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Abstract—Online source rate control (RC) is designed for video5
streaming over high-speed packet access (HSPA) and Long-Term6
Evolution (LTE)-style variable bit rate (VBR) downlink channels.7
The problem is formulated as the adaptive adjustment of the8
operational mode of a video encoder based on the buffer overflow9
probability (BOP) feedback received from the radio link control10
(RLC) layer at the base station (BS). This allows us to maximize11
the attainable visual quality while keeping the transmitter BOP12
below a desired threshold and maintaining a video delay as low as13
possible. We derive an online measurement-based BOP estimation14
model for the RLC buffer, which is capable of operating with15
no prior knowledge of the channel variations and of the video16
characteristics. Based on this estimation model, an online adaptive17
RC algorithm is proposed to seamlessly adapt the bit stream to18
the characteristics of VBR channels. Our experiments are con-19
ducted in multiuser scenarios using VBR video encoding combined20
with adaptive modulation and coding (AMC) in the transceiver.21
The results demonstrate that the proposed source RC regime22
supports near-instantaneous yet smooth bit stream adaptability,23
which makes it useful for HSPA and LTE-style systems for the24
sake of accommodating unknown video traffic characteristics and25
dynamically fluctuating propagation conditions.26

Index Terms—Large deviation principle (LDP), rate control27
(RC), variable bit rate (VBR) channel.

28

I. INTRODUCTION29

30 ADVANCED transceiver techniques, including adaptive31

modulation and coding (AMC) and hybrid automatic re-32

peat request (HARQ), are widely applied in wireless systems to33

combat the effects of both fading and interference [1], [2]. For34

instance, both the third-generation (3G) and high-speed packet35

Manuscript received January 10, 2014; revised July 21, 2014 and
November 3, 2014; accepted January 24, 2015. This work was supported in
part by the National Natural Science Foundation of China under Grant
61174062; by the State Key Program of the National Natural Science Foun-
dation of China under Grant 61233003; and by the Fundamental Research
Funds for the Central Universities. The work of L. Hanzo was supported by
the European Research Council under an Advanced Fellow Grant. The review
of this paper was coordinated by Prof. N. Arumugam.

J. Yang, Y. Ran, S. Chen, and W. Li are with the School of Information
Science and Technology, University of Science and Technology of China,
Hefei 230026, China (e-mail: jianyang@ustc.edu.cn; yyran@mail.ustc.edu.cn;
chensw@mail.ustc.edu.cn; wpli@ustc.edu.cn).

L. Hanzo is with the School of Electronics and Computer Science, University
of Southampton, Southampton SO17 1BJ, U.K. (e-mail: lh@ecs.soton.ac.uk).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVT.2015.2398515

