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Abstract

Recent works proposed the relaying at the MAC layer in cognitive radio networks whereby the primary packets

are forwarded by the secondary node maintaining an extra queue devoted to the relaying function. However, relaying

of primary packets may introduce delays on the secondary packets (called secondary delay) and require additional

power budget in order to forward the primary packets that is especially crucial when the network is deployed using

sensors with limited power resources. To this end, an admission control can be employed in order to manage efficiently

the relaying in cognitive radio sensor networks. In this paper, we first analyse and formulate the secondary delay

and the required power budget of the secondary sensor node inrelation with the acceptance factor that indicates

whether the primary packets are allowed to be forwarded or not. Having defined the above, we present the tradeoff

between the secondary delay and the required power budget when the acceptance factor is adapted. In the sequel, we

formulate an optimization problem to minimize the secondary delay over the admission control parameter subject to

a limit on the required power budget plus the constraints related to the stabilities of the individual queues due to their

interdependencies observed by the analysis. The solution of this problem is provided using iterative decomposition

methods i.e. dual and primal decompositions using Lagrangemultipliers that simplifies the original complicated

problem resulting in a final equivalent dual problem that includes the initial Karush Kuhn Tucker conditions. Using

the derived equivalent dual problem, we obtain the optimal acceptance factor while in addition we highlight the

possibilities for extra delay minimization that is provided by relaxing the initial constraints through changing the

values of the Lagrange multipliers. Finally, we present thebehaviour of secondary delay in case infinite and finite

queues are employed and thus the overflow and blocking probabilities are assessed respectively.

Index Terms

packet relaying, queues, cognitive radio sensor networks,optimization, Lagrange duality, decomposition methods.

I. I NTRODUCTION

Cognitive radio (CR) has attracted a lot of interest in the last decade from research and industrial communities of

communications and networking. In general, a CR system allows the spectrum utilization of a licensed frequency

channel by a secondary system (unlicensed) without significantly affecting the efficiency of spectrum utilization of

the primary (licensed) user [1]. In order to exploit this functionality, a new type of deployment is needed using

nodes that acquire the knowledge of channels occupancy. Thenew demands for CR networks (CRNs) deployment

http://arxiv.org/abs/1211.5157v1
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have shown via the standardization activities that a new type of wireless sensor networks (WSNs) will be shaped

targeting to exploit the benefits of the efficient spectrum utilization [2]. This type of CRNs were named cognitive

radio sensor networks (CRSNs) that require a customized handling in order to achieve the desire results [3].

Several issues are raised from such a new application of WSNssuch as the error free spectrum sensing (SpSe),

new communication protocols based on the SpSe results [4] and new resource allocation mechanisms as packet

relaying through the secondary nodes [5]. Packet relaying has originally proposed first in [6] in which a secondary

node retains two queues one for its own secondary packets andone for providing the relay of primary packets.

Based on this concept, the authors studied the maximum allowable throughput achieved by the cognitive user while

maintaining the stability of the overall distributed queueing system. However, the delay imposed on the secondary

packets was not studied. Moreover, the additional power budget required for the relaying process were not taken

into account that is very important in case of CRSNs with limited power resources. A recent work in [7] has

considered a cognitive relaying framework that manage to forward relaying information; however, although delay

expressions were given, still power constraints were not considered and an optimization solution is not provided in

general. A more recent work in [8] presents the tradeoff between the sensing and the energy consumption with

relays; however, the relaying process is not taken place at the MAC layer but at the physical layer looking into

corresponding cooperative strategies. In [9], authors first describe the delay and the power consumption required by

the relaying process in CRSNs and in this paper we extend thiswork defining and solving a specific optimization

problem highlighting useful insights in this new topic.

Specifically, we analyse the delay of secondary packets and the power consumption which are both requirements

for the implementation of the packet relaying at the secondary node. We consider that the secondary node (i.e.

cognitive) retains its own traffic in the secondary queue while the relayed primary packets are stored in a separate

devoted primary queue. The secondary node is able to controlthe admission of primary packets passed through

the relaying primary queue using an admission control parameter. We assume a scheduling strategy that provides

priority to relayed primary traffic over the secondary one. Based on this cognitive radio model, we obtain the

formulation of the secondary delay and the required power budget whereby we highlight the following relaying

trade-off:on one hand, the admission of more primary packets will reduce the secondary delay and on the other

hand, it will increase the required power budget. This particular tradeoff can be investigated taking into account

different objectives. In our case, we opt to formulate a minimization problem for the secondary delay over the

admission control parameter i.e. acceptance factor subject to the constraint in the power budget and the separate

stabilities’ rules of each individual queue. Using optimization theory and decomposition methods in particular,

since the original is complicated and depends on several constraints, we prove that indeed an optimal acceptance

factor value exists under several conditions in which the minimum delay is achieved and yet the power budget is

sufficiently kept in the specific upper bound. Finally, we discuss the relaying behaviour considering different queue

models for the secondary queue in terms of buffer size (i.e. infinite or finite) giving more light from practical point

of view.

The rest of this paper is organized as follows: Section II provides the system model and the necessary assumptions.
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The analysis is provided in section III, and in section IV we formulate the optimization problem and in the sequel

we provide its solution. Section V presents the different behaviour of the relaying queue with infinite and finite

buffers while the simulation results are presented in section VI. This paper is concluded with section VII.

