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On the Equivalence between Interference and
Eavesdropping in Wireless Communications

G. Gomez, F. J. Lopez-Martinez, D. Morales-Jimenez, and M. R. McKay

Abstract—We show that the problem of analyzing the outage
probability in cellular systems affected by co-channel interference
and background noise is mathematically equivalent to the prob-
lem of analyzing the wireless information-theoretic security in
terms of the secrecy outage probability in fading channels.Hence,
these both apparently unrelated problems can be addressed by
using a common approach. We illustrate the applicability ofthe
connection unveiled herein to provide new results for the secrecy
outage probability in different scenarios.

Index Terms—Cellular systems, co-channel interference, out-
age probability, secrecy capacity, wireless information-theoretic
security.

I. I NTRODUCTION

The characterization of the performance of wireless com-
munication systems in the presence of co-channel interference
(CCI) has been a matter of intense research for more than 20
years [1], due to the advent of digital cellular communication
standards whose performance is limited by the effect of such
interference. Many authors have dealt with the effects of CCI
in a plethora of scenarios, considering different numbers of
interfering signals that can be independent or correlated,ter-
minals equipped with one or more receive antennas, as well as
considering diverse families of distributions to characterize the
fading in the desired and the interfering links, in the presence
or absence of background noise (BN). Some examples can be
found in classical references in communication theory [2–5],
as well as in more contemporary works [6–10].

In a different context, an apparently unrelated problem is
the characterization of the secure communication between two
legitimate peers (usually referred to as Alice and Bob) through
a wireless link in the presence of an eavesdropper (referredto
as Eve), that observes this communication through a different
link. In contrast to what is known for the Gaussian wiretap
channel [11], fading allows for a secure communication be-
tween Alice and Bob even in the case when the SNR observed
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Fig. 1. A typical wireless communication scenario in the presence of: a) an
interferer, b) an eavesdropper.

at Eve is larger than the SNR at the legimitate receiver [12, 13].
In the last few years, many researchers have worked in the
characterization of the physical layer security in this scenario,
using the secrecy outage probability and the probability of
strictly positive secrecy capacity as performance metrics. An-
alytical results are available for some of the most usual fading
distributions: Rayleigh [13], Nakagami-m [14], Rician [15],
Hoyt [16], lognormal [17] or two-wave with diffuse power [18]
fading models, where the effect of having additional antennas
at the eavesdropper has been also investigated.

The first of the aforementioned problems can be seen as a
transmitterA willing to communicate with the receiverB in
the presence of an external interfererE, which accounts for the
effect of aggregate CCI. Hence, we observetwo transmitters
and one receiver, as depicted in Fig. 1a). Conversely, in the
second problem we see a transmitterA willing to communicate
with the receiverB in the presence of an external observerE.
Therefore, we can identifyone transmitterand two receivers,
as shown in Fig. 1b).

Motivated by this duality, we wonder whether there is any
connection between both scenarios that facilitates the analysis
of the latter using the extensive knowledge available for the
former. In this paper, we show thatboth problems are in
fact mathematically equivalent; this relevant connection has
not been reported in the literature before, to the best of our
knowledge.

We also show that the duality between both scenarios holds
not only when using the classical definition of secrecy capacity
[12] but also with the alternative formulation in [19], which
is more suitable for adaptive scenarios in which channel state
information (CSI) of Bob is available at the transmitter. From
this duality, we show that the calculation of the outage proba-
bility (OP) with CCI and BN in the presence ofLe interferers
is equivalent to the calculation of the secrecy capacity OP in
the presence of an eavesdropper equipped withLe antennas
and performing maximal ratio combining (MRC), up to a
simple scaling of the underlying random variables. Similarly,
the calculation of the OP in interference-limited scenarios (i.e.
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neglecting the BN) is equivalent to the problem of computing
the probability of strictly positive secrecy capacity.

II. SYSTEM MODEL I: CCI AND BN

Let us first consider the case where all the agents are
single antenna transceivers, and there is only one interfering
signal. We characterize the communication links in Fig. 1a)
in terms of two instantaneous power ratios at the receiver side
(B), the SNRγd = PT |hd|

2 /N0 and the interference-to-noise
ratio (INR) γi = PI |hi|

2
/N0, wherePT andPI indicate the

transmission power of A and the interferer I, respectively,N0

denotes the noise power at B, whilsthd andhi represent the
complex fading channel gain for the desired and interfering
links respectively, which incorporate the effects of attenuation
due to path loss (i.e. proportional tod−α, where d is the
distance between transmitter and receiver, andα is the path
loss exponent [12]).

