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Abstract

Recent works proposed the relaying at the MAC layer in cognitadio networks whereby the primary packets
are forwarded by the secondary node maintaining an extraegdevoted to the relaying function. However, relaying
of primary packets may introduce delays on the secondarietadcalled secondary delay) and require additional
power budget in order to forward the primary packets thaisjgeeially crucial when the network is deployed using
sensors with limited power resources. To this end, an admnig®ntrol can be employed in order to manage efficiently
the relaying in cognitive radio sensor networks. In this ggapve first analyse and formulate the secondary delay
and the required power budget of the secondary sensor nodsaition with the acceptance factor that indicates
whether the primary packets are allowed to be forwarded orHaving defined the above, we present the tradeoff
between the secondary delay and the required power budgst thle acceptance factor is adapted. In the sequel, we
formulate an optimization problem to minimize the secogpdiglay over the admission control parameter subject to
a limit on the required power budget plus the constraintsteel to the stabilities of the individual queues due to their
interdependencies observed by the analysis. The solufithisoproblem is provided using iterative decomposition
methods i.e. dual and primal decompositions using Lagrangkipliers that simplifies the original complicated
problem resulting in a final equivalent dual problem thatudes the initial Karush Kuhn Tucker conditions. Using
the derived equivalent dual problem, we obtain the optintleptance factor while in addition we highlight the
possibilities for extra delay minimization that is proviley relaxing the initial constraints through changing the
values of the Lagrange multipliers. Finally, we present lebaviour of secondary delay in case infinite and finite
queues are employed and thus the overflow and blocking pitdlesbare assessed respectively.
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I. INTRODUCTION

Cognitive radio (CR) has attracted a lot of interest in thst tlecade from research and industrial communities of
communications and networking. In general, a CR systenwallihe spectrum utilization of a licensed frequency
channel by a secondary system (unlicensed) without signifi¢ affecting the efficiency of spectrum utilization of
the primary (licensed) user_|[1]. In order to exploit this ¢tionality, a new type of deployment is needed using

nodes that acquire the knowledge of channels occupancyn@Wedemands for CR networks (CRNs) deployment
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have shown via the standardization activities that a new tyfpwireless sensor networks (WSNs) will be shaped
targeting to exploit the benefits of the efficient spectruitization [2]. This type of CRNs were named cognitive
radio sensor networks (CRSNSs) that require a customizedlingnin order to achieve the desire resulfs [3].

Several issues are raised from such a new application of W8S as the error free spectrum sensing (SpSe),
new communication protocols based on the SpSe resllts Rijhaw resource allocation mechanisms as packet
relaying through the secondary nodes [5]. Packet relayasyduiginally proposed first in[_[6] in which a secondary
node retains two queues one for its own secondary packetomador providing the relay of primary packets.
Based on this concept, the authors studied the maximum alil@throughput achieved by the cognitive user while
maintaining the stability of the overall distributed quigesystem. However, the delay imposed on the secondary
packets was not studied. Moreover, the additional powegéticequired for the relaying process were not taken
into account that is very important in case of CRSNs with tédi power resources. A recent work in] [7] has
considered a cognitive relaying framework that manage tedad relaying information; however, although delay
expressions were given, still power constraints were nosictered and an optimization solution is not provided in
general. A more recent work in[_|[8] presents the tradeoff betwthe sensing and the energy consumption with
relays; however, the relaying process is not taken placheatMAC layer but at the physical layer looking into
corresponding cooperative strategies. [ [9], authorsdiescribe the delay and the power consumption required by
the relaying process in CRSNs and in this paper we extendahik defining and solving a specific optimization
problem highlighting useful insights in this new topic.

Specifically, we analyse the delay of secondary packetstamgdawer consumption which are both requirements
for the implementation of the packet relaying at the second@de. We consider that the secondary node (i.e.
cognitive) retains its own traffic in the secondary queuelevtiie relayed primary packets are stored in a separate
devoted primary queue. The secondary node is able to calteohdmission of primary packets passed through
the relaying primary queue using an admission control patamWe assume a scheduling strategy that provides
priority to relayed primary traffic over the secondary on@s&d on this cognitive radio model, we obtain the
formulation of the secondary delay and the required powelgbtiwhereby we highlight the following relaying
trade-off:on one hand, the admission of more primary packets will redihe secondary delay and on the other
hand, it will increase the required power budgdhis particular tradeoff can be investigated taking intccunt
different objectives. In our case, we opt to formulate a mimation problem for the secondary delay over the
admission control parameter i.e. acceptance factor sutgjethe constraint in the power budget and the separate
stabilities’ rules of each individual queue. Using optiatian theory and decomposition methods in particular,
since the original is complicated and depends on severati@nts, we prove that indeed an optimal acceptance
factor value exists under several conditions in which thaimim delay is achieved and yet the power budget is
sufficiently kept in the specific upper bound. Finally, wecdiss the relaying behaviour considering different queue
models for the secondary queue in terms of buffer size @fite or finite) giving more light from practical point
of view.

