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Abstract—In this article, we focus on inter-cell interference aspects, namely self-organizing networks (SOBGPP has
coordination (ICIC) techniques in heterogeneous network fflet-  defined SON as one of the most important standardization
Net) deployments, whereby macro- and picocellgutonomously ¢ 41res for mobile operators today for the operation, rgana

optimize their downlink transmissions, with loose coordiration. i d int f their radi ; ks (RAN
We model this strategic coexistence as a multi-agent system, ment, and maintenance of their radio access networks ( s)

aiming at joint interference management and cell associaon. Cost-efficiently, without relying on human intervention].[3

Using tools from Reinforcement Learning (RL), agents (i.e. SON in HetNets is expected to gain more importance as
macro- and picocells) sense their environment, and self-apt networks are getting denser and becoming more heterogeneou
based on local information so as to maximize their network in size, access technology, and backhauls. Endowed with

performance. Specifically, we explore both time- and frequecy L L= . -
domain ICIC scenarios, and propose awo-level RL formulation. self-configuring, self-optimizing and self-healing caftiéibs,

Here, picocells learn their optimal cell range expansion (RE) Mobile operators can optimize their networks in a totally
bias and transmit power allocation, as well as appropriate decentralized manner, in which the traffic load is balanced
frequency bands for multi-flow transmissions, in which a use among tiers, significantly reducing their operation andite&p

equipment (UE) can be simultaneously served by two or more ; ; by
base stations (BSs) from macro- and pico-layers. To substtiate expgndltures (.OPEX/CAPEX).’ and ultimately satisfyingrese
quality-of-service (QoS) requirements.

our theoretical findings, Long Term Evolution Advanced (LTE- Ay o
A) based system level simulations are carried out in which au Based on the self-organizing capabilities of HetNets, we
proposed approaches are compared with a number of baseline propose solutions temartly offload traffic to open access

approaches, such as resource partitioning (RP), static CREand  picocells and thereby achieve cell splitting gains for both
single-flow Carrier Aggregation (CA). Our proposed Solutids  ime. and frequency-domain ICIC techniques. We focus on

yield substantial gains up to 125% compared to static ICIC . . . . -
approaches in terms of average UE throughput in the time- the downlink transmission as this has been identified as a

domain. In the frequency-domain our proposed solutions yiel Mmore critical intercell interference scenario within Hetl[5].
gains up to 240% in terms of cell-edge UE throughput. Open access picocells are cells that provide access to any us

Index Terms—LTE-A, Reinforcement Learning, Heterogeneous equipment (UE) within their goverage area. As UEs generally
Networks, Cell Range Expansion, Inter-Cell Interference @or- connect to the cell that provides the strongest downlink)(DL
dination (ICIC), Carrier Aggregation (CA), Multi-Flow Tra ns- received signal, DL intercell interference can be reduced.

mission. However, if all UEs connect to the macrocell due to their
Learning Based Frequency- and Time-Domain Inter-Cd#rge transmit power, rather than to picocells at short&adice
Interference Coordination in HetNets with lesser number of UEs, the traffic load will be unevenly

distributed in the network. As a result, the macrocell w#l b
overloaded whereas picocells will be under-utilized [8]-[
As a remedy to this, the concept of CRE was proposed as a
Driven by the network densification and increasing numbeell selection procedure, in which a positive bias is adaded t
of smart-phones, tablets and netbooks, mobile operaters #re picocell's DL received signal to increase its DL fooiyri
compelled to find viable solutions to maximize their netThis bias balances the load among the macro- and picocell
work performance in a cost-effective manner. Heterogesedier by forcing mobile users to handover to picocells, even i
network (HetNets) deployments combining various cell sizéhe picocell's DL received signal is lower. Nevertheless, a
(femto, pico, relays) and radio access technologi€4G/Wi- aggressive range expansion may cause high interference to
Fi), are expected to become cornerstones for future hetepicocell UEs (PUES) located in the picocell expanded region
geneous wireless cellular networks, aiming at substdntia(ER); this is because ER PUEs do not connect to the cells
higher data rates and spatial reuske [1]. HetNets are clyrentith the strongest DL received signal, thus suffering from
studied within the3™® Generation Partnership Proje&QPP) low DL Signal-to-Interference-plus-Noise Ratios (SINFS)
standardization body, where mechanisms including time- am addition, due to the non-uniform traffic and user distribu
frequency-domain intercell interference coordinatio@I@) tion, picocells need to self-organize for effectively o#ftting
with adaptive resource partitioning, cell range expansianacrocell’s traffic. With this in mindintelligent and flexible
(CRE), and interference coordination/cancellation tadweti@l cell range expansion techniques across time and frequency
stage [[2]. In this article, we focus on one of these importantust be devised for macro- and picocells, to mitigate exeess

I. INTRODUCTION
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DL inter-cell interference suffered by ER PUEs, while at the In addition to time domain interference coordination ap-

same time not jeopardizing PUE QoS requirements. proaches, frequency domain interference coordinatioh-tec
nigues have also been considered in the literature for in-
Il. RELATED WORK AND CONTRIBUTIONS terference management and load balancing purposes. In this

context, multi-flow carrier aggregation (CA), in which user
e served by different layers on different component eesri
Cs), has and remains an open and challenging problem. A
related approach to provide an efficient and flexible network
performance improvement is to split the control and usemgla
(C-and U-plane). This concept was introduced and discussed
A. Picocell Range Expansion and Inter-Cell Interference Cin [30], [31] whereby, the C-plane is provided at low freqagn
ordination band to maintain good connectivity and mobility. On the othe

In order to benefit from the deployment of heterogeneo}gnd. the U-plane is provided by both the macrocells and
and small cell networks, range expansion ICIC techniques hdhe small cells (deployed at higher frequency bands) foa dat
been proposed, in which picocells increase their footsint tr.ansfer. Since small cells are not configured with cellesfje
as to balance the load among tiers and achieve cell-sglitti§ignals and channels, they are nanf¥thntom Cellg31].
gains. In what follows, we revisit and summarize both the
range expansion a_md ICIC concepts. C. Contribution