In the most general scenario with both CCI and BN,
the usual performance metric is the OP of the signal-to-
interference-plus-noise ratio (SINR), defined as the probability
of the instantaneous SINR falling below a given thresholdγ,
i.e.:

OPNI(γ) = Pr

{

PT |hd|
2

PI |hi|
2 +N0

<γ

}

= Pr {γd<γ(γi+1)} .

(1)
In case of interference-limited scenarios (i.e.N0 = 0), the
previous expression reduces to

OPI(γ) = Pr

{

PT |hd|
2

PI |hi|
2 <γ

}

= Pr {γd<(γ · γi)} . (2)

Note that since we are neglecting the BN in (2),
PT |hd|

2
/PI |hi|

2 represents now a signal-to-interference ratio
(SIR). For simplicity we still use the same nomenclature
as in (1), where the variablesγd and γi now represent the
received instantaneous power for the desired and interfering
links, respectively. Finally, in noise-limited scenarios(i.e.
where the interference can be neglected), the OP is given by
OPN (γ) = Pr {γd<γ}.

III. SYSTEM MODEL II: W IRELESS

INFORMATION-THEORETICSECURITY

A. Classical definition

As in the previous subsection, we consider all the agents
to be single antenna transceivers. Using the standing nomen-
clature in the physical layer security literature [20], this
corresponds to a SISOSE scenario (single-input single-output
single eavesdropper). Analogously, we characterize the com-
munication links in Fig. 1b) in terms of their equivalent SNRs,
γd = PT |hd|

2
/N0 for thedesiredlink andγe = PT |he|

2
/N0

for the eavesdropperlink. Without loss of generality, we
assume that the noise power at B and E are equal.

The performance in this scenario is usually characterized
by the secrecy capacityCs, defined as

Cs , Cd − Ce > 0, (3)

whereCd = log (1 + γd) is the instantaneous capacity of the
desired channel andCe = log (1 + γe) is the instantaneous
capacity of the eavesdropper’s channel. Secure transmission is
achievable provided thatCs > 0 and assuming proper wiretap
codes, for which perfect knowledge of both Bob’s and Eve’s
CSI is required at Alice. The probability of strictly positive
secrecy capacity is

P+
s = Pr {Cs > 0} = Pr

{

log2

(

1 + γd
1 + γe

)

> 0

}

= Pr {γd > γe} . (4)

When Eve’s CSI is not available at Alice, perfect secrecy
cannot always be achieved and secrecy is often analyzed in
terms of the secrecy outage probabilityPs, defined as the
probability that communication at a secrecy rateRs > 0
cannot be securely achieved [12, 13], i.e.,

Ps = Pr {Cs < Rs} = Pr

{

log2

(

1 + γd
1 + γe

)

< Rs

}

= Pr
{

γd<(2Rs − 1)
(

2Rs

2Rs
−1

γe+1
)}

. (5)

To compute this quantity, Eve’s channel statistics (i.e., fad-
ing distribution and average SNR) are needed. Whether this
information should be available at Alice or not depends on
the particular design of the transmission scheme. For instance,
Eve’s average SNR would be needed at Alice if an adaptive-Rs

transmission is implemented so that the outage probabilityis
maintained below a required target. We do not explicitly take
this assumption here since other (non-adaptive) schemes could
be considered such as, e.g., an offline design ofRs based on
worst-case assumptions on Eve’s average SNR.

B. Alternative definition

Although the previous definition of secrecy has been exten-
sively used in the literature, it does not distinguish whether
a message transmission is unreliable (i.e.,Cd < Rs) or not
perfectly secure (i.e.,Cs < Rs). As pointed out in [19],
this can be seen from the fact that the eventCd < Rs falls
within the secrecy outage eventCs < Rs, but the first does
not necessarily imply a failure in achieving perfect secrecy.
Moreover, if Alice knows that Bob’s channel fails to support
the secrecy rate,Cd < Rs, then transmission should be
suspended.