The rest of this paper is organized as follows: Section Ivjgles the system model and the necessary assumptions.



The analysis is provided in section Ill, and in section IV weenfiulate the optimization problem and in the sequel
we provide its solution. Section V presents the differerttas@our of the relaying queue with infinite and finite

buffers while the simulation results are presented in sectll. This paper is concluded with section VII.

Il. SYSTEM MODEL

We consider the cognitive radio sensor network depicteddn Fthat consists of a pair of a primary user (PU)
transmitter and receiver denoted as PU-Tx and PU-Rx regpicand a pair of a secondary transmitter (SU-TX)
and receiver (SU-Rx). There are three links of interest hartiee primary link between the PU-Tx and PU-Rx
with a channel gain denoted hy, the link between the SU-Tx and PU-Tx with a channel gain tethdy g ,
and the link between the PU-Rx and SU-Tx with a channel gairotdl byg, ;. All channel gains are assumed
to be zero mean circularly symmetric complex Gaussian nandariable with variancer? and independent for
all + wherei takes the value/’, 's’, 'ps’ and’sp’ indicating the primary, secondary, primary to secondargy an
secondary to primary links respectively. Each link is a#elcby complex additive white Gaussian noise AWGN
with zero mean and unit variance and independent for alklike assume that successful transmission is achieved
when the instantaneous signal to noise ratio (SNR) on théh link, employing the maximum transmission power
P;, given by| g; |? P, exceeds a predefined threshold ;.

The considered scenario throughout this paper is that th@8utilizes the spectrum resource in order either
to serve its secondary receiver (SU-Rx) whenever the pyirtiak is idle or to serve the PU-Rx by relaying the
primary packets in case the primary link is not able to aghi@dequate communication (i.e. outage condition). In
this fashion, the SU-Tx plays two roles in the presented G&#hado such as giving on one hand the opportunity
to forward the primary packets whenever the primary linkexignces outage conditions and on the other hand to
exploit the spectrum for itself whenever is not used by thenary link thus forwarding the secondary packets to
its own user. Henceforth, we consider that the SU-Tx maist&ivo queues denoted g5 and @, for serving
its own packer i.e. secondary packets and the primary packepectively. Moreover, we assume that the PU-Tx
retains a queu€), to store its own primary packets. Afterwards, the presemedel assumes that the SU-Tx has
the capability to relay or not to relay the primary packets #ims is a matter of making a decision taking into
account the current channel conditions.

For simplicity we assume that all packets are transmitted ime-slotted fashion where they have the same
size and one time slot is required for transmission of a singicket. Initially, we assume that all queues are of
infinite lengths. The packet arrival processes of selfitrat each node are independent and with mean arrival rates
Ap and A, (packet/slot) for the?), and @, queues respectively. The MAC layer is assumed to obey ttenfivlg
protocol. At a certain time slot and given the priority to gréhe PU unconditional access to the channel, the PU-Tx
transmits a packet to the primary destination i.e. PU-Rx.ofrextly received packet by the primary destination
is acknowledged by sending an ACK message resulting in theapy queue(), dropping this packet. In case
of packet failure (indicated by ACK timeout) and assumingttthe SU-Tx can listen to all PU-Tx transmissions,

the SU-Tx can accept a fraction of the undelivered primargkpts in its relaying queué),, if it was able to
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Fig. 1. System model of cognitive radio sensor network witlcket relaying capabilities

correctly decode them and send ACK messages to the primatindgon PU-Rx. In case both the SU-Tx and the
PU-Rx fail to decode the primary data, a retransmission efghcket is initiated by the PU-Tx. We assume that
the overhead for transmitting the ACK and NACK messages g small compared to packet sizes. In addition,
we assume that the ACK messages are always decoded pedetily PU-Rx and the SU-Tx. At the beginning
of each time slot, the SU-Tx is allowed to sense the channelifait is declared idle, the SU-Tx transmits from

one of its queues under the conditions discussed below.

IIl. PERFORMANCEANALYSIS AND METRICS OFINTEREST

In this section, we present, the analysis and the correspgmdetrics of interest for the considered cognitive
sensor node with packet relaying capabilities. We tackté wio performance metrics and obtain their formulation
and how these metrics are involved in the decision makinghar@iem at the SU-Tx for deciding on relaying the
primary packets. The metrics considered are the SU-Tx'ayd&ltroduced to the secondary packets in €he

called secondary delay and the power budget required bytheo forward the primary packets.