3GPP has studied the concept of CRE through handover , o , o
biasing and resource partitioning among nodes with differe 1€ main contribution of this article is to propose decen-
levels of transmission powers [16]=]18]. The biasing mechHa“Zed solutions fqr qunt power control and cell assd]og
nism allows load balancing among tiers, where depending Bh@ HetNet scenario, in both time and frequency domain. In
the bias value, more UEs can be associated to picocells.!f}§ time-domain, Pico Base Stations (PBSglimally learn
this approach, the bias value is an offset added to the retteif1€ir CRE bias and power allocation, while satisfying their
power of picocells in order to increase its DL coverage are@Vn PUES’ QoS requirements. In turn, the macrocell self-
CRE significantly reduces the DL signal quality of those aseP92nizes so as to serve its own macro UEs (MUEs), while
in the expanded region (i.e., ER PUES), because they ering to the picocell interference constraint. In casttr
connected to cells that do not provide the best DL receivi@ the homogeneousase where all PBSs use the same bias
signal. These interference problems may significantly aiggr Value. the proposed solution is dynamic and self-orgagizin
the overall network performance, calling for intelligesgic 1N nature, where the RAN autonomously optimizes the CRE
schemes to benefit from range expansion and improve {as values of th_e picocells through a loose poordlnatlah wi
performance of ER PUEs. Since ICIC schemes specifiedth‘F macrocell tier. The UE adds these bias values to its
3GPP LTE Releass — 9 do not specifically consider HetNetMeasurements, to check whether a measurement report needs

settings, enhancements of these techniques have beerspeoplf P€ Sent to its serving BS. The PBSs, upon coordination with
to efficiently mitigate interference in subsequent relsasgehe the MBS, learn the CRE bias values and notify the MBS via

LTE standard([27]. In particular, the ICIC techniques3iBPP the X2 interface. ) _ .
Releasel0 — 12, can be grouped into four categories: time- !N the frequency-domain, we consider: (@) the single-flow

domain, frequency-domain, power based and antenna/spafiy Where users are served by only one BS at a time, and
based techniques [28]. [29]. (b) the multi-flow CA, in which a UE can be simultaneously

served by two (or more) BSs from different layers/tiers, but
. ) on two different CCs. Our proposed learning based solution
B. Literature Review is validated using a long term evolution advanced (LTE-A)
There is a sizeable body of literature on the use of CREstem level simulator, through a comparison with a number
for traffic load balancing in HetNets; see eld. [6]2[15] ahd t of benchmark solutions such as resource partitioning aatit st
references listed therein. 101[6], closed-form expressiare CRE.
derived to calculate CRE bias values for different rangeaexp It is worth noting that most of the existing ICIC and
sion strategies. Moreover, a cooperative scheduling selismload balancing techniques are simulated in simplified HetNe
proposed to mitigate interference caused by macrocells ostenarios with homogeneity inside the macro layer as well as
ER PUEs. To improve DL capacity and users’ fairness, thbe pico layer; by considering the same CRE for all picocells
authors propose a new subframe blanking based cell selecthe network. The major difference between our contriuti
tion procedure in[[[7]. Using tools from stochastic geometrand existing techniques is that we propose a joint optimiza-
analytical models accounting for base station (BS) and Uten approach, in which each picocell individually learits i
locations have been studied to analyze spectral efficisncaptimum ICIC strategy. This is achieved by optimizing the
in range expanded picocell networks in][11], which has latgicocells CRE bias selection and power allocation strategi
been extended to ICIC scenarios [n][18]2[15]. In][12], thin coordination with the macrocell. In contrast to existing
throughput performance of different CRE values and difiereapproaches, our solution is based on Reinforcement lagrnin
ratios of protected resources were carried out based oermsystvhich is a widely accepted tool in dynamic wireless networks
level simulations. and allows to investigate how BSs interact over time and

In this section, we summarize the concepts of range
pansion and time/frequency domain ICIC in HetNets a
discuss related works from the literature to better present
contributions.



bandwidthAf = 180 kHz. Orthogonal frequency division
multiplexing (OFDM) symbols are grouped into resource
blocks (RBs). Both macro- and picocells operate in the same
frequency band and have the same number of available RBs,
denoted byR. Without loss of generality, we consider that
all transmitters and receivers have a single-antehna [83].
set of UEs/ = {1,...,U} is defined, whereby the UEs are
dropped according to scenario #4b [in][18], i%eof UEs are
uniformly dropped within a hotspot around picocells and the
remaining UEs are uniformly dropped within the macroceltul
area. All UEs (and BSs) are assumed to be active from the
beginning of the simulations. We denote bym) an MUE,
while u(p) refers to a PUE. We denote " (¢;) andp?(tx)

the downlink transmit power of MB%: and PBSp in RB r

at time instantt,, respectively. Herebyt, = kT, is a time
Fig. 1. A heterogeneous scenario with cell range expansipitant withk = [1,..., K], and7T, = 1 ms. The SINR at an
(CRE). MUE u allocated in RBr of macrocellm over one subframe
duration, calculated over the subframe indeis given by:

Pico cell area
without CRE

attempt to optimize their utility[[32]. We propose a reirder M, oM

ment learning framework, in which not only the picocells buf*(¢;,) = = pr ’“)g";;“"‘( &) .
also the macrocell perform load balancing and power control ST M )g™ () + S0 PR P ()M (t) 402
The challenge of this approach lies in effectively offloapine j=1.j#m o p=1 o

UEs from the macrocells, while simultaneously maintaining pt e

the QoS requirements of PUEs. By enabling coordination (1)
between both layers and considering the performance of MUfes (@), ¢V, (¢x) indicates the channel gain between the
and PUEs, the proposed techniques are seen as a promigiagsmitting MBSm and its MUE u(m); gj“-%(tk) indicates
approach to overcome this challenge. the link gain between the transmitting MBSand MUE v

The remainder of this paper is organized as follows: Sectigm the macrocell at BSn; 95,“3.7‘(%) indicates the link gain
Il summarizes the key assumptions in the considered systepetween the transmitting PBSand MUE u of macrocellm;
level HetNet scenario. In Sectidn IV, the proposed timemndo? is the noise power. The interference terms caused by the
domain dynamic RL based ICIC procedure is introduceBSs and the PBSs are denoted BY and I, respectively.
Additionally, a satisfaction equilibrium based time-doma tha gINR at an PUE allocated in RBr of picocellp over

ICIC technique enabling BSs to guarantee a minimum QQge sybframe duration, calculated over the subframe ifdex
level is presented. Sectidn V presents the proposed dynar@@iven by:

RL based ICIC procedure in frequency-domain. In Sedfidn VI,
the proposed solutions are validated in an LTE-A systeml leve

simulator, which is aligned with the simulation assumpsiam ;. ) — PR (b)) G, (t)
3GPP standardization studiés[18], and Sedfion VII coresud T M P
' p#u’ (tk)g u r(tk) + p:ln.,u., (tk)g'm,u,r'(tk) +o?
the paper. j:§¢p o mzzjl
IP ™
[1l. SYSTEM MODEL AND PROBLEM FORMULATION (2)

In this section, we present our system model and probldm(2), g, . (t«) indicates the link gain between the transmit-
formulation for jointly optimizing the power allocation dn ting PBSp and its PUEu; g% (t;) indicates the link gain
traffic load among tiers. The goal of our learning basdeetween the transmitting PB$ and PUEw in the picocell
approaches in Sectién)V and Sectioh V is to develop straseght PBSp; and g)", . () indicates the link gain between the

to solve the optimization problem formulation presentethia  transmitting MBSm and PUEu of PBS p.

section. In the scenario of Figd1, cell association is performed
according to the maximum biased reference signal received
A. System Model power (RSRP) [[19]/24][125]. In particular, a Ukis handed

. . ver from cell; to cell [ if the following condition is fulfilled:
We focus our analysis on a network deployment with muE J 9

tiple picocells overlaying a macrocellular network cotieip

of three sectors per macrocell. A network consisting of a sét; rsre(u) [dBmM] + §; [dB] < P, rsre(v) [dBmM] + 5; [dB],

of M ={1,..., M} macrocells and a set & = {1,..., P} 3)
uniformly randomly distributed co-channel picocells pexaro  where P, rsre(v) ( Pjrsre(w)) is the u-th UE's RSRP from
sector is considered, as depicted in . 1. We consider tleall j (/) in dBm, andg; andj; are the range expansion bias
the total bandwidth (BW) is divided into subchannels witlof cell j and! in dB, respectively.



