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Adaptively Regularized Phase Alignment Precoding

for Multiuser Multiantenna Downlink
S. Morteza Razavi and Tharmalingam Ratnarajah, Senior Member, IEEE

Abstract—In multiantenna downlink, linear precoders like
channel inversion (CI), regularized CI (RCI), and phase align-
ment (PA) are more desirable than their nonlinear counter-
parts due to their reduced complexity. However, to exploit the
full benefits of multiuser downlink, the availability of perfect
channel state information (CSI) at the base station (BS) is
mandatory. Since such an assumption is not realistic in practice,
subject to CSI mismatch, the downlink precoders may undergo
a severe degradation in performance. Therefore, an adaptive
linear precoder is required to achieve better performance under
the availability of imperfect CSI at the BS. In this work, we
propose such a linear precoder by judiciously picking up an
optimized regularization parameter based on the knowledge of
the channel estimation error variance in advance. To do so, we
first introduce a generalized CSI mismatch model where the
variance of the channel estimation error is a function of signal-
to-noise ratio (SNR) and is thus able to accommodate a variety of
distinct scenarios like reciprocal channels and CSI feedback. It
is shown that the proposed precoding scheme, dubbed adaptively
regularized PA (RPA), is capable of achieving lower bit error
rates (BER) compared to standard linear precoders under both
perfect and imperfect CSI.

Keywords—Imperfect CSI, linear precoding, multiuser multi-
antenna downlink, regularized phase alignment.

I. INTRODUCTION

DEPLOYING multiple antennas at the base station (BS)
can significantly improve the achievable throughput in

broadcast channels so that many users can be simultaneously
serviced. In this case, dirty paper coding (DPC) technique is
capable of achieving the downlink capacity [1]. Nevertheless,
due to its high complexity, some less complex nonlinear pre-
coders like vector perturbation [2] and Tomlinson-Harashima
[3] are also of particular interest.

Although achieving less throughput, linear precoders are
more practical because of the reduced complexity compared
to their nonlinear counterparts. The least complex and the
most well-known technique, named channel inversion (CI)
[4], is a linear precoding technique which yields reasonable
performance in downlink. Nonetheless, it has been shown that
CI precoding, while generally suboptimal, can achieve the
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same asymptotic sum capacity as DPC, while the number
of users goes to infinity [5]. However, when the number of
antennas at the BS is equal to the total number of single-
antenna users and both are finite, it has been shown that with
proportionally increasing the number of users and the number
of antennas at the BS, the bit error rate (BER) experienced
by each user due to deploying CI precoding deteriorates. This
inferior performance of CI is related to the erratic behavior of
the largest eigenvalue of the inverse of the covariance matrix of
the channel. One approach to alleviate this misbehavior of CI
precoding is to exploit the concept of regularization by adding
a multiple of the identity matrix to the covariance matrix of
the channel before inverting. This precoding, which has been
dubbed regularized CI (RCI) [4], improves the performance of
CI, such that now with proportionally increasing the number
of users and the number of antennas at the BS, the BER
experienced by each user remains fixed at low-to-intermediate
signal-to-noise ratios (SNRs), and slightly improves at high
SNRs.

In line with the aim of linear precoders to achieve reduced
complexity compared to nonlinear precoders, [6] proposed a
linear precoding technique based on correlation rotation (which
is hereafter called phase alignment (PA)) where instead of
removing the harmful symbol-to-symbol interference, it rotates
the phases of the transmitted symbols such that the destructive
interference becomes constructive, and eventually leading to
more output SNRs for a fixed transmit power at the BS. Con-
sequently, PA can significantly reduce the BER experienced by
each user compared to CI and RCI in broadcast channels. The
superior performance of PA precoding compared to standard
precoders has been also investigated in [7] for cognitive radio
networks and in [8] for large-scale multiantenna transmitters.

However, this superior performance of PA to CI and RCI
precoders can be gleaned only when perfect CSI is available
at the BS. Form the practical point of view, on the other
hand, having access to perfect CSI is not realistic, and in
this case, the performance of CI, RCI and PA may become
adversely affected. Therefore, designing an adaptive linear
precoder which outperforms standard linear precoders under
imperfect CSI is of particular interest.