A. Relaying Factor and Scheduling

We assume a relaying factgr € [0,1] that is managed by the SU-Tx for making the decision to relapat
relay the secondary packets. Increasjhgp 1 means that no admission control is accomplished atQ2hge thus
relaying with any restriction is taken place and makjhgqual to0 means that no relaying is accomplished thus
the packets are blocked from the assumed admission coné@hanism. Relied on this factor, the SU-Tx performs
the following scheduling strategy called Prioritized Ciiye Relaying (PCR) where the primary packets have
always priority against the secondary ones | [10]. In paldicwsing this strategy, when an idle slot is detected,
the SU-Tx attempts to access the primary channel in ordeatwsmit first the primary packets using the relaying
gueue@),s. If possible, the SU-Tx uses the minimum transmission poleeel sufficient to achieve the target
(Signal-to-Noise-Ratio) SNR threshoigl, s, at the primary destination which is equal4g, s,/ | gsp |*- Thus, an
outage probability is defined for each link denotedRas; ; with ¢ the index for each link. If the link between the
relay and the primary destination experiences a deep fatleearelaying queue is empty, the SU-Tx will transmit
from the secondary traffic queug, (its own traffic) with the same procedure. According to themdd PCR, the
arrival and service rates of the CRSN denoted\asnd y; for eachi queue respectively encompass the relaying

factor f in their formulation as follows:

- Primary Queue Service Rajg,: The primary queu€), will forward the packets once the primary link does
not experience outage and when the primary to secondarydiirs not also experience outage taking into

account the relaying factor and thus it is obtained as
Hp = (1- Poutyp) + fPoutyp(l - Pout-,pS) 1)

- Relaying Queue Arrival Rate,,: The relaying queué),, will arrive the packets once the primary link does
not experience outage taking into account the relayingfaantd when the primary to secondary link does not
experience outage taking into account the outage of thegpyinink and thus it is obtained as

A
Aps - .fPout,p + fPout,p(l - Pout,ps)_p (2)

Hp

- Relaying Queue Service Rajg,s: The relaying queud),, will forward the packets once the secondary to
primary link does not experience outage and thus it is obthes
e = (1= 22)(1 = Py ) €
Hop
- Secondary Queue Service Ratg: The secondary queu@; will forward the secondary packets once the
secondary to primary link does not experience outage anch e secondary link is also free of outage and
thus it is obtained as
A Aps
ps = (1 u_z)(l — Pout,s)(1 — MZS
where the outage probabilit¥,.. ; for a given threshold in SNRy, , is obtained as follows

(1 = Pout,sp)) (4)

Yth,i

Pout,i = PT‘H Gsp |2 P < gth,i] =1—e"iFi (5)



B. Queuing Modeling and Secondary Delay

In this section, we analyse the secondary delay i.e. they @sjaerienced at the quedg, based on the considered
traffic models for all queues in the system. Firstly, we witlatl with the primary queu€),. Per the discussion
given in [11] and [[12] about the dominant systems, it is coded that the primary queue can be uncoupled from
the overall system of queues. This isolation allows us to ehtlie primary queue as aW /M /1 queue. Hence,
the expected value of the delay imposed on the primary padkeahe primary queue is given by:

_ 1-—A
D=
Hp p

Notably, each node chooses its arrival rate based on thécapph such that satisfying the stability conditions

(6)

of its queue. For more detailed discussion about the dfalaihd its conditions, the reader is referred to 1[12].
For the relaying queu€),, and the secondary queug;, we model their traffic model by adopting ai/G/1
priority queuing model. While their inter-arrival timeseaPoisson random variables, we can model their service
times (5,; and S;) as Geometric random variables based on the descriptioheostheduling strategy in[_[10].
The Geometric random variables parametgys and ps are given byu,s and us for the relaying queue and the
secondary queue respectively. The first and the second mismkthe average service time for the relaying queue

(E[Sps] and E[S?,]) are given as follows

E[S,.] = pi @)
ps
B[s2) = ;f s ®)

With the same logic, we can obtain the first and the second mtswé the average service time for the secondary
queue i.e.E[S,] and E[S?].

We are now ready to analyse and derive the secondary delad basthe delay experienced at secondary packets
i.e. secondary queu@; that can be produced by three distinguished factors acugpitdi the model presented in
[13]. Taking also into account the scheduling strategy emésd above, the different delay factors for a secondary
packet of interest inside the secondary queue is assemsltal@aws:

1) The waiting time for the currently transmitted packetrigeserved in the secondary queie i.e. once the

packet of interest is arrived well known as the residual toeeoted as),

2) The waiting time for being served the packets already agakin the secondary quedk upon the arrival

of the packet of interest denoted &5
3) The waiting time for being served the primary packetsegitfiom the primary queu€), or the relaying
gueue@),s that will be appeared in that queues after the arrival of thekpt of interest in the secondary
queueQ, denoted ags
We donate ag; the utilization factor for each queuethat is given in general by the formufa= \; E[S;]. The

expected value of the delay; will be the sum of the residual time at the secondary queuettagrimary queue



obtained as follows

b _pe FISL s EISE]
1—pp2E[Ss] 11— pp 2E[S)]

9)

wherep; /(1 — p,) is the conditional probability, that the packetof th user is being transmitted given that no
primary packet is transmitted. We consider now the secomdpoment delayD, which as explained is due to
other packets in the secondary queue found by the new ar€eaisidering theLittles law of queuing theory on
which the long-term average number of customers in a stafserm is equal to the long-term average effective
arrival rate, A\, multiplied by the average time a customer spends in thesysive obtain the following formulation

considering the summary of the waiting times introduceadnfithe primary and secondary queues respectively
D, = ppD_p + Psﬁs (10)

