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Abstract—In this paper, we give a unified performance analysis
of interference alignment (IA) over MIMO interference channels.
Rather than the asymptotic characterization, i.e. degree of free-
dom (DOF) at high signal-to-noise ratio (SNR), we focus on the
other practical performance metrics, namely outage probability,
ergodic rate and symbol error rate (SER). In particular, we
consider imperfect IA due to the fact that the transmitters usually
have only imperfect channel state information (CSI) in practical
scenario. By characterizing the impact of imperfect CSI, we
derive the exact closed-form expressions of outage probability,
ergodic rate and SER in terms of CSI accuracy, transmit SNR,
channel condition, number of antennas, and the number of data
streams of each communication pair. Furthermore, we obtain
some important guidelines for performance optimization of IA
under imperfect CSI by minimizing the performance loss over
IA with perfect CSI. Finally, our theoretical claims are val idated
by simulation results.

Index Terms—Interference alignment, MIMO interference
channel, imperfect CSI, performance analysis.

I. I NTRODUCTION

Interference is always the bottleneck for performance im-
provement in an interference networks, e.g. multi-cell network
[1] [2] and ad-hoc network [3] [4]. Various advanced interfer-
ence mitigation techniques, such as coordinated beamforming
over MIMO interference channel [5]-[7] (and the references
therein), have been proposed to optimize the system per-
formance. In particular, interference alignment (IA) receives
considerable attentions, as it is able to exploit the maximum
degrees of freedom (DOF) by aligning all the interferences into
a specific area, so as to support higher number of concurrent
data streams that will be free from interference [8]-[10].

A. Related Works

Performance analysis is an important precondition for the
design of system parameters, and hence provides useful guide-
lines for performance optimization [11] [12]. Since the channel
capacity of interference channel is still unknown, performance
analysis for IA becomes challenging. In this context, most
works analyze the multiplexing gain at high signal-to-noise
ratio (SNR), namely degree of freedom (DOF) [13]-[15]. It
is proved that IA can achieve at mostKM/2 DOFs over
MIMO interference channels withK transmitter-receiver pairs
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each employingM antennas [8]. Then, the generalized DOF
region is obtained for the general case of the MIMO Gaussian
interference channel with arbitrary number of antennas at each
node and the SNRs vary with arbitrary exponents to a nominal
SNR [16]. However, DOF is an asymptotic performance met-
ric, which is not able to make accurate predictions about the
behavior of channel capacity at low and moderate SNRs under
practical range of operation. Aiming to solve this problem,
the authors in [17] proved that IA can achieve the capacity of
the real, time-invariant, frequency-flat Gaussian X-channel to
within a constant gap. In fact, for a system designer, the real
concerns are outage probability, ergodic rate and symbol error
rate (SER) at an arbitrary SNR on the time-varying fading
channel. To the best of the authors’ knowledge, there is no
literature in solving this problem.

On the other hand, channel state information (CSI) at the
transmitters have a great impact on the performance of IA.
Most previous work analyze the performance assuming that
perfect CSI is available. However, it is difficult to obtain
perfect CSI in practical systems, especially the CSI of the
interference channels. A common way to solve this problem is
to exchange CSI between the transmitters, e.g. CSI is conveyed
between the base stations via a backhaul link in a multi-cell
MIMO system. The issues related to CSI conveyance for IA,
including channel estimation, limited CSI feedback and coop-
eration, had been discussed in [18]. For interference channels,
there are two CSI exchange modes, namely digital [19] and
analog [20] transmissions. Digital mode is more popular in
IA, due to its flexibility by adjusting the size of quantization
codebook [21]-[23]. However, considering limited feedback
bandwidth, the transmitters can only have partial and imperfect
CSI regardless digital or analog feedback mode. This results in
imperfect IA, and hence complicate the performance analysis.

Existing literature [24] showed that even with limited CSI
feedback, the full DOFs of the interference channel can still
be achieved. The average residual interference caused by im-
perfect IA in terms of CSI exchange amount was analyzed in
[25], when there is only one data stream for each transmitter-
receiver pair. Then, it was generalized to the case of multiple
data streams [22], where the performance loss resulting from
imperfect CSI was investigated and the corresponding perfor-
mance optimization scheme was given. The maximum DOF
and an upper bound on the sum-rate performance loss due to
limited differential feedback rate were given in [26]. A similar
case over a two-cell interfering MIMO-MAC was considered
in [27]. Moreover, the impact of feedback rate on the total
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rate loss of IA for a MIMO interference channel was analyzed
in [28], while a feedback allocation scheme was proposed to
maximize the rate. Furthermore, the achievable rate of IA in
presence of imperfect CSI was investigated in [29], and several
optimization schemes were proposed to maximize the rate
afterwards. However, a comprehensive performance analysis
of outage probability, ergodic rate and SER for IA under
imperfect CSI, is still unsolved.

B. Main Contributions

Motivated by the above observations, this paper gives a
comprehensive performance analysis of IA under imperfect
CSI over a general MIMO interference channel. To be precise,
each communication pair undergoes different propagation en-
vironment and has distinct number of data streams. We reveal
the accurate relation between the performances and the amount
of available CSI. The major contributions of this paper can be
summarized as follows:

1) We present a performance analysis framework for IA
under imperfect CSI over a general MIMO interference
channel, and derive the closed-form expressions of outage
probability, ergodic rate and SER in terms of the amount
of CSI exchanged and other system parameters.

2) We analyze the performance loss due to imperfect CSI,
and reveal the impact of CSI accuracy on the system
performance.

3) We obtain clear insights on the system performance,
which provide useful guidelines for the system designer.

C. Paper Organization

The rest of this paper is organized as follows: Section II
gives a brief introduction of the considered MIMO interfer-
ence network employing IA under imperfect CSI. Section III
focuses on the performance analysis and derive the closed-
form expressions of outage probability, ergodic rate and SER.
Section IV investigates the performance loss caused by imper-
fect CSI and get some useful optimization guidelines. Section
V presents several numerical results to validate the theoretical
claims, and finally Section VI concludes the whole paper.

Notations: We use bold upper (lower) letters to denote
matrices (column vectors),(·)H to denote conjugate transpose,
E[·] to denote expectation,‖ · ‖ to denote theL2 norm of
a vector, | · | to denote the absolute value,(a)+ to denote
max(a, 0), ⌈a⌉ to denote the smallest integer not less than
a, ⌊a⌋ to denote the largest integer not greater thana, and
d
= to denote the equality in distribution. The acronym i.i.d.
means “independent and identically distributed”, pdf means
“probability density function” and cdf means “cumulative
distribution function”.

