
1

Joint Channel Selection and Power Control in

Infrastructureless Wireless Networks: A

Multi-Player Multi-Armed Bandit Framework

Setareh Maghsudi and Sławomir Stańczak, Senior Member, IEEE

Abstract

This paper deals with the problem of efficient resource allocation in dynamic infrastructureless

wireless networks. Assuming a reactive interference-limited scenario, each transmitter is allowed to select

one frequency channel (from a common pool) together with a power level at each transmission trial;

hence, for all transmitters, not only the fading gain, but also the number of interfering transmissions and

their transmit powers are varying over time. Due to the absence of a central controller and time-varying

network characteristics, it is highly inefficient for transmitters to acquire global channel and network

knowledge. Therefore a reasonable assumption is that transmitters have no knowledge of fading gains,

interference, and network topology. Each transmitting node selfishly aims at maximizing its average

reward (or minimizing its average cost), which is a function of the action of that specific transmitter as

well as those of all other transmitters. This scenario is modeled as a multi-player multi-armed adversarial

bandit game, in which multiple players receive an a priori unknown reward with an arbitrarily time-

varying distribution by sequentially pulling an arm, selected from a known and finite set of arms. Since

players do not know the arm with the highest average reward in advance, they attempt to minimize their

so-called regret, determined by the set of players’ actions, while attempting to achieve equilibrium in

some sense. To this end, we design in this paper two joint power level and channel selection strategies.

We prove that the gap between the average reward achieved by our approaches and that based on the

best fixed strategy converges to zero asymptotically. Moreover, the empirical joint frequencies of the

game converge to the set of correlated equilibria. We also characterize this set for two special cases
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of our designed game. We further discuss experimental regret-testing procedure as another potential

solution, which converges to Nash equilibrium. Finally all approaches are compared through extensive

numerical analysis.

Index Terms

Adversarial bandits, channel selection, equilibrium, infrastructureless wireless network, power con-

trol.

I. INTRODUCTION

A. Bandit Theory and Wireless Communication

Multi-armed bandit (MAB) is a class of sequential optimization problems, to the best of our

knowledge originally introduced in [1]. In the most traditional form of MAB, given a set of arms

(actions), a player pulls an arm at each trial of the game to receive a reward. The rewards of arms

are not known to the player in advance; however, upon pulling an arm, its instantaneous reward

is revealed. In such unknown setting, after playing an arm, the player may lose some reward (or

incur additional cost) due to not playing another arm instead of the currently played arm. This

can be quantified by the difference between the reward that would have been achieved had the

player selected another arm, and the reward of the played arm. This quantity is called regret.

The player decides which arm to pull in a sequence of trials so that its accumulated regret over

the game horizon is minimized. Such problems obviously render the intrinsic trade-off between

exploration (learning) and exploitation (control), i.e. playing the arm which has exhibited the

best performance in the past and playing other arms to guarantee the optimal payoff in future.

An important class of bandit games is adversarial bandits, where the series of rewards generated

by an arm cannot be attributed to any specific distribution function.

In recent years, bandit theory has been used in communication theory. For instance, [2] and

[3] utilize the classical bandit game to model spectrum sharing in cognitive radio networks. In

[4], the authors propose a cooperative spectrum sensing scheme based on bandit theory. Further,

References [5], [6], and [7] use bandit theory to model relay selection, sensor scheduling and

object tracking, respectively. Channel monitoring using bandit model is investigated in [8] and

[9]. Bandit models have been also used to solve the distributed resource allocation problem, as

discussed in the following.
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B. Distributed Resource Allocation in Infrastructureless Wireless Networks

In recent years, game theory and reinforcement learning have been widely used to solve

the distributed resource allocation problem. The vast majority of game-theoretic approaches

are based on either cooperation (e.g. coalition formation), mechanism design (e.g. auction the-

ory), or exchange economy (e.g. supply-demand markets). Although these approaches can be

implemented in a distributed manner, such an implementation in a real network environment

requires that each player at least knows its own utility function a priori. On the other hand, these

approaches are in general inefficient as players have to exchange information for coordination,

which increases signaling and feedback overhead. For example, most models from cooperative

game theory require coordination and/or communication among players to construct coalitions

[10], [11]. In wireless resource allocation using auction games, bids must be submitted to some

central controller that performs necessary computations and makes decisions [12], [13]. Finally,

in supply-demand market models, prices and demands are exchanged among buyers and sellers

[14], [15].

When the utility functions are not known in advance, the resource allocation problem is often

solved by using learning approaches, including bandit models. A large body of literature, such

as [16], [17] and [18], analyze single-agent stochastic learning problems. Another example is

[19]. In this work, network optimization is modeled as a stochastic bandit game, where at each

trial multiple arms are selected by a single player and the reward is some linear combination of

the rewards of selected arms. An application of this formulation might be a downlink user

selection, performed by the base station. In single-agent settings, the agent learns from its

previous experiences, and no information flow is required. However, this type of learning cannot

generally be used in wireless networks, where multiple players act selfishly by responding to

each other and their utilities are influenced by the actions of other players. Moreover, similar to

games with complete information, it is desired that players achieve equilibrium in some sense. As

for multi-agent settings, most studies assume that players are able to observe the actions of each

other. This assumption, despite being realistic for some spectrum sharing problems, is not always

applicable to general resource allocation problems, especially in power control games, where it

is difficult to identify the transmit power level of players. In addition, the assumption that each

player announces its actions (e.g. its transmit power) is not intensive compatible. As a result, a
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great majority of previous works focus on spectrum sharing and/or sensing, as well as channel

monitoring. On the other hand, most of previous studies assume that the rewards achieved by

each action can be attributed to a single density distribution. However this assumption is highly

restrictive especially for dynamic networks.

In [20], multi-agent bandit problem is investigated. This study assumes that in case of interfer-

ence, no reward is paid to interfering users, thereby eliminating interference, which degrades the

overall performance depending on utility functions. In addition, communication among players

is necessary. Finally, no equilibrium analysis is performed. Another example is Reference [21],

where opportunistic spectrum access is formulated as a multi-agent learning game. In this work,

upon availability, each channel pays the same reward to all users so that this scenario is strictly

restrictive as it neglects different channel qualities. Moreover, if a channel is selected by multiple

users, orthogonal spectrum access scheme is used, which is known to be sub-optimal in general.

References [22] and [23] consider graphical games for an interference minimization problem

with partially overlapping channels, where the interference is present only between neighboring

users. These works establish the convergence of proposed learning approaches for the special

case of exact potential games; Nonetheless the analysis does not hold for more general games.

The authors of [24] model the cooperative rate maximization in cognitive radio networks as

bandit game, and propose two approaches, depending on the availability of information. The

stability of the solution is however not investigated. Reference [25] proposes two approaches that

achieve Nash equilibrium in a multi-player cognitive environment. System verification, however,

is only based on numerical approaches. References [26], [27] and [28] propose various selection

schemes to achieve logarithmic regret; however, no equilibrium analysis is performed. All of the

works named above assume that the generated rewards of any given action are independent and

identically distributed.

C. Our Contribution

As discussed in Section I-B, the resource allocation problem using machine learning theory has

been subject to extensive research in recent years. In short, our focus is on a resource allocation

problem in an infrastructureless network. First, we model this problem as an adversarial multi-

player multi-armed bandit game. With the aim of an efficient management of network resources

and the co-channel interference mitigation, we follow an approach suggested in [29] to design
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two joint power control and channel selection (PC-CS, hereafter) strategies, which are adapted

versions of exponential-based weighted average [30] and follow the leader [31] strategies. Both

PC-CS strategies not only result in small (that is, with sublinear growth rate in time) regret

for each individual player, but also guarantee the convergence of empirical frequencies of play

to the set of correlated equilibria. We further characterize this set for two special cases of our

designed game. Moreover, we implement the experimental regret-testing procedure [32], which

is shown to converge to the set of Nash equilibria of the game.

