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Abstract

In this correspondence, we analyze the ergodic capacitylafge uplink multi-user multiple-input
multiple-output (MU-MIMO) system over generalizéd-fading channels. In the considered scenario,
multiple users transmit their information to a base statiquipped with a very large number of antennas.
Since the effect of fast fading asymptotically disappearmassive MIMO systems, large-scale fading
becomes the most dominant factor for the ergodic capacitynagsive MIMO systems. Regarding
this fact, in our work we concentrate our attention on thef of large-scale fading for massive
MIMO systems. Specifically, some interesting and novel loWweunds of the ergodic capacity have
been derived with both perfect channel state informatio8lY@nd imperfect CSI. Simulation results

assess the accuracy of these analytical expressions.

Index Terms

Massive MIMO, large-scale fading, ergodic capacity.

. INTRODUCTION

In order to satisfy the ever-increasing demands from exmowireless data services, a
breakthrough in spectral efficiency is expected for the mexteration wireless systems just as
5G. Regarding the great success of MIMO technologies([1],nfassive MIMO or large MIMO
technologies have attracted a lot of attention recently @somising enabling technology to

greatly boost the spectrum efficiency [3]] [4]. Furthermdoe 5G network densification is also
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of great importance to improve network capacity by incneg$iequency reuse factor. Therefore,
wireless designers are faced with a challenging task, wisidiow to determine the coverage
range of massive MIMO base stations (BSs). In other words cttannel fading characteristics
of massive MIMO should be carefully investigated.

Deploying very large numbers of antennas at the transnuttegceiver, linear signal process-
ing can substantially reduce the jitters from various fastirig [5]. However, as the other part
of the overall fading, the large-scale fading can not be simpglected in the massive MIMO
[4]. It is should be highlighted that to the best of the aush@&nowledge, in the existing works
on massive MIMO systems only the effects of fast fading haeenbinvestigated in detail|[4],
and the large-scale fading is simply assumed to be constehkaown a priori. In practical
scenarios, the distributions of the large-scale fadindjlatigely vary in different scenarios, such
as urban and open areas. The work on the effect of the laaje-&ding on massive MIMO
seems largely open up to date.

Motivated by this fact, in this correspondence we concémtoaur attention on large-scale
fading by considering the generalizéd-fading, which is a generic model that occurs when
small-scale fading is modeled via the Nakagamdistribution and large-scale fading via the
gamma distribution[6]. This model has been demonstratesffeatively approximate most of
the fading and shadowing effects occurring in wireless okl and also to be analytically
friendlier than the Nakagamix/lognormal model([7]. Moreover, we focus on the uplink of a
massive MU-MIMO system operating over generalizédading, where one BS equipped with
N antennas receives the informationffsingle-antenna mobile users &« K < N). Different
from [4], we focus on the following two fundamental queston
(1) What is the impact of large-scale fading on the erogiduacdy of massive MIMO?

(2) Can we provide analytical expressions for the ergodijsaciy of massive MIMO over
generalizedk fading?

To tackle these problems, new lower bounds for the ergogaaty of one user are derived
for both perfect channel state information (CSI) and imgetrCSI, as well as the average ergodic
capacity of all the users in the cell. Our analytical expmssare substantiated via Monte Carlo
simulations. It is shown by our result that when the largglesdéading parametem < 2, the
decrease ofn will bring large reduction of the capacity of the system witbth perfect and

imperfect CSI. This indicates that massive MIMO can achiagh frequency reuse in the urban



scenario.

[I. SYSTEM MODEL AND PRELIMINARIES

In our work, we focus on the uplink MU-MIMO system as shown ig.Hl, which consists of
one BS equipped withv antennas and single-antenna mobile users. The users transmit their
data to the BS in the same time-frequency resource andVthel the received signal column

vector at BS equals to

Yy = VPuGx+w, 1)

where theK x 1 column vector, /p,x denotes the signal transmitted by tReusers. Without loss
of generality, the average transmit power of each user snasg to beP. In addition, symbol
G represents thé/ x K channel matrix between the BS and tkieusers and thén, £} entry
Ink 2 [G].x is the channel coefficient between thiéh antenna at the BS and tlh¢h user. The
K x 1 column vectorw denotes the additive zero-mean Gaussian white noise witlvaniance.
In general, the channel matr® is made of two kinds of fading, i.e., fast fading and largaksc

fading. Then each element & can be written as
gnk:hnk Bkunzluzw"?Nak:1727"'7K7 (2)

where h,,;. is the fast fading coefficient between th¢éh antenna of the BS and thah user.