II. SYSTEM MODEL

We consider a MIMO interference network includingK
transmitter-receiver pairs, as shown in Fig.1. For analytical
convenience, we assume an interference network where all
the transmitters and receivers are equipped withNt andNr

antennas, respectively. Transmitterk sends message(s) to its

Transmitter 1

Transmitter K

Receiver 1

Receiver K

⋮ ⋮

Forward Channel Feedback Channel Interference Channel

Fig. 1. A diagram of interference alignment with imperfect CSI over a
MIMO interference channel.

intended receiverk, while it also creates interference to other
K − 1 unintended receivers. We useα1/2

k,i Hk,i to denote the
MIMO channel from transmitteri to receiverk, whereαk,i

represents the path loss andHk,i is theNr×Nt channel small
scale fading matrix with i.i.d. zero mean and unit variance
complex Gaussian entries. Transmitterk hasdk independent
data streams to be transmitted. It is worth pointing out thatdue
to the limitation of spatial DOF, the values ofdks must fulfill
the feasibility conditions of IA [30] [31]. In what follows,we
assume IA is feasible by choosingdks carefully. Thus, the
received signal at receiverk can be expressed as

yk =

K
∑

i=1

√

Pαk,i

di
Hk,i

di
∑

l=1

wi,lsi,l + nk, (1)

whereyk is theNr dimensional received signal vector,nk is
the additive Gaussian white noise with zero mean and variance
matrixσ2INr

, si,l denotes thelth normalized data stream from
transmitteri, and wi,l is the correspondingNt dimensional
beamforming vector.P is the total transmit power at each
transmitter, which is equally allocated to the data streams.
Receiverk uses the received vectorvk,j of unit norm to detect
its jth data stream, which is given by

ŝk,j = vHk,jyk

=

√

Pαk,k

dk
vHk,jHk,kwk,jsk,j +

√

Pαk,k

dk

dk
∑

l=1,l 6=j

vHk,jHk,kwk,lsk,l +

K
∑

i=1,i6=k

√

Pαk,i

di

di
∑

l=1

vHk,jHk,iwi,lsi,l + vHk,jnk, (2)

where the first term at the right side of (2) is the desired signal,
the second one is the inter-stream interference caused by the
same transmitter, and the third one is the inter-link interference
resulting from other transmitters. In order to mitigate these
interferences and improve the performance, IA is performed
accordingly. If perfect CSI is available at all nodes, according
to the principle of IA, we have

vHk,jHk,kwk,l = 0, l 6= j, ∀k ∈ [1,K], ∀l, j ∈ [1, dk]. (3)
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and

vHk,jHk,iwi,l = 0, i 6= k, ∀k, i ∈ [1,K],

∀l ∈ [1, di], ∀j ∈ [1, dk]. (4)

In brief, inter-stream and inter-link interferences will be
canceled completely if perfect CSI is available. However,
in frequency division duplex (FDD) systems, it is difficult
for the transmitters to obtain perfect CSI, especially the
interference CSI. Similar to previous analogous works, this
paper adopts quantization codebook based CSI conveyance
scheme to inform the transmitters the interference CSI. Specif-
ically, receiverk first quantizes the channel direction vectors
h̃k,i, ∀i ∈ [1,K] with different codebooks, wherẽhk,i =

hk,i

‖hk,i‖
and hk,i = vec(Hk,i) is the vectorization ofHk,i. Then, the
quantized CSI is conveyed to the corresponding transmitter.
Due to limited feedback, the transmitters have imperfect CSI
ĥk,i, and the relation between the perfect and the imperfect
CSI can be expressed as [32]

h̃k,i =
√

1− ρk,iĥk,i +
√
ρk,iek,i, (5)

where ek,i is the quantization error vector with i.i.d. zero
mean and unit variance complex Gaussian entries, and is
independent of̂hk,i. ρk,i, scaling from 0 to 1, indicates the
CSI accuracy. Ifρk,i = 0, then transmitteri has perfect
CSI. Intuitively, ρk,i is related to the codebook size2Bk,i or
the CSI exchange amountBk,i, and can be approximated as

2−
Bk,i

NtNr−1 [32]. If the CSI exchange amount tends to infinity,
the transmitter can obtain perfect CSI.

III. PERFORMANCEANALYSIS

In this section, we set off the performance analysis for IA in
a MIMO interference network with imperfect CSI. We put the
focus on three practical performance metrics, namely outage
probability, ergodic rate and SER. Note that we take thejth
data stream of thekth pair as an example, but the analysis is
applicable to all data streams.

A. Outage Probability

Although IA is applied, (3) and (4) do not hold true any
more due to limited CSI exchange. This results in residual
interference, which is also called interference leakage. The
signal to interference and noise ratio (SINR) related to the
jth data stream of thekth transmitter-receiver pair can be
expressed as

γk,j =
Pαk,k

dk

∣

∣vHk,jHk,kwk,j

∣

∣

2
/(

Pαk,k

dk

dk
∑

l=1,l 6=j

∣

∣vHk,jHk,kwk,l

∣

∣

2
+

K
∑

i=1,i6=k

Pαk,i

di

di
∑

l=1

∣

∣vHk,jHk,iwi,l

∣

∣

2

+σ2

)

=
κk,k

∣

∣

∣hH
k,kT(k,k)

j,j

∣

∣

∣

2

Ik,j + 1
, (6)

whereκk,k =
Pαk,k

dkσ2 , T(k,k)
j,j = wk,i ⊗ vHk,j , ⊗ represents the

Kronecker product, andIk,j is the normalized total residual
interference to thejth data stream of thekth pair. Through
IA, the residual interference can be expressed as

Ik,j = κk,k

dk
∑

l=1,l 6=j

∣

∣vHk,jHk,kwk,l

∣

∣

2

+

K
∑

i=1,i6=k

κk,i

di
∑

l=1

∣

∣vHk,jHk,iwi,l

∣

∣

2

= κk,k

dk
∑

l=1,l 6=j

∣

∣

∣hH
k,kT(k,k)

j,l

∣

∣

∣

2

+

K
∑

i=1,i6=k

κk,i

di
∑

l=1

∣

∣

∣hH
k,iT

(k,i)
j,l

∣

∣

∣

2

= κk,kρk,k‖hk,k‖2
dk
∑

l=1,l 6=j

∣

∣

∣eHk,kT(k,k)
j,l

∣

∣

∣

2

+
K
∑

i=1,i6=k

κk,iρk,i‖hk,i‖2
di
∑

l=1

∣

∣

∣
eHk,iT

(k,i)
j,l

∣

∣

∣

2

, (7)

where (7) holds true since only partial interference is canceled
based on the IA principle (3) and (4) due to imperfect CSI.
Then, the outage probability is given by