In the same concept i.e. the Littles law, we can define thel thimponent delay); where only the delay from

the primary packets is considered as follows
D3 = ppljp (11)

By adding the three components we can obtain the delay ofdbenslary queué), that eventually become

Ps E[Sf] Pps E[Sis] Y
I & +2p,D
DS = 1—pp 2E[S;] 11 pp 2E[Sps] p—p (12)
— Ps

C. Relaying Power Budget

Except the delay at the secondary quéug the other important metric for our model is the power consdm
on the relayed traffic relative to the total power consumedhsy SU-Tx. An expression for the average power
consumed by the SU-Tx on its own traffic as well as the relaysakets is analysed below. To this end, we define
the relaying power budget dBe ratio between the average power per slot consumed orethgimg effortP,.q,
and the total average power per slot consuniggl,; that is expressed as follows

_ Prelay _ APSE[PSP]
Ptotal /\psE[Psp] + )‘SE[PS]

where E[Ps,] is the average transmission power per relayed packet thabtmined as below considering the

r

(13)

assumption of the considered CRSN. First, the transmigsiover consumed on a relayed primary packet is

Y h,s
P, = z (14)
| gsp |

where it is a random variable since it depends on the charaie| g, |* which is a chi-square distributed random

variable. To calculate the average power per packet corsemeelaying, we need the probability density function
(PDF) Ps, that is defined as follows

p(z) = e, Vo >0 (15)




wherex =| g5, |* that is obviously an exponential random variable. Congigeooth [I3) and{14), we can assume

the following for the PDF

'Yth Vth,sp
plz) = 2 ,sg e TP VP, > 0 (16)
aspPSp

Since theP;, cannot exceed the maximum limit;, then the average power can be obtained as follows

P:p
E[Psp < Ps*p] Zp($) = / Pspp(Psp)dPsp
0

P:p Yth,s - Wzth’sén
= / O [ ) R (17)
0 UspPSP

Let z = Lse gnd thendPsp”;T'”;—iz that will give the lower limit of the integration as equal £"2 and the
sp spPsp

2
G’SPPSP

upper limit as infinite where finally we have

E[P,,] = —vz;h;p /m . 2 e ?dz (18)
sp Uspi;ST—’

The integral in[(IB) is known as the upper incomplete gamnmatfan and is calculated using The Exponential

Integral [13] denoted a&[.] and thus we have the following formulation
E[Psp] _ 'Yth.,sp El( 'Yth,sp ) _ 'Yth,spasp (19)

2 2 2
Usp UspPSP Usp

Substituting [(IB) into[(I3) and maintaining some simplifiwa, yields

A Esp02
1—\ _ PS/YHSSP SPUS 5 (20)
)\ps'yth,spespo's + )\s'yth,seso'sp

IV. RELAYING TRADEOFF ATMAC LAYER OF SECONDARY NODE

In the previous section, we analysed and established theufation of the secondary deldy, and the required
power budgef” of the secondary queug, in relation to the acceptance factprof the admission control policy
applied atQ,. In this section, we present the relaying tradeoff by which tiecision making to relay or not to
relay will be built. This decision is based on the fact that@re hand increasing the acceptance fagtahe
average delayD, increases and on the other hand the power budget increapeopisrtional to acceptance factor
as depicted in Fig.2 for some specific values of the consitieetwork.

This behaviour led us to the definition of a minimization gesb over the acceptance factérconsidering the
average delayD, as an objective function subject to a constraint on the requpower budgef. Taking into
account the constraints imposed by keeping the stabilitgaafh queue, then the optimization problem can be

defined as follows
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Fig. 2. To relay or not to relay tradeoff based on the averagaydD; and power budgel

m}n D,(f) (21)

Ap < lp

Aps < hps
s.t.

As < ps

I <T
This problem is highly complicated and thus difficult to soiw this form due to the following reasons:

1) The objective functiorD, is not easily differentiable over the acceptance fagtor

2) There are four complicated coupling constraints relatethe acceptance factgr

3) The expectation is taking over three random variabless, andy,s
Henceforth, we will adopt the concept of decomposition radthfor solving this optimization problen_[15]. We will
use decomposition methods in order to decompose the ofrigamaplicated problem into equivalent sub-problems
as presented in[_[1] [15]. The existing decomposition teghes can be classified into primal decomposition and
dual decomposition methodd [15]. The primal decomposificovides the decomposition of the original primal
problem and it is appropriate when the objective functiorioisnulated over two parameters. On the contrary,

the dual decomposition is based on decomposing the Lagnartgial problem derived from Lagrange multiplier
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application [15]. The problem is convex as it is proved in gpendix although using decomposition the dual
problem can always be considered convex.