II. SYSTEM MODEL

We consider the cognitive radio sensor network depicted in Fig. 1 that consists of a pair of a primary user (PU)

transmitter and receiver denoted as PU-Tx and PU-Rx respectively and a pair of a secondary transmitter (SU-Tx)

and receiver (SU-Rx). There are three links of interest namely the primary link between the PU-Tx and PU-Rx

with a channel gain denoted bygp, the link between the SU-Tx and PU-Tx with a channel gain denoted by gs,p

and the link between the PU-Rx and SU-Tx with a channel gain denoted bygp,s. All channel gains are assumed

to be zero mean circularly symmetric complex Gaussian random variable with varianceσ2
i and independent for

all i where i takes the values′p′, ′s′, ′ps′ and ′sp′ indicating the primary, secondary, primary to secondary and

secondary to primary links respectively. Each link is affected by complex additive white Gaussian noise AWGN

with zero mean and unit variance and independent for all links. We assume that successful transmission is achieved

when the instantaneous signal to noise ratio (SNR) on thei− th link, employing the maximum transmission power

Pi, given by | gi |2 Pi, exceeds a predefined thresholdγth,i.

The considered scenario throughout this paper is that the SU-Tx utilizes the spectrum resource in order either

to serve its secondary receiver (SU-Rx) whenever the primary link is idle or to serve the PU-Rx by relaying the

primary packets in case the primary link is not able to achieve adequate communication (i.e. outage condition). In

this fashion, the SU-Tx plays two roles in the presented CR scenario such as giving on one hand the opportunity

to forward the primary packets whenever the primary link experiences outage conditions and on the other hand to

exploit the spectrum for itself whenever is not used by the primary link thus forwarding the secondary packets to

its own user. Henceforth, we consider that the SU-Tx maintains two queues denoted asQs andQps for serving

its own packer i.e. secondary packets and the primary packets respectively. Moreover, we assume that the PU-Tx

retains a queueQp to store its own primary packets. Afterwards, the presentedmodel assumes that the SU-Tx has

the capability to relay or not to relay the primary packets and this is a matter of making a decision taking into

account the current channel conditions.

For simplicity we assume that all packets are transmitted ina time-slotted fashion where they have the same

size and one time slot is required for transmission of a single packet. Initially, we assume that all queues are of

infinite lengths. The packet arrival processes of self-traffic at each node are independent and with mean arrival rates

λp andλs (packet/slot) for theQp andQs queues respectively. The MAC layer is assumed to obey the following

protocol. At a certain time slot and given the priority to grant the PU unconditional access to the channel, the PU-Tx

transmits a packet to the primary destination i.e. PU-Rx. A correctly received packet by the primary destination

is acknowledged by sending an ACK message resulting in the primary queueQp dropping this packet. In case

of packet failure (indicated by ACK timeout) and assuming that the SU-Tx can listen to all PU-Tx transmissions,

the SU-Tx can accept a fraction of the undelivered primary packets in its relaying queueQps, if it was able to
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Fig. 1. System model of cognitive radio sensor network with packet relaying capabilities

correctly decode them and send ACK messages to the primary destination PU-Rx. In case both the SU-Tx and the

PU-Rx fail to decode the primary data, a retransmission of the packet is initiated by the PU-Tx. We assume that

the overhead for transmitting the ACK and NACK messages is very small compared to packet sizes. In addition,

we assume that the ACK messages are always decoded perfectlyat the PU-Rx and the SU-Tx. At the beginning

of each time slot, the SU-Tx is allowed to sense the channel and if it is declared idle, the SU-Tx transmits from

one of its queues under the conditions discussed below.

III. PERFORMANCEANALYSIS AND METRICS OFINTEREST

In this section, we present, the analysis and the corresponding metrics of interest for the considered cognitive

sensor node with packet relaying capabilities. We tackle with two performance metrics and obtain their formulation

and how these metrics are involved in the decision making mechanism at the SU-Tx for deciding on relaying the

primary packets. The metrics considered are the SU-Tx’s delay introduced to the secondary packets in theQs,

called secondary delay and the power budget required by theQps to forward the primary packets.
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A. Relaying Factor and Scheduling

We assume a relaying factorf ∈ [0, 1] that is managed by the SU-Tx for making the decision to relay or not

relay the secondary packets. Increasingf to 1 means that no admission control is accomplished at theQps thus

relaying with any restriction is taken place and makingf equal to0 means that no relaying is accomplished thus

the packets are blocked from the assumed admission control mechanism. Relied on this factor, the SU-Tx performs

the following scheduling strategy called Prioritized Cognitive Relaying (PCR) where the primary packets have

always priority against the secondary ones [10]. In particular, using this strategy, when an idle slot is detected,

the SU-Tx attempts to access the primary channel in order to transmit first the primary packets using the relaying

queueQps. If possible, the SU-Tx uses the minimum transmission powerlevel sufficient to achieve the target

(Signal-to-Noise-Ratio) SNR thresholdγth,sp at the primary destination which is equal toγth,sp/ | gsp |2. Thus, an

outage probability is defined for each link denoted asPout,i with i the index for each link. If the link between the

relay and the primary destination experiences a deep fade orthe relaying queue is empty, the SU-Tx will transmit

from the secondary traffic queueQs (its own traffic) with the same procedure. According to the adopted PCR, the

arrival and service rates of the CRSN denoted asλi andµi for eachi queue respectively encompass the relaying

factor f in their formulation as follows:

- Primary Queue Service Rateµp: The primary queueQp will forward the packets once the primary link does

not experience outage and when the primary to secondary linkdoes not also experience outage taking into

account the relaying factor and thus it is obtained as

µp = (1 − Pout,p) + fPout,p(1− Pout,ps) (1)

- Relaying Queue Arrival Rateλps: The relaying queueQps will arrive the packets once the primary link does

not experience outage taking into account the relaying factor and when the primary to secondary link does not

experience outage taking into account the outage of the primary link and thus it is obtained as

λps = fPout,p + fPout,p(1− Pout,ps)
λp

µp

(2)

- Relaying Queue Service Rateµps: The relaying queueQps will forward the packets once the secondary to

primary link does not experience outage and thus it is obtained as

µps = (1−
λp

µp

)(1− Pout,ps) (3)

- Secondary Queue Service Rateµs: The secondary queueQs will forward the secondary packets once the

secondary to primary link does not experience outage and when the secondary link is also free of outage and

thus it is obtained as

µs = (1−
λp

µp

)(1 − Pout,s)(1 −
λps

µps

(1− Pout,sp)) (4)

where the outage probabilityPout,i for a given threshold in SNRγth,sp is obtained as follows

Pout,i = Pr[| gsp |2 Pi < gth,i] = 1− e
γth,i

σ2

i
Pi (5)
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B. Queuing Modeling and Secondary Delay

In this section, we analyse the secondary delay i.e. the delay experienced at the queueQs based on the considered

traffic models for all queues in the system. Firstly, we will deal with the primary queueQp. Per the discussion

given in [11] and [12] about the dominant systems, it is concluded that the primary queue can be uncoupled from

the overall system of queues. This isolation allows us to model the primary queue as anM/M/1 queue. Hence,

the expected value of the delay imposed on the primary packets in the primary queue is given by:

D̄p =
1− λp

µp − λp

(6)

Notably, each node chooses its arrival rate based on the application such that satisfying the stability conditions

of its queue. For more detailed discussion about the stability and its conditions, the reader is referred to [12].

For the relaying queueQps and the secondary queueQs, we model their traffic model by adopting anM/G/1

priority queuing model. While their inter-arrival times are Poisson random variables, we can model their service

times (Sps andSs) as Geometric random variables based on the description of the scheduling strategy in [10].

The Geometric random variables parameterspps and ps are given byµps andµs for the relaying queue and the

secondary queue respectively. The first and the second moments of the average service time for the relaying queue

(E[Sps] andE[S2
ps]) are given as follows

E[Sps] =
1

pps
(7)

E[S2
ps] =

1− pps
p2ps

(8)

With the same logic, we can obtain the first and the second moments of the average service time for the secondary

queue i.e.E[Ss] andE[S2
s ].

We are now ready to analyse and derive the secondary delay based on the delay experienced at secondary packets

i.e. secondary queueQs that can be produced by three distinguished factors according to the model presented in

[13]. Taking also into account the scheduling strategy presented above, the different delay factors for a secondary

packet of interest inside the secondary queue is assembled as follows:

1) The waiting time for the currently transmitted packet being served in the secondary queueQs i.e. once the

packet of interest is arrived well known as the residual timedenoted asD̄1

2) The waiting time for being served the packets already appeared in the secondary queueQs upon the arrival

of the packet of interest denoted as̄D2

3) The waiting time for being served the primary packets either from the primary queueQp or the relaying

queueQps that will be appeared in that queues after the arrival of the packet of interest in the secondary

queueQs denoted asD̄3

We donate asρi the utilization factor for each queuei that is given in general by the formulaρ = λiE[Si]. The

expected value of the delaȳD1 will be the sum of the residual time at the secondary queue andthe primary queue
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obtained as follows

D̄1 =
ρs

1− ρp

E[S2
s ]

2E[Ss]
+

ρps

1− ρp

E[S2
ps]

2E[Sps]
(9)

whereρi/(1 − ρp) is the conditional probability, that the packet ofi − th user is being transmitted given that no

primary packet is transmitted. We consider now the second component delayD̄2 which as explained is due to

other packets in the secondary queue found by the new arrival. Considering theLittles law of queuing theory on

which the long-term average number of customers in a stable system is equal to the long-term average effective

arrival rate,λ, multiplied by the average time a customer spends in the system, we obtain the following formulation

considering the summary of the waiting times introduced from the primary and secondary queues respectively

D̄2 = ρpD̄p + ρsD̄s (10)

In the same concept i.e. the Littles law, we can define the third component delayD̄3 where only the delay from

the primary packets is considered as follows

D̄3 = ρpD̄p (11)

By adding the three components we can obtain the delay of the secondary queueQs that eventually become

D̄s =

ρs

1−ρp

E[S2

s ]
2E[Ss]

+
ρps

1−ρp

E[S2

ps]

2E[Sps]
+ 2ρpD̄p

1− ρs
(12)