B. Problem Fromulation local and limited information. It has been shown that the

We focus on joint interference management and Céqar_ni_ng appraoch converges to optimal values for Markov
association in HetNets relying on both, the time- ang€cision processes (MDPs) [26], where the goal of a player
frequency-domain ICIC mechanisms. Interference managde-© find anoptimal policy 7*(s) for each states, so as to
ment is achieved by power control at both tiers, and céllinimize the cumulative costs over time.
association is optimized by REB? adjustment per picocell. [N Some cases, optimality is not aimed at, and thus less
The considered optimization problem aims at achieving @mPplex algorithms are preferred, in which agents are yolel
target SINR for each UR(n) € U associated to B%. The interested in guaranteeing a certain level of s_ausfadoqh_elr
following joint power allocation and load balancing optirai  USers. Therefore, our second approach considers a sttsfac
tion problem formulation calculated over time instantsfor Pased learning procedure based on game theory, which is a

each BSn is defined as follows: decentrali;ed algo_rithm_ allowin_g_ pl_ayers_to self-configyso
K as to achieve satisfaction equilibria. This approach guara
mpm Z Z |,Y77f(n) (tr) = Vearget] (4) tees that the QoS requirements are satisfied in the network.

The idea of satisfaction equilibrium was introduced [in] [37]

ey B k=1 u(n)eU . . . .
AL CELY [38], in which agents having partial or no knowledge about

subject to: their environment are solely interested in the satisfactid
R some individual performance constraints instead of irtligi
Zp:}(tk) <pha  Vn (5) performance optimizqtion. Here, we consider a satisfactio
—1 based game formulation that enables players (i.e., PBSs) to
B = 10°7/10 with 87 € {0,6,12} dB (6) autonomously adapt their strategies to guarantee a céstah

ih SR _ o bei h | . of QoS to UEs when optimality is not aimed for.
fW'tS Z?‘:ldprrgt’“)s_ ptotf elnk? tb(_e to:ja trﬁmsmlt POWET "~ The main difference betwee@-learning and satisfaction
of BS n, and the SINR after the biased cell association |8, ing stems from the fact the former approach minimizes

u(n) _ pulm) u(p

v (k) o {.7". (tk), 7 (th) }- o ) . the total cost over time by trying different actions (trials
The optimization problem formulation il(4) aims at aCh'e\’é\nd errors) as well as striking a balance between explaoratio

ing a target SINR for each UE by joint power allocatio

. X ind exploitation. As its name suggests, the latter algorith

and REB value adaptation for load balancing. Our_systg Uarantees that a given PBS does not update its strategyas lo
model f_ocuses on a co-channel HetNeft deploymentl, in whi lg its performance metric is satisfied. The rationale fongisi

increasing the power level of a BS in one RB will causgqi, aigorithms is to underscore the tradeoffs of optimalit
interference to a UE scheduled on the same RB by af?"‘p*ﬁf satisfaction. Rest of this section briefly summarizes th
BS, so that the target SINR cannot be achieved by sim

eration of classical time domain ICIC, and subsequentl
increasing the transmit power levels. Additionally, coaistt provides further details about the proposgdearning and(lat- y
(5) implies that the total transmit power of a BS is limited.

isfaction based learning time-domain ICIC and load balamci

techniques.
IV. TIME-DOMAIN ICIC: A REINFORCEMENTLEARNING

PERSPECTIVE A. Classical Time-Domain ICIC

In this section, we first describe the time-domain ICIC o : . .
. . o .~ The basic idea of time-domain ICIC is that an aggressor
approach in order to introduce our self-organizing leagnin : o
S : : node (i.e. MBS) creates protected subframes for a victimenod
procedures in time domain. Our first approach leverages,.a

dynamic reinforcement learning procedure in which ickscel(i'e' PBS) by reducing its transmission power in certain-sub
y gp P frames. These subframes are called Almost Blank Subframes

optimally learn their CRE bias in a heterogeneous deploymeg&BS)' Notably, in co-channel deployments, ABSs are used

of picocells. Moreover, the macrocell learns which MUE . " i
. . A reduce interference created by transmitting nodes while
to schedule and on which RBs, while taking into account . : ,
; : -~ providing full legacy support. Fid.] 2 depicts an ABS example
the picocell resource allocation. To do that, we consider’ a :
: - with a duty cycle of50%. During ABS subframes, BSs do
two-levelapproach with loose coordination among macro and . . ) ”
) . X ) o not transmit data but may transmit reference signals catiti
picocell tiers, in which the RAN autonomously optimizes the . .
. ; ; . ontrol channels, and broadcast information. For the el@amp
CRE bias value of picocells. At the same time the picocells L . . :
. . . S scenario in FiglR2, if the PBS schedules its PUEs which have
dynamically learn their transmit power levels to maximiae t

overall system performance. low SINRs in subframegt1, #3, #5, #7, #9, it protects such

We propose ap-learning formulation, which consists ofpUES from strong inter-cell interference.
a set? of PBSs and a seiM of MBSs, denoted as the _ ) )
players/agents. We define a set of stafsand actions4 B @-Leaming based Time-Domain ICIC
aiming at finding a policy that minimizes the observed costs For the problem formulation of)-learning, we divide the
over the interaction time of the players. Every player esgdo problem into a bias value selection and power allocatiorr sub
its environment, observes its current stateand takes a problems. These two sub-problems are inter-related in hwhic
subsequent actiomaccording to its decision policy : s — a. each picocell, as a player, individually selects first a bilse
For all players, individuaty-tables maintain their knowledgefor CRE by considering its own PUES’ QoS requirements, after
of the environment to take autonomous decisions based which the transmit power is optimally allocated. Addititiga



Subframe duration
(a_) ] <} -
- Frame duration >

e e A

Time

(b) — Desired link
— — Interfering link

Fig. 2: Time-Domain ICIC in LTE-A with (a) Subframe structyr(b) Transmission by the picocell and the macrocell.