In this work we aim to do so by first introducing a gener-
alized CSI mismatch model where the variance of the channel
estimation error depends on the SNR. This imperfect CSI
model covers a variety of practical scenarios like reciprocal
channels and CSI feedback such that in the case of the latter,
there is a strong connection between the error variance of the
channel estimation and the size of the codebook (or the number
of fedback bits).

RCI precoding improves the performance of CI by only
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adding a multiple of the identity matrix to the covariance
matrix of the channel before inverting (i.e., regularization).
For the case of very large number of transmit and receive
antennas, different regularization parameters could be derived
under different scenarios for RCI precoding (see e.g., [9]–
[11]). Similarly, in this paper, we propose an enhanced PA pre-
coding, dubbed adaptively regularized PA (RPA), by deriving
an optimized regularization parameter which is a function of
the channel estimation error variance. The proposed approach
is adaptive in a sense that the sought regularization parameter
is based on the knowledge of the channel estimation error
variance which is possible to be known in advance due
to the channel dynamics and channel estimation schemes.
Considering the fact that in this paper we address the linear
downlink precoders, we can summarize the contributions of
this paper as follows:

• Although the concept of RPA precoding has been pri-
marily introduced in [12], the adaptive RPA precoder
proposed in this work holds two main advantages: First,
the standard RPA precoding proposed in [12] is only
applicable to the case of equal number of transmit
and receive antennas. However, here we generalize the
concept of RPA precoding to the case of unequal number
of transmit and receive antennas. Second, the standard
RPA precoder has been only analyzed in the presence
of perfect CSI at the BS. The adaptive RPA precoding
in this work, on the other hand, considers the the
characteristics of the CSI imperfections to design a more
efficient precoder which eventually leads to the much
better performance under CSI mismatch. It is worthy
to note that although this generalization of the RPA
precoding is not trivial, the proposed approach does not
introduce any extra computational complexity compared
to the one in [12].

• It is shown that the adaptive RPA precoder proposed
in this work is able to outperform the other linear
precoders, i.e., CI, RCI, and PA precoding, under both
perfect and imperfect CSI including reciprocal channels
and CSI feedback. More specifically, the larger the
M and N , the better performance can be gleaned by
using adaptive RPA precoding. It is also worthy to note
that within the practical SNR regime, adaptive RPA
outperforms RCI even for the case of unequal number
of transmit and receive antennas.

A. Paper Organization

In Section II, we overview the system model of standard
downlink precoding followed by a generalized model for
imperfect CSI in Section III. In Section IV, we propose an
adaptive RPA precoding which is able to outperform stan-
dard linear precoders. In Section V and by using numerical
simulations, we demonstrate the superior performance of the
proposed scheme. Finally, Section VI contains a summary of
the presented materials within the paper.

Channel
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MT #M
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Fig. 1. Single-cell broadcast channel where dash red arrows represent intra-
cell interference while solid green arrows denote desired links. hk,j is the
time-variant channel response between the jth transmit antenna of the BS and
the kth MT.

B. Notations

Throughout the paper, a is a scalar, a is a vector, and A is a

matrix. The superscripts (·)H
and (·)⊤ represent the Hermitian

transpose and the non-conjugated transpose, respectively. E {·}
and Tr [·] are the expectation and trace operators, respectively.
While ‖ · ‖2 denotes the vector 2-norm, ⊙ designates the
Hadamard (element-wise) matrix product, and | · | represents
the element-wise absolute value.

II. SYSTEM MODEL

We consider a multiuser downlink scenario where an
N -antenna transmitter communicates with mobile terminals
(MTs) with M receive antennas in total, as depicted in Fig.
1. More specifically, we assume that the total number of
receive antennas is equal to or less than the total number of
transmit antennas, i.e., M ≤ N . Since no signal processing
treatment is going to be considered at each MT, the system
configuration is irrespective to whether the receive antennas
cooperate or not, therefore the total number of receive antennas
can belong to one user or be shared by several users; however,
as purely transmitter-based precoders are most useful with
single antenna receivers, we consider single-antenna MTs in
the following, which is also consistent with the references of
this paper.

