
ar
X

iv
:1

41
2.

83
75

v1
  [

cs
.N

I] 
 2

9 
D

ec
 2

01
4

1

Cross-Layer Scheduling for OFDMA-based
Cognitive Radio Systems with Delay and Security

Constraints
Xingzheng Zhu, Bo Yang, Cailian Chen, Liang Xue, Xinping Guan, Fan Wu

Abstract—This paper considers the resource allocation prob-
lem in an Orthogonal Frequency Division Multiple Access
(OFDMA) based cognitive radio (CR) network, where the CR
base station adopts full overlay scheme to transmit both private
and open information to multiple users with average delay
and power constraints. A stochastic optimization problem is
formulated to develop flow control and radio resource allocation
in order to maximize the long-term system throughput of open
and private information in CR system and ensure the stability
of primary system. The corresponding optimal condition for
employing full overlay is derived in the context of concurrent
transmission of open and private information. An online resource
allocation scheme is designed to adapt the transmission of open
and private information based on monitoring the status of
primary system as well as the channel and queue states in the
CR network. The scheme is proven to be asymptotically optimal
in solving the stochastic optimization problem without knowing
any statistical information. Simulations are provided to verify
the analytical results and efficiency of the scheme.

Index Terms—Cognitive radio, physical-layer security, delay-
aware network, full overlay, cross-layer scheduling.

I. I NTRODUCTION

T HE emergency of high-speed wireless applications and
increasing scarcity of available spectrum remind re-

searchers of spectrum utilizing efficiency. The concept of
CR provides the potential technology in increasing spectrum
utilizing efficiency [1], [2] because CR allows unlicensed
users (also known as secondary users (SUs)) to access some
spectrum which is already allocated to primary user (PU) or
licensed user who has the authority to access the spectrum by
spectrum sensing [3], [4]. As another promising technology
of high speed wireless communication system, OFDMA is a
candidate for CR systems [1] due to its flexibility in allocating
spectrum among SUs [5]. Hence, OFDMA-based CR networks
are catching great attention [6], [7]. This paper focuses onan
OFDMA-based CR network without loss of generality.
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In order to exploit the capacity of the whole OFDMA-
bsed CR system, this paper aims at maximizing the sec-
ondary network capacity in consideration of the whole system
transmission efficiency. Thus, the following three main issues
should be considered.

Firstly, an efficient spectrum sharing scheme is essential
for exploiting the unused spectrum in OFDMA-based CR
network. When a SU wants to access some spectrum, it must
ensure that the spectrum is not accessed by any PU or adapt
its parameter to limit the interference to PU. Both of these two
mentioned spectrum utilization manners, known as overlay and
underlay schemes, are conservative in some ways, since they
ignore the PU’s ability to tolerate some inference.

Secondly, due to that CR networks as well as many other
kinds of wireless communication systems have a nature of
broadcast, security issues at physical layer have always been
unavoidable in designing CR systems. Furthermore, to SUs,
it is obviously practical that there exist both private and open
transmission requirements. Then, the scheduling among these
two different kinds of transmission should be considered.
In addtion, delay performance is an indispensable quality of
service (QoS) index in scheduling different transmissions.

Last but not least, the dynamic nature of OFDMA-based
CR communication system brings another big challenge. The
random arrival of user requests (from both PU and SU)
and time-varying channel states renders dynamic resource
allocation instead of fixed ones in exploiting the OFDMA
secondary network capacity.

Aiming at the above issues, the contributions of this paper
are threehold:

• First, this paper adopts a novel full overlay spectrum
accessing scheme by exploiting PU’s tolerance to inter-
ference. Besides, the theoretic proof of full overlay’s
optimality is given in the presence of both open and
private transmissions.

• Second, a joint encoding model is introduced to allow
both private and open transmissions towards SUs with
the full overlay spectrum sharing scheme. A dynamic
resource allocation scheme consisting of flow control
and radio resource allocation is developed by solving
a formulated stochastic optimization problem under the
delay and power constraints.

• Third, the proposed dynamic resource allocation scheme
is proven to be close to optimality although its imple-
mentation only depending on instantaneous information.

This paper is organized as follows. Section II presents
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the related work. In Section III, we introduce the system
model and relevant constraints in detail. Section IV formulates
the problem. In Section V, we introduce our cross-layer
optimization algorithm. We give the performance bound and
stability results in Section VI. Two different implementations
are proposed in Section VII. In Section VIII, some simulation
results are shown. Finally, we conclude this paper in Section
IX.

II. RELATED WORK

There have been many works on spectrum sharing in
OFDMA-based CR networks [8]–[10]. According to [11],
[12], the access technology of the SUs can be divided in two
categories: spectrum underlay and spectrum overlay. The first
category means that SUs can access licensed spectrum during
PUs’ transmission, while as is mentioned in [12], this approach
imposes severe constraints on the transmission power of SUs
such that they can operate below the noise floor of PUs, e.g, in
[8], [13], [14]. The second category means that SUs can only
access licensed spectrum when the PU is idle, e.g, in [9], [10],
[15]–[17]. Considering both these two strategies suffer from
some drawbacks, the authors in [18] propose a new cognitive
overlay scheme requiring SUs to assess and control their
interference impacts on PUs. In general, the cognitive base
station (CBS) controls the aggregate interference to primary
transmission by allowing SUs to monitor channel quality
indicators (CQIs), power-control notifications and ACK/NAK
of primary transmission. In this paper, this novel thought is
extended into an OFDMA-based CR system.

On the other hand, dynamic resource allocation plays a crit-
ical role in exploiting OFDMA network capacity. The overall
performance as well as the multiuser diversity of the system
can be improved by proper dynamic resource allocation [17],
[19]–[25]. Thus, dynamic resource allocation in OFDMA-
based CR system has been attracting more attention recently.
The corresponding spectrum sharing schemes in [8]–[10] are
all realized by dynamic resource allocation.

Besides the interference constraints, the works of delay
aware transmission are also quite relative to this paper. Huang
and Fang in [26] investigate both reliability and delay con-
straints in routing design for wireless sensor network. Cuiet
al. in [27] summarize three approaches to deal with delay-
aware resource allocation in wireless networks. A constrained
predictive control strategy is proposed in [28] to compensate
for network-induced delays with stability guarantee. Those
three methods are based on large deviation theory, Markov
decision theory and Lyapunov optimization techniques. As
to the first two methods, they have to know some statistical
information on channel state and random arrival data rate to
design algorithm, while these prior knowledge is expensive
to get, even unavailable. To overcome this problem, many
authors pay attention to Lyapunov optimization techniques.
References [29] and [30] investigate scheduling in multi-
hop wireless networks and resource allocation in cooperative
communications, respectively as two typical applicationsof
Lyapunov optimization in delay-limited system. In this paper,
we utilize this tool to dispose the resource allocation problem
in OFDMA-based CR networks.

As for secure transmission, Shannon’s information theory
laid the foundation for information-theoretic security [31] and
the concept of wire-tap channel was proposed in [32]. There
has been some research on exploiting security capacity in
OFDMA network by dynamic resource allocation, such as in
[33] and [34]. In CR area, the study of secure transmission
from information-theoretic aspect is very limited. Pei et al. in
[35] first investigate secrecy capacity of the secure multiple-
input single-output (MISO) CR channel. Kwon et al. in [36]
utilize the concept of security capacity to explore MISO CR
systems where the secondary system secures the primary com-
munication in return for permission to use the spectrum. Both
these two works focus on only private message transmission.
The security and common capacity of cognitive interference
channels is analyzed in [37]. The entire capacity of a MIMO
broadcast channel with common and confidential messages is
obtained in [38]. The paper [39] considers the problem of
optimizing the security and common capacity of an OFDMA
downlink system by dynamic resource allocation. This paper
further considers the transmissions of private and open flows
in CR networks with delay constraints.

III. SYSTEM MODEL

The system model consists of multiple primary links and
multiple secondary links as Fig. 1 shows. The total bandwidth
B is divided intoM subcarriers equally using Orthogonal Fre-
quency Division Multiplexing (OFDM). Assume thatM = B
holds for simplicity of expression. The subcarrier set of the
network is denoted asM = {1, 2, · · · ,M} and m ∈ M

denotes subcarrier index. The downlink case is considered.
The primary link is from a single primary base station (PBS)
to K PUs. Secondary links are from a common CBS toN
SUs. We denotek ∈ {1, 2, · · · ,K} andn ∈ {1, 2, · · · , N} as
the indexes of PU and SU respectively. The system operates
in slotted time, andT is the length of a time slot. Hereafter,
[tT, (t+ 1)T ) is just denoted byt for brevity.