Therefore, an alternative outage formulation is presentedin
[19], in which the secrecy outage probability is conditioned on
the fact that a message is actually being sent, i.e. whenever
γd exceeds some SNR thresholdµ:

Pso = Pr {Cs < Rs|γd > µ}

= Pr
{

γd < 2Rs(1 + γe)− 1|γd > µ
}

=
1

Pr {γd > µ}
Pr

{

µ < γd < 2Rs(1 + γe)− 1
}

. (6)

IV. EQUIVALENCIES BETWEEN BOTH SCENARIOS

A. Single antenna transceivers

From the previous expressions, it becomes evident that the
secrecy outage probability (withRs > 0) defined in (5) is
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an equivalentexpression to the one obtained for the wireless
system with CCI and BN in (1); in fact, up to a simple scaling
of the underlying random variables,Ps = OPNI . For the
alternative secrecy formulation in (6), a similar connection can
be inferred including some correction terms that are related to
the OP without interference, i.e.OPN (γ).

Analogously, we observe that the (complementary) proba-
bility of strictly positive secrecy capacity, i.e.Rs = 0, also
follows an equivalentexpression to the one obtained for the
wireless system in interference-limited scenarios, i.e.P+

s =
1 − OPI . Interestingly, we see how doubling the threshold
value in the interference setup approximately translates into a
1 bit increase in the secrecy thresholdRs. We also see how
neglecting the effect of background noise in the interference
problem is equivalent to setting the secrecy rateRs to zero.

The connections among these scenarios are summarized in
Table I. Note that we do not take any assumption regarding
the distribution ofγd, γe and γi; hence, they can follow
arbitrary distributions, and they can also be correlated. A
direct implication of the connection unveiled herein is that
outage analysis in information-theoretic security problems
can be immediately characterized by leveraging the available
analytical results for the CCI+BN equivalent problem.

Our approach is thus useful from an analytical point of view:
in order to calculate the secrecy outage probability in a new
scenario, there is no need to redo the calculations if there is
a solution available for the equivalent CCI+BN problem. This
is the case for the scenarios investigated in [10]; therefore,
a direct application of the secrecy-interference equivalence
allows obtaining the secrecy OP in the following cases for
which no results are currently available: (i)η-µ fading for the
A-B link, and η-µ fading for the A-E link, (ii)η-µ fading for
the A-B link, andκ-µ fading for the A-E link, (iii)κ-µ fading
for the A-B link, andη-µ fading for the A-E link.

In addition, the new expressions can be used to optimize
the system under secrecy constraints. For example, in [19],
for Rayleigh fading channels and under the “alternative for-
mulation”, the OP expressions were used to design trans-
mission strategies with optimized transmission thresholds and
optimized wiretap coding rates. By virtue of the interference-
secrecy equivalence, optimized strategies can be designedfor
more general fading models as mentioned above.

B. Multiple antenna transceivers

For notational simplicity, we started our analysis with the
simplest setup: a scenario where all Alice, Bob, and Eve are
equipped with a single antenna. This scenario is referred to
as SISOSE (single-input single-output single-eavesdropper) in
the literature (see, e.g., [20]). We see that this problem is
dual to an interference problem in a SISO setup with a single
interferer.

The extension to a SISOME (single-input single-output
multiple-eavesdroppers) scenario is direct, since usingL an-
tennas at Eve with maximal ratio combining (MRC) reception,
which yields γe =

∑L

k=1 γek , is equivalent to considering
L interfering signals in the dual interference problem [4],
yielding γi =

∑L

k=1 γik .

If we now consider multiple antennas at Bob, then the
scenario under analysis is denoted as SIMOME (single-
input multiple-output multiple-eavesdroppers). In this case,
the SNR at Eve is unaltered and the SNR at Bob is that of
a multiantenna receiver, which depends on the implemented
combining strategy. It is straightforward to see that the duality
also holds in this scenario when having MRC reception: the
dual interference problem would be comprised of a receiver
with multiple antennas under the effect of multiple interferers.
This is a well-investigated problem in the interference-related
literature [21–23] when assuming Rayleigh fading channels,
whereas the SIMOME counterpart was analyzed in [24].

When considering multiple antennas at Alice and a single
antenna at Bob, the scenario is referred to as MISOME
(multiple-input single-output multiple-eavesdroppers). In this
case, different mechanisms for transmission (e.g. beamform-
ing, transmit antenna selection, space-time block coding)[25–
27] imply different distributions of the effective SNRs andthe
problem formulation needs some notational changes, but the
duality still holds. The dual problem in this case is a MISO
communication system affected by multiple interferers1.