In our problem, we will follow an hierarchical decompositithat applies to our layered architecture by changing
the primal and dual decompositions recursively. In paldicithe basic decompositions are repeatedly applied to
the problem to obtain smaller and smaller sub-problemss &pproach corresponds to first applying a full dual
decomposition, and then a primal one on the dual problemlidstriated in Fig.3 the master problem is decomposed
into two levels using dual decomposition for the two pairscofstraints where the first level includes one lower
and one higher master problems and the second level incthdedual and primal decomposition of the resulted

master problems.

A. First level decomposition

For the problem in[{21), we will use first dual decompositi@ing the following two pairs of constraints. Which
pair of constraints will be used is a matter of discussion degends on how the system should be converged and
stabilized. In general, using decomposition methods, dmergence and stability are guaranteed if the lower level
problem is solved on a faster time scale than the higher lenadlem. Thus, we choose to have at the low level
the stabilities of primary and secondary quedgs and ) since we want to converge first in these constraints

and at the high level the stability of secondary-primaryu€,. and power budgel is retained that are more



11

significantly demanding for the considered optimizatioalpem.
Going into details, while working at the first level, we olstahe Lagrangian function of (21) considering the

constraints of the stability of secondary-primary quélg and power budgel that can be written as follows
Ll(f7V15V2):E5+V1()‘ps_Nps)+V2(F_Fth) (22)
in which the Lagrangian dual problem is based and obtaingdlsvs

m}n D+ (Aps — thps) + v2(T' — T'ip) (23)

Ap <y
s.t.
As < s
The dual function in[{22) serves as a lower bound on the optiae of the primal probleni(20). For instance, if
we denote the minimization problem in{23) @1, v2) and the optimal value of (21) by, then the inequality
d* > ¢1(v1,v2) holds for any non-negative values of and». Having defined the lower master problem as in

(23) then the higher master problem using the dual optinazgtroblem of [21) is formulated as
max g1(v1,v2) (24)

s.t.

This approach provides in fact the solution of the dual pgobinstead of the original primal one and it will only
give appropriate results if strong duality holds. The peoblin [24) is convex even if the original problem is not
convex because it is the point wise maximum of a family of affnction(v1, v2), and thus the KarushKuhnTucker
(KKT) conditions are satisfied and the duality gap is indeewbz[16]. Afterwards, we can solve the primal problem
by solving the dual problem based on the dual functipfv,, v»). This type of problem is solved by using iterative
gradient or sub-gradient algorithms according to the difiéiable capabilities of the dual problem. In our case,
since the dual function is not differentiable, we will chedbe sub-gradient solutiori_[[18]. The iterative algorithm
will be described at the end of this section in conjunctiothviiie solution of second level decomposition described

in the next section.

B. Second level decomposition

After the dual decomposition performed at the first leveg tterived lower and higher master problems ex-
pressed by[(23) and(P4) respectively will be solved usingl dund primal decomposition methods respectively.
More specifically, the lower master problem presentedby (@8 be solved using dual decomposition since the

optimization parameter is still the acceptance fagtorhus, we obtain the Lagrangian function bf1(23) considgrin
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the constraints of the stability of secondary and primargugs that can be written as follows

La(f, 5) = Es + Vl(/\ps - M;DS)
+V2(F - Fth) + g(As - ,LLs) (25)

in which the Lagrangian dual problem is based and obtain€dlsvs

mfin ﬁs+yl(/\ps — pps) +v2(l' = Tin) + E(As — ps) (26)
s.t. {)\p < fip
For the known reasons discussed previously for the first Beeomposition, the dual optimization problem [of](23)
is written as
max 92(§) (27)

where g»(£) is the minimization problem in((26). Again, as we will seedwelthe dual problem in[{27) will be
solved by using an iterative sub-gradient algorithm.

The higher master problem at the first level expressed Bywalpe solved by using primal decomposition since
the optimization is over two parameters ig.andv,. This will be separated again into two levels of optimizatio
for each optimization parameter and thus two sub-problemsgeoduced named lower and higher sub-problems.
In the same notion, which sub-problem will be consideredeloar higher depends on the convergence conditions
that we are willing to retain. To this end, we prefer to keephat higher level the optimization over the Lagrange
multiplier v, that is related to the power budget constraint. Afterwattus lower sub-problem is defined as follows

over the Lagrange multiplier;

max g1(v1,12) (28)
s.t. {Vl >0
while in parallel at the higher level, we have the followingplem in charge of updating the coupling variable
by solving
max 91 (v1,12) (29)
s.t. {VQ >0

whereg; (11, 2) is the optimal objective value of problef {28) for a given Both lower and higher sub-problems

in 28) and [[(2P) are convex since the original problem[in (B4 convex optimization as represents the dual
problem of the master primal problem. Therefore, basednagaisub-gradient method, we will use an iterative
algorithm where the lower problem i_(28) will converge fifst given 1. Details will be given below for the

overall algorithm.
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If we gather all aforementioned decompositions in one fdanwe will realize that the equivalent optimization

problem of the original problem if_(21) can be written asdolé

max max maxmin D + 14 (A\ys —
12201120 €20 f (ps = tips)