Without loss of generality, we assume that all single-antenna
users are homogeneous and experience independent fading.
The received signals of all users can be collectively shown
by

y =
√
PHs+ z (1)

where y ∈ CM×1, P is the transmit power, and H ∈ CM×N

denotes the channel from N -antenna transmitter to M single-
antenna users such that the magnitude of channel coefficients
is bounded away from zero and infinity. We also consider
block fading model where channel coefficients are static for the
duration of a transmission but may change between successive
transmission. We further assume that elements of H can be



0018-9545 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TVT.2014.2372754, IEEE Transactions on Vehicular Technology

3

modeled by independent and identically distributed (i.i.d.)
Gaussian random variables with zero mean and unit variance,
i.e., vec (H) ∼ NC (0, I), s ∈ CN×1 is the transmitted signal
from the BS, and z ∈ CM×1 is the circularly symmetric
additive white Gaussian noise with zero mean and variance σ2,
i.e., z ∼ NC

(
0, σ2I

)
. We further assume that the transmitted

signal s in (1) can be expressed as s = gΨc. Similar
to [4], [12], [13], we consider g as the scaling factor that
ensures transmit power constraint i.e., E

{
‖s‖22

}
= 1. Ψ is the

precoding matrix and c represents the vector containing the
symbols chosen from a desired PSK constellation and since
we assume i.i.d. input signaling, we have E {C} = I, where
C = ccH is the covariance matrix of the transmitted data
stream. We also define the nominal SNR as γ = P/σ2. Note
that although the concept of regularization is most beneficial
for the case of equal number of transmit and receive antennas
[4], [12], without loss of generality, we assume M ≤ N .

III. IMPERFECT CSI MODEL

Similar to [14], we model the imperfect CSI at the transmit
side as

Ĥ = H+E (2)

where the actual channel matrix H is thought to be indepen-
dent of channel measurement error E. We further consider E
as a Gaussian matrix consisting of i.i.d. elements with mean
zero and variance τ such that [14]

vec (E) ∼ NC (0, τI) with τ , βγ−α, β > 0, α ≥ 0 (3)

In this case, the error variance can depend on SNR (α 6= 0)
or be independent of that (α = 0). In particular, perfect CSI is
regained by setting τ = 0. Notice the variance model in (3) is
versatile since it is potentially able to accommodate a variety
of distinct scenarios. More specifically, τ can be interpreted as
a parameter that captures the quality of the channel estimation
which is possible to be known a priori, depending on the
channel dynamics and channel estimation schemes (see e.g.,
[15] and references therein). Two representative cases of this
error variance model can be described as follows [14]:

• Reciprocal Channels: This case represents the reciprocal
systems like time division duplex where uplink and
downlink channels are identical. The downlink channel
can thus be estimated through pilots sent over the uplink
channel and the channel measurement error E depends
on the noise level at the BS as well as the pilot power.
If the pilot power proportionally increases with P , the
channel estimation error scales inversely with increasing
γ. This case is modeled by setting α = 1.

• CSI Feedback: Here, the channel matrix can be estimated
by pilot transmissions in the downlink. Then, a quantized
version of this channel estimate is sent back to the
BS through a dedicated feedback link. This way, the
imperfect CSI will be mostly dominated by the errors
caused through quantization and feedback delay, which
can eventually result in outdated CSI at the BS if the
channel coherence time is smaller than the feedback
delay. Since channel coherence time and the resolution

of quantizer do not depend on γ, the channel estimation
error variance τ becomes independent of γ as well. This
case is captured by setting α = 0. For instance, if
each user has a codebook of size 2B designed based on
random vector quantization (RVQ) [16]–[18], and feeds
back the index of a quantized complex channel vector of
length N to the BS by using B bits, it has been shown
that the error variance τ is directly related to B and N
as τ = 2−B/N [19].

To further facilitate the performance analysis of the linear
precoders under the CSI mismatch model in (2), it is more
appropriate to have the statistical properties of H conditioned

on Ĥ by using following lemma [20]:

Lemma 1: Conditioned on Ĥ, H has a Gaussian distribution
with mean Ĥ/ (1 + τ) and statistically independent elements
of variance τ/ (1 + τ), i.e.,

H =
1

1 + τ
Ĥ+ H̆ (4)

where the auxiliary random matrix vec
(
H̆
)

∼

NC

(
0,

τ

1 + τ
I

)
is statistically independent of Ĥ.

IV. ADAPTIVELY REGULARIZED PHASE ALIGNMENT

PRECODING

Since in practice, acquiring perfect CSI is not pragmatic
and only partial CSI may be accessible, in this section, we
propose an adaptive RPA precoding by deriving an optimized
regularization parameter which is chosen based on the knowl-
edge of the channel estimation error variance in advance,
as discussed in Section III. Therefore, in the following, we
assume that instead of perfect CSI, i.e., H, only imperfect

CSI Ĥ is available at the BS, where Ĥ and H are related to
each other through equations (2) and (4).