C. Relaying Power Budget

Except the delay at the secondary queueD̄s, the other important metric for our model is the power consumed

on the relayed traffic relative to the total power consumed bythe SU-Tx. An expression for the average power

consumed by the SU-Tx on its own traffic as well as the relayed packets is analysed below. To this end, we define

the relaying power budget asthe ratio between the average power per slot consumed on the relaying effortPrelay

and the total average power per slot consumedPtotal that is expressed as follows

Γ =
Prelay

Ptotal

=
λpsE[Psp]

λpsE[Psp] + λsE[Ps]
(13)

whereE[Psp] is the average transmission power per relayed packet that isobtained as below considering the

assumption of the considered CRSN. First, the transmissionpower consumed on a relayed primary packet is

Psp =
γth,sp
| gsp |2

(14)

where it is a random variable since it depends on the channel gain | gsp |2 which is a chi-square distributed random

variable. To calculate the average power per packet consumed on relaying, we need the probability density function

(PDF)Psp that is defined as follows

p(x) =
1

σ2
sp

e
x

σ2
sp , ∀x ≥ 0 (15)
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wherex =| gsp |2 that is obviously an exponential random variable. Considering both (13) and (14), we can assume

the following for the PDF

p(x) =
γth,sp
σ2
spP

2
sp

e

γth,sp

σ2
spP2

sp , ∀Psp ≥ 0 (16)

Since thePsp cannot exceed the maximum limitP ∗
sp then the average power can be obtained as follows

E[Psp ≤ P ∗
sp] = p(x) =

∫ P∗

sp

0

Pspp(Psp)dPsp

=

∫ P∗

sp

0

γth,sp
σ2
spPsp

e
−

γth,sp

σ2
spP2

sp dPsp, ∀Psp ≥ 0 (17)

Let z =
γth,sp

σ2
spPsp

and thendPsp
γth,sp

σ2
sp

−dz
z2 that will give the lower limit of the integration as equal toγth,sp

σ2
spPsp

and the

upper limit as infinite where finally we have

E[Psp] =
γth,sp
σ2
sp

∫ ∞

γth,sp

σ2
spPsp

z−1e−zdz (18)

The integral in (18) is known as the upper incomplete gamma function and is calculated using The Exponential

Integral [13] denoted asE1[.] and thus we have the following formulation

E[Psp] =
γth,sp
σ2
sp

E1(
γth,sp
σ2
spPsp

) =
γth,sp
σ2
sp

εsp (19)

Substituting (19) into (13) and maintaining some simplification, yields

Γ =
λpsγth,spεspσ

2
s

λpsγth,spεspσ2
s + λsγth,sεsσ2

sp

(20)

IV. RELAYING TRADEOFF AT MAC L AYER OF SECONDARY NODE

In the previous section, we analysed and established the formulation of the secondary delaȳDs and the required

power budgetΓ of the secondary queueQs in relation to the acceptance factorf of the admission control policy

applied atQs. In this section, we present the relaying tradeoff by which the decision making to relay or not to

relay will be built. This decision is based on the fact that onone hand increasing the acceptance factorf the

average delayD̄s increases and on the other hand the power budget increased isproportional to acceptance factor

as depicted in Fig.2 for some specific values of the considered network.

This behaviour led us to the definition of a minimization problem over the acceptance factorf considering the

average delayD̄s as an objective function subject to a constraint on the required power budgetΓ. Taking into

account the constraints imposed by keeping the stability ofeach queue, then the optimization problem can be

defined as follows
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Fig. 2. To relay or not to relay tradeoff based on the average delay D̄s and power budgetΓ

min
f

D̄s(f) (21)

s.t.















































λp < µp

λps < µps

λs < µs

Γ ≤ Γth

This problem is highly complicated and thus difficult to solve in this form due to the following reasons:

1) The objective functionD̄s is not easily differentiable over the acceptance factorf

2) There are four complicated coupling constraints relatedto the acceptance factorf

3) The expectation is taking over three random variablesgss,gsp andgps

Henceforth, we will adopt the concept of decomposition methods for solving this optimization problem [15]. We will

use decomposition methods in order to decompose the original complicated problem into equivalent sub-problems

as presented in [1] [15]. The existing decomposition techniques can be classified into primal decomposition and

dual decomposition methods [15]. The primal decompositionprovides the decomposition of the original primal

problem and it is appropriate when the objective function isformulated over two parameters. On the contrary,

the dual decomposition is based on decomposing the Lagrangian dual problem derived from Lagrange multiplier
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Fig. 3. Hierarchical decomposition method

application [15]. The problem is convex as it is proved in theAppendix although using decomposition the dual

problem can always be considered convex.

In our problem, we will follow an hierarchical decomposition that applies to our layered architecture by changing

the primal and dual decompositions recursively. In particular, the basic decompositions are repeatedly applied to

the problem to obtain smaller and smaller sub-problems. This approach corresponds to first applying a full dual

decomposition, and then a primal one on the dual problem. As illustrated in Fig.3 the master problem is decomposed

into two levels using dual decomposition for the two pairs ofconstraints where the first level includes one lower

and one higher master problems and the second level includesthe dual and primal decomposition of the resulted

master problems.

A. First level decomposition

For the problem in (21), we will use first dual decomposition using the following two pairs of constraints. Which

pair of constraints will be used is a matter of discussion anddepends on how the system should be converged and

stabilized. In general, using decomposition methods, the convergence and stability are guaranteed if the lower level

problem is solved on a faster time scale than the higher levelproblem. Thus, we choose to have at the low level

the stabilities of primary and secondary queuesQp andQs since we want to converge first in these constraints

and at the high level the stability of secondary-primary queue Qps and power budgetΓ is retained that are more
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significantly demanding for the considered optimization problem.