P out
k,j = Pr(γk,j ≤ γth)

=

∫ ∞

0

F (γth(x+ 1)) g(x)dx, (8)

where γth is the SINR threshold,FS(x) is the cdf of the

desired signal qualityκk,k
∣

∣

∣hH
k,kT(k,k)

j,j

∣

∣

∣

2

, andg(x) is the pdf of
the residual interferenceIk,j . First, we check the distribution
of the desired sinal quality. SinceT(k,k)

j,j is designed indepen-

dently of hk,k according to the principle of IA,
∣

∣

∣hH
k,kT(k,k)

j,j

∣

∣

∣

2

is χ2(2) distributed, so the cdf ofκk,k
∣

∣

∣hH
k,kT(k,k)

j,j

∣

∣

∣

2

can be
expressed as

F (x) = 1− exp

(

− x

κk,k

)

. (9)

Then, we analyze the distribution of the residual interference.
According to the theory of quantization cell approximation

[32], ρk,i‖hk,i‖2 is Γ(NtNr−1, 2−
Bk,i

NtNr−1 ) distributed. More-
over, |eHk,iT

(k,i)
j,l |2 for i = 1, · · · ,K are i.i.d.β(1, NtNr − 2)

distributed, sinceT(k,i)
j,l of unit norm is independent ofek,i. For

the product of aΓ(NtNr − 1, 2−
Bk,i

NtNr−1 ) distributed random
variable and aβ(1, NtNr − 2) distributed random variable,

it is equal to2−
Bk,i

NtNr−1χ2(2) in distribution [33]. Based on
the fact that the sum ofM i.i.d. χ2(2) distributed random

variables isχ2(2M) distributed,ρk,i
di
∑

l=1

‖hk,i‖2
∣

∣

∣sHk,iT
(k,i)
j,l

∣

∣

∣

2

is 2−
Bk,i

NtNr−1χ2(2di) distributed. Hence,Ik,j is a nested finite
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weighted sum ofK Erlang pdfs, whose pdf is given by [34]

g(x) =

K
∑

i=1

ηk,i
∑

t=1

ΞK

(

i, t, {ηk,q}Kq=1,

{

̺k,q
ηk,q

}K

q=1

,

{lk,q}K−2
q=1

)

v

(

x, t,
̺k,i
ηk,i

)

, (10)

where ηk,i = di, ̺k,i = κk,i2
− Bk,i

NtNr−1 for i 6= k, ηk,k =

dk − 1, ̺k,k = κk,k2
− Bk,k

NtNr−1 , v(x, y, z) = xy−1 exp(−x/z)
zyΓ(y) , ∀i,

and{xi}Ni=1 denotes the set ofxi, i = 1, · · · , N . The weights
ΞK are defined as

ΞK

(

i, t, {ηk,q}Kq=1, {̺k,q}Kq=1, {lk,q}K−2
q=1

)

=

ηk,i
∑

lk,1=t

lk,1
∑

lk,2=t

· · ·
lk,K−3
∑

lk,K−2=t

[

(−1)Tk−ηk,i̺tk,i
∏K

h=1 ̺
ηk,h

k,h

× Γ(ηk,i + ηk,1+U(1−i) − lk,1)

Γ(ηk,1+U(1−i))Γ(ηk,i − lk,1 + 1)

×
(

1

̺k,i
− 1

̺k,1+U(1−i)

)lk,1−ηk,i−ηk,1+U(1−i)

× Γ(lk,K−2 + ηk,K−1+U(K−1−i) − t)

Γ(ηk,L−1+U(K−1−i))Γ(lk,K−2 − t+ 1)

×
(

1

̺k,i
− 1

̺k,K−1+U(K−1−i)

)t−lk,K−2−ηk,K−1+U(K−1−i)

×
K−3
∏

s=1

Γ(lk,s + ηk,s+1+U(s+1−i) − lk,s+1)

Γ(ηk,s+1+U(s+1−i))Γ(lk,s − lk,s+1 + 1)

×
(

1

̺k,i
− 1

̺k,s+1+U(s+1−i)

)lk,s+1−lk,s−ηk,s+1+U(s+1−i)
]

,

(11)

whereTk =
∑K

i=1 ηk,i and U(x) is the well-known unit step
function defined as U(x ≥ 0) = 1 and zero otherwise. Note
that the weightsΞK are constant when givenηk,i and ̺k,i.
Substituting (9) and (11) into (8), we have

P out
k,j = 1−

K
∑

i=1

ηk,i
∑

t=1

ΞK

(

i, t, {ηk,q}Kq=1,

{

̺k,q
ηk,q

}K

q=1

,

{lk,q}K−2
q=1

)

∫ ∞

0

exp

(

− γth
κk,k

(x+ 1)

)

× xt−1 exp(−x/(̺k,q/ηk,q))
(̺k,q/ηk,q)tΓ(t)

dx

= 1− exp

(

− γth
κk,k

) K
∑

i=1

ηk,i
∑

t=1

ΞK

(

i, t, {ηk,q}Kq=1,

{

̺k,q
ηk,q

}K

q=1

, {lk,q}K−2
q=1

)

(

1 +
̺k,qγth
κk,kηk,q

)−t

.

