fair 526

comparison of the three analysis models since the PPP method 527

can only be applied for the case of an infinitely large network. 528

However, the simulated network size was 1000 × 1000 m2 and 529

not infinitely large. As shown earlier, another advantage of 530

our analysis approach over the PPP-based method is that our 531

method can be applied to analyze finite-size networks. 532

In our EUDPE-based analysis, the empirical chosen factor 533

cf is related to the average cell shape and size. The theoretical 534

explanations of this area factor cf are given in Remark 1. 535

Observe from Fig. 7 that, for the path-loss exponent α = 2.5, an 536

appropriate value of this area factor for our EUDPE-UD model 537

is cf = 0.58, which is, in fact, close to the case of the average 538
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Fig. 10. Comparison of the coverage probabilities based on three different
models to the network simulation results, given the path-loss exponent of α =
2.5 and the AWGN power σ2 = 0.1.

Fig. 11. Comparison of the coverage probabilities based on three different
models to the network simulation results, given the path-loss exponent of α = 3
and the AWGN power σ2 = 0.1.

circle-shaped cell. However, as shown in Figs. 8 and 9, as α539

increases, the appropriate area factor cf value also increases. A540

plausible explanation for this phenomenon is offered as follows.541

As the path-loss exponent α increases, the effective coverage542

area R2/c2f of the serving BS is reduced, and this corresponds543

to an increase in the area factor cf .544

Next, the effect of noise imposed on the achievable coverage545

probability was investigated by setting the AWGN power to546

σ2 = 0.1 or 10 log10(1/σ
2) = 10 dB, and the results obtained547

are given in Figs. 10–12, respectively, for the three differ-548

ent values of α. For graphic clarity, we only draw a single549

EUDPE-PD-based coverage probability associated with an ap-550

propriate area factor cf value in each of these three figures.551

Again, the same observations as those drawn for Figs. 7–9 can552

be made, namely, for the case of α = 2.5, the EUDPE-UD-553

based analysis agrees with the both simulation results better554

than the PPP-based analysis, whereas for higher α values, the555

EUDPE-UD analysis matches better with the simulated results556

based on the uniform random BS distribution, and the PPP-557

based analysis agrees better with the simulated results based558

Fig. 12. Comparison of the coverage probabilities based on three different
models to the network simulation results, given the path-loss exponent of α = 4
and the AWGN power σ2 = 0.1.

on the Poisson BS distribution. Upon comparing Figs. 10–12 559

with Figs. 7–9, it can be seen that the effect of the channel 560

AWGN to the achievable coverage probability is minor. For 561

example, observe that the simulated-data-2 curve in Fig. 7 562

almost matches the simulated-data-2 curve in Fig. 10, whereas 563

the PPP-analysis-based curve in Fig. 7 is almost identical to the 564

PPP-analysis-based curve in Fig. 10. Similarly, the other three 565

coverage probability curves in Fig. 10 also closely match the 566

corresponding coverage probability curves in Fig. 7. 567

V. AVERAGE ACHIEVABLE RATE ANALYSIS USING 568

EQUIVALENT UNIFORM DENSITY PLANE-ENTITY 569

Let us now apply the proposed EUDPE method to analyze 570

the average achievable throughput. According to Shannon’s 571

theory, under the idealized simplifying condition of having a 572

Gaussian interference owing to the central limit theorem, the 573

average achievable rate is defined as [12] 574

C � E [ln (1 + SINR)] . (33)

Since we are concerned with the system’s achievable through- 575

put, we will consider the case of the network boundary being 576

sufficiently far away, i.e., Rnw → +∞. 577

A. Average Achievable Rate Analysis Using EUDPE-PD 578

Again, we first consider the case that the geographic BS 579

distribution follows a Poisson distribution, and we have the 580

following result. 581

Theorem 5: For the network where the BS geographic 582

distribution obeys the Poisson distribution of intensity λ, a 583

lower bound for the average achievable throughput is given by 584

Cl(λ, α) = πλ

R2∫
0

e−πλv

⎛⎝ ∫
t>0

e−h̄vα/2(et−1)χ(α,v) dt

⎞⎠ dv

(34)

where χ(α, v) is given in (25). 585
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Proof: According to [12], we have586

C(λ, α) =

R∫
0

2πλre−πλr2

×
∫

t>0

EIr

[
P
{
h0 > P−1rα(et − 1)(σ2 + Ir)

}]
dt dr. (35)

Similar to Corollary 2, we have587

EIr

[
P
{
h0 > P−1rα(et − 1)(σ2 + Ir)

}]
≥ e−h̄rα(et−1)ξ(α,r) (36)

where ξ(α, r) is defined in (20). Thus, a lower bound of C(λ, α)588

is given by589

Cl(λ, α) =

R∫
0

2πλre−πλr2

⎛⎝ ∫
t>0

e−h̄rα(et−1)ξ(α,r) dt

⎞⎠ dr.

(37)

By defining v = r2 in (37), we obtain (34). �590

Corollary 5: In the noise-free case, namely, σ2 = 0, a lower591

bound for the average achievable throughput is592

Cl(λ, α) = πλ

R2∫
0

e−πλv

⎛⎝ ∫
t>0

e−h̄vα/2(et−1)χ̄(α,v) dt

⎞⎠ dv

(38)
where593

χ̄(α, v) =
2πρh̄
α− 2

(2R− v1/2)2−α. (39)

B. Average Achievable Rate Analysis Using EUDPE-UD594

Next, we consider the case that the geographic BS distribu-595

tion follows a uniform random distribution, and we have the596

following result.597

Theorem 6: For the network where the BS geographic dis-598

tribution obeys the uniform random distribution with an average599

BS density of ρ, a lower bound for the average achievable600

throughput is given by601

Cl(ρ, α) =
ρ

c2f

R2∫
0

⎛⎝ ∫
t>0

e−h̄vα/2(et−1)χ(α,v)dt

⎞⎠ dv (40)

where χ(α, v) is given in (25).602

Proof: Noting that the average achievable throughput is603

defined as604

C(λ, α) =
ρ

c2f

R∫
0

2r

×
∫

t>0

EIr

[
P
{
h0 > P−1rα(et − 1)(σ2 + Ir)