As mentioned earlier and similar to RCI precoding which
consists of an appropriate regularization parameter to further
improve the performance of CI precoding, the proposed RPA
precoding seeks a regularization parameter to enhance the
performance of PA precoding. Thus to further proceed, PA
precoding should first be considered.

A. PA Precoding under Perfect CSI

Under the availability of perfect CSI at the BS and by
using PA precoding, the transmitted signal from the BS can
be described as [6]

sPA = gPAΨPAc (5)

where

ΨPA = HHR−1Rθ (6)

is the precoding matrix and R = HHH is the covariance
matrix of the channel. Plus, we have [12]

Rθ = |R| ⊙C (7)
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TABLE I. STATISTICAL PROPERTIES OF
∣

∣ρℓ,x
∣

∣, WHERE ρℓ,x IS THE

(ℓ, x)-TH ELEMENT OF R = HH
H

AND vec (H) ∼ NC

(

0, σ2

h
I
)

(APPENDIX).

Type of Random Variable E {|ρℓ,x|} E
{

|ρℓ,x|2
}

ℓ 6= x Rayleigh σ2

h

√
Nπ/2 σ4

hN

ℓ = x Chi-square σ2

hN σ4

hN (N + 1)

and [6]

gPA =
1√

Tr [R2
θR

−1]
(8)

is the scaling factor.

B. RPA Precoding under Imperfect CSI

In the presence of CSI mismatch, the transmitted signal from
the BS in (1) can be shown as

ŝRPA = ĝRPAΨ̈R̂θc (9)

such that

R̂θ =
∣∣∣R̂
∣∣∣⊙C , R̂ = ĤĤH (10)

We further define
Ψ̂RPA = Ψ̈R̂θ (11)

and
ĉ = R̂θc (12)

This way, the scaling factor can be represented as

ĝRPA =
1√

Tr
[
Ψ̂H

RPAΨ̂RPA

] (13)

By considering (1) and (9), the sought precoder minimizes
the mean square error between the transmitted data stream
and the received signal plus noise. Therefore, under imperfect
CSI, the desired precoder can be found by using the following
optimization criterion:

min
Ψ̈

E

{∥∥∥
√
PHΨ̈ĉ+ f̈z−

√
P ĉ

∥∥∥
2

2

}
(14)

and

f̈ =
1 + τ

ĝRPA
= (1 + τ)

√
Tr
[
Ψ̂H

RPAΨ̂RPA

]
(15)

Note that the inclusion of f̈ in (14) is due to the fact that in
all precoding schemes, the power of noise is affected by the
precoding matrix, and consequently, this effect can be reflected

through a multiplicative factor like f̈ . This can be perceived
with respect to the fact that at transmit side, the transmitted
signals get scaled by ĝRPA to meet the power constraints;
consequently at receive side, to have an unbiased detection,
the received signals should be scaled back by (1 + τ) /ĝRPA
which further appears as a multiplicative factor for the noise
vector. More explanation on why ĝRPA needs to be scaled up
by (1 + τ) is available in [14].

To further proceed, we consider the following two lemmas:

Lemma 2: E
{
ĉĉH

}
= ̺ I where

̺ = N (1+τ)2
[
(N+1)+(M−1)

(
1+

√
Nπ+(M−2)

π

4

)]

(16)
Proof: Note that (12) can be rewritten as

ĉ =

(
c1

M∑

x=1

|ρ̂1,x| , . . . , cM
M∑

x=1

|ρ̂M,x|
)⊤

(17)

Also by considering (2), we have vec
(
Ĥ
)

∼
NC (0, (1 + τ) I). Therefore, the statistical properties of

|ρ̂ℓ,x|, which is the (ℓ, x)-th element of R̂ in (10), can be
obtained by setting σ2

h = 1 + τ in Table I. Therefore, after
some straightforward manipulations and by considering the
fact that E

{
ccH

}
= I, the claim follows.