The set of subcarriers occupied by PUk on timeslot t
is denoted asΓPU

k (t) = {τk1 (t), τ
k
2 (t), · · · , τ

k
mk(t)(t)} where

mk(t) is the number of subcarriers occupied by PUk
and ΓPU

k (t) ⊆ {1, 2, · · · ,M}. The power setPPU
k (t) =

{Pm
k (t)|m ∈ M} is the set of transmission power from PBS

to PUk, where form ∈ ΓPU
k (t), Pm

k (t) > 0, elsePm
k (t) = 0.

For brevity, we will omit the time index(t) somewhere
in further discussion.P SU = {pmn |∀n, ∀m} denotes the
overall SUs power allocation policy set andpmn represents the
power allocated by CBS to usern in subcarrierm. Denote
ΓSU
n = {̟m

n |∀m} as the subcarrier assignment policy of SU
n, where̟m

n is either 1 representing subcarrierm is assigned
to SUn, or 0 otherwise. Then letΓSU = {ΓSU

n (t), ∀n} be the
overall subcarrier assignment policy of secondary network.

Due to the orthogonal properties of OFDMA technology,
there exists no mutual influence between every two SUs.
However, there exists mutual interference between the primary
and secondary networks when PU and SU access in the same
subcarrier.

The channel gains include the one of secondary user
n on subcarrierm, hm

n and the one of primary userk
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on subcarrierm, Hm
k . The additive white gaussian noise

(AWGN) is σ2. The corresponding subcarrier gain-to-noise-
ratio1 (C/I) in slot t are thus defined asamn (t) =

hm
n (t)2

σ2

and Am
k =

Hm
k (t)2

σ2 respectively as illustrated in Fig.1. The
seta(t) = {Am

k (t), amn (t), ∀n, ∀m, ∀k} represents the system
channel state information (CSI). All channels are assumed to
be slow fading, and thusa(t) remains fixed during one slot
and changes between two [40]. In this work, there exists an
reasonable assumption that the system CSI is known to BS.
As in [41], BS can get full-CSI by utilizing pilot symbols
and CSI feedback process. Besides, at the beginning of every
slot, PU reportsPm

k Am
k to PBS. For example, the PU reports a

received-signal-strength index to PBS in packets such as RSSI
reports. We assume the CBS will listen to the information to
derivePm

k Am
k before accessing subcarrierm [18], [41].

Denotehm
kS as the cross-link interference channel gain from

CBS to PUk on subcarrierm and letamkS =
hm
kS

2

σ2 . Similarly,
denotehm

nP as the cross-link interference channel gain from

PBS to SUn on subcarrierm and let amnP =
hm
nP

2

σ2 . It is
assumed thatamkS andamnP can be got by the CBS.amkS can
be estimated by CBS from the PU feedback signal based on
reciprocity. amnP can be estimated by SUs through training
and sensing and the estimation results are sent to CBS [41].
Beyond that, information about cross-link channel state could
also be measured periodically by a band manager either [8],
[42].

Compared to pervious work, this paper considers a more
complicated and practical situation of SU transmission. The
CBS transmits both private and open data to each SU as Fig.2
shows. The private data has security requirement and open data
has long-term time-average delay constraint. Instead of that
both open and private data have delay constraint, only delay
constraints on open transmissions are considered in this paper
for simplifying the mathematic expressions, since the handling
of delay constraint in secure transmission is totally the same as
open transmission. Actually, in real wireless communication
systems, there exists some private transmission having no strict
delay constraint, e,g. updating contact information in mobile
devices. At the beginning of every time slot, random data
packets arrive at CBS. CBS decides whether to admit it into
the system or not. Besides, CBS is also in charge of resource
allocation to assign power and subcarriers among SUs. CBS
utilizes the information of data queue and CSI to allocate
resources. The system performance can be optimized and the
queuing delay of open data can be ensured to fulfill by flow
control and resource allocation.

In the side of CBS, the amount of open data packet of SU
n, Do

n(t), and private data,Dp
n(t) that arrive at CBS during

slot t are independent identically distributed (i.i.d) stochastic
processes, e,g. Bernoulli processes, with the long-term average
arrival ratesλo

n andλp
n, and their upper bounds areµmax and

Dmax, respectively. These packets can not be transmitted to
target users instantaneously due to the time-varying channel
conditions and they are enqueued at the CBS. However, only
parts of these packets are admitted into each queue towards

1Also called gain-to-noise-plus-interference-ratio whenSU and PU access
in the same subcarrier.
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Fig. 1. General network model

each user for stability reason to be specified later. The amounts
of open and private data admitted by respect queues are
T o
n(t) andT p

n(t) and CBS is in charge of determiningT o
n(t)

and T p
n(t) according to a certain principle which would be

specified in Section V.

A. Capacity model

In OFDMA-based CR networks, SU and PU can access in
the same subcarrier with mutual interference. However, dueto
the characteristic of OFDMA networks, each subcarrier can
not be assigned to more than solitary user in any secondary
or primary network. Thus the following formulation is set to
ensure the limitation in CBS:

0 ≤
N∑

n=1

̟m
n ≤ 1, ∀m (1)

CBS will realize the occupied subcarrier setΓPU
k =

{m|Pm
k > 0, ∀m}, and we denoteΓSU = {1, 2, · · · ,M} −⋃K

k=1 Γ
PU
k . Thus the transmission rates of PU and SUs can

be analysed by dividingM subcarriers into two parts: one
is m ∈

⋃K
k=1 Γ

PU
k where there exists interference between

PU and SUs; another ism ∈ ΓSU which means SUs can
access these subcarriers without influencing primary link.Thus
according to information theory the transmission rate of PUk
on subcarrierm is:

Rm
k =

{
log2(1 +

Pm
k Am

k

1+am
kS

pm
n′

) m ∈ ΓPU
k , n′ ∈ Γ̃m

0 m ∈ ΓSU

whereΓ̃m is the set of SUs accessing subcarrierm. Further-
more, since in secondary network, only one SU can access
one subcarrier,n′ is the only one element in set̃Γm.

It should be noticed that the total transmission rate in an
OFDMA network equals to the sum rates on all subcarriers.
So the transmission rate of PU is:
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RPU
k =

∑

m∈ΓPU
k

Rm
k (2)

The channel capacities of SUn on subcarrierm can be
expressed as:

Cm
n =

{
log2(1 +

pm
n am

n

1+Pm
k′

am
nP

) m ∈
⋃K

k=1 Γ
PU
k , k′ ∈ Γ̂m

log2(1 + pmn amn ) m ∈ ΓSU

where Γ̂m is the set of PUs accessing subcarrierm. Fur-
thermore, since only one PU can access one subcarrier,k′

is the only one element in set̂Γm. DenoteRSU
n =

∑
m Cm

n

as the sum transmission rate of SUn without consideration
of security.

By introducing the joint transmission model, open and pri-
vate data of one SU can be transmitted simultaneously. Open
message is jointly encoded with security message as random
codes. In this way, although open message may be decoded
by eavesdroppers, security message would be perfectly secure
if the channel fading is properly utilized [43]. According to
the theory of physical-layer security [34], if the transmission
rate of private data is less thansecurity capacity, the pro-
posed joint-encoding model can at least realize physical-layer
security in theory. [44], [45] propose physical-layer security
realization applications using error correcting codes andpre-
processor, which lays the foundation of realizing physical-
layer security of the joint encoding model. For each SU, CBS
makes decision if his secure data could be transmitted in this
slot and this decision is expressed as the secure transmission
control vectorζ = (ζ1, ζ2, · · · , ζN ). The indicator variable
ζn = 1 implies that private and open messages are encoded at
rate R̂p

n andRSU
n − R̂p

n respectively in timeslott andζn = 0
means that only open messages can be transmitted at rateRSU

n .
When CBS is transmitting private messages to SUn, all the

other SUs except SUn are treated as potential eavesdroppers
[34]. According to [46], subject to perfect private of SUn,
the instantaneous private rate of SUn on subcarrierm is the
achievable channel capacity minus the highest eavesdropper
capacity if there is no cooperation among eavesdroppers. For
each SUn, we define the most potential eavesdropper on
subcarrierm as SUñ and ñ = argmax

n′,n′ 6=n

amn′ . So the security

capacity of SUn on subcarrierm is:

R̂mp
n =

{
[Cm

n − log2(1 +
pm
n bmn

1+Pm
k′

bm
nP

)]+ m ∈ ΓPU
k , k′ ∈ Γ̂m

[Cm
n − log2(1 + pmn bmn )]+ m ∈ ΓSU

(3)
where [·]+ = max{·, 0}, bmn = amñ and bmnP is the cross-link
CSI from PBS to SUñ on subcarrierm. Obviously, R̂p

n =∑
m∈M

R̂mp
n . Thus the achievable private rate of usern is:

Rp
n = ζnR̂

p
n

and the open rate of usern is: Ro
n = RSU

n −Rp
n.