}]
dt dr (41)

the proofs are similar to the proofs for Theorem 5. �605

Corollary 6: In the noise-free case, namely, σ2 = 0, a lower 606

bound for the average achievable throughput is 607

Cl(ρ, α) =
ρ

c2f

R2∫
0

⎛⎝ ∫
t>0

e−h̄vα/2(et−1)χ̄(α,v) dt

⎞⎠ dv. (42)

where χ̄(α, v) is given in (39). 608

Remark 3: It is straightforward to carry out the average 609

achievable throughput analysis for any deterministic grid-based 610

cellular network model, because the EUDPE-Grid model is a 611

special case of the EUDPE-UD model. Therefore, the lower 612

bound of the average achievable throughput for the grid-based 613

network model is also given in Theorem 6. Moreover, under the 614

equivalent network environment of the same ρ and R values, 615

the lower bound of the average achievable throughput obtained 616

by the EUDPE-Grid-based analysis is identical to that obtained 617

by the EUDPE-UD-based analysis. 618

C. Numerical Results for Average Achievable Rate 619

Assuming a unity frequency reuse factor, we compare the 620

lower bounds of the average achievable throughput obtained 621

by the proposed EUDPE-PD- and EUDPE-UD-based analyses 622

to that of the PPP-based analysis [12] in Fig. 13 by varying 623

the path-loss exponent value. The simulated average achiev- 624

able throughputs obtained from the two network simulations 625

with the uniform random BS distribution and the Poisson BS 626

distribution are labeled as Simulated rate 1 and Simulated 627

rate 2, respectively, and they are also given in Fig. 13 as the 628

benchmark. For our proposed EUDPE-PD and EUDPE-UD- 629

based analysis and the network simulations, both the noise- 630

free and noisy results are presented. However, for the 631

PPP-based average achievable throughput analysis, only the 632

noise-free case is provided in [12]; therefore, in Fig. 13, we only 633

present the noise-free PPP-based result. It can be observed that 634

all the three theoretical analysis based results and the simulation 635

data all reveal that the average achievable throughput increases 636

linearly, as the path-loss exponent increases. More specifically, 637

all the analytical and simulated data have accurate linear fitting. 638

It is also shown in Fig. 13 that our proposed EUDPE-PD- 639

and EUDPE-UD-based analyses agree with the two simulated 640

results better than the PPP-based analysis, particularly for the 641

path-loss exponent α ≤ 4.5. The results of Fig. 13 also show 642

that the noise only has a minor effect on the average achievable 643

throughput, which is expected as we consider the interference- 644

limited scenario with a unity frequency reuse factor. 645

VI. CONCLUSION 646

We have proposed a universal approach for accurately 647

analyzing the coverage probability and average achievable 648

throughput of cellular networks. More specifically, we have 649

derived a generic EUDPE procedure for evaluating the other- 650

cell interference. Based on this EUDPE interference model, we 651

have derived the lower bounds of both the coverage probability 652

and average achievable throughput for various practical BS 653

distribution models, including the stochastic Poisson distributed 654

model, uniformly and randomly distributed model, and the 655
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Fig. 13. Comparison of the average achievable throughputs based on three
different models to the network simulation results, given different path-loss
exponent values. (a) EUDPE-PD and PPP models and (b) EUDPE-UD and PPP
models.

deterministic grid-based model. Extensive simulation results656

have validated that the coverage probability and average657

throughput obtained by our proposed universal analysis method658

agree with the simulated coverage probability and average659

throughput at least as closely as those obtained by the popular660

existing PPP-based analysis, if not better. In addition, we have661

also introduced a generic and physical definition of cell edge662

boundary. We have shown that the popular hexagonal and663

Voronoi network topologies only emerge from the grid-based664

network model and the random BS distribution model, respec-665

tively, given an unrealistic high path-loss exponent according666

to this definition. Moreover, we have demonstrated that the cell667

edge boundary shows irregular near-circular shapes, given a668

more realistic path-loss exponent, which cannot be modeled669

accurately by either hexagonal or Voronoi topology.670
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Abstract—This paper proposes a novel tractable approach4
for accurately analyzing both the coverage probability and the5
achievable throughput of cellular networks. Specifically, we de-6
rive a new procedure referred to as the equivalent uniform-7
density plane-entity (EUDPE) method for evaluating the other-cell8
interference. Furthermore, we demonstrate that our EUDPE9
method provides a universal and effective means to carry out the10
lower bound analysis of both the coverage probability and the11
average throughput for various base-station distribution models12
that can be found in practice, including the stochastic Poisson13
point process (PPP) model, a uniformly and randomly distributed14
model, and a deterministic grid-based model. The lower bounds15
of coverage probability and average throughput calculated by our16
proposed method agree with the simulated coverage probability17
and average throughput results and those obtained by the existing18
PPP-based analysis, if not better. Moreover, based on our new19
definition of cell edge boundary, we show that the cellular topology20
with randomly distributed base stations (BSs) only tends toward21
the Voronoi tessellation when the path-loss exponent is suffi-22
ciently high, which reveals the limitation of this popular network23
topology.24

Index Terms—Achievable throughput, cellular coverage, cellu-25
lar networks, deterministic grid-based model, Poisson point pro-26
cess (PPP) model, uniformly and randomly distributed model.27

I. INTRODUCTION28

29 S INCE cellular systems are under growing pressure to in-30

crease the volume of data delivered to consumers, es-31

tablishing an accurate performance prediction model is of32

prime significance [1]. Cellular systems are evolving into a33

large-scale heterogeneous network architecture, constructed by34

overlapping network tiers, such as macrocells, picocells, fem-35

tocells, etc. [2]–[4]. The traditional cellular analysis relying on36

an idealized hexagonal model does not realistically represent37

the actual distribution of cells. Clearly, such a simplistic model38
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cannot be used for accurately modeling real-world cellular 39

networks and for analyzing the coverage probability and the 40

achievable throughput. Two mathematical models, i.e., the cel- 41

lular system interference model and the base station (BS) or cell 42

distribution model, are fundamental in the coverage analysis. 43

A. Related Work and Motivation 44

According to [5], the interference models can generally be di- 45

vided into two types: empirical models and statistical–physical 46

models. The construction of an empirical interference model 47

relies on first measuring the interference and then fitting a 48

mathematical model to the data. By contrast, the derivation of 49

a statistical–physical model usually relies on the mathematical 50

modeling of the interference. The classic Wyner model [6] was 51

proposed in 1994, and since then, it has been widely adopted in 52

the analysis of cellular networks. This model assumes that the 53

interference is constituted by the sum of the signals transmitted 54

from the adjacent cells (typically only considering two neigh- 55

bors), which is often multiplied by a fixed scaling factor or gain 56

to represent the specific intensity of the interferers [6]–[9]. 57

Determining the most beneficial positions of the BSs rep- 58

resents a critical planning problem in cellular networks. 59

Traditional methods usually place the BSs deterministically on 60

a regular grid, despite the fact that, in practice, the positions 61

of BSs are influenced by many random factors. Taking into 62

account the randomness of BS locations, in [10] and [11], a 63

stochastic-geometry-based method for modeling the positions 64

of the BSs was derived, whereas in [12] and [13], it was 65

proposed that the BSs be placed according to a homogeneous 66

Poisson point process (PPP) associated with a given intensity 67

[12], [13]. However, since the cellular network is gradually 68

evolving into a large-scale heterogeneous network associated 69

with multiple-tier random BS locations, the design challenge 70

becomes more grave. A recent contribution [14] has demon- 71

strated that the BS locations may be drawn from a PPP, partic- 72

ularly for single-tier networks. In [5], the statistical–physical 73

modeling of cochannel interference (CCI) was investigated 74

by assuming that the geographic distribution of interferers is 75

known a priori and that the interferers belong to a Poisson 76

field, with each individual interferer having a random session 77

life time. In [15], a mathematical theory based on a spatially 78

homogeneous PPP was provided to analyze the effects of 79

interference, which models the spatial distribution of the nodes 80

over the 2-D infinite plane by PPP theory. 81

The PPP model was used in [12] for establishing a hetero- 82

geneous network model of a single-tier macrocell network. 83

0018-9545 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Based on this PPP model, the calculation of the cumulative84