Our work extends the state-of-the-art in this area significantly since it differs from the existing

studies in the following crucial aspects:

• We analyze the multi-agent bandit problem and take into account the selfishness of players.

• We do not assume that the reward generating process of any given action is time-invariant. In

fact, the reward functions are allowed to vary arbitrarily, which enables us to accommodate

the dynamic nature of wireless channels and distributed networks.

• We do not allow any communication among players, thereby minimizing the overhead.

Moreover, players do not observe the actions of each other, so that the developed model can

be applied to a large body of resource allocation problems. An example is a power control

problem with unknown power levels used by other players. We study a two-dimensional

problem, namely joint channel and power level selection problem, by modeling it as a multi-

player multi-armed bandit game. In our model, channel qualities are taken into account so

that channels pay different rewards to different users. In addition, we impose no limitations

on interference pattern.

• Our convergence analysis is valid for a wide range of games. This is in contrast to many

previous works where the game should be necessarily potential for the convergence analysis

to hold.

• We characterize the set of correlated equilibria for two special cases of our formulated game

model.

D. Paper Structure

Section II briefly reviews some concepts and results of bandit theory. In Section III the resource

allocation game is formulated. Section IV presents a PC-CS strategy based on exponential-

based weighted average rule [30]. In Section V, another PC-CS strategy, derived from follow



6

the leader rule [31] is discussed. Section VI is devoted to experimental regret-testing procedure

[32]. Numerical analysis are presented in Section VII. Section VIII concludes the paper.

II. MULTI-PLAYER MULTI-ARMED BANDIT GAMES

A. Notions of Regret

Multi-player multi-armed bandit problem (MP-MAB, hereafter) is a class of sequential de-

cision making problems with limited information. In this game, each player k ∈ {1, ..., K} is

assigned an action set including Nk actions (arms), 1 ≤ Nk ≤ N . Every player selects an action

at successive trials in order to receive an initially unknown reward, which is determined not

only by its own actions, but also by those of other players. The action set, the played action and

the reward achieved by each player are regarded as private information. The reward generating

processes of arms are independent. Let I and I(k) be the joint action space and the action space

of player k, respectively. Accordingly, It = (I
(1)
t , ..., I

(k)
t , ..., I

(K)
t ) denotes the joint action profile

of players at time t, with I(k)t being the action of player k. Moreover, let g(k)t (It) ∈ [0, 1] be the

reward achieved by some player k at time t.1 The instantaneous regret of any player k is defined

as the difference between the reward of the optimal action,2 and that of the played action. Based

on this definition, the cumulative regret of player k is formally defined in the following.

Definition 1. The cumulative regret of player k up to time n is defined as

R(k)
n = max

i=1,...,Nk

n∑
t=1

g
(k)
t (i, I−t,k)−

n∑
t=1

g
(k)
t (I

(k)
t , I−t,k), (1)

where I−t,k is defined to be the joint action profile of all players except for k at time t.

Each player aims at minimizing its accumulated regret, which is an instance of the well-known

exploitation-exploration dilemma: Find a desired balance between exploiting actions that have

exhibited well performance in the past (control) on the one hand, and exploring actions which

might lead to a better performance in the future (learning) on the other hand.

Now, suppose that players use mixed strategies. This means that, at each trial t, player k

selects a probability distribution P
(k)
t = (p

(k)
1,t , ..., p

(k)
i,t , ..., p

(k)
Nk,t

) over arms, and plays arm i with

1Note that all results can be also expressed in terms of loss (d), provided that the loss is related to the gain by d = 1− g, g ∈
[0, 1].

2Optimality is defined in the sense of the highest instantaneous reward.
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probability p(k)i,t . In this case, we resort to expected regret, also called external regret [33], defined

as follows.

Definition 2. The external cumulative regret of player k is defined as

R
(k)
Ext := R

(k)
Ext(n) = max

i=1,...,Nk

n∑
t=1

g
(k)
t (i, I−t,k)−

n∑
t=1

ḡ
(k)
t

(
P

(k)
t , I−t,k

)
= max

i=1,...,Nk

n∑
t=1

N∑
j=1

p
(k)
j,t

(
g
(k)
t (i, I−t,k)− g

(k)
t (j, I−t,k)

)
,

(2)

where ḡ(k)t (·) denotes the expected reward at round t by using mixed strategy P
(k)
t , defined as

ḡ
(k)
t (·) =

∑N
j=1 g

(k)
t (·)p(k)j,t .

By definition, external regret compares the expected reward of the current mixed strategy

with that of the best fixed action in the hindsight, but fails to compare the rewards achieved by

changing actions in a pair-wise manner. In order to compare actions in pairs, internal regret [33]

is introduced that is closely related to the concept of equilibrium in games.

Definition 3. The internal cumulative regret of player k is defined as

R
(k)
Int := R

(k)
Int (n) = max

i,j=1,...,Nk

R
(k)
(i→j),n

= max
i,j=1,...,Nk

n∑
t=1

p
(k)
i,t

(
g
(k)
t

(
j, I−t,k

)
− g(k)t

(
i, I−t,k

))
.

(3)

Notice that on the right-hand side of (3), r(k)(i→j),t = p
(k)
i,t

(
g
(k)
t (j, ·)− g(k)t (i, ·)

)
denotes the

expected regret caused by pulling arm i instead of arm j. By comparing (2) and (3), external

regret can be bounded above by internal regret as [34]

R
(k)
Ext = max

i=1,...,Nk

Nk∑
j=1

R
(k)
(i→j),n ≤ Nk max

i,j=1,...,Nk

R
(k)
(i→j),n = NkR

(k)
Int . (4)

Remark 1. Throughout the paper, vanishing (zero-average) external and internal regret means

that limn→∞
1
n
RExt = 0 and limn→∞

1
n
RInt = 0, respectively. In other words, we have RExt ∈ o(n)

and RInt ∈ o(n). Note that by (4), RInt ∈ o(n) yields RExt ∈ o(n). Throughout the paper, we call

any strategy with RInt ∈ o(n) as ”no-regret strategy”.
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B. Equilibrium

From the view point of each player k, an MP-MAB is seen as a game with two agents: player

k itself, and the set of all other K − 1 players (referred to as the opponent), whose joint action

profile affects the reward achieved by player k. We consider here the most general framework,

where the opponent is non-oblivious, i.e. its series of actions depends on the actions of player

k. It is known that a game against a non-oblivious opponent can be modeled only by adversarial

bandit games [35], while similar to other game-theoretic formulations, the solution is considered

to be equilibrium, most importantly Nash and correlated equilibria.3

In the context of game-theoretic bandits, an important result is the following theorem.

Theorem 1 ( [33]). Consider a K-player bandit game, where each player k is provided with

an action set of cardinality Nk. Denote the internal regret of player k by R(k)
Int , and the set of

correlated equilibria by C. At time n, define the empirical joint distribution of the game as

π̂n(i) =
1

n

n∑
t=1

I{It=i}, i = (i(1), ..., i(K)) ∈
K⊗
k=1

{1, ..., NK} . (5)

Then, if all players k ∈ {1, ..., K} play according to any strategy so that

lim
n→∞

1

n
R

(k)
Int = 0, (6)

the distance infπ∈C
∑

i |π̂n(i)− π(i)| between the empirical joint distribution of plays and the

set of correlated equilibria converges to 0 almost surely.

Theorem 1 simply states that in an MP-MAB game, if all players play according to a strategy

with vanishing internal regret (no-regret), then the empirical joint distribution of plays converges

to the set of correlated equilibria. Note that the strategies used by players are not required to be

identical. Since a rational player is always interested in minimizing its regret, the assumption

that every player plays according to a no-regret strategy is reasonable.

C. From Vanishing External Regret to Vanishing Internal Regret

In [34], an approach is proposed for converting any selection strategy with vanishing external

regret to another version with vanishing internal regret. We describe this approach briefly.