we consider the MBS as a second type of player, which
performs learning after the picocell has selected its bédhises .
and transmit power levels per RB. We name this learning
approach agdynamic-learning, in which the picocell informs
the MBS which RBs are used for scheduling ER PUEs through
the X2 interface. These RBs will be protected by the MBS by
using lower power levels. In case of more than one PBS, the
MBS considers the protected RBS of all PBSs, and optimizes
its transmit power allocation on these protected RBs as well
as on the remaining RBs. Formally speaking, the player,
state, action and perceived cost associated to the Qtearni
procedure are defined as follows:

o Player: PBSp,V1 < p < P and MBSm, vVl <m < M. °
o State: The state representation of playerat timet; in
RB r is given by the vector statg” = {7/ 1™},

O7 |f I‘;‘L(n) < ].—‘target_ 2 dB
Ig(n) =4q1, fif Tiarget— 2 dB < Fg(n) < Ttarget+ 2 dB .,
, otherwise

[\]

(7
wheren = {p,m}, T“™ = 101log (Byﬁ(") is the instan-
taneous SINR of UE: in dB in RB r, andT'arget = 20
dB is the target SINR value. In our state definition, we
consider both MUE and PUE interference levels, which
implies that both players optimize both type of UES’
states. We consider a target SINR of 20 dB and define a
range within which the instantaneous SINR is satisfied.
This range is selected to be small, i.&.2 dB [4Q], to
be close to the target SINR. The main motivation for
defining such a range is that it is very difficult to maintain
exact SINR values for each of the UEs at each BS. In
particular, even when a UE’s SINR is very close to the
target SINR, if an exact SINR is aimed, the UE will be
considered not to be in the targeted state, hence yieldi
stability problems. We consider the range+eif dB to be
acceptable, because we target a BLER @, which is

symmetric range oft2 dB.

Action: For player PBS, the action set is defineds=
{BP,al} ... ry, Wherea? is the transmit power level

of PBS p over a set of RBS{1,..., R}, and 87 is the
bias value for CRE of PB$. It has to be pointed out
that the bias value setting will influence the convergence
behavior of the learning algorithm and that the presented
bias values have been selected experimentally. For player
MBS, the action set is defined a8" = {a]"},c(1,... R}
wherea" is the transmit power level of MB%: over a

set of RBs{1, ..., R}. Different power levels are defined
for protected RBs.

Cost: The considered cost in RB of playern is given

by

C

. {500, i P> Prax g

T (0 Tged?, if otherwise

The rationale behind this cost function is that tge
learning aims to minimize its cost, so that the SINR at UE
u is close to a selected target valligge: Considering a
cost function with a minimum as target SINR as [ih (8),
will enable the player to develop a strategy that leads
to SINR values close to the target SINR. The target
SINR is set to be 20 dB, and this corresponds to a
maximum CQI level of 15 in typical look-up tablées [40].
Therefore, setting an SINR target 20 dB is considered

as a reasonable optimization goal for the propo&ed
learning approach. The considered cost of 500 is only for
the case that the total transmit powBE, is larger than
the maximum transmit power of a BS. It provides the best
performance and convergence trade-off in our simulations
as shown in Sectiobn_VIID and has been heuristically
selected[[34].

n Being in states after selecting actiom and receiving the
imediate cost, the agent updates its knowled@¢s, a) for
this particular state-action pair as follows:

required for LTE systems [39]. According to our link-to- Q"(s,a) + (1 —a)Q"(s,a) + alc” + Amin Q"(s', a)], (9)

system level mapping look-up table, this target BLER still

holds for the second largest CQI value 14. In this caseherea = 0.5 is the player’'s willingness to learn from its
the SINR decreases by 2 dB. Hence, we selecta 2 @Bvironment)\ = 0.9 is the discount factor, and is the next

degradation as an acceptable range for the target Slisate [34], [35]. Hereby, the agent’s previous knowledgeuab
and since the cost function is parabolic, we considerthe state-action pais, a) is represented by the first term in



(). On the other hand, the second term represents the sagentThe proposed satisfaction-based time-domain ICIC tech-
learned value, which consists of the received adstafter nique is carried out as follows. First, at time instapt= 0,
executing actiona and the estimated minimum future costach playerp sets its initial probability distributionr]; (O)El,
min, Q"(s’,a). Hence,Q-learning is an iterative procedureand selects its initial actiomﬁp(o) following an arbitrary
in which the previous knowledge)(*(s,a)) is updated by chosen probability distribution per RB. Subsequently, at
considering the newly obtained knowledge represented &y time instantt, > 0, each player chooses its acti@u';[p (tr)
cost valuec and estimates of future costsin, Q™(s’, a). according to its probability distribution?, (t). This prob-

In addition to theQ-learning formulation, referred to asability distribution is updated if the target utilityiarget =

Ttarget

dynamic QLin the following, we also consider the scenari%: rlog, (1 + 10710 ) is not achieved, following the step
i

where there is only one player: the PBS. In this approacly, onize of probability updating rule. For the considered peabl
the PBS is carrying out the decentralized learning proe&dufy mulation. the step size is given by:

and informs the MBS about the RBs allocated to ER PUESs to

be considered as ABSs. Subsequently, the MBS uses those

ABS patterns on these RBs and uniformly distributes its bp(tr) =
transmit power over the remaining RBs. Through the rest

of the paper, this variation of th@-learning formulation is whereuw,,(t;,) is the observed utility andmax,, is the highest
refered asstatic QL utility the PBS p can achieve in a single player scenario.
Subsequently, every PBSupdates its actiongp (tx) at each
time ;. according to a probability update functidp(rh, (tx)),

) ) which is defined as follows:
As discussed before, th@-learning based ICIC procedure

aims at optimality by achieving a target SINR for the MUES; (2 (1)) = 22 (1)) + 7 (t)bp (1) (ﬂ{ap (tn)—a?. ] — wnp(tk)) ,
we propose another approach that guarantees a level of QoS * : ey (13)
satisfaction. This approach does not achieve the targelRSIlN,hereVp

. ) € P,7y(ty) = ﬁ is the learning rate of the PBS
values as defined for th@-learning based ICIC procedure,p_ The rationale behind this probability update functionds t

however, it is less complex than tig-learning based ap- 54ate the probability of selecting actiaf) (t)) based on the

proach in terms of memory and computational requiremenrs?ep sizeb, (t,) in (@Z), which is a function of the observed
Compared ta@)-learning the agents do not have to store a tabﬂﬁility

reflecting their knowledge for each state-action combamati
Instead, a probability distribution over all actions is reth
Hence, instead ofS| x |.A| only 1 x |.A| information is stored

Umaxp T Up(tk) — Utarget
b)

12
2Umaxp ( )

C. Satisfaction Based Learning in Time-Domain ICIC

If the observed utilityu, (i) is larger than the target utility,
i.e. if the agent is satisfied, the PBS selects the same action

. . . . ) . s at timet,, — T as described in the first condition 14).
in the satisfaction based learning. A discussion about t k y 4L {14)