access (HSPA) apply AMC and HARQ in the physical layer 36

relying on the channel quality indicator’s (CQI) feedback from 37

the user equipment (UE) to achieve prompt link adaptation. The 38

Long-Term Evolution (LTE) Advanced and WiMax standards 39

also provide similar link adaptation based on AMC and short 40

time-slot duration periods. Naturally, agile link adaptation may 41

result in a time-varying effective throughput of the channel. 42

Therefore, supporting near-instantaneous bit rate adaptivity 43

is one of the most important features of video streaming 44

applications. 45

Rate control (RC) aims to control the video bit rate to match 46

the channel’s achievable bit rate, given the prevalent channel 47

quality to keep the video quality as high as possible [3]. Most 48

existing studies of RC focus on allocating a bit rate budget to 49

each group of pictures (GOP), frames, or macroblocks at the 50

encoder. For instance, an efficient RC scheme was designed 51

for MPEG-4 based on a quadratic rate–distortion (R–D) model 52

invoked to maintain the target bit rate in [4]. In [5], the quadratic 53

R–D model was also adopted to derive an adaptive RC for 54

H.264 to meet the target bit rate. In [6], RC was designed 55

for scalable H.264/Advanced Video Coding (AVC) encoding. 56

H.264 reference software JM [7] has implemented the JVT- 57

G012 [8] RC algorithm, which relies on a combination of the 58

available channel bandwidth, the frame rate, the target buffer 59

level, and the actual buffer fullness for determining the number 60

of bits allocated for the current frame. A range of AMC-based 61

schemes were conceived in [9] where no extra buffering was 62

used by the RC. The design philosophy was to instruct the 63

video encoder to produce the exact number of bits for each 64

video frame, which was affordable for the near-instantaneous 65

HSPA-style AMC transceiver mode that was periodically sig- 66

naled back from the receiver to the transmitter. However, the 67

aforementioned RC schemes rely on the knowledge of the target 68

bit rate, which again requires the feedback of the expected bit 69

rate based on the estimated channel quality. Unfortunately, the 70

channel’s bit rate fluctuations are not known a priori at the 71

transmitter and the video encoder. Therefore, these RC schemes 72

may impose substantial video quality fluctuations. 73

Recently, a control-theoretic approach-based RC regime has 74

been proposed in [10] by jointly considering the encoder’s RC 75

and network congestion control. More specifically, an empirical 76

R–D source model, a channel-induced distortion model, and 77

their linearized models were applied to formulate a mathe- 78

matically tractable system model. However, it is a challenge 79

to formulate accurate models when streaming videos over 80
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time-varying channels. Typically, intelligent packet scheduling81