B. Queuing model

There exist data queues in both PBS and CBS. Although
we want to maximize the weighted throughput of SUs, PU
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Fig. 2. Transmission model of secondary network

queue stability is a constraint in ensuring that PU’s long-
term throughput is not affected by SU’s transmission. It is
assumed that the transmission rate of PBS without interference
is sufficient to serve PU’s demand. However, the primary
network and the secondary network will be influenced by each
other if they work on the same channel. The transmission
rate decrease of PU is due to the interference brought by
SU transmission, while the CBS can adjust its schedule to
limit interference in order to ensure that PU’s time-varying
rate demands can be satisfied. Later, the notation of queue
stability will be used to measure whether PU’s demand can be
fulfilled. In [18], the interference is limited by that PU queue
is kept stable under the influence caused by the only one SU
access. We continue to utilize this technique in schedulingour
multi-SU access system.

First, it is necessary to introduce the concept ofstrong
stability. As a discrete time process,Q(t + 1) = [Q(t) −
S(t)]+ +D(t) is strongly stableif:

lim sup
t→∞

1

t

t−1∑

τ=0

E{Q(τ)} < ∞ (4)

In particular, a multi-queue network is stable when all queues
of the network arestrongly stable. According toStrong Stabil-
ity Theoremin [47], for finite variableS(t) andD(t), strong
stability implies rate stability ofQ(t). The definition of rate
stability can be found in [47] and omitted here.

Furthermore, according toRate Stability Theoremin [47],
Q(t) is rate stable if and only ifd ≤ s holds whered =
lim
t→∞

1
t

∑t−1
τ=0D(τ) ands = lim

t→∞

1
t

∑t−1
τ=0 S(τ).

Since the data can not be delivered instantly to PUs or
SUs, there are data backlogs in the PBS and CBS waiting
for transmitting to respective users.

1) PU queue:In PBS, the data queue of PUk is updated
as following:

Qk(t+ 1) = [Qk(t)−RPU
k (t)]+ +DPU

k (t) (5)

whereDPU
k (t) is the amount of data packets randomly arriving

at PBS during slott with the destination of PUk. We
assumeDPU

k (t) is an i.i.d stochastic process with its upper
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bound ofDPU
max and its long-term average arrival ratesλk =

lim
t→∞

1
t

∑t−1
τ=0D

PU
k (τ). As it has been mentioned before,Qk

should be kept stable by limiting SUs’ interference to primary
link. As Rate Stability Theoremshows,Qk is rate stable if
and only if rPU

k ≥ λk whererPU
k , lim

t→∞

1
t

∑t−1
τ=0 R

PU
k (τ).

Therefore, if PU system is strongly stable, its long-term
transmission is not affected by SUs.

2) SU data queues:In CBS, there exist actual data queues
of open and private data which are represented byQo

n andQp
n

respectively for alln ∈ {1, · · · , N}. These queues are updated
as follows:

Qo
n(t+ 1) = [Qo

n(t)−Ro
n(t)]

+ + T o
n(t) (6)

Qp
n(t+ 1) = [Qp

n(t)−Rp
n(t)]

+ + T p
n(t) (7)

All Qk, Qo
n and Qp

n have initial values of zero. We
define ton , lim

t→∞

1
t

∑t−1
τ=0 T

o
n(τ), tpn , lim

t→∞

1
t

∑t−1
τ=0 T

p
n(τ)

as the long-term time-average admission rates of open data
and private data respectively. The long-term time-average
service rates ofQo

n and Qp
n are also defined as:ron ,

lim
t→∞

1
t

∑t−1
τ=0R

o
n(τ) and rpn , lim

t→∞

1
t

∑t−1
τ=0 R

p
n(τ). Q

o
n and

Qp
n should be keptstrongly stablein order to ensure the rate

requirements of open and private date can be supported by the
CR system, which meanston ≤ ron and tpn ≤ rpn hold.

Virtual queues of open data,Xo
n(t), and private dataXp

n(t)
are introduced in (8) and (9) to assist in developing our
algorithms, which would guarantee that the actual queuesQo

n

andQp
n are bounded deterministically in the worst case.

Xo
n(t+ 1) = [Xo

n(t)− T o
n(t)]

+ + µo
n(t) (8)

Xp
n(t+ 1) = [Xp

n(t)− T o
n(t)]

+ + µp
n(t) (9)

Denoteµo
n andµp

n as the virtual admission rates of open data
and private data, which are upper bounded byDo

n and Dp
n

respectively. Notice thatXo
n, Xp

n, µo
n andµp

n do not stand for
any actual queue and data. They are only generated by the
proposed algorithms. According to queuing theory, whenXo

n

andXp
n are stable, the long-term time-average value ofµo

n and
µp
n would satisfy:

νon = lim
t→∞

1

t

t−1∑

τ=0

µo
n(τ) ≤ ton (10)

νpn = lim
t→∞

1

t

t−1∑

τ=0

µp
n(τ) ≤ tpn (11)

To summarise, as shown in Fig. 2 the control spaceχ
of the system can be expressed asχ = {PSU ,ΓSU , ζ,T},
which includes admission controlT = {T o

n, T
p
n |∀n}, power

control decisionPSU , subcarrier assignmentΓSU and security
transmission controlζ.

C. Basic constraints

1) Power consumption constraint:Let E ,
∑

∀n,∀m pmn
as total power consumption of the whole system in one time
slot. There exists a physical peak power limitationPmax that
E cannot exceed at any time:

0 ≤ E ≤ Pmax (12)

The long-term time-average power consumption also has an
upper boundPavg, which is proposed for energy conservation:

e ≤ Pavg (13)

wheree = limt→∞
1
t

∑t−1
τ=0 E{E(τ)}

2) Delay-limited model:The queuing delay is defined as
the time a packet waits in a queue until it can be transmitted.
Each SU has a long-term time-average queuing delayρon for
its open data transmission. To each SU, it proposes a delay
constraintρn as in (14) for its open transmission.

ρon ≤ ρn (14)

IV. PROBLEM FORMULATION

Considering the simplicity and understandability of math-
ematic analysis, a special case of one single primary link is
considered in the following. In the single PU case, the only
one PU is indexed with number0. In part C of Section V, the
general results of multi-PU case are listed for completeness.

A. Optimization objective and constraints

Following above descriptions, the objective of this paper is
to improve throughput of secondary network while ensuring
stability of primary network. So the problem is formulated as:
Maximize the sum weighted admission rates of all SUs and
stabilize the PU data queueQ0 at the same time. Letθn and
ϕn for all n be the nonnegative weights for private and open
data throughput. Then the optimal problem can be formulated
as:

Maximize
N∑

n=1

{θnt
p
n + ϕnt

o
n} (15)

Subject to: 0 ≤ tpn ≤ λp
n, ∀n

0 ≤ ton ≤ λo
n, ∀n

t = (tpn, t
o
n) ∈ Υ

lim sup
t→∞

1

t

t−1∑

τ=0

E{Q0(τ)} < ∞

(13), (14)

whereΥ is the network capacity regionof secondary links.
Define the service rate vector asυ = (ron, r

p
n). The definition

of network capacity regionΥ is the region of all non-negative
service rate vectorsυ for any possible control actions [47].
When the CBS takes a kind of control policy under a certain
channel condition, the secondary links will have a decided
network capacity and thenetwork capacity regionis the set
of network capacities under all possible control policies and
all channel conditions. In the proposed system, the control
policy of CBS should fulfill subcarrier assignment rule (1),
peak power constraint (12) and stabilize all queues including
actual queues and virtual queues. So actually, the control
policy that can achieve the network capacity region should
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satisfy the following constraints:





(1), (12)

lim supt→∞
1
t

∑t−1
τ=0 E{Q

o
n(τ)} < ∞

lim supt→∞
1
t

∑t−1
τ=0 E{Q

p
n(τ)} < ∞

lim supt→∞
1
t

∑t−1
τ=0 E{X

o
n(τ)} < ∞

lim supt→∞
1
t

∑t−1
τ=0 E{X

p
n(τ)} < ∞

Theoretically, we can get the optimal solution to (15) if
we get the distribution of the system CSI and external data
arrival rate beforehand. However, this information can notbe
obtained accurately. In this paper an online algorithm requiring
only current information of queue state and channel state is
proposed and will be described in detail then.