Symbol /3, denotes the large-scale fading from tht user and the BS, which equals
ﬁk:,uk/Dz,kzl,Q,...,K, (3)

where Dy, is the distance between th¢h user to the BSy is the path-loss exponent with typical
values ranging from 2 to 6. The large-scale fading coefficignis modeled as independent and
identically distributed (i.i.d.) gamma random variablé/jRthe PDF of which can be expressed

as

p () = LHGXP L ke, 2, my, > 0 (4)
r (mk) kak Qk ’ ’ ’ ’

wherel'(-) denotes the gamma function. Moreover, denofifig as the expectation of a R\
andQ, = E|ux]/m; are the shape and scale parameters of the gamma distrirggpectively.
In practical situations it is expected that nonzero smatl famite but large values af: for urban

and open areas, respectively. The moderate values ajrresponds to suburban and rural areas.



IIl. ERGOTIC CAPACITY OF THE UPLINKMU-MIMO SYSTEM

In this section, we first derive the expressions of the ecgcdipacity of single user in the
uplink MU-MIMO system to clarify the relationship betwedmetergodic capacity and the large-
scale fading clearly. Furthermore, the average ergotiaaapof all the users in a cell is also
analyzed to describe the network performance. Since in imgad$lMO systems zero-forcing
(ZF) detector tends to be optimall [4], it is adopted here asbiamformig strategy.

A. Ergotic capacity of uplink MU-MIMO with perfect CS

1) Ergotic capacity of the kth user: With an ideal assumption that the BS has perfect CSl,
the lower bound of the capacity of thieh user in this case can be given by [4, Eq. (13)]

Chy, = logy (14 Bepu(M — K)). (5)

In the above expressiohl(5), the involved large scale fagamgmeters, is a variable, here we

take a further step to analyze the ergodic capacity gyer

Theorem 1 Considering large-scale fading, the ergodic capacity of the kth user with perfect
Cd is

Qpu(M — K)my, my+ 1,11 Qp,(M—K)
E CL — 7k ._ "% 6
[Chi] In (2) D} o ( D) ’ Dy ’ ©)
where ,F, ( el ;z) is the generalized hypergeometric function.
by,....b,
Proof: See Appendix A. [ |

2) Average ergotic capacity of all the users: In the considered communication systems, the
coverage area of a cell is model as a disc and the BS is locatdteicenter of the cell. The
mobile users are located uniformly in the cell willy < D, < R. The distribution of the users
along the radius of the cell is expressed as

2K

fa(z) = Tk (7)

wherez is the distance between one user and the BS.



Exploiting Egs. [(6) and[{7), the lower bound of the averageacéy of all the users in the
cell, noting asC%, can be averaged after deriving the integral over the raatus
_ 1 E
Cp = K Z E [Cﬁk}
k=1

ag 2 /R Qupu (M — K)my, m+1,15,1  Qp, (M~ K)

R? — R?

F — dz. (8
RO 11’](2)1”0 X 3471 2 Y ,CL'U X ( )

Therefore the integral in the above expressidn (8) becoméket concern of the following

work.

Theorem 2 Considering the distribution of large-scale fading, the average ergodic capacity of
all the users with perfect CS is

AL % 20, pu(M — K)my, 1 2 U;2>mk+1’1’1 —pu(M — K)
PR e-2) | R =2 T R
I R LIRS ®
Ro—24t2 v2 49 ; R .
Proof: See Appendix B. [ |

Perfect CSl is only an ideal assumption. In practice, CSukhbe estimated via training se-
guences or pilots. Due to limited length of training seq@snand time varying nature of wireless
channels, channel estimation errors are inevitable. Ifidh@ving section, the performance with

imperfect CSl is analyzed.