is used at the base station (BS) by most of the existing solutions82

to achieve channel-quality-dependent adaptive video streaming83

over wireless networks. Cross-layer-adaptive scalable video84

streaming has been proposed by informing the media access85

control (MAC) layer of the amount of payload and the index of86

the modulation-and-encoding scheme to improve the attainable87

video quality [11]. An adaptive scalable video streaming strat-88

egy relaying on controlling the MAC buffer was presented in89

[12]. Both the packet deadlines and the channel characteristics90

were considered in video packet scheduling at the BS [13].91

The cross-layer design-aided transmission of scalable video92

streams [14] involves packet scheduling combined with a video93

frame dropping strategy at the BS. Most of these papers discuss94

the channel-dependent adaptation of the MAC layer of the BS95

where no signaling is fed back to instruct the video source to96

adjust its bit rate. Dropping packets at the BS is a waste of97

resources both in the backhaul router and the core network. It98

was shown in [15] that packet dropping at the video source is99

more efficient than MAC layer dropping at the BS when we100

have to reduce the congestion in both the wired core network101

and in the wireless medium to the UE. By translating the102

CQI values to the number of enhancement layers scheduled103

for transmission, the video server facilitates adaptive video104

streaming [16]. However, the link throughput at the BS is105

determined not only by the CQI value but also by the MAC106

layer scheduling strategy of a multiuser scenario. Moreover,107

the bit rate of video clips having different amounts of motion108

activity may be very different even if they have the same num-109

ber of enhancement layers [17]. Therefore, such CQI-mapping-110

based video source adaptation lacks robustness against the111

time-variant number of users and against the heterogeneous112

video bit rates. In [18], although a Markov decision process is113

invoked for dynamic video scheduling, its offline computation114

requires a priori knowledge of the channel dynamics. Hence,115

a heuristic online scheduling algorithm is derived based on the116

average channel throughput estimated with the aid of a first-117

order autoregressive model [AR(1)]. In the HSPA/LTE system,118

using a CQI-based link adaptation mechanism may lead to119

a burst-by-burst transmission block adaptation, and the linear120

estimator based AR(1) may not be appropriate for estimating121

the average channel throughput.122

Against this background, we proposed a novel online source123

RC framework, where a buffer overflow probability (BOP)124

estimator is employed at the radio link control (RLC) layer125

of the BS, and the estimated BOP is signaled back to the126

video source to control its bit rate. The motivation of using a127

BOP-based feedback is that the BOP metric characterizes the128

degree of matching between the video bit rate of the source129

and the link throughput. Since the BOP is estimated before130

a buffer overflow is encountered, its feedback may assist the131

video source in promptly controlling the bit rate. In contrast to132

the methods found in the open literature [9]–[14], [16], [18], the133

main contributions of this paper are threefold.134

• To enable the video encoder to generate a video stream135

that may be reliably delivered over variable bit rate136

(VBR) downlink channels, we formulate a constrained137

optimization problem subject to a constraint imposed on 138

the transmission BOP to guarantee a low delay. 139

• A BOP estimation model based on large deviation prin- 140

ciples (LDPs) [19] is proposed by monitoring the buffer 141

fullness and its variation at the BS’s RLC layer. The 142

reason for applying the LDPs is because it accurately 143

characterizes the probability of rare events, which assists 144

us in achieving fine adjustment of the video source rate. 145

• We conceive an iterative RC algorithm to approach the 146

most beneficial encoder rate, thus circumventing the dif- 147

ficulty of directly solving the related constrained opti- 148

mization problem. The proposed RC algorithm allows the 149

encoder to adjust its bit rate to that of the VBR channel 150

without any a priori knowledge of both the channel 151

quality variations and of the characteristics of the video 152

source. 153

The remainder of this paper is organized as follows. 154

Section II describes the system model, including the formu- 155

lation of the source RC problem of video streaming over a 156

VBR downlink channel. In Section III, we apply the LDP in 157

[19] to derive a BOP estimation model, whereas an online 158

measurement-based RC is proposed in Section IV. Our numeri- 159

cal simulation results are presented in Section V to characterize 160

the attainable performance of the proposed algorithm. Finally, 161

our conclusions are offered in Section VI. 162

II. SYSTEM MODEL 163

164A. System Overview 165

Fig. 1 shows a typical video streaming scenario over a 166

wireless network. The main associated protocol stacks are also 167

shown in the lower part of the figure. Naturally, a video stream- 168

ing service involves not only maintaining the wireless connec- 169

tion between the mobile station (MS) and the base transceiver 170

station (BTS) but supporting the public network connection 171

(Internet) as well. The wired network provides high capacity 172

and stability; hence, video streaming over the wired network 173

has become a well-established service and has many successful 174

applications, including video conferencing, surveillance sys- 175

tems, and Internet Protocol (IP) television. By contrast, video 176

streaming over wireless networks faces unique challenges due 177

to the time-varying nature of the wireless channel and owing to 178

the scarcity of the system resources, which makes it difficult to 179

guarantee any specific video quality of service (QoS). Hence, 180

the wireless transmission in the video streaming service is likely 181

to be a bottleneck, which is the focus of this paper. 182

Fig. 2 shows the basic video processing in the video network 183

abstract layer (NAL) units of the 3GPP framework. A NAL 184

unit may be encapsulated in a Real-Time Transport Protocol 185

(RTP) data unit, and then, it may be transmitted over User 186

Datagram Protocol (UDP)/IP. HTTP-based streaming protocols 187

such as Apple HTTP Live Streaming (HLS) [20] are alternative 188

media streaming communication protocols, which are capable 189

of traversing any firewall or proxy server that lets through 190

standard HTTP traffic, unlike UDP-based protocols such as 191

RTP. 3GPP standardized an adaptive HTTP streaming protocol 192
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Fig. 1. Typical scenario for wireless video streaming in 3G Partnership Project (3GPP) framework.

Fig. 2. Video data packetization at different layers in the 3GPP framework.