B. Optimality of SU overlay

Before detailing the control algorithm, it should be specified
the conditions that make SU overlay play a positive role in
this cognitive transmission model other than traditional access
methods. We focus on presenting a sufficient condition on
overlay for constant channel conditions here, then we will
extend it to time-varying situation.

In the case of static network condition, the optimal problem
of SUs’ weighted throughput is simplified as

Maximize:
∑N

n=1{θnr
p
n + ϕnr

o
n} (16)

Subject to rPU
0 = λ0

where we only consider the optimal case whenrPU
0 = λ0.

Notice here, the system maximal weighted sum data rate under
full overlay scheme must be greater than or at least no worse
than that when SU can only access the subcarrier which is not
occupied by PU. It is easy to understand that full overlay is a
more general access scheme than spectrum overlay which is
a special access situation. We can get an intuition that when
all subcarriers are assumed to be accessed by PU, SU data
rate would be positive under full overlay scheme instead of
zero under traditional overlay scheme. Thus what we want to
prove is the sufficient condition of that SUs perform better
in consideration of PU transmission other than accessing the
licensed subcarrier roughly. Letκ be the fraction of time that
PU is actively transmitting, thus:

rPU
0 = κ

∑

m∈ΓPU
0

log2(1 +
Am

0 Pm
0

1 + am0Sp
m
n

) (17)

rpn = {
∑

m∈ΓPU
0

{(1− κ)[log2(1 + amn pmn )− log2(1 + bmn pmn )]+

+ κ[log2(1 +
pmn amn

1 + Pm
0 amnP

)− log2(1 +
pmn bmn

1 + Pm
0 bmnP

)]+}

+
∑

m∈ΓSU

[log2(1 + amn pmn )− log2(1 + bmn pmn )]+}ζn (18)

ron =
∑

m∈ΓSU

log2(1 + amn pmn ) +
∑

m∈ΓPU
0

[κ log2(1+

pmn amn
1 + Pm

0 amnP
) + (1− κ) log2(1 + amn pmn )]− rpn (19)

We have the following lemma:

Lemma 1: In high SINR region, a sufficient condition for
full overlay to be optimum in SUn accessing subcarrierm
(both security and open transmission) is:

am0S ≤ min{C1
nm, C2

nm}, ∀m (20)

where C1
nm = bmn /[(1 + Pm

0 bmnP + bmn Pmax) log2(1 +
bmn Pmax)], C

2
nm = amn /[(1 + Pm

0 amnP + amn Pmax) log2(1 +
amn Pmax)].

We can have an intuitive explanation onLemma 1, for SU
n’s accessing subcarrierm. If the cross link (from CBS to
primary link) condition is bad enough (worse than weighted
CBS-to-SU channel conditionC2

nm and weighted CBS-to-
eavesdropper channel conditionC1

nm), the full overlay scheme
would be the optimal scheme when both security and open
transmission happen. The proof ofLemma 1can be found in
Appendix C.

It would be obvious to derive the following lemma on
sufficient condition of optimality of the whole system overlay.
Thus we get:

Lemma 2: In high SINR region, a sufficient condition for
full overlay to be optimum in the whole OFDMA-based CR
system is:

am0S ≤ min
n

{C1
nm, C2

nm}, ∀m (21)

Notice that, the sufficient condition does not mean that
subcarrierm ∈ Γ

PU
0 would provide a greater data rate than

m′ ∈ ΓSU under the same power allocation scheme. It means
that for m ∈ Γ

PU
0 , full overlay would achieve the optimal

result other than any other access policy such as partial overlay
or underlay. We assume the sufficient condition ofLemma 2is
fulfilled in this paper and we proceed considering time-varying
channels then.

V. ONLINE CONTROL ALGORITHM

It is worth noticing that problem (15) has long-term time-
average limitations on power consumption and queuing delay.
Using the technique similar to [47], we construct power virtual
queueY and delay virtual queueZn to track the power
consumption and queuing delay respectively. These virtual
queues do not exist in practice, and they are just generated
by the iterations of (22) and (23):

Y (t+ 1) = [Y (t)− Pavg]
+ + E(t) (22)

Zn(t+ 1) = [Zn(t)− ρnµ
o
n]

+ +Qo
n(t) (23)

Similar to actual queues,Y andZn have initial values of
zero. According toNecessary Condition for Rate Stabilityin
[47], if Y is stable, constraint (13) is satisfied. In addition, if
Zn is stable,qon = lim

t→∞

1
t

∑t−1
τ=0 E{Q

o
n(τ)} ≤ ρnνn ≤ ρnt

o
n

holds. According to Little’s Theorem,qon/t
o
n = ρon, whenZn

is stable, the delay constraint (14) would be achieved. It will
be proven that the proposed optimal control algorithm can
stabilize these queues in section VI, that is to say the long-
term time-average constraints are fulfilled.

Using virtual queuesXn, Zn andY , we decouple problem
(15) into two parts: one isflow control algorithm which
decides the admission of data, and another isresource allo-
cation algorithm in charge of subcarrier assignment, power
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allocation and secure transmission control in every slot. All
these control actions aim at secondary links and happen in
CBS. The whole algorithm is named CBS-side online control
algorithm (COCA).

A. Flow control algorithm

When external data arrives at CBS, CBS will decide whether
to admit it according to queue lengthes. LetV be a fixed non-
negative control parameter. Letqomax ≥ µmax and qpmax ≥
Dmax hold. They are actually the deterministic worst case
upper bounds of relative queue length to be proven later. The
flow control rules of open data and private data are obtained
by solving (24) and (25) respectively:

Minimize T o
n [Q

o
n − qomax + µmax] (24)

Subject to: 0 ≤ T o
n ≤ Do

n

Minimize T p
n [Q

p
n − qpmax +Dmax] (25)

Subject to: 0 ≤ T p
n ≤ Dp

n

The corresponding solutions to (24) and (25) are easy to get:

T o
n =

{
0 if Qo

n − qomax + µmax ≥ 0
Do

n otherwise
(26)

T p
n =

{
0 if Qp

n − qpmax +Dmax ≥ 0
Dp

n otherwise
(27)

Here we can have an intuitive explanation on flow control
rules. They work like valves. When any actual data queue
exceeds some threshold, the corresponding valve would turn
off and no data would be admitted.

As to virtual variableµo
n and µp

n, there are also their
respective virtual flow control algorithms (28) and (29) so
as to update virtual queuesXo

n andXp
n which will play an

important role in resource allocation:

Minimize µo
n[
qomax − µmax

qomax

Xo
n − ρnZn − V ϕn](28)

Subject to: 0 ≤ µo
n ≤ Do

n

Minimize µp
n[
qpmax −Dmax

qpmax
Xp

n − V θn] (29)

Subject to: 0 ≤ µp
n ≤ Dp

n

Solutions to (28) and (29) are (30) and (31) respectively:

µo
n =

{
0 if (

qomax−µmax

qomax
Xo

n − ρnZn − V ϕn) ≥ 0

Do
n otherwise

(30)

µp
n =

{
0 if (

qpmax−Dmax

q
p
max

Xp
n − V θn) ≥ 0

Dp
n otherwise

(31)

B. Resource allocation algorithm

The resource allocation policy can be found in solving the
following optimization problem.

Maximize U(P SU , ζ) (32)

Subject to: (1), (12)

where U(P SU , ζ) =
∑N

n=1(
Xo

nQ
o
n

qomax
Ro

n +
Xp

nQ
p
n

q
p
max

Rp
n) +

Q0R
PU
0 − Y E.

At the beginning of every slot, allXo
n, X

p
n, Q

o
n, Q

p
n and

Y can be regarded as constants because they all have been
decided in the previous slot.Q0 can be estimated by CBS
by overhearing PBS feedback. In section VII we propose an
imperfect estimation scheme ofQ0 and compare the perfor-
mances of perfect and imperfect estimations in simulations.
Notice that, the resource allocation is determined at the
beginning of every slot and all queues are updated at the end
of every slot.

Firstly, we can easily decide the vectorζ maximizing U
by assuming that all elements ofζ are continuous variables
between 0 and 1 and in further discussion, we can get a
discrete implementation ofζn.