Going into details, while working at the first level, we obtain the Lagrangian function of (21) considering the

constraints of the stability of secondary-primary queueQps and power budgetΓ that can be written as follows

L1(f, ν1, ν2) = D̄s + ν1(λps − µps) + ν2(Γ− Γth) (22)

in which the Lagrangian dual problem is based and obtained asfollows

min
f

D̄s + ν1(λps − µps) + ν2(Γ− Γth) (23)

s.t.















λp < µp

λs < µs

The dual function in (22) serves as a lower bound on the optimal value of the primal problem (20). For instance, if

we denote the minimization problem in (23) asg1(ν1, ν2) and the optimal value of (21) byd∗s , then the inequality

d∗s ≥ g1(ν1, ν2) holds for any non-negative values ofν1 and ν2. Having defined the lower master problem as in

(23) then the higher master problem using the dual optimization problem of (21) is formulated as

max
ν1,ν2

g1(ν1, ν2) (24)

s.t.















ν1 ≥ 0

ν2 ≥ 0

This approach provides in fact the solution of the dual problem instead of the original primal one and it will only

give appropriate results if strong duality holds. The problem in (24) is convex even if the original problem is not

convex because it is the point wise maximum of a family of affine function(ν1, ν2), and thus the KarushKuhnTucker

(KKT) conditions are satisfied and the duality gap is indeed zero [16]. Afterwards, we can solve the primal problem

by solving the dual problem based on the dual functiong1(ν1, ν2). This type of problem is solved by using iterative

gradient or sub-gradient algorithms according to the differentiable capabilities of the dual problem. In our case,

since the dual function is not differentiable, we will choose the sub-gradient solution [18]. The iterative algorithm

will be described at the end of this section in conjunction with the solution of second level decomposition described

in the next section.

B. Second level decomposition

After the dual decomposition performed at the first level, the derived lower and higher master problems ex-

pressed by (23) and (24) respectively will be solved using dual and primal decomposition methods respectively.

More specifically, the lower master problem presented by (23) will be solved using dual decomposition since the

optimization parameter is still the acceptance factorf . Thus, we obtain the Lagrangian function of (23) considering
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the constraints of the stability of secondary and primary queues that can be written as follows

L2(f, ξ) = D̄s + ν1(λps − µps)

+ν2(Γ− Γth) + ξ(λs − µs) (25)

in which the Lagrangian dual problem is based and obtained asfollows

min
f

D̄s + ν1(λps − µps) + ν2(Γ− Γth) + ξ(λs − µs) (26)

s.t.

{

λp < µp

For the known reasons discussed previously for the first level decomposition, the dual optimization problem of (23)

is written as

max
ξ≥0

g2(ξ) (27)

whereg2(ξ) is the minimization problem in (26). Again, as we will see below the dual problem in (27) will be

solved by using an iterative sub-gradient algorithm.

The higher master problem at the first level expressed by (24)will be solved by using primal decomposition since

the optimization is over two parameters i.e.ν1 andν2. This will be separated again into two levels of optimization

for each optimization parameter and thus two sub-problems are produced named lower and higher sub-problems.

In the same notion, which sub-problem will be considered lower or higher depends on the convergence conditions

that we are willing to retain. To this end, we prefer to keep atthe higher level the optimization over the Lagrange

multiplier ν2 that is related to the power budget constraint. Afterwards,the lower sub-problem is defined as follows

over the Lagrange multiplierν1

max
ν1

g1(ν1, ν2) (28)

s.t.

{

ν1 ≥ 0

while in parallel at the higher level, we have the following problem in charge of updating the coupling variableν2

by solving

max
ν2

g∗1(ν1, ν2) (29)

s.t.

{

ν2 ≥ 0

whereg∗1(ν1, ν2) is the optimal objective value of problem (28) for a givenν2. Both lower and higher sub-problems

in (28) and (29) are convex since the original problem in (24)is a convex optimization as represents the dual

problem of the master primal problem. Therefore, based again on sub-gradient method, we will use an iterative

algorithm where the lower problem in (28) will converge firstfor given ν2. Details will be given below for the

overall algorithm.



13

If we gather all aforementioned decompositions in one formula, we will realize that the equivalent optimization

problem of the original problem in (21) can be written as follows

max
ν2≥0

max
ν1≥0

max
ξ≥0

min
f

D̄s + ν1(λps − µps)

+ν2(Γ− Γth) + ξ(λs − µs) (30)

s.t.

{

λp < µp

Equation (30) substitutes the original optimization problem in (21) where the constraints have been introduced

multiplied with the Lagrange multipliersν1,ν2 andξ that are actually the KarushKuhnTucker (KKT) conditions and

they can be considered as shadow prices giving a freedom to potentially improve our objective function i.e. minimize

the average delay. The additional decrease in the objectivefunction is accomplished due to the relaxation of some

of the given constraints [19]. Usually, how much performance improvement we can achieve by over-optimizing

the objective function is determined by an allowable gap. However, as we will see from the simulation results, we

can achieve better relaying tradeoffs without breaking theinitial rules i.e. the constraints. All this discussion will

throw more light on the formulated relaying tradeoff by looking into the sensitivity (shadow prices) analysis based

on the formulated KKT conditions that retains the restrictions of the initial constraints [20]. Finally, the equivalent

problem in (30) will be solved by the following iterative subgradient-based algorithm as has been derived from the

hierarchical decomposition described above.