in Rel-9 [21]. Subsequently, we concentrate on the terminology193

used in HSPA NB/eNB, as shown in Fig. 2. The IP/UDP/RTP194

or IP/Transmission Control Protocol (TCP)/HTTP packet gen-195

erated is encapsulated into a single Packet Data Convergence196

Protocol (PDCP) packet that becomes an RLC service data197

unit (SDU). Since a typical RLC SDU has a larger size than198

an RLC protocol data unit (PDU), it has to be segmented into199

smaller units. The length of the RLC PDU depends both on the200

selected bearer and on the AMC mode used. The RLC PDUs are201

forwarded to the MAC layer and are then encapsulated as MAC202

PDUs. The main functions of the PDCP layer are robust header203

compression and decompression, ciphering and deciphering,204

the transfer of data, and PDCP sequence number maintenance.205

The RLC layer in wireless systems is capable of operating206

in both an unacknowledged mode (UM) and acknowledged207

mode (AM), and both are capable of providing RLC PDU208

loss detection. However, while the UM is unidirectional and209

data delivery is not guaranteed, in the AM, automatic repeat210

request (ARQ) is applied for reliable data transmission. The211

main functions of the RLC layer include the transfer of upper212

layer PDUs; error correction relying on ARQ (only for AM); 213

and the concatenation, segmentation, and reassembly of RLC 214

SDUs, whereas the main functions of the MAC layer are 215

resource scheduling and multiplexing/demultiplexing of MAC 216

SDUs belonging to one or several logical channels into/from the 217

relevant transport blocks (TBs). By comparing the functions of 218

the RLC layer with those of the PDCP and MAC, the RLC is an 219

appropriate layer for us to construct a model for characterizing 220

the degree of matching between the network’s throughput and 221

the video source bit rate. Generally, the detection of a lost 222

RLC PDU results in the loss of an entire PDCP packet; hence, 223

the encapsulated IP and the NAL unit are lost. From the 224

perspective of reacting to both the dynamics of the statistical 225

fluctuation of the teletraffic and the variable channel conditions, 226

agile bit rate adaptivity is one of the most important features 227

for seamless video streaming over wireless systems. There 228

are several ways of achieving bit rate adaptivity. For online 229

encoding applications, the bit rate adaptivity can be achieved 230

by controlling encoding parameters. For instance, H.264/AVC 231

supports these features mainly by dynamically varying the 232

quantizers but also by controlling temporal resolution. Scalable 233

Video Coding (SVC) is another technique of implementing 234

the bit rate adaptivity. It encodes the raw video clip into a 235

base layer and a number of enhancement layers with different 236

priorities. Naturally, the base layer has the highest priority since 237

it contains the video bits with the highest importance, which can 238

provide a minimum video quality. The enhancement layers with 239

lower priorities may be progressively encoded to further refine 240

the quality of the base-layer stream. This layered approach 241

of the SVC codec allows an encoded stream to be flexibly 242

prepared for meeting the bit rate constraint. In [22], the base- 243

layer rate for a given video sequence is optimized to achieve the 244

highest possible average perceived quality for heterogeneous 245

clients, whereas in [23], a distribution regime was conceived 246

for scalable videos, which guaranteed fairness for all end users. 247

In Dynamic Adaptive Streaming over HTTP (DASH), the video 248

content is partitioned into a sequence of small HTTP-based file 249
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Fig. 3. Adaptive source RC framework for online video encoding.

segments, which are made available at a variety of different bit250

rates. More explicitly, segments encoded at different bit rates251

covering appropriately aligned short intervals of playback time252

are made available. Naturally, DASH also provides a flexible253

way of adjusting the video source bit rate. 3GPP has defined its254

Rel-10 version of DASH, termed as 3GP-DASH [24], which255

is a profile compatible with MPEG-DASH [25]. More work256

on HTTP-based adaptive video streaming can be found in257

[26]–[28].258

Since the RLC buffer fullness indicates the degree of match-259

ing between the source video bit rate and the channel bit rate,260

we subsequently design a buffer fullness estimation scheme261

where the buffer fullness estimated at the RLC layer is fed262

back to the video source to adapt its bit rate. Without loss263

of generality, we consider a specific scenario of the online264

encoding RC relying on controlling encoding parameters, i.e.,265

dynamically changing the quantization parameters (QPs). It266

is straightforward to extend the proposed method to both267

SVC streaming and to HTTP-DASH scenarios, as discussed in268

Section II-C.269

B. Problem Formulation270

The block diagram of a wireless video streaming system271

equipped with an encoder parameter optimizer conceived to272

control the source rate is shown in Fig. 3, which relies on a273

camera, a video encoder, and a BTS. The camera samples the274

video scene at certain frame scanning and forwards the frames275

to the encoder, which forwards the compressed video to the276

transmitter’s buffer at the RLC layer for transmission. Here, we277

assume that the channel between the video source and the BTS278

is wired and reliable. The source RC problem is eliminating the279

congestion in the BTS while satisfying the delay constraints.280

Our basic philosophy is to feed back the mismatch between the281

current source rate and the channel’s affordable throughput to282

the encoder parameter optimizer to adapt the source rate. If a283

mismatch does occur, the encoder parameter optimizer sends284

a command to the video encoder to adjust the video source285

rate. To quantitatively characterize this mismatch, we define286

BOP as the probability that the current wireless channel quality287

provides an insufficient throughput for the current video bit rate.288

A sufficiently low BOP indicates that we may increase the video289

bit rate for transmission over the wireless channel to achieve a290

higher video quality.291

Fig. 4. Relation between BOP and received video quality by using three
different video clips, namely, the Silence of the Lambs, NBC 12 News, and
Star Wars IV. AQ1