interference imposed by all surrounding BSs can be carried85

out with the aid of the Laplace transform and the probability86

generating function [12], [14]. Furthermore, the coverage prob-87

ability expression was deduced for the specific scenario, when88

the interference experiences Rayleigh fading, and the results89

of [12] and [14] demonstrated that the analysis based on the90

PPP-aided modeling represent the lower bound of simulation91

results.1 Similarly, the achievable average rate was also calcu-92

lated. Although the PPP model is adopted for the analysis of93

cellular networks, it is only accurate for sparse networks. By94

contrast, it suffers from a lack of realism in the case of dense95

networks since it may place several BSs far too closely together,96

which does not make practical sense as such a situation will not97

occur in a real BS deployment. It may impose excessive CCI if98

too many BSs are deployed too densely. Noting this weakness99

of the PPP model, some balanced measures are suggested to100

alleviate this drawback in [12], but this weakness cannot be fun-101

damentally eliminated by these measures. Moreover, the PPP-102

based analysis relies on the assumption that the transmitters are103

independently distributed [16].104

A range of alternative stochastic-geometry-based methods105

have also been used in the analysis of wireless networks [17],106

[18]. For example, in [17], the Matérn hard-core process was107

invoked for modeling the classic carrier sense multiple access108

(CSMA) protocol and for analyzing its throughput, where the109

presence of interferers within a given radius around any trans-110

mitter was prevented. The Matérn point process [19] was modi-111

fied in [18] to model the CSMA with collision avoidance, which112

yields more realistic results by applying the aforementioned113

interference-exclusion zone around all possible transmitters.114

However, coverage analysis based on a Matérn hard-core pro-115

cess is difficult to carry out [20] since the probability generating116

functional of a Matérn hard-core process does not exist. It was117

argued in [20]–[22] that only the Matérn type II process causes118

a level of interference comparable to that predicted by a PPP119

and, therefore, for interference-based performance analysis, the120

Matérn type II process may be safely approximated by the121

corresponding nonhomogeneous PPP [20]–[22].122

B. Our Approach and Contributions123

Against the above background, we propose a novel universal124

approach for tractable and accurate coverage analysis of cellu-125

lar networks. Our contributions are as follows.126

1) Physical Analysis of Hexagonal/Voronoi Cells: To inter-127

pret the various geometric-based cellular models from a physi-128

cal perspective, we provide a tangible generic definition of the129

cell edge boundary for our theoretical analysis, where the cell130

boundary is directly linked to the path-loss exponent. Specif-131

ically, we show that the traditional hexagonal topology natu-132

rally emerges from the grid-based model, given a sufficiently133

high path-loss exponent, whereas the Voronoi tessellation nat-134

urally emerges from the random BS distribution model, again135

1The simulation results are referred to as “experimental” or “actual” in [12],
which is inappropriate.

provided that the path-loss exponent is sufficiently high. How- 136

ever, such a high path-loss exponent is unrealistic in real trans- 137

mission environments. Therefore, our physical analysis reveals 138

the fundamental limitation of these purely graphic-based cellu- 139

lar topologies, namely, lack of the connection to the underlying 140

signal transmission medium. In fact, we demonstrate that the 141

cell edge boundary shows irregular near-circular shapes, given a 142

more realistic path-loss exponent of around 3, which cannot be 143

modeled accurately by either hexagonal or Voronoi tessellation. 144

2) EUDPE-Based Other-Cell Interference Model: We pro- 145

pose a universal model for evaluating the other-cell interfer- 146

ence, which we refer to as the equivalent uniform-density 147

plane-entity (EUDPE) method. This generic EUDPE model can 148

be used to calculate the cumulative other-cell interference for 149

all the existing BS distribution models that can be found in 150

practice, including both stochastic and deterministic cellular 151

network models, such as the stochastic Poisson distributed (PD) 152

and uniformly distributed (UD) BS models and the determinis- 153

tic grid-based BS model. 154

3) Lower Bound Analysis for Coverage Probability and 155

Average Achievable Rate: Based on the proposed generic 156

EUDPE interference model, we perform the low-bound anal- 157

ysis of both the coverage probability and the average achiev- 158

able rate for various BS distribution models, specifically, the 159

stochastic PD and UD BS models and the deterministic grid- 160

based BS model, which may be viewed as a degenerated or spe- 161

cial case of the UD BS model. For realistic path-loss exponents, 162

the coverage probability and average achievable throughput 163

results provided by our proposed analysis approach agree with 164

the simulated coverage probability and achievable throughput. 165

In fact, their match is as good or better than that of the PPP- 166

based analysis. The results also show that the noise only has a 167

modest effect on the coverage probability and achievable rate. 168

The remainder of this paper is organized as follows. In 169

Section II, the downlink cellular system model is briefly in- 170

troduced, which is followed by our new physical analysis of 171

cell edge boundary. Section III is devoted to the derivation of 172

our EUDPE-based interference model. The low-bound analysis 173

of the coverage probability based on the EUDPE method is 174

deduced in Section IV for both stochastic BS distribution 175

models and deterministic grid-based BS models, whereas the 176

corresponding low-bound analysis is presented in Section V. 177

Our conclusions are offered in Section VI. 178

II. DOWNLINK CELLULAR SYSTEM MODEL 179

Throughout our discussions, the index set of the BSs, which 180

are deployed according to some distribution, is denoted by Φ, 181

whereas the serving BS’s index is denoted by b0. Furthermore, 182

the average density of BSs is ρ. Let P be the transmitted power 183

of a BS, R be the serving BS’s coverage radius, Rnw be the 184

distance from the serving BS to the edge of the network, and 185

ri denotes the distance from the ith BS to the user equipment 186

(UE) concerned. If we denote the average coverage area of a 187

BS by E[As] with E[ ] representing the expectation operator, 188

then E[As] = 1/ρ. We will also use 2R to denote the average 189

distance between two neighboring BSs, and we have R ∝ 190√
E[As]. 191
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A. SINR Model192