3These definitions are quite standard (see e.g. [36]), and thus we do not restate them here.
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Consider a selection strategy (O-strategy, hereafter) which at each time t assigns probability

distribution Pt to the set of N actions, and selects an action according to this distribution.

Assume that the player starts using O-Strategy with uniform distribution over N actions. At

each time t > 1, the O-strategy has already selected Pt−1 = (p1,t−1, .., pi,t−1, .., pj,t−1, .., pN,t−1).

Now, the O-strategy constructs a meta-strategy (M-strategy, hereafter) with N(N − 1) virtual

strategies based on Pt−1. Each virtual strategy corresponds to a pair of actions (i→ j), (i, j ∈

{1, ..., N} , i 6= j), and constructs a distribution over N actions by assigning the probability mass

of action i to action j. That is, it defines P(i→j)
t−1 = (p1,t−1, .., 0, .., pj,t−1 + pi,t−1, .., pN,t−1), which

has 0 and pj,t−1+pi,t−1 at the place of pi,t−1 and pj,t−1, respectively, and all other elements remain

unchanged. Assume that the M-strategy treats these virtual strategies as actions. That is, at each

time t, it defines a probability vector δt over N(N − 1) virtual actions, where the probability

of action (i→ j), i.e. δ(i→j),t, depends on its past performance.4 Now, at time t, the O-strategy

assigns a distribution Pt to N actions, where Pt =
∑

(i,j):i 6=j P
(i→j)
t δ(i→j),t. The constructed O-

strategy has the characteristic that its internal regret is upper-bounded by the external regret of

the M-strategy over N(N−1) virtual actions according to probability δt. Thus, if the M-strategy

exhibits vanishing external regret, the O-strategy results in vanishing internal regret. In Section

IV and V, we use this property to design no-regret selection strategies.

III. BANDIT-THEORETICAL MODEL OF INFRASTRUCTURELESS WIRELESS NETWORKS

We consider a network consisting of K transmitter-receiver pairs, denoted by (k, k′), where

k, k′ ∈ {1, ..., K}. The transmitter-receiver pair (k, k′) is referred to as user or player k. Each

user k can access Ck mutually orthogonal channels at Lk quantized power levels. This implies

that its strategy set includes Nk = Ck×Lk actions, where at time t each action I(k)t = (c
(k)
t , l

(k)
t )

consists of one channel index (which corresponds to some channel quality), and one power level.

Therefore, the joint action profile of users, It, is to be understood here as the pair (ct, lt), where

ct = (c
(1)
t , ..., c

(K)
t ) and lt = (l

(1)
t , ..., l

(K)
t ). As each channel might be accessible by multiple users,

co-channel interference (collision, interchangeably) is likely to arise. Since users are allowed to

select a new channel and to adapt their power levels at each transmission trial, interference

pattern in general changes over time. In addition, the distribution of fading coefficients might be

4Note that the gains of virtual actions cannot be calculated explicitly. Later we will see that the gain achieved by any virtual
action (i→ j) is calculated based on the gain achieved by playing true actions i and j.
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time-varying so that acquiring channel and/or network information at the level of autonomous

transmitters would be extremely challenging and inefficient. Therefore, we assume that

(A1) transmitters have no channel knowledge or any other side information such as the number

of users or their selected actions.

(A2) In addition, users do not coordinate their actions that can be chosen completely asyn-

chronously by each user.

Note that as users do not observe the actions of each other, it might be in their interest to select

their actions at the beginning of trials, thereby using the remaining time for data transmission.

In this paper, we model the joint channel and power level selection problem as a K-player

adversarial bandit game, where player k decides for one of the Nk actions. We define the expected

utility function (reward) of player k to be5

G
(k)
t (I) = log

(
l(k)|hkk′,t,c(k)|2∑Qk

q=1 l
(q)|hqk′,t,c(k) |2 +N0

)
− α · l(k) , (7)

for some given joint action profile I = (c, l). In (7), Qk < K is the number of players that

interfere with user k in channel c(k). Throughout the paper, |huv,t,c|2 ∈ R+ is used to denote the

average gain of channel c between u → v at time t. N0 is the variance of zero-mean additive

white Gaussian noise, and α ≥ 0 is the constant power price factor. The last term in (7) is used

to penalize the use of excessive power. According to Section II, let g(k)t (It) ∈ [0, 1] denote the

achieved reward of player k at time t, as a function of joint action profile It. We consider a

game with noisy rewards where g(k)t (I) = G
(k)
t (I) + εt, with ε being some zero-mean random

variable with bounded variance, which is independent and identically distributed over time. As it

is well-known, in a non-cooperative game, the primary goal of each selfish player is to maximize

its own accumulated reward. Formally, this can be written as

maximize
(c

(k)
t ,l

(k)
t )

n∑
t=1

g
(k)
t (ct, lt), (8)

where c(k)t ∈ {1, ..., Ck} and l
(k)
t ∈ {1, ..., Lk}. By Assumptions (A1) and (A2), however, it is

clear that the objective function in (8) is not available. For this reason, we argue for a less

ambitious goal, which is known as regret minimization. More precisely, each player k attempts

5Throughout the paper, logarithms are based 2 unless otherwise is stated.
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to achieve vanishing external regret in the sense that

lim
n→∞

1

n
R

(k)
Ext

= lim
n→∞

1

n

(
max

i=1,...,Nk

n∑
t=1

g
(k)
t (i, I−t,k)−

n∑
t=1

ḡ
(k)
t (P

(k)
t , I−t,k)

)
= 0.

(9)

In addition to the individual strategy of each user aiming at satisfying (9), all players should

achieve some steady state, i.e. equilibrium. Therefore, in the remainder of this paper, we develop

algorithmic solutions to the resource allocation problem with a twofold objective in mind: i)

external regret of each user should vanish asymptotically according to (9) and ii) the actions of

all players should convergence to equilibrium.

By (4), the external regret of each user is upper-bounded by its internal regret. As a result,

if all users select their actions according to some no-regret strategy, not only (9) is achieved by

all of them (see also Remark 1), but also the corresponding game converges to equilibrium in

some sense, which immediately follows from Theorem 1. In Sections IV and V, we present two

internal-regret minimizing strategies that are shown to solve the game and, with it, to achieve the

two objectives mentioned above. Both algorithms can be applied in a fully decentralized manner

by each player, since at each time, they only require the set of past rewards of the respective

player.

Finally, it is worth noting that the set of correlated equilibria for the general time-varying

repeated game defined by (7) cannot be characterized. Nevertheless, in what follows, we char-

acterize this set for two games defined by some relaxed versions of (7). First, consider a game

similar to the one defined above, with the difference that unlike (7), the reward process is assumed

to be stationary, i.e.

G(k)(I) = log

(
l(k)|hkk′,c(k) |2∑Qk

q=1 l
(q)|hqk′,c(k) |2 +N0

)
− α · l(k) , (10)

which implies that the average channel gains are time-invariant. By the following proposition,

this game has a unique correlated equilibrium.

Proposition 1. Consider a K-player game where the expected reward function of each player

k is defined by (10). This game has a unique correlated equilibrium which places probability

one on its unique pure-strategy Nash equilibrium.
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Proof: See Section IX-B.

Now let the expected reward function be defined as follows:

G(k)(I) = log
(
l(k)
|hkk′,c(k)|2

N0

)
− αl(k), (11)

which is more restricted, but simpler than (10). With this choice of expected reward function, the

game can be shown to have a unique correlated equilibrium that maximizes the aggregate utility

of all players, i.e. the social welfare. This result is stated formally in the following proposition.

Proposition 2. Consider a K-player game where each player k has the expected reward function

G(k)(·) given by (11). This game has a unique correlated equilibrium which places probability

one on a unique pure strategy Nash equilibrium that maximizes
∑K

k=1G
(k)(·).

Proof: See Section IX-C.