'H/Q(F - Fth) + g(/\s - ,us) (30)
s.t. {/\p < fip

Equation [[3D) substitutes the original optimization pesblin [21) where the constraints have been introduced
multiplied with the Lagrange multipliers,,v» and¢ that are actually the KarushKuhnTucker (KKT) conditionslan
they can be considered as shadow prices giving a freedonteatmly improve our objective function i.e. minimize
the average delay. The additional decrease in the objefttivetion is accomplished due to the relaxation of some
of the given constraints[ [19]. Usually, how much performaimmprovement we can achieve by over-optimizing
the objective function is determined by an allowable gapwel@r, as we will see from the simulation results, we
can achieve better relaying tradeoffs without breakingitiitgal rules i.e. the constraints. All this discussion wil
throw more light on the formulated relaying tradeoff by laukinto the sensitivity (shadow prices) analysis based
on the formulated KKT conditions that retains the restoiet of the initial constraints|_[20]. Finally, the equivalen
problem in [3D) will be solved by the following iterative ggiadient-based algorithm as has been derived from the

hierarchical decomposition described above.

Algorithm 1 Hierarchical Decomposition
1) Initialization: 5 andk = 1 iteration

2) Repeat the initial values

a) Initialization:¢7 andj = 1 iteration
b) Repeat the initial values

i) Calculate the acceptance factprfrom (28)

ii) Calculate the sub-gradient &f(\; — )

iii) Update ¢7+! by ¢9t1 = &7 + a’(\s — us), Wherea is the step size
c) Stop once ¢/t — ¢ |[< e, wheree is the convergence rule
d) Calculate the parametef using (29) based on the previous valgeand f
e) Updatevs™ by v5** = vk + a(v}), wherea is the step size

3) Stop once vt — vk |< e, wheree is the convergence rule

The algorithm above is based on the subgradientg 0f;, v2) and g2(£) given by the following propositions.
Proposition 1 The subgradient 0§ (v1,v2) is s1(f) = us — As for the j — th iteration ands;(f),, ., is an

element ofdsy (11, v2)

1831(1/1,1/2) denotes the set of all subgradientsvatand v» that is called the subdifferential.
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Proof: For any (u1,u2) € dom(g1) , since gi(u1, o) is obtained by maximizingl: (f, u1, ) over f €
dom(ZD)s), we havegy (11, p2) > Li(fuy v, 141, 2) B [16] [21]. Moreover, sincef,, ., achieves the maximum,

we haveg; (v1,v2) = L1(fu, 1., 1, p2). Combining the pieces, we obtain

91(p1, p2) = La(for vos i1, 12)
= Ll(fl/1,l/2a V17V2) + Ll(fl/1,u2a,ula,u2) - Ll(.fl/l,llga V17V2)
= gi(vi,v2) + H(for )" (11 — p2) — (1 — 12)) (31)

Using a similar methodology, we can prove the existence efstibgradieny»(¢) and then the problem can be
solved by algorithm 1, which requires the calculation of siégradientg; (11, v2) andgz(£) at each of their own

iteration.

V. RELAYING BEHAVIOUR FOR DIFFERENTM /G /1 QUEUING MODELS

One important issue in networks in general is to model thffidsaof the primary users and secondary users
[22]. In this section, we will translate the acceptancedagt into a specific metric ofM//G/1 queuing model
throwing more light on the performance impact in the congdecognitive radio model under realistic applications.
More specifically, since the acceptance factor determirtestiver or not a new primary flow can be admitted to the
secondary queue, we can merge it in the overflow probabifity llocking probability for the infinite and finite
buffer cases respectively_[23].

Infinite buffer Although in case of infinite buffer, the notion of admissiocontrol can not be claimed, we can
adopt the term of overflow or tail probability that is definesithe probability in which an arriving packet finds no
room in the hypothetical queue. This aspect is identicahtoéxample where in a waiting room, there is limited
number of chairs for the customers, and any customer that apival does not find a seat has to stand! [24]. Lets

denote the limit of packets equal #§ and thus the overflow probability is expressed as follows

v =Pr[N >\ = Z pn—l—an (32)

n=K+1
where N is the total number of packets in the system ands the queue state, namely the probability that there

are packets in the queue. The probabilityis obtained as the Laplace inverse transform of its gemeydtinction

defined as follows

(1-p)BA = A2)(1 - 2)
B(A—Az) —

which represents the Pollaczek-Khinchin formula |[25], vehthe Laplace inverse transform when Poisson arrival

Pu(Z) =

(33)

process and generalized service time are assumed restitts following expression for the probabiligy,

O AE[$Y]
P =Pt 5a ) (34)

2where f.,, ., is the value of the acceptance factpifor the Lagrange multiplier values; andvs.
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Substituting [(34) into[(32), we can derive the overflow pituibity for the infinite A/ /G/1 queue that is associated
with the acceptance factor through the arrival rate and thieation factor of the queues in general.