The wireless channel linking the ith BS and the UE con-193

cerned is modeled by a complex-valued channel tap that takes194

into account the path loss with a path-loss exponent of α, the195

fast Rayleigh fading coefficient with an instantaneous power196

or a squared magnitude of hi, and the channel’s additive white197

Gaussian noise (AWGN) with noise power of σ2. The average198

of the random variable hi is denoted by h̄; therefore, hi follows199

the exponential distribution with the mean h̄.200

Let us assume that the intracell UE-to-UE interference is neg-201

ligible. Then, the signal-to-interference-plus-noise ratio (SINR)202

experienced at this UE can be expressed as follows:203

SINR =
Ph0r

−α
0

Ir + σ2
(1)

where the interference arriving from all the interfering cells is204

given by205

Ir =
∑

i∈Φ\b0

Phir
−α
i . (2)

If the target SINR value is T , then the actual SINR must obey206

SINR > T , which requires207

h0 > P−1Trα0
(
σ2 + Ir

)
. (3)

Thus, the probability distribution of h0 should be taken into208

account in the analysis of both the coverage probability and the209

average rate. Furthermore, intuitively, the given SINR model210

determines the coverage area of each BS; therefore, it influences211

the cell shape or boundary.212

B. Physical Analysis of Cell Edge Boundary213

As aforementioned, the grid-based cellular model is conve-214

nient but is too idealistic. By contrast, the Voronoi tessellation is215

considered to match the random BS deployment in relative flat216

urban areas reasonably well [12], [23]. Hence, cellular networks217

can be analyzed using Voronoi diagram theory, albeit this has218

not been explained with the aid of a physically tangible per-219

spective. More specifically, both the energy efficiency and cov-220

erage of cellular networks may be analyzed based on Voronoi221

tessellation [24], [25]. Fig. 1 shows a random distribution of222

the BSs with the cell boundaries corresponding to a Voronoi223

tessellation. Note that in both the grid-based and Voronoi-based224

cellular topologies, the cell boundaries are determined purely225

by the geometric property of the BS distribution, and they are226

completely independent of the actual physical interference that227

the network is experiencing.228

To interpret the cell edge boundary from a physical percep-229

tively, namely, linking it better to the underlying physics of230

signal transmission medium, let us now introduce the following231

definition that formally defines the cell edge boundary.232

Definition 1: The cell edge boundary is constituted by the233

group of points where the strength of the desired signal received234

from the serving BS equals to the interfering signal’s strength.235

In other words, at the cell edge boundary, the desired signal-236

to-interference ratio (SIR) is equal to 1. This definition of cell237

Fig. 1. Random distribution of the BSs marked by +, with the cell boundaries
corresponding to a Voronoi tessellation.

edge boundary is both intuitive and practical since, within the 238

coverage area of a BS, the desired signal should be stronger than 239

the interfering signal, yielding SIR > 1. Let us denote the ith 240

BS location as the point zi, where i ∈ Φ. Furthermore, denote 241

the distance from zi to a point z as |z − zi|. The desired signal 242

power at the point z provided by the ith BS is given by 243

S(z) = E
[
Phi|z − zi|−α

]
= Ph̄|z − zi|−α (4)

while the interfering signal’s power at z is given by 244

I(z) =E [Ir(z)] = E

⎡⎣ ∑
j∈Φ\i

Phj |z − zj |−α

⎤⎦
=Ph̄

∑
j∈Φ\i

|z − zj |−α. (5)

Thus, with respect to the ith BS, the SIR at the point z is 245

given by 246

SIR(z) =
|z − zi|−α∑

j∈Φ\i |z − zj |−α
. (6)

Therefore, at the ith cell’s edge boundary, we have SIR(z) = 1. 247

In Figs. 2 and 3, the distribution of the BSs is based on the 248

same regular grid network model, and the number of BSs is 33. 249

As shown in Fig. 2, the shape of each cell in the network is 250

approximately a regular circle given the path-loss exponent of 251

α = 3. By contrast, observe in Fig. 3 that the cell shape changes 252

into a hexagonal one when the path-loss exponent is increased 253

to α = 10. 254

In Figs. 4 and 5, the locations of the 33 BSs are randomly 255

drawn from the uniform distribution across the entire network 256

area. The cells now approximately have irregularly circular 257

shapes when the path-loss exponent is α = 3, but interestingly, 258

it is the Voronoi tessellation that naturally emerges when the 259

path-loss exponent is increased to α = 10. 260
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Fig. 2. Cell edge boundaries of the grid network model with the 33 BS loca-
tions marked by dots, as determined by SIR(z) = 1. The path-loss exponent is
α = 3.

Fig. 3. Cell edge boundaries of the grid network model with the 33 BS loca-
tions marked by dots, as determined by SIR(z) = 1. The path-loss exponent is
α = 10.

The given results demonstrate that our Definition 1 of cell261

edge boundary is a physically plausible one for analyzing the262

network, and both the hexagonal topology and the Voronoi263

tessellation naturally emerge according to this definition, de-264

pending on whether the geographic distribution of BSs is deter-265

ministic or random and providing that the path-loss exponent266

is sufficiently high. Note that such a high path-loss exponent267

is unrealistic in real transmission environments. Therefore,268

our analysis of cell edge boundary reveals a weakness of the269

popular hexagonal and Voronoi network topologies, namely,270

they do not reflect the underlying signal transmission medium.271

Significantly, given a more realistic path-loss exponent of ap-272

proximately three, the cell edge boundary exhibits irregular273

Fig. 4. Cell edge boundaries of the randomly distributed network model with
the 33 BS locations marked by dots, as determined by SIR(z) = 1. The path-
loss exponent is α = 3.

Fig. 5. Cell edge boundaries of the randomly distributed network model with
the 33 BS locations marked by dots, as determined by SIR(z) = 1. The path-
loss exponent is α = 10.

near-circular cell shapes, for which neither hexagonal topology 274

nor Voronoi tessellation can be used to accurately model. 275

Furthermore, the “weak” coverage areas that are left outside 276

any cell boundary, where the desired signal is weaker than the 277

interfering signals, as shown in Fig. 4, highlight the benefits of 278

employing collaborative relaying techniques. 279

III. EQUIVALENT UNIFORM DENSITY PLANE-ENTITY FOR 280

CUMULATIVE INTERFERENCE CALCULATION 281

To accurately analyze the coverage probability and the 282

achievable rate, it is necessary to find an efficient means for 283
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Fig. 6. Proposed EUDPE method for calculating the other-cell interference.