Lemma 3: E

{
R̂2

θ

}
= κ I where

κ = N (1 + τ)2 (M +N) (18)

Proof: Based on (10), we have

E

{
R̂2

θ

}
= diag

(
E

{[
R̂2
]
1,1

}
, . . . ,E

{[
R̂2
]
M,M

})

(19)

Considering the fact that R̂ is a Hermitian matrix, we have

[
R̂2
]
ℓ,ℓ

=

M∑

i=1

|ρ̂ℓ,i|2 (20)

Thus, based on Table I and since σ2
h = 1 + τ , we have

E

{[
R̂2
]
ℓ,ℓ

}
= N (1 + τ)

2
(M +N). Therefore, the claim

follows.
Due to Lemma 2 and Lemma 3, the objective function in

(14) can be shown as

F̈ = E

{
Tr

[(√
PHΨ̈ĉ+ f̈z−

√
P ĉ
)

×
(√

PHΨ̈ĉ+ f̈z−
√
P ĉ
)H]}

= E

{
Tr
[
PHΨ̈ĉĉHΨ̈HHH + f̈2zzH − PHΨ̈ĉĉH

− P ĉĉHΨ̈HHH + P ĉĉH +
√
P f̈HΨ̈ĉzH

+
√
P f̈zĉHΨ̈HHH −

√
P f̈ ĉzH −

√
P f̈zĉH

]}

➀
= P̺Tr

[
Ψ̈HHHHΨ̈

]
+Mσ2 (1 + τ)

2
κTr

[
Ψ̈HΨ̈

]

− P̺Tr
[
HΨ̈

]
− P̺Tr

[
Ψ̈HHH

]
+ PM̺ (21)

where ➀ follows the fact that the noise vector z is considered
to be independent of data stream c and the perfect CSI H. To
obtain the sought precoder, we can differentiate F̈ with respect

to Ψ̈ by first considering the following assumptions [21]:

1) Ψ̈ and Ψ̈H are treated as mutually independent variables

such that
∂Ψ̈H

∂Ψ̈
=

∂Ψ̈

∂Ψ̈H
= 0.
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2)
∂ Tr

[
AΨ̈

]

∂Ψ̈
=

∂ Tr
[
Ψ̈A

]

∂Ψ̈
= A.

Following the preceding assumptions, the differentiation of F̈
with respect to Ψ̈ gives

∂F̈

∂Ψ̈
= P̺Ψ̈HHHH+Mσ2 (1 + τ)

2
κΨ̈H − P̺H

➁
= P̺Ψ̈H

(
Ĥ

1 + τ
+ H̆

)H(
Ĥ

1 + τ
+ H̆

)

+ Mσ2 (1 + τ)
2
κΨ̈H − P̺

(
Ĥ

1 + τ
+ H̆

)

= P̺Ψ̈H

[
ĤHĤ

(1 + τ)
2 + H̆HH̆+

ĤHH̆+ H̆HĤ

1 + τ

]

+ Mσ2 (1 + τ)
2
κΨ̈H − P̺

1 + τ
Ĥ− P̺H̆ (22)

where ➁ follows from (4). The adaptive precoder can then
be found by setting ∂F̈/∂Ψ̈ equal to zero and taking the

expectation over the auxiliary random matrix H̆. First, note
that we have

E

{
H̆
}

➂
= 0 (23a)

E
H̆

{
ĤHH̆

}
➃
= E

H̆

{
H̆HĤ

}
= 0 (23b)

E

{
H̆HH̆

}
➄
=

Mτ

1 + τ
I (23c)

where ➂ and ➃ follow Lemma 1, and ➄ is due to the
subsequent lemma:

Lemma 4: If A ∈ CM×N represents a Gaussian matrix with
i.i.d. elements of mean zero and variance a, then E

{
AAH

}
=

aN I.

Proof: Since A is a Gaussian matrix, we have vec (A) ∼
NC (0, aI). In other words, if a represents an arbitrary column
of A, then E

{
aaH

}
= a I [22]. However, since A has N

independent columns, the claim follows.