Let M Δ
= {M1, . . . ,ML} be the operational mode set of the 292

video encoder. The video bit rate corresponding to the opera- 293

tional mode Mi(i = 1, . . . , L) is denoted by ri. Let us assume 294

that r1 < r2 < · · · < rL, which implies that a higher opera- 295

tional mode results in a higher video bit rate and hence achieves 296

a better video quality. The operational mode is controlled by the 297

encoder parameters. For instance, we can control the encoding 298

mode by appropriately setting the I-P-B quantization mode or 299

the target video bit rate parameter of the JM encoder. Here, 300

we consider adapting the source rate to the channel quality by 301

dynamically adjusting the operational mode (i.e., the encoding 302

parameters) of the video encoder. 303

We used transmission slots of equal duration, which are nor- 304

malized to unity. The RLC SDUs, which contain the video data 305

generated by the video encoder, arrive at the RLC buffer, and 306

they are then queued until they are transmitted. Since the data 307

are processed at packet level instead of bit granularity, we define 308

the length of the RLC buffer as the number of RLC SDUs. Let 309

An ∈ A Δ
= {0, . . . , A} denote the number of RLC SDU arrivals 310

in slot n, where A is the maximum number of RLC SDU ar- 311

rivals in a single slot, whereas Dn ∈ D Δ
= {0, . . . , D} is defined 312

as the number of RLC SDUs transmitted in slot n, where D is 313

the maximum number of RLS SDUs transmitted in a single slot. 314

It should be noted that an agile and sophisticated link adaptation 315

mechanism based on AMC and HARQ is applied to maintain 316

the required target bit error rate in most state-of-the-art wireless 317

communication systems such as high-speed downlink packet 318

access, 3G LTE, and WiMAX. Both AMC and HARQ rely on 319

the CQI feedback received from the mobile terminals, which 320

results in a burst-by-burst adaptive channel throughput. Hence, 321

the downlink packet departure process Dn is assumed to be 322

an independent identically distributed (i.i.d.) sequence. Let Qn 323

denote the buffer fullness expressed in terms of the number of 324

packets at the end of slot n. The dynamics of the buffer fullness 325

may be described as 326

Qn = max
{
Q(n−1) −Dn, 0

}
+An. (1)

According to Little’s theorem [29], we have 327

Q̄ = λD̄ (2)
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Fig. 5. Adaptive source RC framework for the DASH streaming application.

where Q̄ is the average buffer fullness, D̄ is the average delay,328

and λ is the packet arrival rate. This implies that, if λ is given,329

having a higher buffer fullness value implies a higher delay.330

Hence, we treat the delay as being synonymous with buffer331

fullness. Our objective is to select the best encoding mode for332

controlling the buffer fullness to satisfy the delay constraint333

of the specific video application. Let us formally define the334

BOP as335

po = P (Q > Bh) (3)

where Q is the buffer fullness and Bh is the buffer threshold.336

Higher BOP implies higher buffer fullness in the near future,337

in turn inducing a higher delay. To guarantee lip-synchronized338

interactive low-delay video transmission, the BOP should be339

kept low. Hence, the problem of RC may be reinterpreted as the340

problem of selecting the best encoding mode subject to a given341

BOP, which can be formulated as342

max
m∈M

m (4)

s.t. P (Qm > Bh) < pqos (5)