Finite buffer In case of finite buffer the blocking probability plays theler of admission control metric in
admission control policy. A well-known example of finite sy®1s is the blocking probability in cellular networks
where the limit resources can be fully allocated. There amaarous approximations for the blocking probability
possible forM/G/1/K queuing systems as described in_|[26]. A good approximatfadhe blocking probability
py IS the one that is based on the overflow probability of an itdibuffer queue that we discuss above and thus
we can associate it with the analysis of the overflow proligbilo this end, the blocking probability is defined as
follows

e @)
wherep,,, is the overflow probability obtained bly (32) usingl(34) andmwually the blocking probability is associated
with the acceptance factor as mentioned above.

In order to solve the problem i (R1) over the overflow probgbp,,, defined in[[3R) and the blocking probability
pp defined i35, we need to discuss for the convexity of these equationstbeeutilization factorp that is a linear
function of acceptance factgr and thus we can infer that are convex oyeas well.

Proposition 2 For the range of value, 0 < p < 1 the first derivative of,,(p) is increasing and convex gn

Proof: Taking the first derivative of overflow probability,, in (13) with respect tp gives:

Po(p) = % +1 (36)
For0 < p < 1, it is evident thatp,v'(p) > 0 and thusp,,(p) is increasing inp i.e. is convex inp.
Regarding the convexity of blocking probability in {32)citn be considered &% — p)z/(1 — pz) that is convex
increasing to the interval € [0,1] with f'(0) = (1 — p) and f(1) = 1 as discussed in[ [27].

VI. SIMULATION RESULTS

We provide below the simulation results of the optimizatmmoblem above with the corresponding discussion.
We assume the following values for the SNR thresholgds, = vth.ps = Vth,sp = Vh,s = 0dB and the following
channel variables? = 4dB,o2, = 12dB,o?, = 8dB ando = 12dB. The transmission power needed for each
queue isP, =1, P, =1 and P, = 0.25 . Fig. 4a depicts the optimal acceptance fagtbrand the corresponding
average delay),(f*) vs. arrival rate at the primary Queueg for T';;, = 0.2 power budget threshold and = 0.1
as secondary arrival rate. The figure gives insights of hovehmelaying is needed for different values of the
primary loading. For small values of,, there is low traffic in the primary queue, and the SU-Tx (cegnitive
node) has more opportunities to access the channel, so gazapt all the undelivered primary packets for relaying
while wasting a small percentage of its power. As increasig primary load increases the number of relayed

packets, the cognitive node reduces the accepted fradtittrese packets to keep the predefined power budget. For
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Fig. 4. Optimal acceptance factgr and corresponding average delBy (f*) vs. arrival rate at the primary Queus,

high values of\,, the SU-Tx might choose not to relay the primary packets, simall reduction in the secondary
delay is associate with very high power consumption. In go@es notion, Fig. 4b depicts the optimal acceptance
factor f* and the corresponding average deRy(f*) vs. arrival rate at the secondary Queuefor I'y, = 0.2
power budget threshold ang, = 0.3 as secondary arrival rate. The insight is opposite of theipus one i.e. vs.
arrival rate at the primary queus,. For high values of\; the cognitive i.e. secondary node does not has enough
opportunities to access the channel since the primary packemainly forwarded as pointed out above.

Fig. 4c depicts the optimal acceptance facfdrand corresponding average deldy(f*) vs. power budget
thresholdI';;,. The effect of the relaying power budget threshdlg on the secondary delai, is shown. The
solution for the optimization problem for different value$ I'y;, is plotted. The simulation parameters are the
same as that for the previous figures and for arrival rates ave bbtained\, = 0.5 and A\, = 0.1. The general
interpretation of this results is that if low power budgetssigned to the relaying channel (i0e< I'y, < 1), the
cognitive sensor node accepts a little fraction of the umdetd primary packetsf(< 0.1) which does not result
in a significant reduction in the secondary delay. Howevedgasing the budget threshold allows more packets to
be accepted for relaying and, in turn, reduces the secortiiday but with a limit. The figure shows that, spending
more than0.45 of the total power on relaying, will not result in any redactiin the secondary node delay as it
accepts all the undelivered primary packets for relaying.

Fig. 5a depicts the sensitivity of the average secondaryyd®l in terms of the KKT conditions of the original
optimization problem in[(21) as they introduced by the dualbpem in [30). We keep the same values for the

parameters as previously. In three axes the KKT conditiqi&,s — pps), v2(I' = T'yy,) and{(As — ps) are denoted
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Fig. 7. Arrivals rate\, sensitivity of primary queu&), on shadow prices i.e. Lagrange multipliers

asv(f), v2(f) and&(f) respectively at x, y and z axes as well. Hence, they can bedcaliadow prices since they
can provide decision-making with powerful insights intor quoblem. For instance, it is obvious from the Fig.5a
that the KKT condition related to the power budget thresh@dv» () might not be kept as long as the Lagrange
multiplier v is increased more than a threshold since obviouslyfi¢) is increased in this case beyond the zero
value. This is applied when the primary arrival ratg is getting higher i.e\, > 0.3. In the contrary, the more
increase of the Lagrange multipliers and &, the more the decrease of the KKT conditiong /) and £(f) is
become and as a consequence the average delayf the dual problem in[{30). In Fig.5b, we depict the KKT
conditions changing the secondary arrival ratekeeping the primary arrival rat®, = 0.1 and we highlight that
all shadow prices, (f),v2(f) and{(f) can potentially decrease the average delay without havimermful impact
on the stability of secondary queue.