. . herwise it selects the action according to the probabilit
memory and computational requirements of both approadb‘?gtribution functionr® (t4), as follows:
is presented in Appendix B. np k> '

The satisfaction based learning algorithm is defined as a

game in satisfaction-form o (1) = {agp (tx — Ts), if 2, (th) > Utarget (14)
G ={P,{A}per, {tup}per}- (10) v ab (ty) ~nh () otherwise '
The setd, = {A%, ..., AL} represents the set of, Where ~ means according to the probability distribution

actions PBSp can select. An action profile is a vector= 7, (tx). The probability distribution is then updated as fol-

(a1,...,ap) € A, whereA= A, x ... x Ap. Forallp e P, lows:

the functionu, : A — R, is the utility function of PBSp

(see definition in[(Z11) for time-domain ICIC algorithm at 8m .
p k) _ {ﬂ'ﬁ (tk)a if Up(tk) > Ftarget'

tx). . .
dp(mh (tx —T5)) otherwise

T,
We decompose our satisfaction based learning algorithm "
into two inter-related sub-problems. The PBS first selects a ) ] ] )
bias value for CRE by considering its own PUES’ QoS re- Finally, f[hlsllearnlng procedure is repea_ted until conver-
quirements. Subsequently, it selects the transmit powdt®n 9€nce, which is proven based on the following proposition.

(15)

r according to a discrete probability distributiai,, () =  Proposition - 1:The behavioral rule in equatiof {14)-{15)
(7P (t), ..., 7, (tx)). Here, 72 (t) is the probability With probability distributions

L) - T A iy P (1) = (7 () P (te) €A with
with which the PBSp chooses actiom?,, (tx) on RBr at rn, (k) = Tr1(bk)s -5 10, (Bk)) € Aps

time instantt,, which are the same power levels as in th8 € P, converges to an equilibrium of the game
Q-learning algorithm. Andp, € N, 2 {1,...,|A,|} is the 9 = {P:{Ap}per, {up}pep} in finite time if for all p & P
element’s index of each set,,Vp € P. We define playep's and for alln, € {1,....[A,|}, it holds thatr?,, (tx) > 0.
utility function w,(t,,) at time instant,, as the achievable rate Proof: See Appendix AM

up(ty) = Z logy (1 + 74P (t;,)). (11) 1For| brevity, let the RB index be dropped from the formulation in the
<k seque



V. FREQUENCY¥DOMAIN ICIC: A REINFORCEMENT
LEARNING PERSPECTIVE

Algorithm 1 Dynamic Q-learning based ICIC algorithm for
single-/multi-flow CA.

In this section, after describing the classical frequencyi: loop

domain ICIC as defined in 3GPP, we introduce new frequen ?
domain ICIC and load balancing algorithms based on RL

techniques. In contrast to existing frequency-domain ICIC‘5

solutions like single-flow CA (where PBSs select one CC and

apply a fixed CRE bias), we consider a heterogeneous case
where different CRE bias values are used across differest CC:
in a self-organizing manner. In such a scenario, we formulatQ:
dynamic frequency-domain ICIC approaches applied both, ig.
single and multi-flow CA settings. On the other hand, (he 11
learning based ICIC is considered in a similar way as it was:
discussed for the time-domain ICIC. 13

14:

A. Classical Frequency-Domain ICIC 15:

16:
In 3GPP Release 12, frequency-domain ICIC is performag.
through the concept of CA. IN[36], CA is studied as a functioms:

for playerp do
Select primary CQC” € {1, 2}
Select bias valué? for primary CCC?
Select power levek? according toarg minge 4r Q% (s, a)
on both CCs
end for
Inform playerm about primary CQC?
for playerm do
Select playep’s secondary CC as primary CC™
if multi-flow CA then
Select bias valug™ for primary CCC™

end if
Select power level a;* €A™ according to
arg mingeam QM (s, a)

end for

Receive an immediate cost
Observe the next stat€
Update the table entry according to equatigh (9)

s=s'

of bias values and frequency band deployment, in which CR: end loop

enables UEs to connect to several carriers simultaneously.
Two different methods are considered, namely the singld- an

multi-flow CA. In single-flow CA, the MBS is the aggressoBS and more than one CC, each PBS may select different
cell and the PBS is the victim cell as depicted in Eig. 3 (ae THCCs as their primary CC. In this case, we propose that the
PBS performs CRE on CCL1 to offload the macrocell and servié8S selects that CCs as its primary CC, which has been
its ER PUE on this CC, so that the MBS is the interfering BSelected by less number of PBSs. In case of equality, the
in CC1. In CC2, the PBS does not perform CRE, so that ti&C which will lead to larger performance degradation caused
ER PUE is only served on CC1 and the remaining PUEs cary MBS interference is selected. While MBS selects low
be served on CC2. Hence, single-flow CA enables UEs power levels on its secondary (PBS’s primary) CC, it selects
connect to one BS at a time. higher power levels on its primary CC. The rationale behind
A recent feature in 3GPP Release-12, referred to as muitdnsidering two different power levels for MBS’s primarydan
flow CA, enables a better use of resources and improveacondary CC, is to reduce interference on ER PUESs, which
system capacity. As depicted in FId. 3 (b), in multi-flow CAare served on PBS’s primary CC. The main difference with
multiple BSs (from different tiers) simultaneously trarismthe dynamic time domain ICIC learning procedure discussed
data to a UE on different CC$_[R0[=[23]. While the MBSn Section IV is in the action definition. Hence, we redefine
remains still the aggressor cell on CC1, in which PBS perforaur action formulation as follows:
CRE, it becomes the serving cell on CC2. Hence, in single-, Action: For player PBSp the action set is defined as,
flow CA, UEs associate with only one of the available tiers  Ar — {CP,BP,al} cqi.... Ry, WhereC? is the se-

at a given time and in multi-flow CA based HetNets, UEs  |ected component carrier to perform CRE on the selected

can be served by both macro- and picocells at the same time.
This necceciates a smart mechanism in which the different
tiers coordinate their transmission through adaptive regife
expansion across different CCs.

B. Dynamic Frequency-Domain ICIC for Single-Flow CA

CC, P € {0,6,12} dB is the bias value for CRE on
selectedC? of PBSp anda? is the transmit power level
of PBSp over a set of RB1, ..., R}. Hence, the PBSs
will independently learn which CC it performs range
expansion, with which bias value, and how to optimally
perform power allocation.