Algorithm 1 Hierarchical Decomposition

1) Initialization: νk2 andk = 1 iteration

2) Repeat the initial values

a) Initialization:ξj andj = 1 iteration

b) Repeat the initial values

i) Calculate the acceptance factorf from (26)

ii) Calculate the sub-gradient atξj(λs − µs)

iii) Update ξj+1 by ξj+1 = ξj + αξj(λs − µs), whereα is the step size

c) Stop once| ξj+1 − ξj |≤ ε , whereε is the convergence rule

d) Calculate the parameterν∗1 using (29) based on the previous valuesξ andf

e) Updateνk+1
2 by νk+1

2 = νk2 + α(ν∗1 ), whereα is the step size

3) Stop once| νk+1
2 − νk2 |≤ ε , whereε is the convergence rule

The algorithm above is based on the subgradients ofg1(ν1, ν2) andg2(ξ) given by the following propositions.

Proposition 1: The subgradient ofg1(ν1, ν2) is s1(f) = µs − λs for the j − th iteration ands1(f)ν1,ν2 is an

element of∂s1(ν1, ν2) 1

1∂s1(ν1, ν2) denotes the set of all subgradients atν1 andν2 that is called the subdifferential.
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Proof: For any (µ1, µ2) ∈ dom(g1) , since g1(µ1, µ2) is obtained by maximizingL1(f, µ1, µ2) over f ∈

dom(̄(D)s), we haveg1(µ1, µ2) ≥ L1(fν1,ν2 , µ1, µ2)
2 [16] [21]. Moreover, sincefν1,ν2 achieves the maximum,

we haveg1(ν1, ν2) = L1(fν1,ν2 , µ1, µ2). Combining the pieces, we obtain

g1(µ1, µ2) ≥ L1(fν1,ν2 , µ1, µ2)

= L1(fν1,ν2 , ν1, ν2) + L1(fν1,ν2 , µ1, µ2)− L1(fν1,ν2 , ν1, ν2)

= g1(ν1, ν2) +H(fν1,ν2)
T ((µ1 − µ2)− (ν1 − ν2)) (31)

Using a similar methodology, we can prove the existence of the subgradientg2(ξ) and then the problem can be

solved by algorithm 1, which requires the calculation of thesubgradientsg1(ν1, ν2) andg2(ξ) at each of their own

iteration.

V. RELAYING BEHAVIOUR FOR DIFFERENTM/G/1 QUEUING MODELS

One important issue in networks in general is to model the traffics of the primary users and secondary users

[22]. In this section, we will translate the acceptance factor f into a specific metric ofM/G/1 queuing model

throwing more light on the performance impact in the considered cognitive radio model under realistic applications.

More specifically, since the acceptance factor determines whether or not a new primary flow can be admitted to the

secondary queue, we can merge it in the overflow probability and blocking probability for the infinite and finite

buffer cases respectively [23].

Infinite buffer: Although in case of infinite buffer, the notion of admissioncontrol can not be claimed, we can

adopt the term of overflow or tail probability that is defined as the probability in which an arriving packet finds no

room in the hypothetical queue. This aspect is identical to the example where in a waiting room, there is limited

number of chairs for the customers, and any customer that upon arrival does not find a seat has to stand [24]. Lets

denote the limit of packets equal toK and thus the overflow probability is expressed as follows

pov = Pr[N ≥ λ] =

∞
∑

n=K+1

pn = 1−

K
∑

n=0

pn (32)

whereN is the total number of packets in the system andpn is the queue state, namely the probability that there

are packets in the queue. The probabilitypn is obtained as the Laplace inverse transform of its generating function

defined as follows

Pn(Z) =
(1− ρ)B̄(λ − λz)(1− z)

B̄(λ− λz)− z
(33)

which represents the Pollaczek-Khinchin formula [25], where the Laplace inverse transform when Poisson arrival

process and generalized service time are assumed results inthe following expression for the probabilitypn

pn = ρ+
λ2E[S2]

2(1− ρ)
(34)

2wherefν1,ν2 is the value of the acceptance factorf for the Lagrange multiplier valuesν1 andν2.
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Substituting (34) into (32), we can derive the overflow probability for the infinite M/G/1 queue that is associated

with the acceptance factor through the arrival rate and the utilization factor of the queues in general.

Finite buffer: In case of finite buffer the blocking probability plays the role of admission control metric in

admission control policy. A well-known example of finite systems is the blocking probability in cellular networks

where the limit resources can be fully allocated. There are numerous approximations for the blocking probability

possible forM/G/1/K queuing systems as described in [26]. A good approximation of the blocking probability

pb is the one that is based on the overflow probability of an infinite buffer queue that we discuss above and thus

we can associate it with the analysis of the overflow probability. To this end, the blocking probability is defined as

follows

pb =
(1− ρ)pov
1− ρpov

(35)

wherepov is the overflow probability obtained by (32) using (34) and eventually the blocking probability is associated

with the acceptance factor as mentioned above.