(12)

Thus, we derive the outage probability for thejth data
stream of thekth pair as a function of the number of data
streamsdk, the amount of CSI exchangeBk,i, and the channel
conditionκk,j . Note that if each pair has only one data stream,
the result can be further simplified. In this case, there is no

inter-link interference, andIk,j is a weighted sum ofK − 1
χ2(2) pdfs, whose pdf is given by [35]

pI(x) =





K
∏

t=1,t6=k

λk,t





K
∑

i=1,i6=k

exp(−λk,ix)
K
∏

l=1,l 6=k,l 6=i

(λk,l − λk,i)

, (13)

whereλk,i = 1
̺k,i

. Then, submitting (9) and (11) into (8), the
outage probability in the case of single data stream for each
pair is given by

P out
k,j = 1−





K
∏

t=1,t6=k

λk,t





×
K
∑

i=1,i6=k

∫ ∞

0

exp
(

− γk,j

κk,k
(x + 1)

)

exp(−λk,ix)
K
∏

l=1,l 6=k,l 6=i

(λk,l − λk,i)

dx

= 1− exp

(

− γk,j
κk,k

)





K
∏

t=1,t6=k

λk,t





×
K
∑

i=1,i6=k

(

γth

κk,k
+ λk,i

)−1

K
∏

l=1,l 6=k,l 6=i

(λk,l − λk,i)

= 1− exp

(

− γk,j
κk,k

)





K
∏

t=1,t6=k

λk,t





×
K
∑

i=1,i6=k

(

1 +
̺k,i

κk,k
γth

)−1

λk,i
K
∏

l=1,l 6=k,l 6=i

(λk,l − λk,i)

. (14)

Note that (14) is similar to (12) by letting alldi = 1.
Therefore, given the channel conditionκk,i and amount of
CSI exchangeBk,i, the outage probability can be computed
according to (12) if an arbitrarydi (namelyηk,i) > 1, and
(14) for all di = 1.

Remark: It is found that the outage probability in (12) is
independent to the index of data streamj, this is because
different data streams of the same pair have the same signal
quality, and undergo the same interference in the statistical
sense.

B. Ergodic Rate

For the jth data stream of thekth pair, the ergodic rate
based on IA under imperfect CSI can be expressed as

Rk,j = E[log2(1 + γk,j)]

=
1

ln(2)

(

E

[

ln

(

κk,k

∣

∣

∣hH
k,kT(k,k)

j,j

∣

∣

∣

2

+ Ik,j + 1

)]

−E [ln (Ik,j + 1)]

)

. (15)

For analytical convenience, we useW1 and W2 to denote
the first and the second expectation terms in the bracket at

the right side of (15). As discussed above,
∣

∣

∣
hH
k,kT(k,k)

j,j

∣

∣

∣

2

is
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χ2(2) distributed, soκk,k
∣

∣

∣hH
k,kT(k,k)

j,j

∣

∣

∣

2

+Ik,j is a nested finite
weighted sum ofK + 1 Erlang pdfs, whose pdf is given by
[34]

q(x) =

L
∑

i=1

ωk,i
∑

t=1

ΞL

(

i, t, {ωk,q}Lq=1,

{

̺k,q
ωk,q

}L

q=1

,

{lk,q}L−2
q=1

)

v

(

x, t,
̺k,i
ωk,i

)

, (16)

whereL = K+1, ωk,i = di, ∀i 6= k, ωk,k = dk−1, ωk,L = 1
and̺k,L = κk,k. Hence,W1 can be computed as

W1 =

L
∑

i=1

ωk,i
∑

t=1

ΞL

(

i, t, {ωk,q}Lq=1,

{

̺k,q
ωk,q

}L

q=1

, {lk,q}L−2
q=1

)

×
∫ ∞

0

ln(x+ 1)
xt−1 exp

(

− x
(̺k,q/ωk,q)

)

(̺k,q/ωk,q)tΓ(t)
dx

=
L
∑

i=1

ωk,i
∑

t=1

ΞL

(

i, t, {ωk,q}Lq=1,

{

̺k,q
ωk,q

}L

q=1

, {lk,q}L−2
q=1

)

×Z
(

t,
̺k,q
ωk,q

)

, (17)

where

Z

(

t,
̺k,q
ωk,q

)

=

t−1
∑

ϑ=0

1

Γ(t− ϑ)

(

(−1)t−ϑ−2

(

ωk,q

̺k,q

)t−ϑ−1

× exp

(

ωk,q

̺k,q

)

Ei

(

−ωk,q

̺k,q

)

+

t−ϑ−1
∑

ν=1

Γ(ν)

(

−ωk,q

̺k,q

)t−ϑ−ν−1)

, (18)

and Ei(x) =
∫ x

−∞
exp(t)

t dt is the exponential integral function.
(17) is obtained based on [36, Eq.4.337.5]. Similarly, we can
getW2 as follows:

W2 =

K
∑

i=1

ηk,i
∑

t=1

ΞK

(

i, t, {ηk,q}Kq=1,

{

̺k,q
ηk,q

}K

q=1

, {lk,q}K−2
q=1

)

×
∫ ∞

0

ln(x+ 1)
xt−1 exp

(

− x
(̺k,q/ηk,q)

)

(̺k,q/ηk,q)tΓ(t)
dx

=
K
∑

i=1

ηk,i
∑

t=1

ΞK

(

i, t, {ηk,q}Kq=1,

{

̺k,q
ηk,q

}K

q=1

, {lk,q}K−2
q=1

)

×Z
(

t,
̺k,q
ηk,q

)

. (19)

Based on (17) and (19), the ergodic rate is given by

Rk,j =
1

ln(2)

( L
∑

i=1

ωk,i
∑

t=1

ΞL

(

i, t, {ωk,q}Lq=1,

{

̺k,q
ωk,q

}L

q=1

,

{lk,q}L−2
q=1

)

Z

(

t,
̺k,q
ωk,q

)

−
K
∑

i=1

ηk,i
∑

t=1

ΞK

(

i, t, {ηk,q}Kq=1,

{

̺k,q
ηk,q

}K

q=1

,

{lk,q}K−2
q=1

)

Z

(

t,
̺k,q
ηk,q

))

. (20)

Additionally, in the case of single data stream for each pair,
the ergodic rate can be computed as

Rk,j = E






log2






1 +

κk,k

∣

∣

∣hH
k,kT(k,k)

j,j

∣

∣

∣

2

Ik,j + 1













=
1

ln(2)

(

E

[

ln

(

κk,k

∣

∣

∣
hH
k,kT(k,k)

j,j

∣

∣

∣

2

+ Ik,j + 1

)]

−E[ln(Ik,j + 1)]

)

=
1

ln(2)

([

K
∏

t=1

λk,t

]

K
∑

i=1

∫∞
0

ln(x+ 1) exp(−λk,ix)dx
K
∏

l=1,l 6=i

(λk,l − λk,i)

−





K
∏

t=1,t6=k

λk,t





K
∑

i=1,i6=k

∫∞
0 ln(x+ 1) exp(−λk,ix)dx

K
∏

l=1,l 6=k,l 6=i

(λk,l − λk,i)

)

=
1

ln(2)

([

K
∏

t=1

λk,t

]

K
∑

i=1

exp(λk,i)Ei(λk,i)

λk,i
K
∏

l=1,l 6=i

(λk,l − λk,i)

−





K
∏

t=1,t6=k

λk,t





K
∑

i=1,i6=k

exp(λk,i)Ei(λk,i)

λk,i
K
∏

l=1,l 6=k,l 6=i

(λk,l − λk,i)

)

,

(21)

where (21) is obtained based on [36, Eq.4.337.2]. Note that
(21) is equivalent to (20) because ofλk,i = 1

̺k,i
when t = 1.