For player MBSm the action set is defined ag™

We divide the single-flow CA problem into primary CC
selection, bias value selection and power allocation sub-
problems. These three sub-problems are inter-related ichwh
the PBS and MBS (as players) learn their optimal ICIC
strategy, which is presented in Algorithm I. The PBS first
selects its optimal CC to perform CRE, then the bias value
for CRE in the selected CC, after which the transmit pow&r- Dynamic Frequency-Domain ICIC for Multi-Flow CA
is allocated accordingly. Hence, we consider a three-stagdn contrast to the single-flow CA in which the MBS is
decision making process, in which the MBS is informed aboatways the aggressor cell, in multi-flow CA either the MBS
the PBS’s primary CC via the Xinterface. The MBS selects or the PBS is the aggressor cell. This is because both MBS
PBS’s secondary CC as its primary CC and learns its optinedd PBS perform CRE on their primary CCs, so that a UE
power allocation strategy. In a network with more than ongan be served on different CCs by different BSs based on its

{alc. Yreqa,....ry, Whereal - is the transmit power level
of MBS m over a set of RBs{1,..., R} on CC Ci.
Different power levels are defined for MBS'’s primary and
secondary CCs.
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Fig. 3: Scheduling of an ER PUE (in case of CRE)/cell-edge MiEcase of no CRE) in frequency-domain ICIC with (a)
single-flow and (b) multi-flow CA.

biased received power. Similar to the single-flow CA leagnincells and shadowing standard deviation of 8 dB. The user
algorithm, the multi-flow CA based ICIC learning algorithmassociation is based on the strongest (biased) referegeal si
assumes PBS and MBS as players. The main difference widiteived power (RSRP).
the single-flow CA based ICIC learning algorithm, is the@gti  The scenario used in our system-level simulations is based
definition, which is highlighted in the IF-condition in linEl on configuration#4b in [18]. We consider a macrocell con-
of Algorithm 1. sisting of three sectors anBt = {2,4,8} PBSs per macro
. Action: For player PBSp the action set is defined as,sector, uniformly randomly distributed within the macrbce
AP = {C?,BP,al},cq1,.. ry, and for player MBSm the Iu_Iar_ environment.Nye = 30 mol?ile users are generated
action set is defined as{™ = {C7", ™, a"}e(1. Ry» within each macro sector from WhlcthSp_m_: (% - Nyg/P] _
whereC;,_,, ,, is the component carrier index that carré randomly and uniformly dropped within a 40 m radius

be selected in order to perform CRE on the Se|ect&ﬁ each PBS. The remaining UEs are uniformly distributed
CC, 3 € {0,6,12} dB is the bias value for CRE on within the macrocellular area. All UEs have an average speed

selected CQ’;, anda, is the transmit power level over Of 3 km/h. A full buffer traffic model is assumed. Without
a set of RBs{1, ..., R}. Hence, the PBSs and MBS will lost of generality, we do not consider any (feedback) delays
independently learn which CC they perform range expaﬁlroughout the simulations due to computational limitasio
sion, with which bias value and how to optimally perforn$ince a velocity o8 km/h is assumed, the channel conditions
the power allocation. Since, both PBS and MBS can o not change significantly within milliseconds, so that the
aggressor cells, different power levels are considered f@ftape of the presented results will remain the same/sitfilar
CCs on which the BSs perform CRE, and the regular C@&lays are considered. Further details about the systeeh lev
which do not have CRE. simulation parameters are provided in Table I.

In addition, we consider the case of one player formula-

tion, in which the PBS is the player. In this case, PB8. Benchmark Solutions

carries out the multi-flow CA baseg-learning procedure  For the performance comparison of our proposed self-
and informs MBS about its primary CC and MBS usegrganizing solutions, the following benchmark referenaes
reduced power levels on this CC. However, even if nggnsidered:

CRE is performed by the MBS, a UE can be served by | gesource Partitioning (RP)The MBS and the PBSs
both PBS and MBS on different CCs at the same time. niformly distribute their transmit powers among RBs.
ThI.S learning algorithm WI||. be cpmed adF static Q]_ Half of the RBs are used by the macrocell, and the
while the two player algorithm is nameldF dynamic other half is reused by the picocells. This way, cross-tier
QL. interference is avoided[[7].
o No ICIC with CRE:Cell range expansion is performed
VI. SIMULATION RESULTS without any inter-cell interference coordination. Here, a
In this section, the proposed solutions are validated in a bias of 5 = [0;6;12] dB is added to the UE’s the DL
3GPP-compliant LTE-A system-level simulator. First, time received signal strength by PBSS;= 0 dB means no
domain ICIC results are discussed followed by frequency CRE.
domain ICIC results. The system-level simulator is basede Fixed ABS with CRE: An ABS ratio of
on snapshots, i.e. in each iteration the transmission time {1/10,3/10,7/10} with CRE is considered, which
interval (TTI) of 1 ms is simulated [41]. All system layout, describes the ratio between ABS and the total number of
channel model and BS assignment methods are based on 3GPPdownlink subframes in a frame, i.e. TTIs in which the
configurations[[18]. A time- and frequency selective channe MBS does not transmit. The PBS transmits with uniform
is considered with shadowing correlation of 0.5 between power allocation over all RBs in all TTls.



TABLE I: Simulation parameters.

Parameter

Value

Parameter

Value

Cellular layout

Hexagonal grid,
3 sectors per cell

Transmission mode

Transmit diversity

Carrier frequency

2 GHz

Macro path loss model

128.1 + 37.61og,o(R) dB (R[Km

N

System bandwidth 10 MHz Pico path loss model 140.7 + 36.7log ;o (R) dB (R[km
Bandwidth per CC 5 MHz Traffic model Full buffer

Subframe duration 1ms Scheduling algorithm Proportional fair

Number of RBs 50 MUE speed 3km

Number of macrocells 1 Min. dist. MBS-PBS 75 m

Number of PBSs per macroceft | {2,4,8 Min. dist. PBS-PBS 40m

Max. macro (pico) BS PR = 46 dBm Min. dist. MBS-MUE 35m

transmit power (Pl = 30 dBm)

Number of UEs per sectaVyg 30 Min. dist. PBS-PUE 10 m

Number of hotspot UE$Vhotspot [2/3 - Nug/P]| PUE radius 40 m

Thermal noise density -174 dBm Macro (Pico) antenna gain 14 dBi (5 dBi)
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CRE 12 dB

Fig. 4: CDF of the UE throughput of the reference algorithmsime-domain ICIC.