Fig. 5¢ depicts the sensitivity of the powers budfetensitivity on shadow prices i.e. Lagrange multipliers for
different threshold value§';,. We retain the aforementioned parameters for the CRSN anthéoarrival rates
we assume\; = 0.1 and A\, = 0.5. Notably, as long as the power budget threshiolg is low, the increase in
vo(T'—T'y,) KKT condition will not pass the intolerable limit of increag the average delay. However, the decrease
is retained for low values of the corresponding shadow pridg’) and not for the high power budget threshold
values i.el'y;, = 0.4 andT';;, = 0.6.

Fig. 6 depicts in the top axis the overflow and blocking pralitéds denoted a%,, and p, respectively for
different values of primary arrival rate,. We assume that the secondary arrival rat&,is= 0.1 and the threshold

on the powers budgét,;, = 0.2. In the same concept, the middle axis depicts the overflovbéouking probabilities
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Fig. 9. Powers budgdf sensitivity on shadow prices i.e. Lagrange multipliers
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Fig. 10. Overflow and blocking probabilities for the optina@iceptance factor vs. primary arrival ratg, secondary arrival ratés and power
budget threshold™;;, respectively

Pov @Ndpy, respectively for different values of secondary arrivakrat. We assume that the primary arrival rate
is A, = 0.3 and the threshold on the powers budd@ei = 0.2. Finally, the bottom axis depicts the overflow
and blocking probabilities,, andp, respectively for different values of threshold on the pasMeudgetl;;, with

Ap = 0.5 and A\, = 0.1. From these three figures is inferred that the overflow pritbais always more than the
blocking probability in general and this is due to the retaxbehaviour of infinite buffers against the blocking
probability of finite buffers. On the other hand, the convegpgerties of both probabilities are confirmed as it is
highlighted in [26]. More remarks on the behaviour of refayiqueue are that first the overflow and blocking
probabilities are not increased up to one level over seagndaival rate due to the forwarding mainly of the
primary packets process as pointed out above and finallyribigapilities tends to one as long as the power budget

threshold is relaxed.

VII. SUMMARY

In this paper, we consider a sensor system in which a nodeléstalyelay the primary packets at MAC layer
when the primary cannot achieve adequate communicatianrdlaying model is based on queue modelling where
the stability rules should be satisfied accompanying with ¢lustomized rules of our investigation, which are
the minimum delay induced in the secondary packets and tinempbudget required for relaying the primary
packets. The relaying capability is controlled by an admisgontrol factor that is associated with all available

distributed queues in the system. Based on the considerel@lmee define an optimization problem with four
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several constraints. Specifically, the problem is formedads the minimization of average delay at secondary packets
as long as the queues stabilities and the power limit areagiteed. We solve this complex optimization problem
using hierarchical decomposition method thereby the séw@mstraints are imposed separately applied first and
second level decomposition, which finally are broken intorenconcrete sub-problems. This method results in
the equivalent problem that encompass all the constraqtirements as KKT conditions. We obtain results that
highlight useful outcomes in terms of system performanoselbas indicate the sensitivity strength of the objective
function both to the separate numerous constraints. Weaalsess our solution considering infinite and finite buffer

capacity for the queue that forwards the primary packets.

APPENDIX

Proposition 3 For the range of valug, 0 < f < 1 the first derivative ofD,(f) is negative and increasing (i.e.
D,(f) < 0) and thus theD,(f) is decreasing and convex g
Proof: Looking into the average secondary deldy( f) in (13), bothp, andp; utilization factors are constants

while the p,,s and the average primary deldy, do not. Hence, differentiating,(f) with respect tof gives:

D.(f) = Apyy(f) + BD, (f) + C (37)

where A, B andC are some constants Whi,fé)s(f) and Dp,(f) are the first derivatives of utilization factor and

primary delay respectively which are obtained as follows
s (1 - )‘p)Pout,p(l - Pout-,pS)

D = 38
P (f) (1 - Ap - Pout,p + fpout,p(l - Pout,ps))2 ( )
and
/ 1—X,
ppS(f) B (1 - Pout,p) + fPout,p(l - Pout,ps) - Ap
f)\ppgut,p(l - Pout,pS)2 (39)

(1 - Pout,p + fPout,p(l - jt)out,ps))2
For0 < f <1itis clear thatljs,(f) < 0 i.e. negative and increasing as well and thngf) is decreasing as

depicted in Fig.2 and convex as a conclusion.
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