cumulative interference calculation. By considering the dis-284

tribution of the interference imposed by the BSs in the law285

of large numbers and combining it with the fluid model of286

[26], we propose the EUDPE method for calculating the cu-287

mulative interference. The basic idea of this EDUPE method288

is as follows. Although the actual geographic distribution of289

BSs always shows a certain degree of irregularity, we may290

define a group of equivalent and uniformly distributed BSs for291

approximating the other-cell CCI. Since, in real-world cellular292

networks, the actual geographic distribution of BSs is often293

close to a uniform random distribution, such an approximation294

is sufficiently accurate. It is worth emphasizing however that295

we do not assume a uniform and random BS distribution for296

the actual network to be modeled. More specifically, given297

a network having the average BS density of ρ, we approx-298

imate this network with an equivalent network whose BSs299

are uniformly distributed and whose BS density is also ρ.300

Such a network is termed the equivalent EUDPE of the given301

network. With the aid of our EUDPE method, we can calcu-302

late or approximate the cumulative interference for any given303

network.304

Fig. 6 illustrates the concept of the EUDPE, where the305

serving BS is assumed the origin of the polar coordinate plane.306

Since the coverage radius of a BS is R, the distance between307

two neighboring BSs is 2R, where R ∝ (1/
√
ρ). For notational308

simplification, we drop the subscript 0 from r0 and denote the309

distance from the serving BS to the UE as r, where 0 ≤ r ≤ R.310

Thus, the distance from the nearest interfering BS to the UE311

is (2R− r). As shown in Fig. 6, the network’s coverage area312

is partitioned by the Nr rings, and the distance from the UE313

to the lth ring is given by (2R− r + εl−1), where 1 ≤ l ≤314

Nr with ε0 = 0 and (2R− r + εNr
) = Rnw − r. The number315

of BSs within the area between the lth and (l + 1)th rings316

is approximately
∫ 2π

0

∫ 2R−r+εl
2R−r+εl−1

ρ z dz dθ when assuming the317

equivalent EUDPE having the BS density of ρ. Furthermore,318

each of these equivalent BSs has the same instantaneous319

fast fading channel power of h̃l, and the mean of h̃l is h̄.320

Thus, the cumulative interference Ir can be approximated 321

according to 322

Ir =

Nr∑
l=1

2π∫
0

2R−r+εl∫
2R−r+εl−1

Ph̃lz
−αρ z dz dθ

=

Nr∑
l=1

2πρP h̃l

α− 2

(
(2R− r + εl−1)

2−α−(2R− r + εl)
2−α

)
.

(7)

Theorem 1: The average of Ir is given by 323

E[Ir] =
2πρP h̄

α− 2

(
(2R− r)2−α − (Rnw − r)2−α

)
. (8)

Proof: According to the Campbell-Mecke theorem [27], 324

we have 325

E

[
Nr∑
l=1

2πρP h̃l

α− 2

(
(2R− r + εl−1)

2−α−(2R− r + εl)
2−α

)]

=

Nr∑
l=1

2πρPE[h̃l]

α− 2

(
(2R−r + εl−1)

2−α−(2R−r + εl)
2−α

)
=

2πρP h̄

α− 2

(
(2R− r)2−α − (Rnw − r)2−α

)
. (9)

� 326

Typically, the path-loss exponent is α > 2 in realistic net- 327

works. Noting that (Rnw − r)2−α → 0 as Rnw → +∞, we 328

have the following corollary. 329

Corollary 1: Given that the network’s boundary is suffi- 330

ciently far away, namely, Rnw → +∞, we have 331

E[Ir] =
2πρP h̄

α− 2
(2R− r)2−α. (10)

IV. COVERAGE PROBABILITY ANALYSIS USING 332

EQUIVALENT UNIFORM DENSITY PLANE-ENTITY 333

As mentioned earlier, the cellular system interference model 334

and the BS geographic distribution model are required in cov- 335

erage analysis. Our proposed EUDPE is a universal method 336

for evaluating the other-cell interference for all existing BS 337

distribution models, such as the stochastic PD and UD BS 338

models and the deterministic grid-based model. 339

A. Coverage Probability Analysis Using EUDPE-PD 340

Since a popular geographic BS distribution is the Poisson 341

distribution [12]–[15], we first consider the PD BS model. The 342

probability density function (pdf) of the Poisson distribution 343

can be derived using the method of [28]. Let λ be the intensity 344

of the Poisson distribution that models the BS geographic 345

distribution and R be the average coverage radius of a cell. 346

Then, the probability of having no BS that is closer than x is 347

given by 348

P{r > x} = P{No BS closer than x} = e−λπx2

. (11)
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The corresponding cumulative distribution function (cdf) is349

then given by350

P{r ≤ x} = F (x) = 1 − e−λπx2

. (12)

Therefore, the pdf is defined as351

f(r) =
dF (r)

d r
= 2πλ r e−πλr2 . (13)

Given the SINR threshold T , the intensity λ and the path-loss352

exponent α, the coverage probability is defined as353

pc(T, λ, α)=Er [EIr [P{SINR > T}]]

=

∫
r>0

EIr

[
P
{
h0>P−1Trα(σ2+Ir)

}]
2πλre−πλr2 dr

(14)

where Er[•] denotes the expectation with respect to the random354

variable r.355

1) Lower Bound for the Probability of SINR Larger Than356

Threshold: Noting that h0 obeys the exponential distribution357

with the mean h̄, the probability of the SINR larger than the358

threshold T (averaged over the interference) is given by359

EIr

[
P
{
h0 > P−1Trα(σ2 + Ir)

}]
= e−h̄P−1Trασ2

EIr

[
e−h̄P−1TrαIr

]
. (15)

Theorem 2: A lower bound for the probability of the SINR360

greater than the threshold T is expressed as361

EIr

[
P
{
h0 > P−1Trα(σ2 + Ir)

}]
≥ e−h̄Trαη(α,r) (16)

where362

η (α, r) = P−1σ2 +
2πρh̄
α− 2

(
(2R− r)2−α− (Rnw − r)2−α

)
.