IV. NO-REGRET BANDIT EXPONENTIAL-BASED WEIGHTED AVERAGE STRATEGY

The basic idea of an exponential-based weighted strategy is to assign each action, at every trial,

some selection probability which is inversely proportional to exponentially-weighted accumulated

regret (or directly proportional to exponentially-weighted accumulated reward) caused by that

action in the past [37]. Roughly speaking, if playing an action has resulted in large regret in the

past, its future selection probability is small, and vice versa.

As described in Section II-A, in bandit formulation, players only observe the reward of the

played action, and not those of others. Therefore the reward of each action i is estimated as [33]

g̃
(k)
t (i) =


g
(k)
t (I

(k)
t )

p
(k)
i,t

i = I
(k)
t

0 o.w.
, (12)

which is an unbiased estimate of the true reward of action i; that is, Et
[
g̃(k)(i)

]
= g(k)(i).

Estimated rewards are afterwards used to calculate regrets. For example, the regret of not playing

action j instead of action i yields

R̃
(k)
(i→j),t−1 =

t−1∑
s=1

r̃
(k)
(i→j),s =

t−1∑
s=1

p
(k)
i,s (g̃(k)s (j)− g̃(k)s (i)). (13)

Despite exhibiting vanishing external regret, weighted average strategies yield in general large

internal regret; as a result, even if all players play according to such strategies, the game does not
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converge to equilibrium. In the following, we utilize the bandit version of exponentially weighted

average strategy [38], and convert it to an improved version that yields small internal regret,

using the approach of Section II-C. The strategy is called no regret bandit exponentially-weighted

average strategy (NR-BEWAS), and is described in Algorithm 1.

Algorithm 1 No-Regret Bandit Exponential-Based Weighted Average Strategy (NR-BEWAS)
1: If the game horizon, n, is known, define γt and ηt as given in Proposition 3, otherwise as those given in

Proposition 4.
2: Define Φ(U) = 1

ηt
ln
(∑Nk

i=1 exp(ηtui)
)

, where U = (u1, ..., uNk
) ∈ RNk .

3: Let P(k)
1 =

(
1
Nk
, ..., 1

Nk

)
(uniform distribution).

4: Select an action using P
(k)
1 .

5: Play and observe the reward.
6: for t = 2, ..., n do
7: Let P(k)

t−1 be the mixed strategy at time t− 1, i.e. P(k)
t−1 =

(
p
(k)
1,t−1, .., p

(k)
i,t−1, .., p

(k)
j,t−1, .., p

(k)
Nk,t−1

)
.

8: Construct P(k),(i→j)
t−1 as follows: replace p(k)i,t−1 in P

(k)
t−1 by zero, and instead increase p(k)j,t−1 to p(k)j,t−1+p

(k)
i,t−1.

Other elements remain unchanged. We obtain P
(k),(i→j)
t−1 =

(
p
(k)
1,t−1, .., 0, .., p

(k)
j,t−1 + p

(k)
i,t−1, .., p

(k)
Nk,t−1

)
.

9: Define

δ
(k)
(i→j),t =

exp
(
ηtR̃

(k)
(i→j),t−1

)
∑

(m→l):m 6=l exp
(
ηtR̃

(k)
(m→l),t−1

) , (14)

where R̃(k)
(i→j),t−1 is calculated by using (12) and (13).

10: Given δ(k)(i→j),t, solve the following fixed point equation to find P
(k)
t :

P
(k)
t =

∑
(i→j):i6=j

P
(k),(i→j)
t δ

(k)
(i→j),t. (15)

11: Final probability distribution yields

P
(k)
t = (1− γt)P(k)

t +
γt
Nk

. (16)

12: Using the final P(k)
t , given by (16), select an action.

13: Play and observe the reward.
14: end for

From Algorithm 1, NR-BEWAS has two parameters, namely γt and ηt. In the event that the

game horizon, n, is known in advance, these two parameters are constant over time (ηt = η and

γt = γ), and the growth rate of regret can be bounded precisely, mainly based on the results of

[33]. Otherwise, they vary with time. In this case, vanishing (sub-linear in time) internal regret

can be guaranteed; nevertheless, this bound might be loose. This discussion is formalized by

following propositions.
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Proposition 3. Let ηt = η =
(

lnNk

2Nkn

) 2
3

and γt = γ =
(
N2

k lnNk

4n

) 1
3
. Then Algorithm1 (NR-BEWAS)

yields vanishing internal regret and we have R(k)
Int ∈ O((nN2

k lnNk)
2
3 ).

Proof: See Appendix IX-D.

Proposition 4. Let ηt =
γ3t
N2

k
and γt = t−

1
3 . Then Algorithm 1 (NR-BEWAS) yields vanishing

internal regret; that is we have R(k)
Int ∈ o(n).

Proof: See Appendix IX-E.

The following corollaries follow from the above propositions and Theorem 1.

Corollary 1. If all players play according to NR-BEWAS, then the empirical joint frequencies

of play converge to the set of correlated equilibria.

Proof: The proof is a direct consequence of Theorem 1 and Proposition 3 or Proposition

4.

Corollary 2. Let ε-correlated equilibrium approximate correlated equilibrium in the sense that⋂
ε>0 Cε = C. Assuming that the game horizon is known and all players play according to NR-

BEWAS, then the minimum required number of trials to achieve ε-correlated equilibrium yields

maxk=1,...,K ε
− 3

2O ((NkK)(N2
k lnNk +K2 lnK)), which is proportional to ε−

3
2 and increases

polynomially in the number of actions as well as in the number of players.

Proof: The proof follows from the bound of Proposition 3 and Remark 7.6 of [33].6

V. NO-REGRET BANDIT FOLLOW THE PERTURBED LEADER STRATEGY

Similar to the weighted-average strategy presented in the previous section, the strategy follow

the perturbed leader is an approach to solve online decision-making problems. In the basic

version of this approach, called follow the leader [39], the action with the minimum regret in

the past is selected at each trial. However, this method is deterministic and therefore does not

achieve vanishing regret against non-oblivious opponents. Therefore, in follow the perturbed

leader, player adds a random perturbation to the vector of accumulated regrets, and the action

with the minimum perturbed regret in the past is selected [33]. In [40], a bandit version of this

6Details are omitted to avoid unnecessary restatement of existing analysis.
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algorithm is constructed, where unobserved rewards are estimated. The authors show that the

developed algorithm exhibits vanishing external regret. Similar to NR-BEWAS, we here modify

the algorithm of [40] to ensure vanishing internal regret. The approach is called no-regret bandit

follow the perturbed leader strategy (NR-BFPLS).

Algorithm 2 No-Regret Bandit Follow the Perturbed Leader Strategy (NR-BFPLS)
1: Define εt = εn =

√
lnn

3
√
Nkn

, and γt = min(1, Nkεt). Note that unlike NR-BEWAS, here we know the game
horizon (n) in advance.

2: Let P(k)
1 =

(
1
Nk
, ..., 1

Nk

)
(uniform distribution).

3: Select an action using P
(k)
1 .

4: Play and observe the reward.
5: for t = 2, ..., n do
6: Let P(k)

t−1 be the mixed strategy at time t− 1, i.e. P(k)
t−1 =

(
p
(k)
1,t−1, .., p

(k)
i,t−1, .., p

(k)
j,t−1, .., p

(k)
Nk,t−1

)
.

7: Construct P(k),(i→j)
t−1 as follows: replace p(k)i,t−1 in P

(k)
t−1 by zero, and instead increase p(k)j,t−1 to p(k)j,t−1+p

(k)
i,t−1.

Other elements remain unchanged. We obtain P
(k),(i→j)
t−1 =

(
p
(k)
1,t−1, .., 0, .., p

(k)
j,t−1 + p

(k)
i,t−1, .., p

(k)
Nk,t−1

)
.

8: Calculate R̃(k)
(i→j),t−1 using (12) and (13).

9: Define σ(i→j),t−1 =

(∑t−1
τ=1

1

δ
(k)

(i→j),t

) 1
2

, which is the upper-bound of conditional variances of random

variables R̃(k)
(i→j),t−1 [40].