B. Ergotic capacity of uplink MU-MIMO with imperfect CS

In this subsection we take a further step to derive severdulgxpressions of the ergodic
capacity of the massive MIMO systems with imperfect CSI. tagtice, the channel matrié
need to be estimated with the assistance of pilots [8]. Dutfke training phase in the coherence
interval, mutually orthogonal pilot signals of lengthare transmitted by different users. The
pilot sequences used by all the users are denoted 7as d@& matrix \/7p,® (1 > K) with
®"® = I,. DenotingG as theM x K channel matrix between the BS and theusers, the

M x T received pilot matrix at the BS is expressed as

Y, = /70.G®" + N, (10)



whereN is the M x 7 noise matrix with i.i.d.CN(0,1) elements. The MMSE estimate &f is

1 - 1 3
Y, ®D = (G + W) D, (11)

TPy TPu

G

whereW 2 N&* has i.i.d.CN(0,1) elements, a®"® = I. SinceD = diag {3;},i € [1, K]
~ -1
denotes the favorable propagation, we have mdiri <TP%UD‘1 + IK> = diag {T;fgfil},
€ [1, K]. Denoting the channel estimation error @, = G — G, it can be seen that the

elements of theth column of Go are RVs with zero means and variancé@%, which will
decrease the received signal to noise ratio (SNR) at the BS.
1) Ergotic capacity of the kth user: With imperfect CSI, we begin with the derivation of the

ergodic capacity of théth user by employing a lower bound given as [4, Eq. (42)]

Tpi(M—K)ﬁi

C[p,k Z 10g2 1 -+ K
(Tpuﬁk + ]') ; TPu ﬁ +1 + Tpuﬂk + 1

(12)

However, the bound given in][4, Eq. (42)] is complex and natsilnle to calculate the integral

over 3. Using the fact that% <landl+4% > q>0,b>1, anovel lower bound is

proposed as

K
Crpg > logy (1+ 7pi (M — K) 37) — log, (1 + 7p,3;) — log, (1 + 7) 2 CILP,k' (13)
Now we derive the integral over the large-scale fadifgin the above expression (13) and

obtain the following theorem.

Theorem 3 Taking the large-scale fading into account, the ergodic capacity of the kth user with

imperfect CSl is

E[Crpy]

Pl (M- K2 (5 4 DT (5 4+g) o (LR L 4r0hp (M - K)
VAl ()T (my) DY ) | Dy

E1(Dgymp,pusv)

Q. Dy, me+1,1,1 Q1. K
oDl ' kP jog (14— )
ln( )D” 9 Dy

- -

(14)

-~
Ea(Dg,mp,pu,v)

Proof: See Appendix C. [ ]



2) Average ergotic capacity of all the users: With the aid of Theorem 3, we are capable to
derive the average ergodic capacity of all the user with ni@gé CSI, which can be derived

following the same logic of the perfect CSI case as
=~ @8 2 R _ 2 R _ K
107 g J, PE @ b ) dv = g |0 (s py, v) dv —logy | 1+ 2 )
0 0
(15)

Deriving the integral of Eq[(15) yields the following theon.

Theorem 4 Taking the effects of the large-scale fading into account, the average ergodic ca-

pacity of all the users with imperfect CSl is
oy TR O — K) 2T (4 )T (34 §)

Crp = 2
(R?* = R§) vmIn (2) T (my) (v — 1)
1 SR AL S LD —4rQ2p2 (M - K)
X § =555k ) 2v
Ry =141,2 Ry
L L [ LA L 4O (M - K)
R2U—2 UTI i 172 ) R2v
27Q pumy 1 7 %, m + 1,11 —rQ;p,
- —5 412 S Th o
(@) (- 1) (0= 2) | R =212 Ry

1 ﬁamk’_‘_l)lv]— _TQkpu K
— E v — —1 1+—). 16
Foait? =219 R 082 | 1+ — (16)

Proof: Due to space limitations, we will skip the proof, which can dig#ained following
the similar logics of Appendices B and C. [ |
We note that all the expressions in the theorems of this@eetie novel and can be used to
predict the ergodic capacity of the large uplink MU-MIMO &mms over generalizel- fading
channels. It is also worth noting that they are closed-forpressions, involving only a finite
number of basic operations such as summations of logarjtGermma functions, and generalized
hypergeometric function, etc. This result can be used terdene the radius of the coverage of

massive MIMO base stations.