(17)

Proof: According to Jensen’s inequality [29], we have363

EIr

[
e−h̄P−1TrαIr

]
≥ e−h̄P−1TrαE[Ir]. (18)

Substituting (18) into (15) and noting E[Ir] of (8) leads to (16)364

with η(α, r) given in (17). �365

Corollary 2: Given that the network boundary is sufficiently366

far away, namely, Rnw → +∞367

EIr

[
P
{
h0 > P−1Trα(σ2 + Ir)

}]
≥ e−h̄Trαξ(α,r) (19)

where368

ξ(α, r) = P−1σ2 +
2πρh̄
α− 2

(2R− r)2−α. (20)

2) Lower Bound for the Coverage Probability: A lower369

bound for the coverage probability pc(T, λ, α) is given by the370

following theorem.371

Theorem 3: For the network where the BS geographic 372

distribution obeys the Poisson distribution of intensity λ, 373

a lower bound for the coverage probability pc(T, λ, α) is 374

given by 375

pcl(T, λ, α) = πλ

R2∫
0

e−h̄Tvα/2ψ(α,v)−πλv dv (21)

where R is the coverage radius of the serving BS, and 376

ψ(α, v) = P−1σ2 +
2πρh̄
α− 2

(
(2R− v1/2)2−α

− (Rnw − v1/2)2−α
)
. (22)

Proof: From (14) and Theorem 2, as well as noting that 377

r ≤ R, we have 378

pcl(T, λ, α) =

R∫
0

2πλre−h̄Trαη(α,r)−πλr2 dr. (23)

By defining r2 = v, (23) is transformed into (21) with ψ(α, v) 379

given in (22). � 380

Corollary 3: Given that the network boundary is sufficiently 381

far away, namely, Rnw → +∞, a lower bound for the coverage 382

probability pc(T, λ, α) is expressed as 383

pcl(T, λ, α) = πλ

R2∫
0

e−h̄Tvα/2χ(α,v)−πλv dv (24)

where 384

χ(α, v) = P−1σ2 +
2πρh̄
α− 2

(2R− v1/2)2−α. (25)

Remark 1: In the coverage analysis for the EUDPE-PD 385

model, the average coverage radius R is related to the average 386

cell area E[As]. Noting R ∝
√

E[As] and E[As] = 1/ρ, we 387

may use 388

R =
cf√
ρ

(26)

where cf is an empirically chosen factor. For example, if the 389

average cell is defined by a square shape, we have E[As] = 390

4R2; therefore, we have cf = 1/2 = 0.5. On the other hand, 391

if the average coverage area is calculated according to a hexag- 392

onal one, we have E[As] = 2
√

3R2, yielding cf = 1/
√

2
√

3 ≈ 393

0.54, whereas for the average circle-shape cell, we have cf = 394

1/
√
π ≈ 0.56. 395

B. Coverage Probability Analysis Using EUDPE-UD 396

For many practical cellular networks, the geographic BS 397

distribution is often close to a uniform random distribution. 398

Therefore, we next consider the UD BS model with the average 399
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density of BSs given by ρ. In this case, the corresponding cdf is400

given by401

P{z ≤ x} = F (x) =
x2

c2nm
ρ, 0 ≤ x ≤ R (27)

where c2nm is a normalization factor, and R is the coverage402

radius of the serving BS. Thus, the pdf is given as403

f(r) =
2ρ
c2nm

r, 0 ≤ r ≤ R. (28)

The normalization factor c2nm is determined as follows. Assume404

that E[As] = R2/c2f , where cf is defined in (26), and fur-405

ther note that E[As] = 1/ρ. From
∫ R

0 f(r) dr = 1, we obtain406

c2nm = c2f .407

The coverage probability is therefore defined as408

pc(T, ρ, α) =Er [EIr [P{SINR > T}]]

=
ρ

c2f

R∫
0

EIr

[
P
{
h0 > P−1Trα(σ2 + Ir)

}]
2r dr.

(29)

A lower bound of EIr [P{h0 > P−1Trα(σ2 + Ir)}] is given in409

Theorem 2. Similar to the case of the EUDPE-PD expressed in410

Theorem 3, therefore, a lower bound for the coverage probabil-411

ity pc(T, ρ, α) is given by the following theorem.412

Theorem 4: For the network where the BS geographic distri-413

bution obeys the uniform random distribution with an average414

BS density of ρ, a lower bound for the coverage probability415

pc(T, ρ, α) is given by416

pcl(T, ρ, α) =
ρ

c2f

R2∫
0

e−h̄Tvα/2ψ(α,v) dv (30)

where ψ(α, v) is defined in (22).417

Corollary 4: Given that the network boundary is sufficiently418

far away, a lower bound for the coverage probability pc(T, ρ, α)419

is expressed by420

pcl(T, ρ, α) =
ρ

c2f

R2∫
0

e−h̄Tvα/2χ(α,v) dv (31)

where χ(α, v) is defined in (25).421

Remark 2: How to set the average coverage radius R is422

explained in Remark 1. Specifically, we may use R = cf/
√
ρ,423

where cf is an empirically chosen factor.424

C. Coverage Probability Analysis Using EUDPE-Grid425

With the aid of the EUDPE method, it is straightforward to426

carry out the coverage probability analysis for all the traditional427

deterministic grid-based cellular network models, such as the428

squared and hexagonal ones. This is because the coverage429

probability analysis using the EUDPE-Grid model is simply a430

degenerated or special case of the EUDPE-UD-based analysis,431

where the density of BSs ρ is identical everywhere in the net- 432

work, and every cell has the identical shape with the same area 433

As. Therefore, the lower bounds of the coverage probability for 434

the finite-size and infinite-size grid-based network models are 435

given in Theorem 4 and Corollary 4, respectively. Moreover, 436

choosing R = 1/(2
√
ρ) corresponds to the grid-based network 437

with squared cells, whereas using R = 1/(
√

2
√

3
√
ρ) is related 438

to considering the grid-based network with hexagonal cells. In 439

general, we may use R = cf/
√
ρ for any deterministic grid- 440

based network by choosing an appropriate value for cf . It be- 441

comes obvious that, under the equivalent network environment 442

of the same ρ and R values, the coverage probability obtained 443

by the EUDPE-Grid-based analysis is identical to that obtained 444

by the EUDPE-UD-based analysis. 445

D. Numerical Results for Coverage Probability 446

We evaluated the coverage probability first by simulation and 447

used the simulated results as the benchmark for the comparison 448

with our theoretical analytic results. We considered two sce- 449

narios. The first case is a single-tier network constructed by 450

macrocells, obeying the uniform random BS distribution and 451

the cellular channel model described in Section II, whereas 452

the second network followed a Poisson BS distribution and 453

obeyed the same cellular channel model of Section II. Given 454

the SINR threshold T , the path-loss exponent α, and the SINR 455

value, the simulated coverage probability was calculated using 456

the pseudocodes presented in Algorithm 1. In the simulation, 457

we set the number of BSs to NBS = 80, the number of UEs to 458

NUE = 10 000, the network coverage area to Network Area = 459

1000 × 1000 m2, and the number of sample simulations to 460

Nmax = 100. The average density of BSs was then given as 461

ρ =
NBS

Network Area
[BSs/m2]. (32)

For the Poisson distribution, its intensity was λ = ρ. We com- 462

pared our low-bound coverage probability results based on the 463

EUDPE-PD and EUDPE-UD models with that of the PPP- 464

based analysis [12]. Since the PPP method can only consider 465

the case of an infinitely large network, we assumed the network 466

boundary Rnw → +∞. In the following comparison, the simu- 467

lation results obtained by the network with the uniform random 468

BS distribution are labeled as Simulated data 1, whereas the 469

simulation results yielded by the network with the Poisson BS 470

distribution are denoted Simulated data 2. 471

Algorithm 1 Network Simulation to Evaluate the Coverage
Probability.