10: Let R̃(k)
(i→j),t−1 = R̃

(k)
(i→j),t−1 −

√
1 +

√
2/Nk σ(i→j),t−1

√
ln(t) [40].

11: Randomly select a perturbation vector µt with Nk(Nk−1) elements from two-sided exponential distribution
with width εt.

12: Consider a selection rule which selects the action (i→ j) given by

argmax
{
R̃

(k)
(i→j),t−1 + µ(i→j),t

}
, (i→ j) ∈ {1, ..., Nk(Nk − 1)} (17)

Note that in our setting R̃(i→j) denotes the estimated regret of not playing action (i → j), hence we find
the action with largest R̃.

13: From (17), calculate the probability δ(k)(i→j),t assigned to each pair (i→ j).

14: Given δ(k)(i→j),t, solve the following fixed point equation to find P
(k)
t .

P
(k)
t =

∑
(i→j):i6=j

P
(k),(i→j)
t δ

(k)
(i→j),t. (18)

15: Final probability distribution yields

P
(k)
t = (1− γt)P(k)

t +
γt
Nk

. (19)

16: Using the final P(k)
t , given by (19), select an action.

17: Play and observe the reward.
18: end for

Algorithm 2 requires the knowledge of the probability assigned to each action by the follow the

perturbed leader strategy at every trial. However, in contrast to NR-BEWAS, these probabilities
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are not assigned explicitly; therefore we explain how to calculate these values.

From (17), the selection probability of virtual action (i → j) ∈ {1, ..., Nk(Nk − 1)} is the

probability that R̃(i→j),t−1 plus perturbation µ(i→j),t is larger than those of other actions, i.e.

Pr[It = (i→ j)]

= Pr[R̃(i→j),t−1 + µ(i→j),t ≥ R̃(i′→j′),t−1 + µ(i′→j′),t ∀(i→ j) 6= (i′ → j′)]

=

∫ ∞
−∞

Pr[R̃(i→j),t−1 + µ(i→j),t = m ∧ R̃(i′→j′),t−1 + µ(i′→j′),t ≤ m ∀(i→ j) 6= (i′ → j′)]dm

=

∫ ∞
−∞

Pr[R̃(i→j),t−1 + µ(i→j),t = m]
∏

(i′→j′) 6=(i→j)

Pr[R̃(i′→j′),t−1 + µ(i′→j′),t ≤ m]dm.

(20)

Since µt is distributed according to a two-sided exponential distribution with width εn, the terms

under integral can be calculated easily (see [41], for example). Now we are in a position to show

some properties of NR-BFPLS (Algorithm 2).

Proposition 5. Let εt = ε =
√
lnn

3
√
Nkn

and γt = γ = min(1, Nkεt). Then Algorithm 2 (NR-BFPL)

yields vanishing internal regret with R(k)
Int ∈ O((nN2

k lnNk)
1
2 ).

Proof: By [40], we know that if the BPFL algorithm is applied to Nk actions, then R(k)
Ext ∈

O((nNk lnNk)
1
2 ). Using this, the proof proceeds along similar lines as the proof of Proposition

3 and is therefore omitted here.

Corollary 3. Assuming that the game horizon is known and all players play according to NR-

BFPLS, then the minimum required number of trials to achieve ε-correlated equilibrium yields

maxk=1,...,K ε
−2O ((NkK)(N2

k lnNk +K2 lnK)), which is proportional to ε−2 and increases

polynomially in the number of actions as well as in the number of players.

Proof: The proof is a result of the bound of Proposition 5 and Remark 7.6 of [33].

VI. BANDIT EXPERIMENTAL REGRET-TESTING STRATEGY

Experimental regret-testing belongs to the large family of exhaustive search algorithms, and is

comprehensively discussed in [32] and [33] for bandit games. In this section, we briefly review

this approach, and investigate its performance later in Section VII-A.

First, the time is divided into periods m = 1, 2, ... of length T so that for each m we have
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t ∈ [(m− 1)T + 1,mT ]. At the beginning of period m, any player k randomly selects a mixed

strategy, denoted by P(k)
m . Moreover, some random variable U (m)

k,t ∈ {1, ..., nk, ..., Nk} is defined

as follows. For t ∈ [(m − 1)T + 1,mT ], and for each nk, there are exactly s values of t such

that U (m)
k,t = nk, and U

(m)
k,t = 0 for the remaining t = T − sNk trials. At time t, the action I

(k)
t

is selected to be [38]

I
(k)
t :

is distributed as P(k)
m if U

(m)
k,t = 0

equals nk if U
(m)
k,t = nk

. (21)

At the end of period m, player k calculates the experimental regret of playing each action nk

as [38]

r̂(k)m,nk
=

1

T − sNk

mT∑
t=(m−1)T+1

g
(k)
t (It)I{U(m)

k,t =0
} − 1

s

mT∑
t=(m−1)T+1

g
(k)
t (nk, I

−
t,k)I{U(m)

k,t =nk

}. (22)

If the regret is smaller than an acceptable threshold ρ, the player continues to play its current

mixed strategy. Otherwise, another mixed strategy is selected. The procedure is summarized in

Algorithm 3. It is known that if the parameters of BERTS (e.g. T and ρ) are chosen appropriately,

then, in a long run, the played mixed strategy profile is an approximate Nash equilibrium for

almost all the time. Details can be found in [33], and hence are omitted.

Algorithm 3 Bandit Experimental Regret Testing Strategy [33] (BERTS)
1: Set T (period length), ρ (acceptable regret threshold), ξ � 1 (exploration parameter), m = 1 (period index).

Notice that for each period m = 1, ...,M , we have t ∈ [(m− 1)T + 1,mT ].
2: Select a mixed strategy, P(k)

m according to the uniform distribution, from the probability simplex with Nk
dimensions.

3: For each nk ∈ {1, .., Nk} select s exploring trials at random. Exploration trials which are dedicated to different
actions should not overlap.

4: for t = (m− 1)T + y, where 1 ≤ y < T do
5: if t is an exploring trial dedicated to action i then
6: play action i and observe the reward.
7: else
8: select an action using P(k)

m . Play and observe the reward.
9: end if

10: end for
11: Calculate the experimental regret of period m, r̂(k)m,nk , using (22);
12: if max

nk=1,...,Nk

r̂
(k)
m,nk > ρ, then

13: 1) set m = m+ 1, 2) go to line 2.
14: else
15: • with probability ξ: 1) set m = m+ 1, 2) go to line 2;

• with probability 1− ξ: 1) let P(k)
m+1 = P(k)

m , 2) set m = m+ 1, 3) go to line 3.
16: end if
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VII. NUMERICAL ANALYSIS

Numerical analysis consists of two parts. In Section VII-A, we consider a simple network,

and clarify the work flow of algorithms. In Section VII-B, we consider a larger network, and

study the performance of the proposed game model and algorithmic solutions in comparison

with some other selection strategies.

A. Part One

1) Network model: The network consists of two transmitter-receiver pairs (users). There exist

two orthogonal channels, C1 and C2, and two power-levels, P1 and P2. Hence, the action

set of each user yields {a1 : (C1, P1), a2 : (C1, P2), a3 : (C2, P1), a4 : (C2, P2)}. The distribu-

tion of channel gains changes at each trial. We assume that the variance of mean values of

these distributions is relatively small, which corresponds to low dynamicity.7 Channel matrices

are H1 =

[0.50, 0.80] [0.15, 0.20]

[0.01, 0.05] [0.01, 0.09]

 and H2 =

[0.02, 0.05] [0.02, 0.06]

[0.05, 0.15] [0.75, 0.95]

, where Hl,(u,v)

(u, v, l ∈ {1, 2}), corresponds to the link u → v through channel l, and presents the interval

from which the mean value of the distribution of channel gain is selected at each trial. Moreover,

we assume P1 = 1, P2 = 5 and α = 10−3. Except for their instantaneous rewards, no other

information is revealed to users. This information can be provided by the receiver feedback

to transmitter. With these settings, it is easy to see that ((C1, P2), (C2, P2)) is the unique pure

strategy Nash equilibrium of this game, i.e. the theoretical convergence point.