We take partial derivative inU(P SU , ζ) with respect toζn:

∂U(P SU , ζ)

∂ζn
= (

Xp
nQ

p
n

qpmax
−

Xo
nQ

o
n

qomax

)

M∑

m=1

R̂mp
n (33)

Observing (33),
∑M

m=1 R̂
mp
n is no-negative andU is mono-

tonic in ζn, and thus the optimality condition of secure
transmission control is:

ζ∗n =

{
1 if (

Xp
nQp

n

q
p
max

−
Xo

nQ
o
n

qomax
) ≥ 0

0 otherwise
(34)

Then we useζ∗ to assign subcarrier and power which is
the solution to the following optimization problem PS,

PS: Maximize Ũ(P SU )

Subject to: (1), (12)

whereŨ(P SU ) = U(P SU , ζ∗). PS is a typical Weighted Sum
Rate (WSR) maximization problem, and it is difficult to find a
global optimum sincẽU(P SU ) is neither convex nor concave
of P SU . Obviously, PS has a typical D.C. structure which
can be optimally solved by D.C. programming [48]. In [49]
there lists a dual decomposition iterative suboptimal algorithm
solving this kind of constrained nonconvex problem insteadof
D.C. programming. In addition, because of the characteristics
of OFDMA networks, the duality gap is equal to zero even
if PS is nonconvex when the number of subcarriers is close
to infinity [50]. So we take a more computationally effective
dual method to solve PS and due to space limitation, we give
the key steps here only.

We defineRmp
n = ζ∗nR̂

mp
n andRmo

n = Cm
n − Rmp

n . Then
the Lagrange function of PS is expressed as:

J(δ,P SU ) =

M∑

m=1

{

N∑

n=1

[
Xo

nQ
o
n

qomax

Rmo
n +

Xp
nQ

p
n

qpmax
Rmp

n − Y pmn ]

+Q0R
m
0 }+ δ(Pmax − E) (35)

whereδ is the non-negative Lagrange multiplier for the peak
power constraint in problem PS. The dual problem of PS is:
min
δ≥0

H(δ), whereH(δ) = max
PSU≥0

{J(δ,PSU )}.
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When δ is fixed, we can decide the parametersP SU

maximizing the objective ofH(δ). ObservingH(δ), we find
that it can be decoupled intoM subproblem as:

H(δ) =
M∑

m=1

max
P

m
SU

Jm(δ,Pm
SU ) + δPmax

=
M∑

m=1

max
P

m
SU

N∑

n=1

Jm
n (δ, pmn ) + δPmax (36)

where Pm
SU = {pmn |1 ≤ n ≤ N}, Jm(δ,Pm

SU ) =∑M
m=1 J

m
n (δ, pmn ), Jm

n (δ, pmn ) =
Xo

nQ
o
n

qomax
Rmo

n +
Xp

nQ
p
n

q
p
max

Rmp
n −

(Y + δ)pmn +Q0R
m
0 (n) and

Rm
0 (n) =

{
0 m ∈ ΓSU

Rm
0 m ∈ ΓPU

0 , ̟m
n = 1

(37)

For m ∈ ΓSU , we can getpm∗
n by taking partial derivative

of J(δ,P SU ) with respect topmn and making (38) equal to
zero:

for m ∈ ΓSU :

∂(J(δ,P SU ))

∂pmn
=

Xo
nQ

o
n

qomax

1

ln 2
{

amn
1 + pmn amn

− ζn[
amn

1 + pmn amn

−
bmn

1 + pmn bmn
]}+

Xp
nQ

p
n

qpmax

1

ln 2
ζn[

amn
1 + pmn amn

−
bmn

1 + pmn bmn
]

− (Y + δ) (38)

However, form ∈ ΓPU
0 , a global optimal solutionpm∗

n

maximizing Jm
n can be got easily by an exhaustive search

such as clustering methods or enumerative methods [51] and
it is computationally tractable [50], [52].

Substituting (34) andpm∗
n into Jm

n (δ,P SU ), the results are
denoted asJm∗

n . For any subcarrierm, it will be assigned to
the user who has the biggestJm∗

n (δ,P SU ). Let n∗
m be the

result of subcarrierm’s assignment which is given by:

n∗
m = argmax

n
Jm
n , ∀n and ̟m∗

n =

{
1 if n = n∗

m

0 otherwise
(39)

Let E∗ =
∑N

n=1

∑M
m=1 p

m∗
n ̟m∗

n . As to the value ofδ, we
use subgradient method to update it as in (40),

δ(i+ 1) = [δ(i)− ς△δ(i)]+ (40)

where△δ(i) = Pmax − E∗(t, i). △δ(i) is the subgradient of
H(δ) at δ and ς is the step size which should be a small
positive constant. In addition, indexi stands for iteration
number. When the subgradient method converges, the resource
allocation is completed.

From the above description, we can find some principles of
resource allocation.

Remark 1: In (34), both virtual and actual queues of open as
well as private data reflect the gap between the corresponding
user’s demand on data rate and the data rate that the system
can provide. Thus,X

o
nQ

o
n

qomax
and Xp

nQ
p
n

q
p
max

can be regarded as the
transmission urgency of open data and private data. Only
when the transmission urgency of private data exceeds open
data, CBS would allocate some resource to transmit private
data. Otherwise, CBS would use the user’s entire resource to

TABLE I
ALGORITHM DESCRIPTIONS

Proposed online control algorithm in timeslott

1) Flow control:

Use (26), (27), (30), (31) to calculateT o
n , T p

n , µo
n andµp

n

respectively.

2) Resource allocation:

a) Set the Lagrange multiplierδ = δini, (δini: An initial value of δ).

b) For each(n,m)

i) Use (34) to calculateζ∗n.

ii) Use (38) or exhaustive search to findpm∗

n .

iii) Use (39) to calculate̟ m∗

n .

c) Use (40) to updateδ and calculate△δ(i).

d) If |△δ(i)| > △δc, goto b), else proceed.

(△δc: converge condition of△δ)

3) Update the queues:

Use (6), (7), (8), (9), (22) and (23) to update all queues including Qo
n,

Q
p
n, Xo

n, Xp
n, Y , Zn.

transmit open data due to delay constraint. In PS, it is easy to
find that a biggerY results in less power allocated to every
user, which will reduce the system power consumption. Also
we let Q0 to be the weights ofRPU

0 in PS. It means that
if the transmission pressure of PU is high, CBS will allocate
less power in subcarrier setΓPU

0 to avoid causing too much
interference on primary link.

Remark 2: In the sub-problem of PS, the transmission power
of PBS is assumed to be external variables. Even for the
worst case that PBS does not control its transmission power
actively, the proposed resource allocation algorithm aimsto
maximizeQ0R

PU
0 in PS by adjusting the interference from

the secondary networks to primary networks. Thus, it can be
found that the proposed algorithm actually does not affect the
energy consumption of primary networks too much.

C. Control algorithm of Multi-PU case

Flow control algorithm is the same as (26), (27), (30) and
(31).

Resource allocation of multi-PU implementation is the
solution to problem MPS:

MPS:

Maximize:
N∑

n=1

Xo
nQ

o
n

qomax

Ro
n +

N∑

n=1

Xp
nQ

p
n

qpmax
Rp

n +

K∑

k=1

QkR
PU
k − Y E

(41)

Subject to: (1), (12)

In next section, the algorithm performance with single PU
is analysed. It is easy for readers to prove that multi-PU
implementation ensures primary data queue stability and fur-
thermore enjoys a similar performance as single PU situation.

VI. A LGORITHM PERFORMANCE

Before the analysis it is necessary to introduce some aux-
iliary variables. Lett∗ = (tp,∗n , to,∗n ) be the solution to the
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following problem:

max
t:t∈Υ

∑N
n=1 θnt

p
n + ϕnt

o
n,

Subject to: e ≤ Pavg

And t∗(ǫ) = (tp,∗n (ǫ), to,∗n (ǫ)) denotes the solution of:

max
t:t+ǫ∈Υ

∑N
n=1 θnt

p
n + ϕnt

o
n

Subject to: e ≤ Pavg

According to [53], it is true that:

lim
ǫ→0

N∑

n=1

{θnt
p,∗
n (ǫ)+ϕnt

o,∗
n (ǫ)} =

N∑

n=1

{θnt
p,∗
n +ϕnt

o,∗
n } (42)

The algorithm performance will be listed inTheorem 1and
Theorem 2.

Theorem 1:Employing the proposed algorithm, both actual
queues of open dataQo

n(t) and private dataQp
n(t) in CBS have

deterministic worst-case bounds:

Qo
n(t) ≤ qomax, Q

p
n(t) ≤ qpmax, ∀t, ∀n (43)

Theorem 2:Given

qomax > µmax +
Co

max
2 + µ2

max

2ǫ
, (44)

qpmax ≥ Dmax +
Cp

max
2 +D2

max

2ǫ
, (45)

ρn >
qomax

νo,∗n (ǫ)
, ∀n (46)

whereǫ is positive and can be chosen arbitrarily close to zero.
The proposed algorithm performance is bounded by:

lim inf
t→∞

1

t

t−1∑

τ=0

N∑

n=1

{θnT
p
n(τ) + ϕnT

o
n(τ)}

≥

N∑

n=1

{ϕnt
o,∗
n (ǫ) + θnt

p,∗
n (ǫ)} −

B

V
(47)

where B is a positive constant independent ofV and its
expression can be found in appendix B.