1: Give the number of BSs NBS, the Network Area, and the 472

number of UEs NUE; 473

2: Give the maximum number of sample simulations Nmax; 474

3: Set Average Coverage Probability = 0; 475

4: for Nsm = 1 to Nmax do 476

5: Uniformly and randomly draw the NBS BSs over Net- 477

work Area, or draw the NBS BSs over Network Area by 478

the Poisson distribution; 479
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Fig. 7. Comparison of the coverage probabilities based on three different
models to the network simulation results, given the path-loss exponent of
α = 2.5 and no noise, i.e., the AWGN power σ2 = 0 and SINR = SIR.

6: Uniformly and randomly draw the NUE UEs over Net-480

work Area;481

7: Initialization: count = 0;482

8: for j = 1 to NUE, do483

9: if SINRj ≥ T then484

10: count = count + 1;485

11: end if486

12: end for487

13: Coverage Probability = count/NUE;488

14: Average Coverage Probability+ =489

Coverage Probability;490

15: end for491

16: Average Coverage Probability / = Nmax.492

Given the path-loss exponent of α = 2.5 and assuming no493

AWGN or σ2 = 0, which implies SINR = SIR, Fig. 7 shows494

the coverage probabilities calculated based on the three analytic495

models, in comparison to the coverage probabilities obtained by496

the two different network simulations, when varying the SINR497

threshold. It is shown in Fig. 7 that the coverage probability498

analysis results of our proposed EUDPE-PD and EUDPE-UD499

models agree with both simulation results well, better than the500

PPP-based analysis. When the path-loss exponent is increased501

to α = 3 and 4, the results obtained are shown in Figs. 8502

and 9, respectively, where it can be seen that the EUDPE-503

UD analysis agrees with the simulation result based on the504

network with the uniform random BS distribution better than505

the other two models, whereas the PPP-based analysis agrees506

better with the simulation result of the network with the Poisson507

BS distribution better than the other two models.508

It is worth emphasizing that because there exist no real509

network performance data to validate an analysis model, we510

can only rely on the simulated data. When we have an analysis511

model agrees with a particular simulation result better than an-512

other analysis model, it does not imply that the former is better513

than the latter. The particular simulation result may not actually514

represent the true real network performance and, moreover, the515

simulation conditions may not actually match those imposed516

on an analysis model. What we can claim however is that, if517

Fig. 8. Comparison of the coverage probabilities based on three different
models to the network simulation results, given the path-loss exponent of α = 3
and no noise, i.e., the AWGN power σ2 = 0 and SINR = SIR.

Fig. 9. Comparison of the coverage probabilities based on three different
models to the network simulation results, given the path-loss exponent of α = 4
and no noise, i.e., the AWGN power σ2 = 0 and SINR = SIR.

an analysis model agrees well with simulation data, it is a rea- 518

sonable tool for network analysis and planning. Similarly, if a 519

lower bound coverage probability derived by an analysis model 520

appears to be larger than a simulated coverage probability, it 521

does not imply that this analysis model is wrong. Again, the 522

simulation conditions may not actually match those imposed 523

on the analysis model. For example, we assumed that the 524

network boundary Rnw → +∞ for the proposed EUDPE-PD 525

and EUDPE-UD models and the PPP-based analysis for the fair 526

comparison of the three analysis models since the PPP method 527

can only be applied for the case of an infinitely large network. 528

However, the simulated network size was 1000 × 1000 m2 and 529

not infinitely large. As shown earlier, another advantage of 530

our analysis approach over the PPP-based method is that our 531

method can be applied to analyze finite-size networks. 532

In our EUDPE-based analysis, the empirical chosen factor 533

cf is related to the average cell shape and size. The theoretical 534

explanations of this area factor cf are given in Remark 1. 535

Observe from Fig. 7 that, for the path-loss exponent α = 2.5, an 536

appropriate value of this area factor for our EUDPE-UD model 537

is cf = 0.58, which is, in fact, close to the case of the average 538
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Fig. 10. Comparison of the coverage probabilities based on three different
models to the network simulation results, given the path-loss exponent of α =
2.5 and the AWGN power σ2 = 0.1.

Fig. 11. Comparison of the coverage probabilities based on three different
models to the network simulation results, given the path-loss exponent of α = 3
and the AWGN power σ2 = 0.1.

circle-shaped cell. However, as shown in Figs. 8 and 9, as α539

increases, the appropriate area factor cf value also increases. A540

plausible explanation for this phenomenon is offered as follows.541

As the path-loss exponent α increases, the effective coverage542

area R2/c2f of the serving BS is reduced, and this corresponds543

to an increase in the area factor cf .544

Next, the effect of noise imposed on the achievable coverage545

probability was investigated by setting the AWGN power to546

σ2 = 0.1 or 10 log10(1/σ
2) = 10 dB, and the results obtained547

are given in Figs. 10–12, respectively, for the three differ-548

ent values of α. For graphic clarity, we only draw a single549

EUDPE-PD-based coverage probability associated with an ap-550

propriate area factor cf value in each of these three figures.551

Again, the same observations as those drawn for Figs. 7–9 can552

be made, namely, for the case of α = 2.5, the EUDPE-UD-553

based analysis agrees with the both simulation results better554

than the PPP-based analysis, whereas for higher α values, the555

EUDPE-UD analysis matches better with the simulated results556

based on the uniform random BS distribution, and the PPP-557

based analysis agrees better with the simulated results based558

Fig. 12. Comparison of the coverage probabilities based on three different
models to the network simulation results, given the path-loss exponent of α = 4
and the AWGN power σ2 = 0.1.

on the Poisson BS distribution. Upon comparing Figs. 10–12 559

with Figs. 7–9, it can be seen that the effect of the channel 560

AWGN to the achievable coverage probability is minor. For 561

example, observe that the simulated-data-2 curve in Fig. 7 562

almost matches the simulated-data-2 curve in Fig. 10, whereas 563

the PPP-analysis-based curve in Fig. 7 is almost identical to the 564

PPP-analysis-based curve in Fig. 10. Similarly, the other three 565

coverage probability curves in Fig. 10 also closely match the 566

corresponding coverage probability curves in Fig. 7. 567

V. AVERAGE ACHIEVABLE RATE ANALYSIS USING 568

EQUIVALENT UNIFORM DENSITY PLANE-ENTITY 569

Let us now apply the proposed EUDPE method to analyze 570

the average achievable throughput. According to Shannon’s 571

theory, under the idealized simplifying condition of having a 572

Gaussian interference owing to the central limit theorem, the 573

average achievable rate is defined as [12] 574

C � E [ln (1 + SINR)] . (33)