2) Results and Discussion: We investigate the performance of selection strategies NR-BEWAS,

NR-BFPLS and BERTS. The following strategies are also considered as benchmark:

• optimal (centralized) action (channel and power level) assignment that is based on global

statistical channel knowledge and is performed by a central unit.

• uniformly random selection.

Figure 1 compares the average reward achieved by NR-BEWAS and NR-BFPLS by those of

random and optimal selections. From the figure, despite being provided with only strictly limited

information, both NR-BFPLS and NR-BEWAS exhibit vanishing regret, in the sense that the

achieved average reward converges to that of centralized scenario.

7Note that this assumption is made in order to simplify the implementation; as established theoretically, all proposed procedures
converge to equilibrium for arbitrary varying distributions.
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Fig. 1. Performance of four selection strategies. Both NR-BEWAS and NR-BFPLS exhibit vanishing regret; that is, their
average rewards converge to that of optimal (centralized) selection.
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Fig. 2. Evolution of the mixed strategy of User 1, applying NR-BEWAS. Horizontal axis denotes the action indices, where index
i, i ∈ {1, 2, 3, 4}, stands for action ai. Vertical axis shows the weight of each action in the mixed strategy, i.e. its probability
of being selected. The mixed strategy of User 1 converges to π1 = (0, 1, 0, 0).

Figures 2 and 3 illustrate the evolution of mixed strategies of the two users when NR-BEWAS

is used. Figures 4 and 5, on the other hand, show the same variable when actions are selected by

using NR-BFPLS. For both cases, the first and second users respectively converge to a2 : (C1, P2)

and a4 : (C2, P2), as suggested by the theory.
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Fig. 3. Evolution of the mixed strategy of User 2, applying NR-BEWAS. The horizontal and vertical axes respectively depict
the indices of actions and their selection probabilities. The mixed strategy of User 2 converges to π2 = (0, 0, 0, 1).
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Fig. 4. Evolution of the mixed strategy of User 1, applying NR-BFPLS. The horizontal and vertical axes respectively depict
the indices of actions and their selection probabilities. The mixed strategy of User 1 converges to π1 = (0, 1, 0, 0).

The performance of BERTS, however, is not an explicit function of game duration. As

described before, the procedure continues to search mixed strategies until a suitable one, which

yields a regret less than the selected threshold, is captured. Then this strategy is played for the

rest of the game. Theorem 7.8 of [33] specifies the minimum game duration to guarantee the

convergence of BERTS, which is relatively long even for small number of users and actions.

Nevertheless, similar to other search-based algorithms, there also exists the possibility of finding

some acceptable strategy at early stages of the game. As a result, for relatively short games, the
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Fig. 5. Evolution of the mixed strategy of User 2, applying NR-BFPLS. The horizontal and vertical axes respectively depict
the indices of actions and their selection probabilities. The mixed strategy of User 2 converges to π2 = (0, 0, 0, 1).

performance of BERTS is rather unpredictable. The other issue is the effect of regret threshold.

On the one hand, larger threshold reduces the search time, since the set of acceptable strategies is

large. On the other hand, large regret threshold might lead to performance loss, since there is the

possibility that the user gets locked at some sub-optimal strategy at early stages, thereby incurring

large accumulated regret. It is worth noting that due to its simplicity, and despite unpredictable

performance, BERTS is an appealing approach in cases where computational effort should be

minimized, and convergence to Nash equilibrium is desired. Figure 6 summarizes the results of

few exemplary performances of BERTS. The parameters are selected as T = 80, M = 1500

and ρ = 0.16 (see Section VI). Simulation is performed for six independent rounds. The curve

on the left side of Figure 6 depicts the period (1 ≤ m ≤ 1500) at which the algorithm finds

an acceptable strategy. As expected, the results exhibit no specific pattern. The four sub-figures

on the right depict the mixed strategies selected by BERTS at rounds 1 and 2, together with

average rewards. From this figure, at round 2, acceptable strategies are found earlier than round

1 by both users, leading to better average performance. It is also worth noting that for User 2,

the strategy of round 1 is in essence better than that of round 2; nevertheless, it is found later.

As a result, the average performance of round 2 is superior to that of round 1.
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Fig. 6. Performance of BERTS. On the left, the vertical and horizontal axes show the periods and round number, respectively.
The two curves depict the period at which a suitable mixed strategy (MS) is found at each of the 6 rounds. On the right, these
mixed strategies are shown for both users at rounds 1 and 2, together with average rewards. The horizontal and vertical axes
respectively depict the indices of actions and their selection probabilities.

B. Part Two

In this section we consider a wireless network consisting of 5 users (transmitter-receiver pairs),

that compete for access to three orthogonal channels at two possible power levels (hence six

actions). We compare BFPLS and BEWAS with the following selection approaches.8

• Optimal (centralized) action assignment as described in Section VII-A2.

• Centralized no-collision action selection, where no reward is assigned to users that access

the same channel. Thus, users are encouraged to avoid collisions (a collision-avoidance

8As mentioned before, observing the joint action profile and/or communication among users is not required for implementing
BEWAS, BFPLS and BERTS. Therefore, they cannot be compared with strategies that include mutual observation and/or
communication. A good example of such algorithms is the widely-used best-response dynamics, where the strategy of each
player is to play with the best-response to either the historical [10] or the predicted [5] joint action profile of opponents. Another
example is the strategy suggested in [20], which is a combination of learning and auction algorithms where users communicate
with each other.
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Fig. 7. Aggregate average reward of BFPLS and BEWAS compared to some other selection strategies.

strategy). This curve can be considered as an upper-bound for the performance of learning

algorithms that select actions based on collision avoidance, such as [20].

• ε-greedy algorithm, where at each trial, with probability ε (exploration parameter), an

action is selected uniformly at random, while with probability 1 − ε the best action so

far is played. The average reward of selected action is updated after each play [42]. For

stationary environments, ε is usually time-varying and converges to zero in the limit, while

in adversarial cases, ε is preferred to remain fixed. Here we let ε = 0.1.

• Greedy approach, where at the beginning of the game, some trials are reserved for explo-

ration, in which actions are selected at random (exploration period). The length of this period

is a pre-defined fraction of the entire game duration. Based on the rewards of exploration

period, the best possible action is selected, and is played for the rest of the game (exploitation

period) [33]. This approach is extremely simple to implement; however, to the best of our

knowledge, there is no analysis on the optimal length of the exploration period.

• Uniformly random selection.

The numerical results are depicted in Figure 7. From this figure, we can conclude the following.
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• The performance of interference-avoidance strategies is strongly influenced by channel

matrices and tends to be poor specifically when the number of channels is less than that of

users. The reason is that the sum reward of multiple interfering users with limited transmit

power might be larger than the maximum achievable reward of any single user.

• The performance of both BFPLS and BEWAS converge to that of centralized approach. As

expected, BFPLS converges faster than BEWAS and we point out that the convergence speed

of both algorithms would be dramatically enhanced if some side information was available

to players, e.g. if users observed the actions of each other, or if communication was allowed

among players. It is also worth noting that although BFPLS converges faster than BEWAS,

the computation of integral (20) might be involved, especially for large number of actions

[41].

• In general, ε-greedy and greedy approaches can be implemented easily with low com-

putational cost; nevertheless, it can be seen that the greedy approaches are inferior to

BEWAS and BFPLS in terms of asymptotic performance. Basically, these approaches are

more suitable for stationary environments.

VIII. CONCLUSION AND REMARKS

This paper deals with resource allocation in multi-user infrastructureless wireless networks.