Finally, we consider the more general case where all
terminals in the network are equipped with multiple anten-
nas, i.e., MIMOME (multiple-input multiple-output multiple-
eavesdroppers). For those schemes that involve rank-1 sig-
naling, i.e., those not involving spatial multiplexing (e.g.
beamforming, transmit antenna selection, space-time block
coding) [28, 29], the channel can be effectively seen as a
SISO channel with an underlying SNR distribution possibly
more complex. In these cases, the MIMOME problem is
equivalent to a MIMO communication system with multiple
interferers. A good example can be found in the OP analysis of
a MIMO-MRC system affected by interference [30]; the OP
expressions in [30] are a generalization of those for single-
antenna transmitters in [22]. By virtue of the equivalence
unveiled in this paper, the same generalization applies to the
MIMOME scenario (in the secrecy context) when a MIMO-
MRC configuration is employed in the desired link.

As we have seen, the interference-eavesdropping connec-
tion holds for all the multiple-antenna scenarios described
above, i.e., SISOME, SIMOME, MISOME, and MIMOME,
provided that rank-1 signaling (without spatial multiplexing)
is employed. A generalization to spatial multiplexing schemes
is not evident [31], and this is indeed an interesting direction
for future research.

V. A PPLICATION EXAMPLE : SECRECY ANALYSIS IN

SISOMEMIXED FADING

Having established the equivalence between these scenar-
ios, we now aim at illustrating how well-known results for
cellular systems affected by interference can be translated
into analytical results for their wireless information-theoretic

1However, we must note that some of the schemes for multiple antenna
transmitters under the presence of eavesdroppers are different that the con-
ventional schemes out of the context of physical layer security; for instance, a
masked beamforming technique has been proposed in the context of physical
layer security as an improvement over conventional (or naive) beamforming
[25].
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TABLE I
CONNECTION BETWEENSCENARIOSI AND II

SECRECYMETRIC CONNECTIONCCI+BN PARAMETERS

Ps , Pr {Cs < Rs} Ps = OPNI(γ) γ = 2Rs − 1, γi =
2Rs

2Rs−1
γe

Pso , Pr {Cs < Rs|γd > µ} Pso = OPNI(γ)−OPN (µ)
1−OPN (µ)

γ = 2Rs − 1, γi =
2Rs

2Rs−1
γe

P+
s , Pr{Cs > 0} P+

s = 1−OPI(γ) γ = 1, γi = γe

counterparts. As an example of application, we investigatethe
scenario where the fading channel between Alice and Bob
is Nakagami-m distributed, whereas the fading experienced
by Eve follows anarbitrary distribution. Assume that the
eavesdropper is equipped withLe antennas; this is equivalent
to consider a set ofLe single-antenna colluding eavesdroppers
[32], that cooperate to intercept and decode the message.

The instantaneous SNRγek per receive branch (k =
1 . . . Le) is modeled as a random variable with meanγek

.
Furthermore, we assume MRC multichannel reception so that
the output SNRγe is expressed as the sum of the individual
per-branch SNRs, i.e.γe =

∑Le

k=1 γek .
According to Section IV, this problem is equivalent to a

wireless system with CCI and BN (System Model I) in which
a set ofLe users interfere the desired signal at the receiver
B. In this case, the equivalent INR in (1) isγi =

∑Le

k=1 γik ,
whereγik represents the SNR of each interfering signal and
is (up to a scale factor) directly related toγek according to
Table I.

Having established this connection, we can now invoke
the results in [4] for the OP under CCI and BN, where
we just need to replaceγi with the scaled version ofγe.
For the specific scenario where the desired link undergoes
Nakagami-m fading, the OP is directly given in terms of the
moment generating function (MGF) ofγe, which fortunately
can be expressed in closed-form for most common fading
distributions. Hence, under the assumptions above, the OP of
the secrecy capacity is given by

Ps = 1−e−p

m−1
∑

i=0

1

i!

i
∑

j=0

Ci,jp
i d

j

dpj

[

Le
∏

k=1

Φk (−p)

]∣

∣

∣

∣

∣

p=
m(2Rs

−1)
γ̄d

(7)
whereCi,j = (−1)

j
i!/(j!(i − j)!) andΦk(·) represents the

MGF of γek , k = 1, . . . , Le, which are assumed to be
independen but can be arbitrarily distributed. Similarly,the
probability of strictly positive secrecy capacity is givenby

P+
s =

m−1
∑

i=0

(−p)i

i!

di

dpi

[

Le
∏

k=1

Φk (−p)

]∣

∣

∣

∣

∣

p=
m
γ̄d

. (8)

Finally, the secrecy outage probability using the alternative
definition in [19] can be compactly expressed as

Pso =
1

1− Fγd
(µ)

[Ps − Fγd
(µ)]

+
, (9)

where[a]+ = max(0, a), Fγd
(·) is the cumulative distribution

function of γd (Nakagami-m distributed in this example) and
Ps is given by (7).