Therefore, we can represent the precoding matrix as

E
H̆

{
∂F̈

∂Ψ̈

}
= E

H̆

{
P̺Ψ̈H

[
ĤHĤ

(1 + τ)2
+ H̆HH̆

+
ĤHH̆+ H̆HĤ

1 + τ

]
+Mσ2 (1 + τ)2 κΨ̈H

− P̺

1 + τ
Ĥ− P̺H̆

}
= 0

➅
=⇒ Ψ̈ = ĤH

(
ĤĤH + ε̈ I

)−1

(24)

where ➅ is due to equations (23a)–(23c), and therefore the

regularization parameter ε̈ can now be expressed as

ε̈ = M (1 + τ)

(
τ+

γ−1 (1 + τ)
3
κ

̺

)

= M (1 + τ)

×


τ+

γ−1 (1+τ)3 (M+N)

(N+1)+(M−1)

(
1+

√
Nπ+(M−2)

π

4

)




(25)

Remark 1: Since the Hessian matrix of the MSE objective
function is positive definite, the expression in (24) is a global
minimizer for the considered MMSE optimization problem.
This implies the optimality of the derived regularization pa-
rameter in (25).

Remark 2: Note that by setting τ = 0 as well as M =
N , the adaptive RPA precoding boils down to the standard
RPA precoding in [12]. In other words, adaptive RPA is a
generalized version of the standard RPA without introducing
any extra computational complexity.

V. SIMULATION RESULTS

In this section and by using simulation results we certify the
superior performance of the adaptive RPA precoding compared
to CI and RCI precoding [4], PA precoding [6], and the
standard RPA precoding [12]. For the case of digital feedback,

the imperfect CSI, i.e., Ĥ, is obtained by using RVQ as ex-
plained in [18]. Plus, in this case and as previously mentioned
in Section III, we assume that the channel estimation error
variance obeys τ = 2−B/N . In other words, when using
adaptive RPA precoding under digital feedback, we replace
τ by 2−B/N in (25). For the case of reciprocal channels, we

set τ = βγ−1, and the imperfect CSI, i.e., Ĥ, is obtained by
using (2). Also for the case of perfect CSI, adaptive RPA can
be easily utilized by setting τ = 0.

First in Fig. 2, we compare the performance of the adap-
tive RPA precoding with standard RPA precoding. Since the
standard RPA precoding is only applicable to the case of
equal number of transmit and receive antennas, we accordingly
assume that M = N = 8. The BER results are depicted under
QPSK signaling and for different CSI qualities including a
reciprocal channel with β = 10, α = 1, and CSI feedback
scenarios based on RVQ using B = 10, 20, and 30 fedback
bits.

As seen under both digital and analog feedback, adaptive
RPA precoding outperforms standard RPA. For example, when
β = 10, α = 1, adaptive RCI achieves nearly 6 dB gain in
transmit power compared to standard RPA to reach the BER
of 10−2. Also under digital feedback, while the performance
trend of standard RPA is nonmonotonic, that of the adaptive
RPA is monotonic. As a result, at high SNRs, the achievable
BER of adaptive RPA precoding based on B = 10 fedback
bits is almost the same as the BER of standard RPA precoding
based on B = 30 fedback bits.

This nonmonotonic behavior of standard RPA precoding is
related to the case of digital feedback where at high SNRs, the
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Fig. 2. BER of standard RPA and adaptive RPA precoding under various
CSI qualities, for QPSK signaling, and for the case M = N = 8.
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Fig. 3. Performance comparison of the BER of CI, RCI, PA, and adaptive
RPA under various CSI qualities, for QPSK signaling, and for the case M =
N = 8.

system becomes interference-limited. Therefore by increasing
the SNR, the performance trend does not constantly improve
and eventually becomes saturated. This implies that for stan-
dard RPA and by increasing the nominal SNR, the performance
trend first becomes improved at low-to-intermediate SNRs, but
suddenly deteriorates at a saddle point, and eventually becomes
saturated at high SNRs, which leads to a nonmonotonic
behavior. For the adaptive RPA precoding, on the other hand,
the performance trend does not suddenly deteriorate. This is
due to the regularization parameter ε̈ which is a function of
the channel estimation error variance τ . Thus, in this case, the
performance trend smoothly becomes saturated, which results
in a monotonic behavior.

In Figs. 3–6, we compare the performance of the adaptive
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Fig. 4. Performance comparison of the BER of CI, RCI, PA, and adaptive
RPA under various CSI qualities, for QPSK signaling, and for the case M =
6, N = 8.

RPA with CI, RCI, and PA precoding. We consider three
different scenarios including the perfect CSI, the reciprocal
channel (β = 10, α = 1), and the CSI feedback.