» Fixed CRE with adaptive AB®&niform power allocation two-fold. On the one hand, UEs select the picocells even
is performed using fixed CRE bias values for eactimough they are not the strongest cell and hence suffer from
picocell. Using an X2 interface, the MBS is informednterference from MBS since the received signal of MBS is
on which RBs the ER PUEs are scheduled. The MB&rger than that of the picocells.
mutes only on these RBs, so that they define the ABSOn the other hand, PBSs may allow too many handovers
pattern for the MBS. and may not be able to guarantee QoS requirements of their

] ) . own PUEs. Afixed CRE with adaptive AB®ith 5 =6 dB is

System level S|muIat|or_1 results in terms of average UEood for cell edge UEs whereéiged CRE with adaptive ABS
throughput are presented in Fig. 4 and Eig. 5 for time domajjih 5 — 12 dB is detrimental as the ER PUESs get exposed
ICIC. The throughput values are obtained based on expg-\BsS interference; the latter is better for UEs with good
nential effective SINR mapping (EESM) and look-up tableghannel conditions (i.e., higher percentiles). Theed ABS
for the link level abstraction. No further link level prots \ith CRE 1/10 clearly results in bad performance for each
are considered for the evaluation of the presented systgfHs yalue for UEs due to resource under-utilization. Yet, a
level simulation results. The Cumulative distribution ¢tions larger performance degradation is seen inRiescheme (due
(CDFs) are plotted for a scenario, in whiéhpicocells per 5 resource under-utilization).
macrocell are activated. To provide a better overview, we The static QL learning scheme in which PBSs learn how
split the CDF of the reference algorithms (except RP) ang select their optimal beta values and transmit power tevel
the proposed)-learning based algorithms together with thgng where MBSs use static ABSs, achieves high data rates
average best reference algorithms (and RP) into two figuregnije yielding poor performance for cell-edge UEs, as shown

In Fig.[4, it can be observed that increasing the CRE biasFig.[5. Our proposedynamic QLapproach, in which PBSs

values without any inter-cell interference coordinatiesults perform @-learning by considering their own PUES’ QoS re-
in very low data rates for cell-edge PUEs. The reason dsirements yields the best performance; PBSs do not inereas
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Fig. 5: CDF of the UE throughput of th@-learning based
algorithms in comparison with reference algorithms in time
domain ICIC.

the beta values, without considering QoS requirementsedf th
PUEs. On average, we obtain a gainlab% compared to the
RP and 23% compared to thd=ixed CREwith 3 = 12 dB.
The rationale is that the PBS informs the MBS which RBs are
used for scheduling its ER PUEs, leading the MBS to reduce - - Satisfaction ABS 309
its power levels. Ultimately, the highest data rates aréexell | | —&— satisfaction ABS 709 ‘
by the proposedynamicQL approach while not being worse 0 5 10 15 20 25

than any of the reference scheme. Finally, it is worth noting ABS power reduction [dB]

that the proposed self-organization approach hinges oosloFig. 6: (a) 50-th % UE throughput as a function of the ABS
coordination in the form of RB indices used for ER PUEshower reduction in time domain ICIC, and (b) Cell-edge UE

among macro and picocell tiers, and depending on traffic logiftoughput as a function of the ABS power reduction in time
every PBS adopts a different CRE bias value so as to optim@émain ICIC.

its serving QoS requirements.

- B - CRE 6 dB ABS 30%
- —&— CRE 6 dB ABS 70%
- ¢ - CRE 12 dB ABS 30%
—— CRE 12 dB ABS 70%
- © - Static QL ABS 30%
—©— Static QL ABS 70%

Cell-edge UE throughput [Mbps]

_ The 5-th% UE throughput results are shown in [Eg. 6 (b).
B. ABS Power Reduction For thefixed CREechnique it can be observed that there exists

We also evaluate the performance of our proposed time 4! optimum ABS power set_tlng for each combination of (_:RE
main algorithms for the ABS ratios 3/10 and 7/10 with reducedjas @nd ABS ratio; which is 6 dB to 9 dB power reduction.
MBS transmission power in a HetNet scenario consisting ¢f'€ corresponding optimum ABS ratios are 3/10 for 6 dB CRE
2 picocells per macro sector. The ABS ratio describes thias and 7/10 for 12 dB C_:RE bias. For a ABS_ rgtlo of 3/]:0'
ratio between subframes in which the MBS mutes and reguFQF’ propose_d ICIC techmque_s per_form very similarly, Wh'le
downlink subframes in which transmission is performed bf;Qr ABS ratio of 7/10 the safusfac_non base_d ICIC a_Igorlthm
MBS. We plot in Fig[® (a) and (b) the, 50-th % and 5-th %?utperforms all cases. Especially, in the 9pt|mum_reg|0ﬂnef
UE throughput performance versus the ABS power reductidiied CREtechnique, the proposed learning algorithms cannot
for the static algorithms wittiixed CREof 6 dB and 12 dB, show any er)hancement, except the satisfaction based ICIC,
Q-learning based and satisfaction based ICIC schemes. In\4ih ABS ratio 7/10.
simulations, the MBS transmission power reduction in ABS
is {0,6,9,12,18,24} dB. C. Impact of Number of Picocells

Fig.[d (a) plots the 50-th% UE throughput. It can be seen The impact of the number of picocells per macro sector is
that a mix of CRE bias values among picocells yields alwagvaluated next. We consider 2, 4 and 8 picocells per macro
better average UE throughput in both ICIC techniques. It s&ctor and compare our results with the case when no picocell
observed that low power ABS reduces the sensitivity to ABIS activated. Fig$.17 (a) - (c) show the results for static QL
ratio. Reduced ABS ratio sensitivity is also observed in tteynamic QLand satisfactionbased algorithms, respectively.
satisfaction based ICIC algorithm for low power ABS, whareaNhile we distinguish between picocell and macrocell averag
the Q-learning based ICIC technique is almost insensitive tell throughput on the left y-axis, we depict the cell-edfe (
the ABS ratio for all ABS power reduction values. th%) UE throughput of all UEs in the system on the right
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Picocell ... Satisfaction D. Convergence Behavior of Time-Domain ICIC
© o h ‘ ‘ |-~ -StaticQL To summarize the trade-offs of our proposed learning based
5 70 — Dynamic QL time domain ICIC schemes, we show the convergence behavior
u§> m of these algorithms in Fig.]8. All algorithms converge withi
BB}y a small number of iterations. While the satisfaction based
20 40 60 80 100 approach aims at guaranteeing QoS requirements,Githe
Number of iterations learning based approaches maximize the system performance

‘Macroce"' Here, in the stati)-learning based approach since the macro

is assumed to be static, the picocell adapts its actions very

Q
g fast, which results in a fast convergence. However, sinee th
a MBS mutes on the RBs that are allocated to ER PUEs by
150 ‘ ‘ ‘ ‘ ] the PBS, the macrocell performance is weak. If the MBS also
20 40 60 80 100 performs learning in our dynamic approach more information

Number of iterations exchange among layers is necessary that relies on high ca-

I%’;\city backhauls and low delays. In this case the macrocell
pérformance can be increased because of picocell offloading
and optimal power allocation by both macro- and picocells.
This also shows that the dynamic approach yields the best
performance after convergence. The satisfaction base@d ICI
approach shows a fast convergence as expected, since the
learning strategy will not be changed by the picocells ag lon

y-axis. Hereby, the average cell throughput is the throughs the satisfaction in terms of QoS is achieved. This has the
per cell. From Fig€]7 (a) - (c) it can be observed that deplpyi drawback that the sum-rate cannot be maximized.

picocells yields both average cell throughput and celleedg ' Fig[@ (a) and (b), we depict the convergence behavior
throughput enhancement for all ICIC techniques. While tf dynamic QL for different cost values il(8). In case of
static QL algorithm shows an approximately linearly perfora cost value of 50, the dynamic QL approach converges
mance increase for average cell and cell-edge UE throughpil@wer as compared to the cost value 500 and cost value
the dynamic QLalgorithm’s performance abruptly increase$000, respectively. It converges to a better sum-rate than t
in the case of eight picocells per macro sector. This mean§@st value 500, but needs more iterations to converge. The
3-fold increase in average cell-throughput by activatinghei simulations for a cost value of 5000 converge faster, butvsho
picocells and using thdynamic QLICIC technique. a significant performance degradation.