Since we are concerned with the system’s achievable through- 575

put, we will consider the case of the network boundary being 576

sufficiently far away, i.e., Rnw → +∞. 577

A. Average Achievable Rate Analysis Using EUDPE-PD 578

Again, we first consider the case that the geographic BS 579

distribution follows a Poisson distribution, and we have the 580

following result. 581

Theorem 5: For the network where the BS geographic 582

distribution obeys the Poisson distribution of intensity λ, a 583

lower bound for the average achievable throughput is given by 584

Cl(λ, α) = πλ

R2∫
0

e−πλv

⎛⎝ ∫
t>0

e−h̄vα/2(et−1)χ(α,v) dt

⎞⎠ dv

(34)

where χ(α, v) is given in (25). 585
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Proof: According to [12], we have586

C(λ, α) =

R∫
0

2πλre−πλr2

×
∫

t>0

EIr

[
P
{
h0 > P−1rα(et − 1)(σ2 + Ir)

}]
dt dr. (35)

Similar to Corollary 2, we have587

EIr

[
P
{
h0 > P−1rα(et − 1)(σ2 + Ir)

}]
≥ e−h̄rα(et−1)ξ(α,r) (36)

where ξ(α, r) is defined in (20). Thus, a lower bound of C(λ, α)588

is given by589

Cl(λ, α) =

R∫
0

2πλre−πλr2

⎛⎝ ∫
t>0

e−h̄rα(et−1)ξ(α,r) dt

⎞⎠ dr.

(37)

By defining v = r2 in (37), we obtain (34). �590

Corollary 5: In the noise-free case, namely, σ2 = 0, a lower591

bound for the average achievable throughput is592

Cl(λ, α) = πλ

R2∫
0

e−πλv

⎛⎝ ∫
t>0

e−h̄vα/2(et−1)χ̄(α,v) dt

⎞⎠ dv

(38)
where593

χ̄(α, v) =
2πρh̄
α− 2

(2R− v1/2)2−α. (39)

B. Average Achievable Rate Analysis Using EUDPE-UD594

Next, we consider the case that the geographic BS distribu-595

tion follows a uniform random distribution, and we have the596

following result.597

Theorem 6: For the network where the BS geographic dis-598

tribution obeys the uniform random distribution with an average599

BS density of ρ, a lower bound for the average achievable600

throughput is given by601

Cl(ρ, α) =
ρ

c2f

R2∫
0

⎛⎝ ∫
t>0

e−h̄vα/2(et−1)χ(α,v)dt

⎞⎠ dv (40)

where χ(α, v) is given in (25).602

Proof: Noting that the average achievable throughput is603

defined as604

C(λ, α) =
ρ

c2f

R∫
0

2r

×
∫

t>0

EIr

[
P
{
h0 > P−1rα(et − 1)(σ2 + Ir)

}]
dt dr (41)

the proofs are similar to the proofs for Theorem 5. �605

Corollary 6: In the noise-free case, namely, σ2 = 0, a lower 606

bound for the average achievable throughput is 607

Cl(ρ, α) =
ρ

c2f

R2∫
0

⎛⎝ ∫
t>0

e−h̄vα/2(et−1)χ̄(α,v) dt

⎞⎠ dv. (42)

where χ̄(α, v) is given in (39). 608

Remark 3: It is straightforward to carry out the average 609

achievable throughput analysis for any deterministic grid-based 610

cellular network model, because the EUDPE-Grid model is a 611

special case of the EUDPE-UD model. Therefore, the lower 612

bound of the average achievable throughput for the grid-based 613

network model is also given in Theorem 6. Moreover, under the 614

equivalent network environment of the same ρ and R values, 615

the lower bound of the average achievable throughput obtained 616

by the EUDPE-Grid-based analysis is identical to that obtained 617

by the EUDPE-UD-based analysis. 618

C. Numerical Results for Average Achievable Rate 619

Assuming a unity frequency reuse factor, we compare the 620

lower bounds of the average achievable throughput obtained 621

by the proposed EUDPE-PD- and EUDPE-UD-based analyses 622

to that of the PPP-based analysis [12] in Fig. 13 by varying 623

the path-loss exponent value. The simulated average achiev- 624

able throughputs obtained from the two network simulations 625

with the uniform random BS distribution and the Poisson BS 626

distribution are labeled as Simulated rate 1 and Simulated 627

rate 2, respectively, and they are also given in Fig. 13 as the 628

benchmark. For our proposed EUDPE-PD and EUDPE-UD- 629

based analysis and the network simulations, both the noise- 630

free and noisy results are presented. However, for the 631

PPP-based average achievable throughput analysis, only the 632

noise-free case is provided in [12]; therefore, in Fig. 13, we only 633

present the noise-free PPP-based result. It can be observed that 634

all the three theoretical analysis based results and the simulation 635

data all reveal that the average achievable throughput increases 636

linearly, as the path-loss exponent increases. More specifically, 637

all the analytical and simulated data have accurate linear fitting. 638

It is also shown in Fig. 13 that our proposed EUDPE-PD- 639

and EUDPE-UD-based analyses agree with the two simulated 640

results better than the PPP-based analysis, particularly for the 641

path-loss exponent α ≤ 4.5. The results of Fig. 13 also show 642

that the noise only has a minor effect on the average achievable 643

throughput, which is expected as we consider the interference- 644

limited scenario with a unity frequency reuse factor. 645

VI. CONCLUSION 646

We have proposed a universal approach for accurately 647

analyzing the coverage probability and average achievable 648

throughput of cellular networks. More specifically, we have 649

derived a generic EUDPE procedure for evaluating the other- 650

cell interference. Based on this EUDPE interference model, we 651

have derived the lower bounds of both the coverage probability 652

and average achievable throughput for various practical BS 653

distribution models, including the stochastic Poisson distributed 654

model, uniformly and randomly distributed model, and the 655
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Fig. 13. Comparison of the average achievable throughputs based on three
different models to the network simulation results, given different path-loss
exponent values. (a) EUDPE-PD and PPP models and (b) EUDPE-UD and PPP
models.

deterministic grid-based model. Extensive simulation results656

have validated that the coverage probability and average657

throughput obtained by our proposed universal analysis method658

agree with the simulated coverage probability and average659

throughput at least as closely as those obtained by the popular660

existing PPP-based analysis, if not better. In addition, we have661

also introduced a generic and physical definition of cell edge662

boundary. We have shown that the popular hexagonal and663

Voronoi network topologies only emerge from the grid-based664

network model and the random BS distribution model, respec-665

tively, given an unrealistic high path-loss exponent according666

to this definition. Moreover, we have demonstrated that the cell667

edge boundary shows irregular near-circular shapes, given a668

more realistic path-loss exponent, which cannot be modeled669

accurately by either hexagonal or Voronoi topology.670
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