Note that the above expressions are given as an example of
application, and other scenarios with the desired link arbitrarily
distributed can be also analyzed by exploiting the results in
[4] along with the equivalences between the interference and
secrecy problems. In this case, the analytical results would
be given in terms of the MGF of the SNR at Bob. Closed-
form expressions for the MGFΦ(p) andnth-order derivative
of the MGFΦ(n)(p) of the signal power in a variety of fading
channel models can be easily computed; expressions for the
most common fading models are given in Table II.

VI. N UMERICAL RESULTS

We have presented a simple approach for the characteriza-
tion of the wireless information-theoretic security in terms of
the MGF of the SNRs at Eve (or Bob). Next, the derived
expressions are evaluated numerically to discuss the main
implications that arise in practical scenarios of interest. Let
us assume a normalized secrecy rateRs = 1 and that Eve
supports MRC reception. First, we evaluate the effect of
considering a different fading severity for the communication
links. The distribution of all links is Nakagami-m with fading
severity indexm (for the direct link) andmk (for the kth
eavesdropper’s link). In Fig. 2, the OP of the secrecy capacity
derived in (7) and (9) are represented as a function of the
average SNR at Bob̄γd whereas the average SNR at the
eavesdropper links (γek

with k = 1 . . . Le) is kept fixed to
5 dB. We also setµ = γ = 2Rs − 1, which is the value ofµ
that maximizes the throughput [19].

The numberLe of antennas in the eavesdropper has an
important impact on the secrecy capacity outages for both
definitions of secrecy; this is expected since a higher number
of antennas allows for an increased equivalent SNR after
MRC. Therefore, using more antennas at Eve decreases the
rate at which secure communication can be established, when
the rest of parameters remain fixed; this is in agreement with
[18]. We observe thatPso is always lower than the classical
definition (Ps) as the former is conditioned to the fact that
a message is being sent (γd > µ) and it includes the latter
for µ = 0. The gap between both definitions is reduced asLe

increases since that implies that the effective SNR at Eve (after
MRC) gets higher and, consequently, that bothPs and Pso

increase; it is then clear from (9) that the difference between
Pso andPs shrinks.

We now aim at analyzing the impact of different fading
conditions in the secrecy capacity, which is also shown in
Fig. 2. To that end, we vary the fading severity indexm
for the legitimate communication (between Alice and Bob),
while keeping the fading parameter for Eve’s link fixed to
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TABLE II
PDF, MGFAND nTH-ORDER DERIVATIVE OF THEMGF OF SIGNAL POWER FOR FADING MODELS

FADING MODEL MGF,Φ(p) nTH-ORDER DERIVATIVE OF THEMGF,Φ(n)(p)

Rayleigh (1− pγ̄)
−1 γ̄nn!

(1−pγ̄)n+1

Nakagami-m (1− pγ̄/m)−m γ̄nmmΓ(m+n)

(m−pγ̄)n+mΓ(m)

Rice
(

1+K
1+K−pγ̄

)

exp
(

pKγ̄
1+K−pγ̄

)

γ̄n(n!)2(1+K)

(1+K−pγ̄)n+1 exp
(

pKγ̄
1+K−pγ̄

) n
∑

i=0

1
(i!)2(n−i)!