Fig. 8: Convergence of the learning based time domain IC
techniques.

The satisfactionbased ICIC technique shows the lowesE- Frequency Domain ICIC
dependency on the number of picocells. While the averade celFor the proposed frequency domain ICIC algorithms an
throughput is slightly increased by increasing number of pianalysis of the tradeoffs for single-flow CSFE QL) and multi-
ocells, the cell-edge UE throughput shows an approximatdlgw CA (MF static QL and MF dynamic QL is performed.
linear increasing behavior. The reason is thatsh#isfaction Fig.[I0 plots the UE throughput for two active picocells per
based ICIC technique does not change its strategy as longveecrocells. While th&F QLandMF static QLalgorithms are
the QoS requirements are satisfied. Comparing the cell-edgeverage very close to each other, ME dynamic QLalgo-
UE throughput with theQ-learning based ICIC algorithms,rithm shows a performance improvementdd on average.
the satisfactionbased ICIC scheme provides the highest celi close-up view of the cell-edge UE throughput shows that
edge UE throughput. This is the tradeoff of the proposebe multi-flow CA algorithms outperform the single-flow case
learning based ICIC schemes, in which gsisfactionbased This is because in multi-flow CA, cell-edge UEs are served
algorithms cannot achieve very high overall performance. by macro- and picocell at the same time.
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Fig. 11: Total-throughput and cell edge throughput versigs t
number of picocells in frequency domain ICIC.

The behavior of the learning based frequency domain ICIC
algorithms when increasing the number of picocells per ovacr

cell is depicted in Figl 11. Here, the solid curves belong to | this paper, we investigated the performance of two-tier
the left ordinate showing the total throughput and the dashgietNets in which decentralize@-learning and satisfaction
curves refer to the right ordinate reflecting the cell-edd® Upased procedures were proposed for both time and frequency
throughput. It can be observed that tMF dynamic QL domain ICIC. The proposed approach in which PBSs optimally
algorithm outperforms the other algorithms in terms of ltotdearn their optimal CRE bias and transmit power allocatisn,
throughput while theSF QL algorithm is slightly better than shown to outperform the static ICIC solutions in time domain
the MF static QL algorithm for less number of picocells (andyhile the satisfaction based approach improves the 5% UE
vice versa for large numbers). TH&F QL algorithm shows throughput and guarantees QoS requirements, the dyr@mic
the lowest performance for cell-edge UE throughput. It c38arning based approach increases network capacity gelyin
be concluded that Cell-edge UESs benefit more from multl-ﬂo% h|gh Capacity backhauls. In the frequency domain case,
CA than from single-flow CA. Interestingly, it can be obsefvethe single and multi-flow CA demonstrate that the dynamic
that theMF static QL algorithm outperforms th#F dynamic  ()-learning based multi-flow approach outperforms the single
QL for larger number of picocells. This is because in the twWapw case. Improvements @0% in the total throughput and
player case, the MBS cannot fully adapt to the ICIC strategig10% in the cell-edge UE throughput are obtained in the
of all PBSs in the system, when the number of PBS large.case of multi-flow dynamia-learning with 8 picocells per
macrocell. The proposed algorithms can be extended t-an

VII. CONCLUSION
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tier HetNet. However, in this case it has to be defined whicdf*BLE 1I: Computational requirement for)-learning and
player selects first its primary CC and how coordination Ratisfaction based learning.

performed. In our future work, we will extend the current . Required instructions for
. . . Operations - - - -
framework to the non-ideal backhaul considering delays. Q-learning | satisfaction based learning
Identification of current and 2 -
VIIl. A PPENDIX next state in the Q-table
Memory access 2 A 2 A
A. Proof of Proposition - 1 Comparison 2- (A -1) | 2
. Sum 3 2
Before presenting the proof of convergence to one of th uttiplication > >
equilibrium of the game, we define the following hypothesisstorage 1 1
of the gameg = {fp’ {Ap}pepa {up}pE'P}: Total number of operations| 4|.A| 4+ 6 21A + 7

1) The game&y = {P,{A,},ep, {up}per} has at least one
equilibrium in pure strategies.

» 300 ,
2) For allp € P, it holds thatVa, ., € A, the set § |~ Q-learning
) , N t t Ap'#p P'#P % Satisfaction
up(p #p) IS N0 emp y L g 200F -
3) The setsP and{A,},cp are finite. 2
The first hypothesis ensures that the learning problem ik we 8 100t ‘ -
posed, in which the players are assigned a feasible task. © &
second hypothesis refers to the fact that, each player myalw &

able to find a transmit configuration with which it can bt 0 10 Tota|2r?umber ofa?é(t)ions Al 40 50
considered satisfied, given the transmit configuration lahal
other players. The third hypothesis is considered in order tig. 12: Required instructions of learning approaches for
ensure that our algorithm is able to converge in finite time. gifferent number of actions.

The proof of the proposition in sectién TVC follows from
the fact that the conditiom?,, () > 0 implies that every

TP

action profile will be played at least once with nonzero probg,e representation of the acquired knowledge in one legrnin
bility during a large time interval. Because of the assuopti jieration. Tabléll summarizes the total number of opergtio
that at least on SE exists, this action profile will be playegquired per RB for on€-learning iteration through equation
at least once. From equation [14), it follows that once @) |n satisfaction based learning, one learning iterai®
equilibrium is playe_d, no player changes its current actiojzsed on the probability update function in equatibdl (13),
Thus, convergence is observed. which is only updated if the system is not satisfied. The third
column of Tabldl summarizes for this case the total number
B. Memory and Computational Requirements of operations required per RB. The total number of operation

We present in what follows the memory and computation&?qu”ed for Q-learning and satisfaction based learning is
requirements of the propose@-learning and satisfaction 4[A|+6 and2|A[+7, respectively. SinceA| > 0, satisfaction
based learning approaches when considering digital sigh&sed learning requires less operations tQakearning. Fig.
processors (DSPs). A theoretical estimation of the opmrati 12 depicts the required instructions over different numdfer
requirements for the mathematical operations requiredén tactions for both learning approaches.
learning approaches is presented, assuming that every basi
DSP instruction takes one DSP cydle|[42]. IX. ACKNOWLEDGMENT
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