C. SER

In addition to outage probability and ergodic rate, SER is
also an important performance metric, which indicates the
reliability of a wireless communication system. For a given
SINR γ, the SER is given by [37]

SER=



















































1
π

∫
(M−1)π

M

0
exp

(

− gPSKγ
sin2(x)

)

dx, for M -PSK

2
π

M−1
M

∫ π
2

0
exp

(

− gPAMγ
sin2(x)

)

dx, for M -PAM

4
π

(

1− 1√
M

)

[

1√
M

∫ π
4

0
exp

(

− gQAMγ
sin2(x)

)

dx

+
∫ π

2
π
4
exp

(

− gQAMγ
sin2(x)

)

dx

]

, for M -QAM

(22)

whereM is the modulation order,gPSK = sin2 π
M , gPAM =

3
M2−1 and gAQM = 3

2(M−1) . For analytical convenience, we
use G (M,a exp(−bγ)) to denote a general SER function,
wherea and b depend on the modulation format. Then, the
average SER of thejth data stream of thekth pair can be
computed as

P ser
k,j =

∫ ∞

0

∫ ∞

0

G

(

M,a exp

(

−b x

y + 1

))

×f(x)g(y)dxdy

=

∫ ∞

0

G

(

M,
ay + a

y + bκk,k + 1

)

g(y)dy (23)
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= G

(

M,

K
∑

i=1

ηk,i
∑

t=1

ΞK

(

i, t, {ηk,q}Kq=1,

{

̺k,q
ηk,q

}K

q=1

,

{lk,q}K−2
q=1

)

×a
(

1− bκk,k(bκk,k + 1)t−1 exp

(

(bκk,k + 1)ηk,q
̺k,q

)

×Γ

(

1− t,
(bκk,k + 1)ηk,q

̺k,q

)))

, (24)

where f(x) = 1
κk,k

exp
(

− x
κk,k

)

is the pdf of

κk,k

∣

∣

∣hH
k,kT(k,k)

j,j

∣

∣

∣

2

. (23) follows the fact thatG(M,

a exp(−bγ)) is a linear function ofa exp
(

−b x
y+1

)

, and (24)
is obtained based on [36, Eq.3.383.10].

Similarly, for the case of single data stream, the average
SER can be reduced as

P ser
k,j =

∫ ∞

0

∫ ∞

0

G

(

M,a exp

(

−b x

y + 1

))

×fS(x)pI(y)dxdy

=

∫ ∞

0

G

(

M,
ay + a

y + 1 + bκk,k

)

pI(y)dy

= G

(

M,





K
∏

t=1,t6=k

λk,t





K
∑

i=1,i6=k

a(1− bκk,k

× exp ((bκk,k + 1)λk,i) Γ(0, (bκk,k + 1)λk,i))

/(λk,i

K
∏

l=1,l 6=k,l 6=i

(λk,l − λk,i))

)

. (25)

Note that (25) is also equivalent to (24) by lettingt = ηk,i = 1
and λk,i = 1/̺k,i. Submitting (24) and (25) into (22), we
could obtain the expression of SER. As a simple example, for
M -PSK modulation,a = 1

π and b = gPSK

sin2(x)
, so the average

SER is given by

P ser
k,j =

1

π

∫
(M−1)π

M

0

K
∑

i=1

ηk,i
∑

t=1

ΞK

(

i, t, {ηk,q}Kq=1,

{

̺k,q
ηk,q

}K

q=1

, {lk,q}K−2
q=1

)

×
(

1− gPSKκk,k

sin2(x)

(

gPSKκk,k + sin2(x)

sin2(x)

)t−1

× exp

(

(gPSKκk,k + sin2(x))ηk,q

sin2(x)̺k,q

)

×Γ

(

1− t,
(gPSK+ sin2(x))κk,kηk,q

sin2(x)̺k,q

))

dx.

(26)

Given channel condition and amount of CSI exchange,P ser
k,j

can be computed by numerical integration.

IV. PERFORMANCELOSS FROMIMPERFECTCSI

Due to limited CSI feedback, there exists a certain per-
formance loss with respect to the case of perfect CSI due
to imperfect IA. In order to reveal the impact of CSI and

obtain insightful guidelines for system design and performance
optimization, we investigate the performance loss resulting
from imperfect CSI from the standpoints of outage probability,
ergodic rate and SER, respectively. For the convenience of
analysis, we useΥ = P

σ2 to denote the transmit SNR.

A. Outage Probability

If the transmitters have perfect CSI, the interference can be
canceled completely, and then the SINR of thejth data stream
of the kth pair is transformed as

γperfectk,j = κk,k

∣

∣

∣
hH
k,kT(k,k)

j,j

∣

∣

∣

2

. (27)

In this context, the outage probability of thejth data stream
of the kth pair related to a given SNR thresholdγth can be
computed as

P out,perfect
k,j = Pr(γ

perfect
k,j ≤ γth)

= F (γth)

= 1− exp

(

− γth
κk,k

)

. (28)

Based on (12) and (28), the performance loss due to imperfect
CSI is given by:

∆P out
k,j = P out

k,j − P out,full
k,j

= exp

(

− γth
κk,k

)

(

1−
K
∑

i=1

ηk,i
∑

t=1

ΞK

(

i, t, {ηk,q}Kq=1,

{

̺k,q
ηk,q

}K

q=1

, {lk,q}K−2
q=1

)

(

1 +
̺k,qγth
κk,kηk,q

)−t
)

(29)

= exp

(

− γth
Υαk,k

)

(

1−
K
∑

i=1

ηk,i
∑

t=1

ΞK

(

i, t, {ηk,q}Kq=1,

{

̺k,q
ηk,q

}K

q=1

, {lk,q}K−2
q=1

)

(

1 +
αk,qρk,qγth
αk,kηk,q

)−t
)

.