In order to solve the problem in (21) over the overflow probability pov defined in (32) and the blocking probability

pb defined in35, we need to discuss for the convexity of these equations overthe utilization factorρ that is a linear

function of acceptance factorf and thus we can infer that are convex overf as well.

Proposition 2: For the range of valueρ, 0 < ρ < 1 the first derivative ofpov(ρ) is increasing and convex onρ.

Proof: Taking the first derivative of overflow probabilitypov in (13) with respect toρ gives:

p
′

ov(ρ) =
λ2E[S2]

(ρ− 1)2
+ 1 (36)

For 0 < ρ < 1, it is evident thatpov
′

(ρ) > 0 and thuspov(ρ) is increasing inρ i.e. is convex inρ.

Regarding the convexity of blocking probability in (32), itcan be considered as(1−ρ)x/(1−ρx) that is convex

increasing to the intervalρ ∈ [0, 1] with f
′

(0) = (1− ρ) andf(1) = 1 as discussed in [27].

VI. SIMULATION RESULTS

We provide below the simulation results of the optimizationproblem above with the corresponding discussion.

We assume the following values for the SNR thresholdsγth,p = γth,ps = γth,sp = γth,s = 0dB and the following

channel variablesσ2
p = 4dB,σ2

ps = 12dB,σ2
sp = 8dB andσ2

s = 12dB. The transmission power needed for each

queue isPp = 1, Ps = 1 andPsp = 0.25 . Fig. 4a depicts the optimal acceptance factorf∗ and the corresponding

average delayD̄s(f
∗) vs. arrival rate at the primary Queueλp for Γth = 0.2 power budget threshold andλs = 0.1

as secondary arrival rate. The figure gives insights of how much relaying is needed for different values of the

primary loading. For small values ofλp, there is low traffic in the primary queue, and the SU-Tx (i.e.cognitive

node) has more opportunities to access the channel, so it canaccept all the undelivered primary packets for relaying

while wasting a small percentage of its power. As increasingthe primary load increases the number of relayed

packets, the cognitive node reduces the accepted fraction of these packets to keep the predefined power budget. For
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Fig. 4. Optimal acceptance factorf∗ and corresponding average delaȳDs(f∗) vs. arrival rate at the primary Queueλp

high values ofλp, the SU-Tx might choose not to relay the primary packets, as asmall reduction in the secondary

delay is associate with very high power consumption. In the same notion, Fig. 4b depicts the optimal acceptance

factor f∗ and the corresponding average delayD̄s(f
∗) vs. arrival rate at the secondary Queueλs for Γth = 0.2

power budget threshold andλp = 0.3 as secondary arrival rate. The insight is opposite of the previous one i.e. vs.

arrival rate at the primary queueλp. For high values ofλs the cognitive i.e. secondary node does not has enough

opportunities to access the channel since the primary packet are mainly forwarded as pointed out above.

Fig. 4c depicts the optimal acceptance factorf∗ and corresponding average delaȳDs(f
∗) vs. power budget

thresholdΓth. The effect of the relaying power budget thresholdΓth on the secondary delaȳDs is shown. The

solution for the optimization problem for different valuesof Γth is plotted. The simulation parameters are the

same as that for the previous figures and for arrival rates we have obtainedλp = 0.5 andλs = 0.1. The general

interpretation of this results is that if low power budget isassigned to the relaying channel (i.e.0 ≤ Γth ≤ 1) , the

cognitive sensor node accepts a little fraction of the undelivered primary packets (f ≤ 0.1) which does not result

in a significant reduction in the secondary delay. However, increasing the budget threshold allows more packets to

be accepted for relaying and, in turn, reduces the secondarydelay but with a limit. The figure shows that, spending

more than0.45 of the total power on relaying, will not result in any reduction in the secondary node delay as it

accepts all the undelivered primary packets for relaying.

Fig. 5a depicts the sensitivity of the average secondary delay D̄s in terms of the KKT conditions of the original

optimization problem in (21) as they introduced by the dual problem in (30). We keep the same values for the

parameters as previously. In three axes the KKT conditionsν1(λps −µps), ν2(Γ−Γth) andξ(λs−µs) are denoted
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Fig. 5. Optimal acceptance factorf∗ and corresponding average delaȳDs(f∗) vs. arrival rate at the secondary Queueλs
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asν1(f), ν2(f) andξ(f) respectively at x, y and z axes as well. Hence, they can be called shadow prices since they

can provide decision-making with powerful insights into our problem. For instance, it is obvious from the Fig.5a

that the KKT condition related to the power budget thresholdi.e. ν2(f) might not be kept as long as the Lagrange

multiplier ν2 is increased more than a threshold since obviously theν2(f) is increased in this case beyond the zero

value. This is applied when the primary arrival rateλp is getting higher i.eλp > 0.3. In the contrary, the more

increase of the Lagrange multipliersν2 and ξ, the more the decrease of the KKT conditionsν1(f) and ξ(f) is

become and as a consequence the average delayD̄s of the dual problem in (30). In Fig.5b, we depict the KKT

conditions changing the secondary arrival rateλs keeping the primary arrival rateλp = 0.1 and we highlight that

all shadow pricesν1(f),ν2(f) andξ(f) can potentially decrease the average delay without having aharmful impact

on the stability of secondary queue.