Particularly in Fig. 3, we consider a scenario with QPSK
signaling and for M = N = 8. For digital feedback, we
assume that the number of fedback bits are B = 10 and
B = 30. As seen, under both perfect and imperfect CSI,
adaptive RPA outperforms other linear precoders. More specif-
ically, under perfect CSI, adaptive RPA respectively achieves
4.5, 7, and 14 dB gain in transmit power compared to RCI,
PA, and CI precoding to reach the BER of 10−2. Meanwhile,
under both reciprocal channels and CSI feedback, while PA
precoding fails to outperform CI precoding especially at not-
very-low SNRs, adaptive RPA precoding achieves a remark-
able performance compared to RCI precoding. For example,
under analog feedback, adaptive RPA achieves 2.5 dB gain
in transmit power compared to RCI precoding to reach the
BER of 10−2. This gain is 6 dB compared to CI and PA
precoding. Also under digital feedback, the BER curve of
the RCI precoding demonstrates a nonmonotonic trend and
as a result overlaps with those of CI and PA precoding at
high SNRs; however, adaptive RPA manifests a distinguished
performance. As demonstrated, at high SNRs, the BER of
adaptive RPA based on B = 10 fedback bits is almost the
same as the BER of CI, RCI, and PA precoding based on
B = 30 fedback bits.

In Fig. 4, we consider a scenario with QPSK signaling and
for M = 6, N = 8. For digital feedback, we assume that
the number of fedback bits are B = 10 and B = 20. Note
that in this case and unlike the depicted scenario in Fig. 3,
the number of receive antennas is less than the number of
transmit antennas. Nevertheless, under perfect CSI, adaptive
RPA is still able to outperform CI, RCI, and PA precoding.
This is also true for the case of digital feedback. However,
in the case of reciprocal channels, while RPA achieves lower
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Fig. 5. Performance comparison of the BER of CI, RCI, PA, and adaptive
RPA under perfect CSI, for QPSK signaling, and for the case M = N =
8, M = N = 16.

BERs than CI, RCI, and PA at low-to-intermediate SNRs, its
BER performance compared to CI and RCI precoders becomes
slightly degraded at high SNRs.

Fig. 5 depicts the BER under QPSK signaling for CI, RCI,
PA, and adaptive RPA precoding in the case of perfect CSI,
and for M = N = 8, M = N = 16. With increasing M
and N from 8 to 16, the following performance trends can be
observed:

• For CI precoding, the BER deteriorates.

• For PA precoding, the BER remains almost constant.

• For RCI precoding, the BER remains constant at low-to-
intermediate SNRs and improves slightly at high SNRs.

• For adaptive RPA precoding, the BER improves remark-
ably over all SNR ranges.

Fig. 6 depicts the BER under QPSK signaling for CI, RCI,
PA, and adaptive RPA precoding in the case of a reciprocal
channel with β = 10, α = 1, and for M = N = 8, M =
N = 16. With increasing M and N from 8 to 16, the following
performance trends can be observed:

• For both CI and PA precoding, the BER deteriorates.

• For RCI precoding, the BER remains constant.

• For adaptive RPA precoding, the BER improves such
that the larger the SNR, the lower BERs can be achieved.

This superior performance of RPA precoding is due to the
fact that: First, by using phase alignment, RPA precoding
increases the output SNR at each user for a fixed transmit
power, compared to CI and RCI precoding. Second, since
it inherently uses the idea of regularization, it improves the
performance at low-to-intermediate SNRs, compared to CI and
PA precoding.

Fig. 7 illustrates the BER of adaptive RPA precoding under
various CSI qualities, for QPSK signaling, and for the case
M = 8, N = 8, 12, 16. As seen, by keeping M fixed and
increasing N , the BER performance remarkably improves.
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Fig. 6. Performance comparison of the BER of CI, RCI, PA, and adaptive
RPA under a reciprocal channel with β = 10, α = 1, for QPSK signaling,
and for the case M = N = 8, M = N = 16.
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Fig. 7. Performance comparison of the BER of adaptive RPA precoding under
various CSI qualities, for QPSK signaling, and for the case M = 8, N =
8, 12, 16.

This also highlights the fact that the case of M = N achieves
the worst BER.