IV. NUMERICAL RESULTS

In this section, simulation results are presented to exartia impact of network parameters

on the ergodic capacity of the large uplink MU-MIMO systerdge assume that the users are



located uniformly in a cell oft000 meters while no user is closer to the BS thi&d meters,
which means thai? = 1000 and R, = 100. The distribution of the users is plotted in Fig.
[2. The transmitted signals suffer from the Nakagamdistributed fast fading (we set the fast
fading parametem = 1), and the gamma distributed large-scale fading (wezet 1/m, and

mp; =mg = ...=mg = m). We also assume equal transmit power at each node and e val
of P is set to be the received power@ 0 meters far from the transmitted users. The length of
the pilot is set ag = K. Furthermore, the path loss exponent is set as3.6 [9].

Fig.[3 plots both the simulated and numerical average cgpatiall the users with different
number of the BS antennd$. The number of the users is set A&s= 9 and the large-scale
fading parameter is set as = 3.3. It can be seen that the numerical curves accurately predict
the simulated ones in the large numberNdfwith both perfect and imperfect CSI. By observing
these curves, it is evident that the capacity increases Mjtivhich indicates that increasing the
number of the BS antennas brings an improved performancgstéra throughput. For example,
increasingN from 100 to 300 brings a capacity advantage of alma@stic at P = 10dB with
perfect CSI. It is also evident that the lack of CSI will dexge the capacity of the system. For
example, the imperfect CSI brings about a capacity losg6f at P = 10dB with N = 250.

Figs.[4 and b plot the average capacity of all the users witferdnt large-scale fading
parametersn. We set K = 9. It can be observed that increasing will result in a better
average capacity of all the users in both figures. For exanmpieeasingn from 0.1 to 1 brings
about a capacity advantage @3% at N = 128, P = 20dB with perfect CSI. Increasing.
from 2 to 5 brings about a capacity advantage 25t at N = 128, P = 20dB with perfect
CSI. Similar observations can be obtained by the curves wigierfect CSI. These observations
demonstrate that with both perfect CSI and imperfect CH,abWerage ergodic capacity of all
the users increases obverselyrasgoes large whemn < 2, which is the urban scenario with
heavy shadowing; larger. will brings little improvement of the capacity when > 2, which

is the suburban, rural, or flatland scenario.

V. CONCLUSIONS

In this correspondence, we analyzed the ergodic capacayaige uplink MU-MIMO system
where multiple single-antenna users transmit their infdfom to a base station equipped with a

very large number of antennas. Over generaligethding channels, several novel lower bounds



of the ergodic capacity of a single user were derived for Ipattiect CSI and imperfect CSI, as
well as the average ergodic capacity of all the users in theSienulation results were used to
validate our analytical expressions. We figured out thagdacale fading will have large effect
on the capacity of the system with both perfect and imper@&Sst in the urban scenario. Our

result is of importance to design the coverage of massive ®llibase stations.

APPENDIX A

PROOF OFTHEOREM 1

Substituting Eqs[{3) andl(4) into EQI (5), the ergodic cépax the kth user can be expressed

as

r1_ [T pu(M — K) ™ e
E[CE,] _/o log, (1 + D ) 7 () O exp |~ dyu. (17)

Employinglog, (z) = In (z) /In(2) andIn (1 +z) = > (=1)'2"*/(i + 1) [1T, 1.511], we can
=0
rewrite the above expressidn {17) as

1 =1 ZMM—K)M/W 4 m
L _ o my+i o
ElCrd = In (2) T (my) Q)" Zi:0¢+1< Dy ) o TP T, Gt
(18)

Using the formula given by [11, 3.326.2], the above expms$l8) can be expressed as

B 1 S| _ Qpu(M — K\
E[Cﬁvk}——ln(z)r(mk);i+lf(mk+z+l) (— g D ) . (19

Multiplying the same items on both the numerators and denatais in the fractions does not

change the equality and thus EQ.](19) can be rewritten as

[e.e]

_pu(M-K)\"
Fmk+1+z)F(i+1)F(i+1)F(2)< bR )

'(me+1) T (+2) I'(t+1)

E [CP,lc] - In (2) r (

“’M

- O, pu(M—K)\"
 Qpu(M — K)I (my + 1) Z mk+1 1),(1), \ ™ DY

In (2) ' (my) D}

where(m), =T (m+1) /I (m) is named as the Pochmann symbol. Based oh [10, 16.2.1], Eq.