In addition, the algorithm also ensures that the long-term
time-average sum of PU queueQ0 and virtual queuesXo

n,
Xp

n, Zn, Y has an upper bound:

lim sup
t→∞

1

t

t−1∑

τ=0

{

N∑

n=1

(Xo
n +Xp

n + Zn) + Y +Q0}

≤

B + V
N∑

n=1
{[θnt

p,∗
n + ϕnt

o,∗
n ]}

σ
(48)

whereo ≤ σ ≤ ǫ. The proof of Theorem 1 is in appendix A.
Theorem 2 and the definition ofσ can be found in appendix
B.

Remark 3 (Network stability): According to the definition
of strongly stabilityas shown in (4), (43) and (48) indicate
the stabilities of all queues in the network system. As a
result, the network system is stabilized and the long-term time-
average constraints of delay and power are satisfied. Notice

here thatQ0’s stability is proved means the PU queue stability
constraint is fulfilled.Q0’s stability means that the long-term
throughput performance is uninfluenced. In addition, if PU’s
arrival rates are within the stability region of PU networks,
Q0’s stability can be ensured by the proposed scheduling
algorithm for any transmission power of PU base station.
Therefore, the transmission power of PU network is not
affected in this situation. Furthermore, (43) states that all the
actual queues of open data and private data have deterministic
upper bounds, and this characteristic means that the CBS can
accommodate the random arrival packets with finite buffer.

Remark 4 (Optimal throughput performance): (47) states a
lower-bound on the weighted throughput that our algorithm
can achieve. SinceB is a constant independent ofV , our
algorithm would achieve a weighted throughput arbitrarily
close to

∑N
n=1{ϕnt

o,∗
n (ǫ) + θnt

p,∗
n (ǫ)} for some ǫ ≥ 0.

Furthermore, given anyǫ ≥ 0, we can get a better algorithm
performance by choosing a largerV without improving the
buffer sizes. In addition, as it is shown in (42), whenǫ tends
to zero, our algorithm would achieve a weighted throughput
arbitrarily close to

∑N
n=1{ϕnt

o,∗
n + θnt

p,∗
n } with a tradeoff

in queue length bounds and long-term time-average delay
constraints as shown in (44)-(46). Thus we can see that with
some certain finite buffer sizes, the proposed algorithm can
provide arbitrarily-close-to-optimal performance by choosing
V , andV ’s influence on queue length is shifted from actual
queues to virtual queues.

VII. I MPLEMENTATION WITH IMPERFECTESTIMATION

CBS needs the information of queue length from primary
networks to decide the resource allocation among SUs. [17]
considers a situation that queue length information is shared
among all the nodes, but in CR environment it is impossible to
know the non-cooperative PU’s queue information precisely.
Compared with getting perfect information aboutQk, it is
more realistic to know the time-average packet arrival rate
of PUs. Considering this, in this section, we propose an
imperfect estimation ofQk by CBS. And the performance
of this estimation will be showed in simulation section. If the
PU k is busy, the estimated queue length in CBS is:

Q̂k(t+ 1) = [Q̂k(t)−RPU
k (t)]+ + (λk + ι) (49)

whereι is an over-estimated slack variable to promise primary
link stability. CBS can get the precise information when PU is
idle by listening to primary link ACK to find that no power is
used to transmit PUk’s data packets. In this situation,̂Qk =
Qk = 0 perfectly holds.

As to the control algorithm, we usêQk to substituteQk

in resource allocation algorithm. For simplicity, we name this
implementation COCA-E (CBS-side online control algorithm
with estimated PU queue).

VIII. S IMULATION

In this section, we firstly simulate COCA performance in
an examplary CR system with a single primary link and
secondary network consisting of one CBS, eight SUs and
64 subcarriers. All weights of open data and private data
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Fig. 3. Queue evolutions over 4500 slots

are set to be 0.8 and 1 respectively. The main algorithm
parameters of secondary network are set as:Pavg = 0.8W ,
Pmax = 1W , ρn = 60, ∀n, qomax = 200, qpmax = 1000,
µmax = 50, Dmax = 20 and λo

n = n ∗ 0.1 ∗ Dmax, λ
p
n =

n ∗ 0.1 ∗ µmax, for n ∈ {1, 2, · · · , 8}. The long-term time-
average arrival rate of PUλ0 is set to be140 andDPU

max = 200.
We simulate the multipath channel of primary and secondary
networks as Rayleigh fading channels and the shadowing
effect variances are 10 dB. The cross-link channels between
PBS to SUs and CBS to PU are simulated as long-scale fading.
All parameters in the following parts are set the same as these
mentioned here, except for other specification.

In Fig. 3 and Fig. 4, we set average value ofam0S , a0S =
0.35, and average value ofamnP , anP = 21, V = 50 and we
show both primary and secondary networks’ queue evolution
over 4500 slots. Because all SUs’ data queues (Qo

n, Q
p
n) and

virtual queues (Xo
n, X

p
n, Zn) enjoy similar trends, we take SU

8 as an example. Fig. 3 (A) shows the dynamics of SU 8’s
data queuesQo

8, Qp
8, virtual delay queueZ8 and PU queue

Q0. It is observed that both actual data queues are strictly
lower than their own deterministic worst case upper bound,
which verifiesTheorem 1. That Q0 is stable in Fig. 3 (A)
illustrates that our algorithm can ensure PU queues stability
from simulation aspect. Besides, in Fig. 3(B), we can also
see that virtual queuesXo

8 , Xp
8 andY are bounded. So Fig.

3 shows that all queues are bounded, which means that the
network system is stabilized and the long-term time-average
constraints of delay and power are satisfied.

Fig. 4 directly shows eight SUs’ long-term time-average
admitted rates and service rates of open data and private data,
respectively. Notice that, every user’s admitted rate is smaller
than service rate and this promises the stabilities of actual data
queues.

Fig. 5 shows the relationship between the weighting param-
eters and long-term time-average service rates. To show the
effects more clearly, we consider the scenario consisting of
only one SU and one PU with fixedϕ1 = 450 and variational
θ1 ∈ {0, 90.180, 270, 360, 450}. The long-term time-average
arrival rate of SU is set as:λp

1 = 8 andλo
1 = 260. The control
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Fig. 5. The time average service rate (r
p
1

and ro
1

) versus the weights of
private dataθ1

parameterV is set to be380. Each value in Fig. 5 is obtained
by averaging the converged results of 5000 times. Fig. 5 shows
with the increase ofθ1 the long-term time-average service rate
of private data increases while the one of open data decreases,
which illustrates the effect of throughput weights on long-term
time-average service rates.

Fig. 6 demonstrates the relationship between different long-
term time-average network performance versus control pa-
rameterV . In order to compare PU and SU performance,
the similar scenario including one PU and one SU is also
considered here. The average data arrival rates of SU are
set as:λo

1 = 250 and λp
1 = 10. In general, the biggerV

results in the higher SU open and private transmission rates
as Fig. 6 (B) and Fig. 6 (C) respectively show. Fig. 6 (A)
demonstrates PU transmission rate decreases asV increases.
Notice here, althoughrPU

0 decreases, even whenV = 380,
rPU
0 approximates146 and is greater thanλ0 = 140, which

preserves PU queue stability. Fig. 6 (D) shows the queuing
delay performance also improves asV increases.

The implementation of COCA-E with imperfect estimated
Q0 is simulated. We set the over-estimated slack variable
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Fig. 6. COCA performances (long-term time-average PU rate,SU rates and
SU queuing delay) versus control parameterV .
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Fig. 7. The rate difference of COCA and COCA-E implementation during
4500 slots.

ι to be 0.01. We show the differences of the sum service
rate of SUs andRPU

0 between COCA and COCA-E in Fig.
7 (A), Fig. 7 (B) and Fig. 7 (C), respectively. We can see
that all the differences are around zero, and SU sum rate
is more effected thanRPU

0 by the imperfect estimation of
PU queue information. More directly, the influence ofι on
the long-term time-average rate difference between COCA
and COCA-E is simulated in Fig. 8, where each record is
an averaged result of 1000 converged results. Fig. 8 (C)
shows thatrCOCA

0 − rCOCA−E
0 becomes more negative as

ι increases, which means that the rate decline of PU caused
by SU transmissions decreases asι increases. More directly,
if we want to make sure PU transmission is less influenced,
we should choose a largerι. While a largerι inevitably makes
SUs’ transmission rates decrease as Fig. 8 (A) and Fig. 8 (B)
show.