The problem of utility maximization has been formulated using the multi-player multi-armed

bandit theory framework. More precisely, given no side information, the users aim at minimizing

some regret expressed in terms of the loss of reward by selecting appropriate actions on a

given space of transmit power levels and orthogonal frequency channels. Based on some recent

mathematical results, we have designed two selection strategies, which not only provide vanishing

regret for each player, but also guarantee the asymptotic convergence of the game to the set of

correlated equilibria. We have also studied experimental regret testing strategy that asymptotically

converges to the set of Nash equilibria. Numerical results confirms the applicability of the game

model and proposed strategies to wireless channel selection and power control.
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IX. APPENDIX

A. Some Auxiliary Results

In this section, we state some auxiliary results and materials from game theory as well as

bandit theory that are necessary for proofs.

1) Game Theory: Throughout this part, we consider a game G consisting of a set of K players

where the strategy set of each player k ∈ {1, ..., K} is denoted by I(k) with a generic element

i(k) = (i
(k)
1 , ..., i

(k)
M ). Similarly, the set of joint strategy profiles of players is denoted by I with a

generic element i = (i(1), ..., i(K)) and i−k stands for the joint action profile of all players except

for player k. Moreover, g(k)(i) stands for the utility function of some player k.9

Definition 4. A game G is smooth if, for each k ∈ {1, ..., K}, g(k)(i) has continuous partial

derivatives with respect to the components of i(k).

Definition 5. Let Og(k) =

(
∂g(k)

∂i
(k)
1

, · · · , ∂g(k)
∂i

(k)
M

)
, and call

(
Og(k)

)
k∈{1,...,K} the payoff gradient of

a smooth game G. We say that the payoff gradient is strictly monotone if

K∑
k=1

(
Og(k)(i)− Og(k)(j)

)T (
i(k) − j(k)

)
< 0, (23)

holds for all i, j ∈ I with i 6= j.

Theorem 2 ( [43]). Consider a smooth game G with compact strategy sets. If the payoff gradient

of G is strictly monotone then it has a unique correlated equilibrium, which places probability

one on a unique pure-strategy Nash equilibrium.

Definition 6. A game G is potential if there exists a potential function f : I→ < such that

g(k)(i, i−k )− g(k)(j, i−k ) = f(i, i−k )− f(j, i−k ), (24)

for all i, j ∈ I(k) and k ∈ {1, ..., K}.

Theorem 3 ( [44]). Let G be a smooth potential game with a strictly concave potential function.

Then a strategy profile is the unique pure strategy Nash equilibrium if and only if it is the potential

maximizer.

9Note that compared to the system model some notation has been changed slightly.
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Lemma 1 ( [43]). Let G be a smooth potential game. A potential of G is strictly concave if and

only if the payoff gradient of G is strictly monotone.

2) Bandit Theory:

Lemma 2. Let Rn and RExt be given by (1) and (2), respectively. Then, for any δ ∈ (0, 1
2
], we

have10

Pr

(
|Rn −RExt| ≤

√
n

2
ln

1

δ

)
≥ 1− 2δ, (25)

from which it follows that if Rn ∈ o(n), then we have RExt ∈ o(n), with arbitrarily high

probability.11

Proof: By comparing (1) and (2), it suffices to show that Pr (|
∑n

t=1 (gt(It)− ḡt(Pt))|) ≤√
n
2

ln 1
δ
≤ 1 − 2δ. To this end, define S :=

∑n
t=1 gt(It), where gt(It) ∈ [0, 1], 1 ≤ t ≤ n, are

independent random variables (see also Section II-A). Further note that S̄ = E[S] =
∑n

t=1 ḡt(Pt).

Therefore, by Hoeffding’s inequality [33],

Pr

(
|Rn −RExt| ≥

√
n

2
ln

1

δ

)
=Pr

(∣∣S − S̄∣∣ ≥√n

2
ln

1

δ

)

≤2 exp

(
−

2n
2

ln 1
δ

n

)
= 2δ.

(26)

Hence the Lemma follows with Pr
(
|Rn −RExt| ≤

√
n
2

ln 1
δ

)
= 1−Pr

(
|Rn −RExt| ≥

√
n
2

ln 1
δ

)
.

Lemma 3. Let RExt be given by (2). Moreover, define R̃n = maxi=1,...,N

∑n
t=1 gt(i)−

∑n
t=1 g̃t (Pt),

where g̃t (Pt) =
∑N

i=1 pi,tg̃t(i) and g̃t(i) is given by (12). Then we have

Pr

(∣∣∣R̃n −RExt

∣∣∣ ≤√n

2
ln

1

δ

)
≥ 1− 2δ. (27)

Hence, for sufficiently small δ > 0, RExt ∈ o(n) implies that R̃n ∈ o(n), with arbitrarily high

probability.

10Throughout this section and in order to simplify the notation, the player index (k) is omitted unless ambiguity arises.
11Here and hereafter, the statement ”X(n) ∈ o(n) with arbitrarily high probability” for some nonnegative random sequence

X(n) ∈ R means that the probability of X(n) /∈ o(n) can be made arbitrarily small, provided that some parameter is chosen
sufficiently small.
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Proof: Similar to the proof of Lemma 2, it follows from (2) and the definition of R̃n that it

is sufficient to show that Pr
(
|
∑n

t=1 (g̃t(Pt)− ḡt(Pt))| ≤
√

n
2

ln 1
δ

)
≤ 1 − 2δ for δ ∈ (0, 1

2
]. To

this end, note that g̃t(Pt) ∈ [0, 1], 1 ≤ t ≤ n, are independent random variables. Moreover, since

g̃t(i) is an unbiased estimate of gt(i), we have E[
∑n

t=1 g̃t(Pt)] =
∑n

t=1 ḡt(Pt). Hence, defining

S = ḡt(Pt)− g̃t(Pt) and proceeding as in the proof of Lemma 2 with the Hoeffding’s inequality

in hand proves the lemma.

Proposition 6. Let Rn be given by (1) and R̃n be defined as in Lemma 3. Then, Rn ∈ o(n)

implies thatR̃n ∈ o(n).

Proof: Lemma 2 implies that Rn ∈ o(n) ⇒ RExt ∈ o(n) with arbitrarily high probability,

while by Lemma 3, we have RExt ∈ o(n)⇒ R̃ ∈ o(n). Therefore, if Rn ∈ o(n), then R̃ ∈ o(n)

with arbitrarily high probability.

Theorem 4. ( [33]) Let Φ(U) = ψ(
∑N

i=1 φ(ui)), where U = (u1, ..., uN). Consider a selection

strategy, which at time t selects action It according to distribution Pt, whose elements pi,t are

defined as

pi,t = (1− γt)
φ′(Ri,t−1)∑N
k=1 φ

′(Ri,t−1)
+
γt
N
, (28)

where Ri,t−1 =
∑t−1

s=1 (gs(i)− gs(Is)). Assume that:

A1.
∑n

t=1
1
γ2t

= o( n2

lnn
),

A2. For all vectors Vt = (v1,t, ..., vn,t) with |vi,t| ≤ N
γt

, we have

lim
n→∞

1

ψ(φ(n))

n∑
t=1

C(Vt) = 0, (29)

where C(Vt) = supU∈RN ψ′(
∑N

i=1 φ(ui))
∑N

i=1 φ
′′(ui)v

2
i,t.

A3. For all vectors Ut = (u1,t, ..., un,t), with ui,t ≤ t,

lim
n→∞

1

ψ(φ(n))

n∑
t=1

γt

N∑
i=1

OiΦ(Ut) = 0. (30)

A4. For all vectors Ut = (u1,t, ..., un,t), with ui,t ≤ t,

lim
n→∞

lnn

ψ(φ(n))

√√√√ n∑
t=1

1

γ2t

(
N∑
i=1

OiΦ(Ut)

)2

. (31)
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Then the selection strategy satisfies

lim
n→∞

1

n

(
max

i=1,...,N

n∑
t=1

gt(i)−
n∑
t=1

gt(It)

)
= 0, (32)

or equivalently, Rn ∈ o(n), where Rn is given by (1).