(20) can be reformulated as E@J (6) and then the theorem cachieved.
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APPENDIX B
PROOF OFTHEOREM 2
Substituting Eq.[(T9) into Eq[8) and using the formyla“dz = z**'/(a+ 1), we can

reformulate [(B) as

SIS 20 pu(M — K)U (my + 1) T ( il“ z—i—lF(z—i—l) ()F(@'+U;2)
T um@ (R - (m)T (2 +1) & T E+2)T (52)

X F( v +1)F(mk+2+1) ( kPU(M K) 1 ( 71“%}3(5%_[())
P+ 52+ 1) T (mg +1) ROU S G i

(21)
Based on the definition of Pochmann symbol, the above expre§2l) can be expressed as
~pas 20pu(M — K)T (my + 1T (252
T o (@) (B - BT (i) T (55 41)

21>(
{R”ZZ (2),(

7

_Q.pu(M_K) ‘
), me+ 1), (FH5E)

), i
(222 (g + 1), (22 i
RHZ )(’“H( - )}, (22)

(=2+1), il
based on which and together with [10, 16.2.1], Ed. (9) isiobthand then proof is ended.

APPENDIX C

PROOF OFTHEOREM 3
Following a similar logic as the derivation of Eq. {19), thepectation of first item of Eq.
(I3) overp,, can be derived to be
E1 (Dka My Pus 'U)

2 E [logy (14792 (M — K) 82)]

1 =1 i (M — K) oo L+ 2i41 ok
- . u m 7 _n d
I (2) T (my) Q" 2; it 1 ( D2 /0 a P g, )
2 pi(M — K) 1 , Qkp (M - K)\'
ln(Q)F(mk)Di”;Zle (mi + 20 +2) D ’ (23)
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where the last step is obtained by using|[11, 3.326.2]. Wdyaihe expression given by [11,
8.335.1] to derive the integral il (3), which can be written

I (22) Qj;r ()T (x + %) | (24)

Substituting [(24) into[(23)/; can be reformulated as

- TR (M —K) 2™ S 1
=1 (D » hu I - 1
1 (Dgy My, pu,v) = qun()ffn%yD? 2;@—%1 (Z+ 2 + )
me 3 47{2kpu(ﬂ4>_-[<) i

Multiplying the same items on both the numerators and denatais in the fractions, the equality
does not change and E@.[25) can be further rewritten as
T2 (M — K)2me 1D (% 4 1) T (22 4 3)
VI (2) T (my) DR
XZ z—i—mk + )T (i+%+3)0(+1)I(+1)
(BE+1)T(B=+3)r1)r)

El (Dk7 Mg, Pu, U) =

MﬂﬁﬂMéK)i
I'(2) <_ DY’ )
e .
I'(i+2) I'(t+1)

P (M K) 24T (3 4 DT (3 +3)

/Al (2)T (my) DZ
) Z me 4 ) (M : )j 2),.(1)Z(1)Z< - ) (26)

Applying [10, 16.2.1] to Eq.IIZG), the expectation of firstnbeover large-scale fading can be
expressed a&; (Dy, mg, p,,v) of Eq. (18). Sincelog, (1 + 7p,5,) is similar to Eq. [(b), the
expectation of second term of E@. [13) ovar can be also expressed &s ( Dy, my, p,v) of
Eq. (I6). Thus the proof is ended.
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Fig. 1. The system model of uplink MU-MIMO system.
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Fig. 2. The distribution of the users in the cell.
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Fig. 3. The average ergodic capacity of all the users witfeiit number of BS antenndg in the case ofK = 9, m = 3.3,

and P = 5dB, 10dB, 20dB.
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Fig. 5. The average ergodic capacity of all the users witfedifit large scale fading parameter in the case ofK = 9,

N =128, and P = 5dB, 10dB, 20dB.
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