IX. CONCLUSIONS

In this paper, we propose a cross-layer scheduling and
dynamic spectrum access algorithm for maximizing the long-
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Fig. 8. The long-term time-average rate differences of COCAand COCA-E
implementation versus different over-estimated slack variable ι .

term average throughput of open and private information in an
OFDMA-based CR network. We derive the sufficient condition
to guarantee that full overlay is optimal in this system. The
proposed algorithm can provide a flexible scheduling imple-
mentation of open and private information while ensuring the
stability of primary networks as well as performance require-
ments in CR systems with finite buffer size. Furthermore, the
proposed algorithm is proved to be close to optimality with
current network states in time-varying environments.

APPENDIX A
PROOF OFTHEOREM 1

Supposing there exists a slott satisfyingQo
n(t) ≤ qomax, it

is obviously true for all queues initialized to zero. We prove
that fort+1 the same holds. Obviously, there exists two cases.
Firstly, we supposeQo

n(t) ≤ qomax − µmax and we can easily
get Qo

n(t + 1) ≤ qomax. Else, if Qo
n(t) > qomax − µmax, then

according to (26),T o
n(t) = 0. Then

Qo
n(t+ 1) ≤ Qo

n(t) ≤ qomax.

The proof ofQp
n ≤ qpmax is similar and omitted here.

APPENDIX B
PROOF OFTHEOREM 2

Let Q = {Q0, Q
o
n, Q

p
n, X

o
n, X

p
n, Y, Zn}. We define Lya-

punov functionL(Q) as:

L(Q) =
1

2
{

N∑

n=1

[
qomax − µmax

qomax

Xo
n
2 + Z2

n +
1

qomax

Qo
n
2(t)Xo

n+

qpmax −Dmax

qpmax
Xp

n
2 +

1

qpmax
Qp

n
2Xp

n] + Y 2 +Q2
0}

(50)

According to [47],△L(Q) is defined as the conditional
Lyapunov drift for slott:

△L(Q) , E{L(Q(t+ 1))− L(Q(t))|Q(t)} (51)

According to(|x− y|+ z)2 ≤ x2 + y2 + z2 − 2x(y − z), we
can get the results below:
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qomax − µmax

qomax

[Xo
n
2(t+ 1)−Xo

n
2(t)] ≤

qomax − µmax

qomax

{2µ2
max − 2Xo

n(t)[T
o
n(t)− µo

n(t)]} (52)

[Qo2

n (t+ 1)Xo
n(t+ 1)−Qo2

n (t)Xo
n(t)]

qomax

≤ qomaxµmax+

(µ2
max + Co2

max)− 2Qo
n(t)[R

o
n(t)− T o

n(t)]

qomax

Xo
n(t) (53)

The queues of private data have similar inequalities above.
Furthermore, we can derive that:

△L(Q)− V

N∑

n=1

E{θnµ
p
n + ϕnµ

o
n|Q} ≤ B −Q0E{R

PU
0 −

DPU
0 |Q} − Y E{Pavg − E|Q}+

N∑

n=1

{
Xo

n(C
o2

max + µ2
max)

2qomax

+
Xp

n(C
p2

max +D2
max)

2qpmax
−

Xp
nQ

p
n

qpmax
E{Rp

n − T p
n |Q}−

Xo
nQ

o
n

qomax

E{Ro
n − T o

n |Q} − (1−
Dmax

qpmax
)Xp

nE{T
p
n − µp

n|Q}−

(1−
µmax

qomax

)Xo
nE{T

o
n − µo

n|Q} − ZnE{ρnµ
o
n −Qo

n|Q}

− V E{θnµ
p
n + ϕnµ

o
n|Q}} (54)

where B = 1
2 (D

PU2

max + R2
0max + P 2

max + P 2
avg) +

N [ 12q
o
maxµmax + (1 − µmax

qomax
)µ2

max + (1 − Dmax

q
p
max

)D2
max +

1
2q

p
maxDmax] + 1

2

N∑
n=1

(ρ2nµ
2
max + qo

2

max) and Cp
max =

max
n

{Rp
n}, C

o
max = max

n
{Ro

n}, R0max = max{RPU
0 }. Here

we can find that our algorithm minimizes the right hand side
(RHS) of (54).

In order to proveTheorem 2, we introduceLemma 3.
Lemma 3:For any feasible rate vectort ∈ Υ, there exists

aa-only policySR which stabilizes the network with the data
admitted rate vector,(µp

n,SR(t), t
p
n,SR(t), µ

o
n,SR(t), t

o
n,SR(t)),

and the service vector,(Rp
n,SR(t), R

o
n,SR(t)), independent of

data queues. For allt and all n ∈ {1, 2, ..., N}, the flow
constraints are satisfied:

E{µo
n,SR(t)} = E{T o

n,SR(t)} = E{Ro
n,SR}

E{µp
n,SR(t)} = E{T p

n,SR(t)} = E{Rp
n,SR}

Notice that, the stationary randomized policySR makes de-
cisions only depending on channel condition and independent
of queue backlogs. Furthermore it may not fulfill the delay
constraints. Similar proof ofa-only policy is given in [17]
and the proof ofLemma 3is omitted here.

We can control the admitted rate oft ranging fromt∗(ǫ) to
t∗(ǫ)+ǫ arbitrarily and resulting in that botht∗(ǫ) andt∗(ǫ)+
ǫ are within Υ. It is assumed that the sufficient condition
of full overlay optimum (21) is satisfied in our system, so
according toLemma 2, full overlay can achieve the optimal
result. Besides, according toLemma 3, it is true that there exist
two differenta-only policiesSR1 andSR2 which satisfy:

E{T o
n,SR1

} = E{Ro
n,SR1

} = E{µo
n,SR1

} = to,∗n (ǫ) (55)

E{T p
n,SR1

} = E{Rp
n,SR1

} = E{µp
n,SR1

} = tp,∗n (ǫ) (56)

E{T o
n,SR2

} = E{Ro
n,SR2

} = E{µo
n,SR2

} = to,∗n (ǫ) + ǫ (57)

E{T p
n,SR2

} = E{Rp
n,SR2

} = E{µp
n,SR2

} = tp,∗n (ǫ) + ǫ (58)

In addition, for policySR1 and SR2, it is easy to prove
that:

E{RPU
0,SR1

} ≥ λ0 + ǫ (59)

E{ESR2
} ≤ Pavg − ǫ (60)

Our algorithm minimizes RHS of (54) among all possible
policies includingSR policy, thus we can get :

△L(Q)− V
N∑

n=1

E{θnµ
p
n + ϕnµ

o
n} ≤ B+

Y {E{ESR2
} − Pavg} −Q0{E{R

PU
0,SR1

} − λ0}+

N∑

n=1

{ZnQ
o
n +

Co2

max + µ2
max

2qomax

Xo
n +

Cp2

max +D2
max

2qpmax
Xp

n+

[
qomax − µmax

qomax

Xo
n − Znρn − V ϕn]X

o
nE{µ

o
n,SR1

}+

E{T o
n,SR2

}
Xo

n

qomax

[Qo
n + µmax − qomax]−

Xo
nQ

o
n

qomax

E{Ro
n,SR2

}+

E{T p
n,SR2

}
Xp

n

qpmax
[Qp

n − qpmax +Dmax]−
Xp

nQ
p
n

qpmax
E{Rp

n,SR2
}+

E{µp
n,SR1

}[
qpmax −Dmax

qpmax
Xp

n − V θn]
}

(61)

After substituting (55)-(58) , (59) and (60) into the RHS of
(61) and transforming it, we can derive that:

△L(Q)− V

N∑

n=1

E{θnµ
p
n + ϕnµ

o
n} ≤ B − ǫ(Y +Q0)−

∑
{to,∗n (ǫ)ρ− qmax}Z − V

N∑

n=1

{ϕnt
o,∗
n (ǫ) + θnt

p,∗
n (ǫ)}−

N∑

n=1

Xo
n

qomax

{ǫ(qomax − µmax)−
Co2

max + µ2
max

2
}−

N∑

n=1

Xp
n

qpmax
{ǫ(qpmax −Dmax)−

Cp2

max +D2
max

2
} (62)