(30)

(30) provides a general outage probability loss due to imper-
fect CSI in terms of CSI accuracy, transmit SNR, and channel
condition. However, it is difficult to get some clear insights
from (30). To address this problem, we perform asymptotic
analysis under some extreme scenario. First, if SNRΥ is low
enough, we have the following theorem:

Theorem 1: At low SNR, the CSI exchange is useless, and
the performance loss due to imperfect CSI is negligible.

Proof: The proof is straightforward. When SNRΥ →
0, the termexp

(

− γth

Υαk,k

)

in (30) asymptotically approaches
zero, so there is no performance gap between the two cases,
and hence the CSI is useless.

Remark: If SNR is quite low, the interference term becomes
negligible with respect to the noise. So the CSI exchange
is not needed, as well as the IA. In this context, maximum
ratio transmission (MRT) can obtain the maximum DOFs, and
hence achieves the optimal performance.

On the other hand, if SNRΥ is sufficiently high, the per-
formance loss in terms of outage probability has the following
property:
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Theorem 2: At high SNR, there is always a performance
floor in terms of outage probability for IA with imperfect CSI.
The performance loss becomes larger as SNR increases, and
the maximum performance loss is given by∆P out,max

k,j = 1−
K
∑

i=1

ηk,i
∑

t=1
ΞK

(

i, t, {ηk,q}Kq=1,

{

̺k,q

ηk,q

}K

q=1

, {lk,q}K−2
q=1

)

(

1 +
αk,qρk,qγth

αk,kηk,q

)−t

.
Proof: Please refer to Appendix I.

From Theorem 2, it is known that the performance gap of
outage probability caused by imperfect CSI is an increasing
function ofΥ andρk,i, so the performance gap can be reduced
by adding the amount of CSI exchange. Furthermore, for the
sake of keeping a constant gap as SNR increases, the amount
of CSI exchange should satisfy the following proposition:

Proposition 1: In order to avoid the performance floor and
keep a constant gap between imperfect and perfect CSI, the
total amount of CSI exchange from thekth receiver should
fulfill the condition ofBk ∼ K(NtNr − 1) log2(Υ), where∼
denotes proportional to.

Proof: Please refer to Appendix II.
Based on Proposition 1, we further obtain a useful guideline

for performance optimization of IA under imperfect CSI as
follows

Proposition 2: In order to keep a constant gap of out-
age probability between imperfect and perfect CSI, the total
amount of CSI exchangeB should be added as the number of
antennas increases.

Proof: The proof can be dervied from Proposition 1
directly. Because ofBk ∼ K(NtNr − 1) log2(Υ), Bk should
be added as the number of antennas increases, which is also
consistent with the intuition that for a givenBk, increasing the
number of antennas results in the reduction of CSI quantization
accuracy, and hence leads to performance degradation.

B. Ergodic Rate

In this subsection, we turn the attention to the rate loss
caused by imperfect CSI, which is given by

∆Rk,j = E
[

log2

(

1 + γperfectk,j

)]

− E[log2 (1 + γk,j)]

=
1

ln(2)

(

exp

(

1

κk,k

)

Ei

(

1

κk,k

))

−Rk,j . (31)

Similarly, we perform asymptotic analysis on∆Rk,j to get
some clear insights. First, if SNRΥ is low enough, we have
the following theorem:

Theorem 3: At low SNR, the CSI exchange is useless. The
ergodic rates in the cases of both perfect and imperfect CSI
approach 0, so the rate loss is negligible.

Proof: The proof is intuitive, as SNR tends to 0, the
interference term is negligible with respect to the noise term,
then the ergodic rate with imperfect CSI is equivalent to that
with perfect CSI, and hence the performance gap becomes
zero.

On the other hand, for the high SNR case, the rate loss due
to imperfect CSI has the following theorem:

Theorem 4: At high SNR, there is always a performance
ceiling in terms of ergodic rate for IA with imperfect CSI,

and the performance loss with respect to the ideal case of
perfect CSI enlarges logarithmically with the SNR.

Proof: Please refer to Appendix III.
As analyzed above, the performance ceiling is a decreasing

function of ρk,i. To keep a constant gap, the amount of CSI
exchange should be added as SNR increases. It is assumed
that the CSI exchange amount is the same and quite large in
the high SNR region, then we have the following proposition:

Proposition 3: At high SNR with large amount of CSI
exchange, the performance ceiling is a linear function of the
amount of CSI exchange, and the performance gain by adding
additional amount of CSI exchange is equal to1

NtNr−1 times
the incremental amount of CSI.

Proof: Please refer to Appendix IV.
From Theorem 4, it is known that the ergodic rate with

perfect CSI at high SNR isRperfect,high
k,j =

ln(Υαk,k)−C
ln(2) , so

the performance loss at high SNR whenB is sufficiently large
can be approximated as

∆Rhigh,large
k,j = log2(Υ)− B

NtNr − 1
+

1

ln(2)

K
∑

i=1

ηk,i
∑

t=1

ΞK

(

i, t, {ηk,q}Kq=1,

{

ξk,q
ηk,q

}K

q=1

, {lk,q}K−2
q=1

)

× (ψ(t) + ln(αk,q)− ln(ηk,q)) . (32)

As mentioned in Theorem 4, the performance loss with respect
to the ideal case of perfect CSI enlarges logarithmically with
the SNR. Based on (32), we have the following proposition:

Proposition 4: At high SNR, in order to keep a con-
stant performance gap,B should be added proportionally to
(NtNr − 1) log2(Υ).

C. SER

Intuitively, imperfect CSI would lead to SER performance
degradation inevitably. In this subsection, we give a quanti-
tative analysis of the performance loss. Substituting (27)into
(22), the average SER with perfect CSI can be computed as

P ser,perfect
k,j =

∫ ∞

0

G (M,a exp(−bx)) 1

κk,k
exp

(

− x

κk,k

)

dx

= G

(

M,
a

1 + bκk,k

)

. (33)

Thereby, the performance gap is given by

∆P ser
k,j = G

(

M,

K
∑

i=1

ηk,i
∑

t=1

ΞK

(

i, t, {ηk,q}Kq=1,

{

̺k,q
ηk,q

}K

q=1

,

{lk,q}K−2
q=1

)

a

(

1− bκk,k(bκk,k + 1)t−1

× exp

(

(bκk,k + 1)ηk,q
̺k,q

)

×Γ

(

1− t,
(bκk,k + 1)ηk,q

̺k,q

))

− a

1 + bκk,k

)

,

(34)

where (34) holds true sinceG(x, y) is a linear function ofy.
Similarly, we carry out asymptotic analysis on the performance
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TABLE I
PARAMETER TABLE FORαi,j ,∀i, j ∈ [1, 3].