Fig. 5c depicts the sensitivity of the powers budgetΓ sensitivity on shadow prices i.e. Lagrange multipliers for

different threshold valuesΓth. We retain the aforementioned parameters for the CRSN and for the arrival rates

we assumeλs = 0.1 and λp = 0.5. Notably, as long as the power budget thresholdΓth is low, the increase in

ν2(Γ−Γth) KKT condition will not pass the intolerable limit of increasing the average delay. However, the decrease

is retained for low values of the corresponding shadow priceν2(f) and not for the high power budget threshold

values i.e.Γth = 0.4 andΓth = 0.6.

Fig. 6 depicts in the top axis the overflow and blocking probabilities denoted aspov and pb respectively for

different values of primary arrival rateλp. We assume that the secondary arrival rate isλs = 0.1 and the threshold

on the powers budgetΓth = 0.2. In the same concept, the middle axis depicts the overflow andblocking probabilities



19

−0.5
−0.4

−0.3
−0.2

−0.1
0

−0.2

−0.15

−0.1

−0.05

0
−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

ν1(f)ν2(f)

ξ
(f

)

λ
s
=0.5

λ
s
=0.3λ

s
=0.1

Fig. 8. Arrivals rateλs sensitivity of secondary queueQs on shadow prices i.e. Lagrange multipliers

−0.14
−0.12

−0.1
−0.08

−0.06
−0.04

−0.02
0

−0.6
−0.4

−0.2
0

0.2
0.4

−0.25

−0.2

−0.15

−0.1

−0.05

0

ν1(f)ν2(f)

ξ
(f

)

Γ
th

=0.6

Γ
th

=0.4

Γ
th

=0.2

Fig. 9. Powers budgetΓ sensitivity on shadow prices i.e. Lagrange multipliers



20

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

λ
s

P
r

 

 

p
ov

p
b

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

λ
p

P
r

 

 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.5

1

Γ
th

P
r

 

 

Fig. 10. Overflow and blocking probabilities for the optimalacceptance factor vs. primary arrival rateλp, secondary arrival rateλs and power

budget thresholdΓth respectively

pov and pb respectively for different values of secondary arrival rate λs. We assume that the primary arrival rate

is λp = 0.3 and the threshold on the powers budgetΓth = 0.2. Finally, the bottom axis depicts the overflow

and blocking probabilitiespov andpb respectively for different values of threshold on the powers budgetΓth with

λp = 0.5 andλs = 0.1. From these three figures is inferred that the overflow probability is always more than the

blocking probability in general and this is due to the relaxing behaviour of infinite buffers against the blocking

probability of finite buffers. On the other hand, the convex properties of both probabilities are confirmed as it is

highlighted in [26]. More remarks on the behaviour of relaying queue are that first the overflow and blocking

probabilities are not increased up to one level over secondary arrival rate due to the forwarding mainly of the

primary packets process as pointed out above and finally the probabilities tends to one as long as the power budget

threshold is relaxed.

VII. SUMMARY

In this paper, we consider a sensor system in which a node is able to relay the primary packets at MAC layer

when the primary cannot achieve adequate communication. The relaying model is based on queue modelling where

the stability rules should be satisfied accompanying with the customized rules of our investigation, which are

the minimum delay induced in the secondary packets and the power budget required for relaying the primary

packets. The relaying capability is controlled by an admission control factor that is associated with all available

distributed queues in the system. Based on the considered model, we define an optimization problem with four
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several constraints. Specifically, the problem is formulated as the minimization of average delay at secondary packets

as long as the queues stabilities and the power limit are guaranteed. We solve this complex optimization problem

using hierarchical decomposition method thereby the several constraints are imposed separately applied first and

second level decomposition, which finally are broken into more concrete sub-problems. This method results in

the equivalent problem that encompass all the constraint requirements as KKT conditions. We obtain results that

highlight useful outcomes in terms of system performance aswell as indicate the sensitivity strength of the objective

function both to the separate numerous constraints. We alsoassess our solution considering infinite and finite buffer

capacity for the queue that forwards the primary packets.

APPENDIX

Proposition 3: For the range of valuef , 0 ≤ f ≤ 1 the first derivative ofD̄s(f) is negative and increasing (i.e.

D̄s(f) ≤ 0) and thus theD̄s(f) is decreasing and convex onf .

Proof: Looking into the average secondary delayD̄s(f) in (13), bothρp andρs utilization factors are constants

while theρps and the average primary delaȳDp do not. Hence, differentiatinḡDs(f) with respect tof gives:

D̄
′

s(f) = Aρ
′

ps(f) +BD̄p

′

(f) + C (37)

whereA, B andC are some constants whileρ
′

ps(f) andD̄p

′

(f) are the first derivatives of utilization factor and

primary delay respectively which are obtained as follows

D̄p

′

(f) =
(1− λp)Pout,p(1− Pout,ps)

(1− λp − Pout,p + fPout,p(1− Pout,ps))2
(38)

and

ρ
′

ps(f) =
1− λp

(1 − Pout,p) + fPout,p(1− Pout,ps)− λp

−
fλpP

2
out,p(1− Pout,ps)

2

(1− Pout,p + fPout,p(1− Pout,ps))2
(39)

For 0 ≤ f ≤ 1 it is clear thatD̄s

′

(f) < 0 i.e. negative and increasing as well and thusD̄s(f) is decreasing as

depicted in Fig.2 and convex as a conclusion.
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