B. Proof of Proposition 1

In order to prove Proposition 1, we use Theorem 2. As the strategy set is compact, in order

to use this theorem, we show that 1) the game is smooth, and 2) the payoff gradient is strictly

monotone.

According to our system model, by changing the channel index, c(k), the channel gain and

interference changes. Therefore we define i
(k)
1 :=

|h
kk′,c(k) |

2∑Qk
q=1 l

(q)|h
qk′,c(k) |

2+N0

and i
(k)
2 := l(k), from

which we have g(k)(i) = log
(
i
(k)
1 i

(k)
2

)
− αi(k)2 . This results in

∂g(k)

∂i
(k)
1

=
1

i
(k)
1

. (33)

and
∂g(k)

∂i
(k)
2

=
1

i
(k)
2

− α. (34)

Hence by Definition 4, the game is smooth. On the other hand, given g(k), we have(
Og(k)(i)− Og(k)(j)

)T (
i(k) − j(k)

)
=
[

1

i
(k)
1

− 1

j
(k)
1

1

i
(k)
2

− 1

j
(k)
2

]i(k)1 − j
(k)
1

i
(k)
2 − j

(k)
2


=

(
1

i
(k)
1

− 1

j
(k)
1

)
(i

(k)
1 − j

(k)
1 ) +

(
1

i
(k)
2

− 1

j
(k)
2

)
(i

(k)
2 − j

(k)
2 ),

(35)

which is always negative as for any x, y > 0 and x 6= y, x− y > 0 yields 1
x
− 1

y
< 0 and vice

versa. So,
K∑
k=1

Og(k) < 0 (36)

i.e. the payoff gradient is strictly monotone by Definition 5.

As a result, by Theorem 2, the game has a unique correlated equilibrium which places
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probability one on the unique Nash equilibrium.

C. Proof of Proposition 2

First, we point out that the game is a potential game with a potential function being f(·) =∑K
k=1 g

(k)(·), by simply inserting g(k) and f in condition (24). Moreover, similar to Proposition

1, it can be easily shown that the game is smooth and the payoff gradient is strictly monotone

(Define i(k)1 :=
|hc(k)|

2

N0
and i(k)2 = l(k)).12 Therefore, by Lemma 1, the game is a smooth potential

game with strictly concave potential function. As a result, by Theorem 3, it has a unique pure

strategy Nash equilibrium which is the potential maximizer. On the other hand, by Lemma 2,

the game has a unique correlated equilibrium which places probability one on the unique pure

strategy Nash equilibrium.

D. Proof of Proposition 3

We first notice that RExt ∈ O((nN)
2
3 (lnN)

1
3 ), as stated by the following lemma.13

Lemma 4. Consider a selection strategy that uses Pt = (p1,t, ..., pN,t) to select an action among

N possible choices, where pi,t is calculated as

pi,t = (1− γ)
exp(ηR̃i,t−1)∑

m=1,..,N exp(ηR̃m,t−1)
+
γ

N
, (37)

and R̃i,t−1 denotes the estimated accumulated regret of not playing action i.14 Then selecting γ

and η as given by Proposition 3 yields RExt ∈ O((nN)
2
3 (lnN)

1
3 ).

Proof: The proof is a direct corollary of Theorem 6.6 of [33].

Given Lemma 4, we follow the approach of [34] for the rest of the proof.

Recall that by Section II-C and Algorithm 1, the mixed strategy of each player is defined by

Pt =
∑

(i→j):i 6=j

P
(i→j)
t δ(i→j),t. (38)

12Details are similar to Proposition 1 and thus are omitted.
13Throughout this section and in order to simplify the notation, the player index (k) is omitted unless ambiguity arises.
14This definition should not be mistaken for the general regret defined in Section II-A.
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Hence,

ḡt(Pt) =
∑

(i→j):i 6=j

ḡt(P
(i→j)
t )δ(i→j),t. (39)

Lemma 4 specifies the growth rate of external regret. On the other hand, as described in Section

II-C, the convergence approach applies the BEWAS algorithm for N(N − 1) ≤ N2 actions.

Therefore, (39) together with Lemma 4 yields

max
n∑
t=1

ḡt(P
(i→j)
t )−

n∑
t=1

ḡt(Pt) ∈ O((N2n)
2
3 (2 lnN)

1
3 ), (40)

and the definition of internal regret ensures that maxi 6=j R(i→j),n ∈ O((N2n)
2
3 (lnN)

1
3 ), which

concludes the proof. Details can be found in [34], and hence are omitted.

E. Proof of Proposition 4

We first show that the algorithm has vanishing external regret, i.e. RExt ∈ o(n), as formalized

in the following.

Lemma 5. Consider a selection strategy that uses Pt = (p1,t, ..., pN,t) to select an action among

N possible choices, where pi,t is calculated as

pi,t = (1− γt)
exp(ηtR̃i,t−1)∑

m=1,..,N exp(ηtR̃m,t−1)
+
γt
N
, (41)

and R̃i,t−1 denotes the estimated accumulated regret of not playing action i. Then, for γt and ηt

as given by Proposition 4, this strategy yields vanishing external regret, i.e. RExt ∈ o(n).

Proof: By Proposition 6, if (32) is satisfied for a selection strategy (that is, if Rn ∈ o(n)),

then the growth rate of the external regret caused by the bandit version of that strategy (which

uses estimated rewards instead of true ones) grows sublinearly in n, i.e. R̃n ∈ o(n). Therefore, in

order to prove the proposition, we can show that our selected parameters γt = t−
1
3 and ηt =

γ3t
N2

satisfy axioms A1-A4 of Theorem 4. In what follows, we show that each of these axioms is

fulfilled. In doing so, we omit for the lack of space simple calculus steps. Also the reader should

note that in our strategy we have Φ(U) = 1
ηt

ln
(∑N

i=1 exp(ηtui)
)

.
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A1. For γt = t−
1
3 , we have

n∑
t=1

1

γ2t
=

n∑
t=1

t
2
3 = Harmonic Number[n,−2

3
] := Hn[

−2

3
]. (42)

Then,

lim
n→∞

lnn

n2

n∑
t=1

γ2t = lim
n→∞

lnn

n2
Hn[
−2

3
] = 0. (43)

A2. For ψ(x) = 1
ηt

lnx and φ(x) = exp(ηtx), we obtain

C(Vt) = sup

(
ηt

N∑
i=1

v2i,t

)
=
ηtN

3

γ2t
. (44)

Hence,

lim
n→∞

1

ψ(φ(n))

n∑
t=1

C(Vt) = lim
n→∞

1

n

n∑
t=1

t
−1
3

= lim
n→∞

1

n
Hn[

1

3
] =0.

(45)

A3. For Φ(U) = 1
ηt

ln
(∑N

i=1 exp(ηtui)
)

, OiΦ(Ut) yields

OiΦ(Ut) =
exp(ηtui)∑N
i=1 exp(ηtui)

. (46)

Therefore,

lim
n→∞

1

ψ(φ(n))

n∑
t=1

γt

N∑
i=1

OiΦ(Ut) =

lim
n→∞

1

n

n∑
t=1

t
−1
3

N∑
i=1

exp(ηtui)∑N
i=1 exp(ηtui)

=

lim
n→∞

1

n
Hn[

1

3
] = 0.

(47)

A4. A4 follows simply by substituting (46) in (31).

Hence, all axioms A1-A4 are satisfied, and therefore (32) holds, which, together with Propo-

sition 6, completes the proof.

By Lemma 5, the external regret BEWAS grows sublinearly in n. Therefore, similar to the

proof of Proposition 3, (39) yields

max
n∑
t=1

ḡt(P
(i→j)
t )−

n∑
t=1

ḡt(Pt) ∈ o(n), (48)
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and the definition of internal regret ensures that maxi 6=j R(i→j),n ∈ o(n), which concludes the

proof.
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