❍
❍
❍
❍i
j

1 2 3

1 1.000 0.050 0.005
2 0.055 1.000 0.045
3 0.004 0.060 1.000

loss to get some clear insights. First, if SNR is low enough,
we have the following theorem:

Theorem 5: At low SNR, the CSI exchange is useless, the
average SER in the cases of both perfect and imperfect CSI
approaches 0.5, so the performance gap is negligible.

Proof: The proof is similar to that of Theorem 1.
Furthermore, when SNR asymptotically approaches infinity,

the performance loss has the following theorem:
Theorem 6: At high SNR, there is a SER performance floor

for IA with imperfect CSI. The performance gap becomes
larger as SNR increases.

The floor appears since the SINR is saturated once SNR
exceeds a specific value, so it is necessary to add the amount
of CSI exchange logarithmically proportional to SNR in order
to avoid the floor.

V. NUMERICAL RESULTS

To verify the performance analysis results for IA with
imperfect CSI in a MIMO interference network, we present
several numerical results under different scenarios. For con-
venience, we setNt = 4, Nr = 2, K = 3, σ2 = 1, γth = 0
dB, d1 = d2 = d3 = d = 1 andαi,j given in Tab.I for all
simulation scenarios without explicit explanation. Note that
we consider an interference channel model as shown in Fig.1,
the propagation distances for the desired links are the same,
and the distance between the interference transmitter to the
receiver is larger than that between the desired transmitter to
the receiver. Mathematically, we haveαi,i > αi,j , if i 6= j. In
convenience, we normalizeαi,i as 1, so we haveαi,j < 1
for i 6= j. In addition, we use SNR (in dB) to represent
10 log10

P
σ2 , andB (in bit) to denote the same amount CSI

exchange for each pair. Without loss of generality, we take the
performance of the1st data stream of1st pair as an example.

Firstly, we investigate the outage probability of IA with
imperfect CSI. As seen in Fig.2, the theoretical results are
quite consistent with the simulation results throughout the
whole SNR region under different amount of CSI exchange
B, which validates the high accuracy of our analysis. It is
found that at low SNR, the outage probabilities with different
B are nearly the same, which reconfirms the claim of Theorem
1 that the CSI exchange in the low SNR region is useless.
With the increase of the SNR, as Theorem 2 claims, there
always exist a performance floor, which decreases asB adds.
In addition, as shown in Fig.3, the performance loss due to
imperfect CSI becomes larger as SNR increases. In order to
keep a constant gap,B should be added logarithmically and
linearly proportional to the SNR and the number of antennas
respectively, as proved in Proposition 1 and 2.

Next, we show the ergodic rate performance of IA with
imperfect CSI. Similarly, the CSI exchange is useless for
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Fig. 2. Theoretical and simulation outage probability withdifferent CSI
exchange amount.
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Fig. 3. Outage probability loss due to imperfect CSI.

performance improvement at low SNR, as seen in Fig.4, which
confirms the Theorem 3. As SNR increases, the performance
ceiling appears, if there is finite CSI exchange amount, re-
sulting an obvious performance gap with respect to the case
of perfect CSI (B = ∞), as shown in Fig.5. Note that the
number of data stream for each pair also has a great impact on
the ergodic rate. The larger number of data streams, the more
spatial multiplexing gains, but also leads to higher residual
interference. As illustrated in Fig.6, at high SNR, the case
of d = 1 has a significant advantage over that ofd = 2,
since under interference-limited condition, a small spatial
multiplexing is beneficial, which has also been observed in
a multiuser downlink network[38]. Although it is proven that
IA can achieve full DOF at high SNR, but it is optimal to
select single data stream from the perspective of maximizing
the ergodic rate under the case of imperfect CSI. Furthermore,
Fig.7 shows the ergodic rate at high SNR with largeB. It is
found that the ergodic rate is a linear function ofB, which
reconfirms the claim of proposition 3.

Finally, we discuss the SER performance of IA with imper-
fect CSI. Clearly, for the three different modulation formats,
namely 8PSK, 8PAM and 8QAM, the theoretical analysis
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Fig. 4. Theoretical and simulation ergodic rate performance with different
CSI exchange amount.
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Fig. 5. Ergodic rate performance loss due to imperfect CSI.

nicely coincides with the numerical simulation throughoutthe
whole SNR region, as shown in Fig.8. Imperfect IA caused
by imperfect CSI inevitably leads to error floor, and the
performance gap with respect to the ideal case of perfect CSI
becomes larger as SNR increases, as seen in Fig.9. On the
other hand, the gap at low SNR is negligible, which proves
that the CSI exchange is useless in such a scenario.

VI. CONCLUSION

This paper comprehensively analyzes the performance of IA
with imperfect CSI over a general MIMO interference channel,
including outage probability, ergodic rate and SER. Thus, the
exact performance can be evaluated for a given transmit SNR,
channel condition, and amount of CSI exchange. Moreover,
through asymptotic analysis on the performance loss due to
imperfect CSI, we get some important design guidelines. For
example, CSI exchange is useless at low SNR, and the amount
of CSI exchange should be increased logarithmically to the
SNR and linearly proportional to the number of antennas at
high SNR in order to avoid performance saturation. Though
the number of data streamsd should be large from the DoF
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Fig. 6. Ergodic rate performance with different numbers of data streams.
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Fig. 7. Ergodic rate performance at high SNR with largeB.

point of view, we show that havingd = 1 is optimal at high
SNR, as there exists residual interference under imperfectCSI.

APPENDIX A
PROOF OFTHEOREM 2

Firstly, we prove there always exists a performance floor
in terms of outage probability for IA with imperfect CSI.
As Υ → ∞, the corresponding outage probability in (12) is
transformed as

P out,high
k,j = 1−

K
∑

i=1

ηk,i
∑

t=1

ΞK

(

i, t, {ηk,q}Kq=1,

{

̺k,q
ηk,q

}K

q=1

,

{lk,q}K−2
q=1

)

(

1 +
αk,qρk,qγth
αk,kηk,q

)−t

. (35)

It is found thatP out,high
k,j is independent of SNR, so given CSI

accuracy and channel condition, there is always a performance
floor.