(

K(1+K)
1+K−pγ̄

)i

0 5 10 15 20 25 30
10−3

10−2

10−1

100

Le = 1
Le = 2

Le = 4

m = 2, 4, 6, 8

mk = 2, 4, 6, 8

γ̄D (dB)

P
s
,
P
s
o

Ps (m = mk = 1)

Ps (m > 1, mk = 1)

Ps (m = 1, mk > 1)

Pso(m = mk = 1)

Fig. 2. OP of secrecy capacity vs̄γd, for different values of the fading
severity index and numbers of receive branchesLe. Parameter values are
γek

= 5 dB (k = 1 . . . Le) andRs = 1.

mk = 1, k = 1 . . . Le. In the low SNR regime, changing the
distribution of the desired link has little effect since in this
region the behavior ofPs is dominated by the distribution
of γek . Conversely, in the high SNR regime we see that the
down-slope ofPs is proportional tom. If we now consider
a different fading severitymk at the eavesdropper link (while
keepingm = 1 for the legitimate communication), we observe
a dual effect as compared to the previous case. In the low
SNR regime, increasingmk causes thatPr(Cs < Rs) grows
for a given γ̄d, since the eavesdropper experiences a less
severe fading than the legitimate receiver. However, in thehigh
SNR regime the secrecy capacity is practically agnostic to the
distribution of γek . This is explained by the fact that in this
region the OP of the secrecy capacity is dominated by the
distribution of the desired link, whose average power is much
larger thanγ̄ek .

Fig. 3 showsP+
s , as defined in (8), when assuming Rician

fading for Eve’s link (with differentK factors), and Rayleigh
fading for the legitimate link. This setup may represent a
scenario in which Eve is positioned with a direct line of sight
(LoS) to Alice, while Bob is only able to receive the non-

0 5 10 15 20 25 30
10−3

10−2

10−1

100

Le = 1

Le = 2

γ
E

k
= 15dB

Le = 1

Le = 2

γ
E

k
= 5dB

γ̄D (dB)

P
+ s

K = 0

K = 5

Fig. 3. Strictly positive secrecy capacity vsγ̄d, for different RicianK values
for the eavesdropper link and numbers of receive branchesLe; Rs = 1.

LoS component [20]2. We see that the probability of secure
transmission between Alice and Bob is lower as the equivalent
average SNR of Eve increases, either after MRC technique (for
Le > 1) or by increasing the SNRγe of its unique channel
(for Le = 1). Additionally, higher values of the RicianK
factor have a negative impact onP+

s .
Finally, Fig. 4 represents the secrecy outage probability as

a function of the secrecy rateRs, comparing the original
formulation (Ps) with the alternative formulation (Pso) and
assuming the same value ofµ as previously. We consider
different fading distributions at the eavesdropper link and
Rayleigh fading at the desired link. We see from the figure
that the outage probabilities predicted by the two formulations
differ significantly. To understand such a difference we should
recall that Pso considers an adaptive transmission scheme
based on Bob’s CSI.

VII. C ONCLUSION

We showed that two relevant yet apparently unrelated prob-
lems in information and communication theory are in fact

2This also represents the complementary OP in an interference-limited
scenario, i.e.1 − OPI(γ), with γi = γe according to the Table I. In this
setting, we are assuming Rician fading for the interferer’slink (with different
K factors), and Rayleigh fading for the legitimate link. Analogously, this setup
may represent a scenario in which the propagation for the signal of interest
is non-LoS, whereas the propagation for the interfering signals arriving at the
receiver can be modeled as LoS [4].
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Rayleigh

Nakagami-m
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Fig. 4. Comparison between existing secrecy outage formulations vsRs for
different fading distributions at the eavesdropper link and Rayleigh fading at
the desired link. Parameter valuēγd = 5 dB, γ̄e = 0 dB, mk = 5, K = 5.

mathematically equivalent. Specifically, we have shown that
the problem of calculating the OP with CCI and BN in the
presence ofLe interferers is equivalent to the calculation of the
OP of the secrecy capacity in the presence of an eavesdropper
equipped withLe antennas.

Similarly, we have also shown that the calculation of the
OP in interference-limited scenarios is equivalent to the prob-
lem of computing the probability of strictly positive secrecy
capacity. Despite their simplicity, these connections have not
been previously identified in the literature, and they pave the
way towards new results for physical layer security in more
general fading models for which the problem of the OP with
CCI and BN is well-understood.

The equivalence here unveiled has the potential to be
extended to other scenarios in wireless communications, and
is an avenue for future research. For instance, the effect of
artificial-noise-aided beamforming techniques [33] in gener-
alized fading scenarios can also be seen as an underlying
interference-related problem. Similarly, the coverage proba-
bility in wireless cellular networks where the interference is
modeled using spatial random models [34] could be linked
to the information-theoretic characterization in a field of
colluding eavesdroppers [35].
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