So when (44)-(46) hold, we can findǫ1 > 0 that ǫ1 ≤

ǫ(qomax−µmax)−
Co2

max+µ2
max

2

qomax
, ǫ1 ≤ to,∗n (ǫ)ρn − qmax and ǫ1 ≤

ǫ(qpmax−Dmax)−
C

p2

max+D2
max

2

q
p
max

. Thus:

△L(Q)− V

N∑

n=1

E{θnµ
p
n + ϕnµ

o
n} ≤ B − V

N∑

n=1

{ϕto,∗n (ǫ)+

θnt
p,∗
n (ǫ)} − σ(

N∑

n=1

{Xo
n +Xp

n + Zn}+ Y +Q0) (63)

whereσ = min{ǫ, ǫ1}.
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It can be got that when (44), (45) and (46) hold, (48) and

lim inf
t→∞

1

t

t−1∑

τ=0

N∑

n=1

{θnµ
p
n(τ) + ϕnµ

o
n(τ)} ≥

N∑

n=1

{ϕnt
o,∗
n (ǫ) + θnt

p,∗
n (ǫ)} −

B

V
(64)

are satisfied by applying the theorem of Lyapunov Optimiza-
tion, Theorem 4.2in [47], on (63) directly. Furthermore, (48)
implies that (10) and (11) hold sinceXo

n and Xp
n are kept

stable. So after substituting (10) and (11) into (64), (47) holds.
Hence the proof ofTheorem 2is completed.

APPENDIX C
PROOF OFLEMMA 1

From the constraintrPU
0 = λ0, we can representκ as a

function of pmn and substitute it into (16). Then, the optimum
solution can be found by solving:

max
pm
n

λ0f(P
SU ) +

N∑

n=1

M∑

m=1

ζn{(θn − ϕn)[log2(1 + amn pmn )

− log2(1 + bmn pmn )]+ + ϕnW log2(1 + amn pmn )}
(65)

s.t. 0 ≤
∑

∀n,∀m

pmn ≤ Pmax

where f(PSU ) =
∑N

n=1{(θn − ϕn)ζn{
∑

m∈ΓPU
0

[log2(1 +
pm
n am

n

1+Pm
0

am
nP

) − log2(1 +
pm
n bmn

1+Pm
0

bm
nP

)]+ −
∑

m∈ΓPU
0

[log2(1 +

amn pmn ) − log2(1 + bmn pmn )]+} + ϕn

∑
m∈ΓPU

0
[log2(1 +

am
n pm

n

1+Pm
0

am
nP

) − log2(1 + amn pmn )]+}/
∑

m∈ΓPU
0

{log2(1 +
Am

0 Pm
0

1+am
0Spm

n
)} and we denote the denominator off(p) as∆d.

It is reasonable to make an approximation off(PSU ) under
the assumption that PU is in a high SINR region such that
log2(1 + am0Sp

m
n +Am

0 Pm
0 ) ≈ log2(1 +Am

0 Pm
0 ).

One sufficient condition of full overlay scheme achieving
the optimal solution of (65) is thatκ = 1 makes the objective
of (66) greater than any otherκ ≥ 0.

max
0<pm

n ≤P∗

λ0f(P
SU ) +

N∑

n=1

M∑

m=1

ζn{(θn − ϕn)[log2(1 + amn pmn )

− log2(1 + bmn pmn )]+ + ϕnW log2(1 + amn pmn )}
(66)

whereP ∗ ≤ Pmax is any positive upper bound ofpmn .
Thus we need to find a condition where the maximization

solution of (66) is an increasing function ofpmn , ∀m ∈ ΓPU
0 .

As pmn increases, it will forceκ to increase as well, eventually
reachingκ = 1, which is full overlay.

Firstly, we analyze the situation whenζn = 1 andamn > bmn .
In this situation, security transmission happens with positive
private transmission rate and[log(1 + pmn ann) − log(1 +
pmn bnn)]

+ = log(1 + pmn ann) − log(1 + pmn bnn). We derive the
first derivative of the objective of (66):

(θn − ϕn)(
amn

1 + amn pmn
−

bmn
1 + bmn pmn

)+

ϕnW
amn

1 + amn pmn
+ λ0

∂f(PSU )

∂pmn
(67)

Then for anym ∈ ΓPU
0 , we derive that:

∂f(PSU )

∂pmn
=

am0S
∆d

2(1 + am0Sp
m
n )

{θn{log2
(1 + bmn pmn )

(1 + amn pmn )
+

[log2(1 +
pmn amn

1 + Pm
0 amnP

)− log2(1 +
pmn bmn

1 + Pm
0 bmnP

)]}+

ϕn[log2(1 +
pmn amn

1 + Pm
0 amnP

)− log2(1 +
pmn bmn

1 + Pm
0 bmnP

)]}+

1

∆d

{ϕn[
bmn

1 + Pm
0 bmnP + bmn pmn

−
bmn

1 + bmn pmn
]+

θn[(
bmn

1 + bmn pmn
−

amn
1 + amn pmn

) + (
amn

1 + Pm
0 amnP + amn pmn

−

bmn
1 + Pm

0 bmnP + bmn pmn
)]} (68)

Substituting (68) into (67), we can get the numeration of
the first derivative of the objective of (66):

∆d[θn(∆d − λ0)(
amn

1 + amn pmn
−

bmn
1 + bmn pmn

)+

θnλ0(
amn

1 + Pm
0 amnP + amn pmn

−
bmn

1 + Pm
0 bmnP + bmn pmn

)+

ϕn(∆d − λ0)
bmn

1 + bmn pmn
+ ϕnλ0

bmn
1 + Pm

0 bmnP + bmn pmn
]+

ϕn[log2(1 +
bmn pmn

1 + Pm
0 bmnP

)− log2(1 + bmn pmn )]+

am0S
1 + am0Sp

m
n

λ0{θn{[log2(1 +
pmn amn

1 + Pm
0 amnP

)−

log2(1 +
pmn bmn

1 + Pm
0 bmnP

)]}} − log2
(1 + amn pmn )

(1 + bmn pmn )

≥∆d[θnλ0(
amn

1 + Pm
0 amnP + amn pmn

−
bmn

1 + Pm
0 bmnP + bmn pmn

)+

ϕnλ0
bmn

1 + Pm
0 bmnP + bmn pmn

]− am0Sλ0{θn[log2(1 + amn pmn )−

log2(1 + bmn pmn )] + ϕn log2(1 + bmn pmn )}

≥θnλ0(
amn

1 + Pm
0 amnP + amn pmn

−
bmn

1 + Pm
0 bmnP + bmn pmn

)+

ϕnλ0
bmn

1 + Pm
0 bmnP + bmn pmn

− am0Sλ0ϕn log2(1 + bmn pmn )−

am0Sλ0θn[log2(1 + amn pmn )− log2(1 + bmn pmn )] (69)

The last inequality in (69) holds under the assumption that
Am

0 ≫ am0S .
For any pair of(θn, ϕn), the RHS of the last inequality of

(69) is greater than zero if and only if

(
amn

1 + Pm
0 amnP + amn pmn

−
bmn

1 + Pm
0 bmnP + bmn pmn

)−

am0S [log2(1 + amn pmn )− log2(1 + bmn pmn )] ≥ 0 (70)
bmn

1 + Pm
0 bmnP + bmn pmn

− am0S log2(1 + bmn pmn ) ≥ 0 (71)

Sufficient conditions for full overlay are:
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am0S ≤C̄3
mn =

am
n

1+Pm
0

am
nP

+am
n pm

n
−

bmn
1+Pm

0
bm
nP

+bmn pm
n

log2(1 + amn pmn )− log2(1 + bmn pmn )
(72)

am0S ≤C̄1
mn =

bmn
1+Pm

0
am
nP

+bmn pm
n

log2(1 + bmn pmn )
(73)

So the sufficient condition of full overlay whenζn = 1 and
amn > bmn is:

am0S ≤ min{C̄3
nm, C̄1

nm} (74)

And for ζn = 0 or amn ≤ bmn we can get similar conclusion
and omit the process here. The sufficient condition is:

am0S ≤ C̄2
nm =

am
n

1+Pm
0

am
nP+am

n pm
n

log2(1 + amn pmn )
(75)

It is easy to find that for anyam0S ≤ min{C̄1
nm, C̄2

nm}, am0S
is definitely no greater than̄C3

nm. So for anym, the sufficient
condition for the optimum of usern accessing this subcarrier
m in full overlay mode isam0S ≤ min{C̄1

nm, C̄2
nm}

For Pmax > pmn , C1
nm ≤ C̄1

nm and C2
nm ≤ C̄2

nm hold.
Hence the results inLemma 1are proved.
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