VI. CONCLUSIONS

Thanks to multiple antennas, the BS is able to communicate
to many users simultaneously at the expense of intra-cell
interference. One effective way to suppress this interference
is to deploy linear downlink precoding. However, to exploit
full benefits of multiuser downlink, the availability of perfect
CSI at the BS is necessary, which is not a realistic assumption
in practice. In this case, performance of linear precoders
may become severely degraded. Therefore, in this paper, we
proposed an enhanced linear precoding scheme, dubbed adap-
tive RPA, by judiciously selecting an optimized regularization



0018-9545 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TVT.2014.2372754, IEEE Transactions on Vehicular Technology

8

parameter based on the knowledge of the channel estimation
error variance in advance. It was shown that the proposed RPA
precoding is able to outperform standard linear precoders in
the presence of both perfect and imperfect CSI, except the
case of reciprocal channels with unequal number of transmit
and receive antennas at high SNRs. Therefore, designing a
modified version of adaptive RPA precoding which can achieve
better performance for this very specific scenario might be of
particular interest.

APPENDIX

STATISTICAL PROPERTIES OF |ρℓ,x| (TABLE I)

Consider H ∈ CM×N and vec (H) ∼ NC

(
0, σ2

hI
)
. By

expanding the complex multiplications of matrix R = HH
H

for the case ℓ 6= x, we have

|ρℓ,x| =



[

N∑

n=1

(
hr
ℓ,nh

r
x,n + hi

ℓ,nh
i
x,n

)
]2

+

[
N∑

n=1

(
hi
ℓ,nh

r
x,n − hr

ℓ,nh
i
x,n

)
]2


1

2

(26)

where the notations hr
ℓ,n = ℜ (hℓ,n) , h

i
ℓ,n = ℑ (hℓ,n), are

used for convenience, and hℓ,n is used to denote the estimated
channel coefficient of the n-th transmit antenna to the ℓ-th
receive antenna, i.e., the (ℓ, n)-th element of H. Since we

assumed that hr
ℓ,n, h

i
ℓ,n, h

r
x,n, h

i
x,n ∈ NC

(
0,

σ2

h

2

)
, we have

E
{
hr
ℓ,nh

r
x,n

}
= 0 and var

{
hr
ℓ,nh

r
x,n

}
=

σ4
h

4
(27)

The same applies to all combinations of real and imaginary
coefficient that appear in (26). Therefore

E
{
hr
ℓ,nh

r
x,n + hi

ℓ,nh
i
x,n

}
= 0

var
{
hr
ℓ,nh

r
x,n + hi

ℓ,nh
i
x,n

}
=

σ4
h

2
(28)

and

E

{
N∑

n=1

(
hr
ℓ,nh

r
x,n + hi

ℓ,nh
i
x,n

)
}

= 0

var

{
N∑

n=1

(
hr
ℓ,nh

r
x,n + hi

ℓ,nh
i
x,n

)
}

=
Nσ4

h

2
, ϑ1 (29)

Due to the symmetry of the real and imaginary parts of the
channel taps, the values of (29) also apply to the second
term on the right side of (26). Consequently |ρℓ,x| is a

Rayleigh variable with E {|ρℓ,x|} =
√
2ϑ1Γ

(
3
2

)
=

σ2

h

√
Nπ

2
and E

{
|ρℓ,x|2

}
= 2ϑ1Γ (2) = Nσ4

h [23], where Γ (·) is

the gamma function such that Γ (1) = 1, Γ
(
1
2

)
=

√
π, and

Γ (1 + t) = tΓ (t).
For the case of ℓ = x we have

|ρℓ,ℓ| =
N∑

n=1

|hℓ,n|2 =

N∑

n=1

[(
hr
ℓ,n

)2
+
(
hi
ℓ,n

)2]
(30)

Since hr
ℓ,n, h

i
ℓ,n ∈ NC

(
0,

σ2

h

2

)
, |ρℓ,ℓ| is a χ-square random

variable with 2N degrees of freedom, i.e., |ρℓ,ℓ| ∼ χ2
2N , and

E {|ρℓ,ℓ|} = 2Nϑ2 = Nσ2
h and var {|ρℓ,ℓ|} = 4Nϑ2

2 = Nσ4
h

[23] where ϑ2 , var
{
hr
ℓ,n

}
=

σ2

h

2 ; therefore E
{
|ρℓ,ℓ|2

}
=

[E {|ρℓ,ℓ|}]2 + var {|ρℓ,ℓ|} = σ4
hN (N + 1).
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