On the other hand, examining the outage probability with
perfect CSI in (28), it is a decreasing function of SNR, so the
performance loss becomes larger as SNR increase. WhenΥ →
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Fig. 8. Theoretical and simulation SER performance with different modula-
tion formats andB = 6.
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Fig. 9. SER performance loss due to imperfect CSI with 8QAM modulation
format.

∞, P out,perfect
k,j is equal to zero, so the maximum performance

loss is given by∆P out,max
k,j = P out,high

k,j , which proves the
Theorem 2.

APPENDIX B
PROOF OFPROPOSITION1

As seen in (29), in order to keep a constant gap, the only
way is to add the CSI exchange amount, so thatΥρk,q is

constant. Then, asΥ → ∞, the term
(

̺k,qγth

κk,kηk,q

)−t

tends

to zero, and hence∆P out,high
k,j is equal to zero. In other

words,2
Bk,q

NtNr−1 should at least increase linearly proportional
to Υ, namely Bk,q ∼ (NtNr − 1) log2(Υ). So we have

Bk =
K
∑

q=1
Bk,q ∼ K(NtNr − 1) log2(Υ).

APPENDIX C
PROOF OFTHEOREM 4

If SNR is high enough, the constant 1 ofγk,j in (6) is
negligible, so the ergodic rate at high SNR is transformed as

Rhigh
k,j =

1

ln(2)

(

E
[

ln
(

κk,k
∣

∣vHk,jHk,kwk,j

∣

∣

2
+ Ik,j

)]

−E [ln (Ik,j)]

)

=
1

ln(2)

( L
∑

i=1

ωk,i
∑

t=1

ΞL

(

i, t, {ωk,q}Lq=1,

{

ξk,q
ωk,q

}L

q=1

,

{lk,q}L−2
q=1

)

(ψ(t) + ln(ωk,q)− ln(ξk,q))

−
K
∑

i=1

ηk,i
∑

t=1

ΞK

(

i, t, {ηk,q}Kq=1,

{

ξk,q
ηk,q

}K

q=1

,

{lk,q}K−2
q=1

)

(ψ(t) + ln(ηk,q)− ln(ξk,q))

)

, (36)

where ξk,i = αk,iρk,i/di, ∀i ∈ [1,K], ξk,L = αk,k/dk and
ψ(x) = d ln(x)

dx is the Euler’s function. (36) is obtained based
on [36, Eq.4.352.1]. Clearly, at high SNR, the ergodic rate
Rhigh

k,j is independent ofΥ, so there is a performance ceiling.
Additionally, the ergodic rate with perfect CSI at high SNR
can be expressed as

Rperfect,high
k,j =

1

ln(2)
E
[

ln
(

1 + Υαk,k

∣

∣vHk,jHk,kwk,j

∣

∣

2
)]

≈ 1

ln(2)
E
[

ln
(

Υαk,k

∣

∣vHk,jHk,kwk,j

∣

∣

2
)]

(37)

=
ln(Υαk,k)− C

ln(2)
, (38)

whereC = 0.57721566490 is the Euler’s constant. (37) drops
the constant 1 and (38) is obtained based on [36, Eq.4.331.1].
Then the performance loss at high SNR is given by

∆Rhigh
k,j = Rfull,high

k,j −Rhigh
k,j

= log2(Υαk,k)− C − 1

ln(2)

( L
∑

i=1

ωk,i
∑

t=1

ΞL

(

i, t, {ωk,q}Lq=1,

{

ξk,q
ωk,q

}L

q=1

, {lk,q}L−2
q=1

)

× (ψ(t) + ln(ξk,q)− ln(ωk,q)) +

K
∑

i=1

ηk,i
∑

t=1

ΞK

(

i, t, {ηk,q}Kq=1,

{

ξk,q
ηk,q

}K

q=1

, {lk,q}K−2
q=1

)

× (ψ(t) + ln(ξk,q)− ln(ηk,q))

)

. (39)

The performance loss enlarges logarithmically withΥ, which
proves the Theorem 4.
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APPENDIX D
PROOF OFPROPOSITION3

Let B be the same CSI exchange amount, if bothΥ andB
are large enough, the ergodic rate can be approximated as

Rhigh
k,j ≈ 1

ln(2)






E






ln







κk,k

∣

∣

∣vHk,jHk,kwk,j

∣

∣

∣

2

Ik,j



















=
1

ln(2)

(

E
[

ln
(

αk,k

∣

∣vHk,jHk,kwk,j

∣

∣

2
)]

−E
[

ln

(

αk,kρk,k‖hk,k‖2
dk
∑

l=1,l 6=j

∣

∣

∣
eHk,kT(k,k)

j,l

∣

∣

∣

2

+

K
∑

i=1,i6=k

αk,iρk,i‖hk,i‖2
di
∑

l=1

∣

∣

∣eHk,iT
(k,i)
j,l

∣

∣

∣

2
)]

)

=
ln(αk,k)− C

ln(2)
− 1

ln(2)

K
∑

i=1

ηk,i
∑

t=1

ΞK

(

i, t, {ηk,q}Kq=1,

{

ξk,q
ηk,q

}K

q=1

, {lk,q}K−2
q=1

)

× (ψ(t) + ln(ξk,q)− ln(ηk,q))

=
B

NtNr − 1
+

ln(αk,k)− C

ln(2)
− 1

ln(2)

K
∑

i=1

ηk,i
∑

t=1

ΞK

(

i, t, {ηk,q}Kq=1,

{

ξk,q
ηk,q

}K

q=1

, {lk,q}K−2
q=1

)

× (ψ(t) + ln(αk,q)− ln(ηk,q)) , (40)

where (40) holds true because ofξk,q = αk,qρk,q/dq and

follows the fact of
K
∑

i=1

ηk,i
∑

t=1
ΞK

(

i, t, {ηk,q}Kq=1,

{

ξk,q

ηk,q

}K

q=1
, {lk,q}K−2

q=1

)

= 1. So the performance ceiling is

a linear function ofB. Given the channel conditions, the
performance gain by adding the CSI exchange amount from
B1 to B2 is equal to B2−B2

NtNr−1 , which is linear proportionally
to the increment of CSI.
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