whereQm denotes the buffer fullness corresponding to the video343

encoding mode m, and pqos is the maximum tolerable BOP.344

It should be noted that the queue length P (Q > x) in the345

scenario of an infinite buffer system is called an overflow346

probability or a tail probability [30], which has been used347

as a performance metric for an infinite buffer-aided system348

[31]–[33]. However, practical systems have a limited buffer349

capacity. When a video frame arrives at a full buffer, it gets350

dropped. Hence, the packet loss probability (PLP) PL(Bh)351

is invoked to characterize the performance of a finite-buffer-352

based system having a capacity Bh of video frames. For video353

streaming services, the PLP is an important QoS measure, but354

it is difficult to directly estimate the PLP of a general finite-355

buffer-based system. Fortunately, a theoretical justification was356

provided to approximate the PLP of a finite-buffer-based sys-357

tem with the aid of estimating the BOP of its infinite buffer358

counterpart [33]. Hence, we treat the BOP as being identical to359

the PLP, which implies that the video source rate optimization360

problem of a finite-buffer-based system having a capacity Bh361

of frames can be mapped to the mathematical model of (4) and 362

(5). We have confirmed, by our simulation studies, the plausible 363

fact that a high BOP may severely degrade the QoS, which is 364

quantitatively characterized in Fig. 4 and motivates us to use 365

the BOP for the feedback control. 366

C. Extensions for SVC and DASH Scenarios 367

The scheme shown in Fig. 3 is a point-to-point representation 368

of our proposed framework, which may be also used for stream- 369

ing to multiple users, as shown in our forthcoming SVC/HTTP- 370

DASH streaming applications. 371

The framework detailed in Section II-B may be readily 372

extended to SVC and HTTP-DASH scenarios. For an SVC 373

scenario, a scalable video stream consists of a base layer 374

l1 and (L− 1) enhancement layers, i.e., {l2, l3, . . . , lL}. The 375

operational mode Mi(i = 1, . . . , L) is defined as the scenario 376

when the first i layers are selected for transmission. Thus, the 377

source RC via adaptive enhancement layer selection can be also 378

formulated as the problem [see (4) and (5)]. The correspond- 379

ing video source in Fig. 3 may be also replaced by a video 380

streaming server, which maintains the sessions corresponding 381

to the multiple video users and receives the BOP feedback of 382

a specific session for adjusting the number of the transmitted 383

enhancement layers. 384

It should be noted that HTTP-DASH applied the pull-based 385

streaming paradigm rather than the traditional push-based 386

streaming paradigm relying on protocols such as the Real-Time 387

Streaming Protocol. The client plays the central role of driving 388

the video adaptation. To comply with the basic rule of DASH, 389

the framework for the DASH streaming applications shown 390

in Fig. 5 is based on the BOP feedforward to the client. The 391

client may then use the received BOP to select the future video 392

segments to be fetched. The DASH streaming server maintains 393

multiple sessions for the sake of supporting video streaming to 394

multiple users. In a DASH scenario, the operational mode set 395

M is defined as the adaptation set, where the operational mode 396

Mi(i = 1, . . . , L) denotes streaming the chunks corresponding 397

to the ith quality level. Then, the source RC via HTTP-DASH 398

can be similarly described as in (4) and (5) since a higher video 399

quality implies a higher bit rate. 400
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III. LARGE DEVIATION-BASED OVERFLOW401

PROBABILITY ESTIMATION402

Naturally, the BOP estimation is a key step to successfully403

solve the problem [see (4) and (5)]. To provide a high quality404

of experience for a video streaming service, an occurrence of405

buffer overflow is expected to be a rare event. The theory of406

large deviation provides a useful way of accurately characteriz-407

ing the probability of rare events. Therefore, we present a large408

deviation-based BOP estimation model here. Although our409

practical buffer is of finite size, the BOP of the corresponding410

infinite-buffer-based system can be invoked to estimate the411

PLP, as shown in [31]–[33]. Hence, we subsequently aim to412

estimate the BOP of the corresponding infinite-buffer-based413

system. To derive an analytical model, the BOP is estimated414

based on the M/M/1 queueing model, which has been widely415

applied in wireless networks [34]–[37]. The buffer at the RLC416

is modeled as the M/M/1 queue, where λ RLC SDUs/slot and417

μ RLC SDUs/slot denote the Poissonian arrival rate and the418

departure rate (or service rate), respectively. Let us now defineAQ2 419

the large deviation theory in [19] for estimating the probability420

of P (Qn+N > Bh|Qn), where Qn is the buffer length during421

the current time slot n. During the kth slot, the evolution of422

buffer length can be represented by423

Ik = Ak −min
(
Q(k−1), Dk

)
. (6)

Then, we have Qn+N = Qn +Σn+N
k=n+1Ik. Furthermore,424

P (Qn+N > Bh|Qn) can be rewritten as425

P (Qn+N > Bh|Qn) =P
(
Qn +Σn+N

k=n+1Ik > Bh

)
=P

(
1
N

Σn+N
k=n+1Ik > a

)
(7)

where we have a = (Bh −Qn)/N . Next, we apply the LDP to426

the sequence In+1, In+2, . . . to derive P ((1/n)Σn
k=1Ik > a).427

The LDP can be briefly described as follows [38].428

Definition: A sequence X1, X2, . . . obeys the LDP associ-429

ated with rate function I(·) if the following conditions apply.430

1) For any closed set F , we have431

lim sup
N→∞

1
N

logP

(
1
N

N∑
i=1

Xi ∈ F

)
≤ − inf

a∈F
I(a).

(8)

2) For any open set G, we have432

lim inf
N→∞

1
N

logP

(
1
N

N∑
i=1

Xi ∈ G

)
≥ − inf

a∈G
I(a). (9)

Obviously, Ik ∈ R (k ∈ [n+ 1, n+N ]) represents i.i.d.433

random variables with a mean of E[Ik] = λ− μ and moment-434

generating function (MGF) of M(θ) = E[eθIk ] that is finite435

in a neighborhood of 0. According to Cramér’s theorem [38],436

In+1, In+2, . . . obeys the LDP associated with the rate function437

I(a) = supθ>0(θa− logM(θ)), which implies that, for any 438

a > λ− μ, we have 439

lim
N→∞

1
N

logP

(
1
N

n+N∑
i=n+1

Ii > a

)
= −I(a). (10)

It should be noted that (10) is logarithmically asymptotic. 440

Hence, when N is large, the BOP can be approximated as 441

P

(
1
N

n+N∑
i=n+1

Ii > a

)
≈ exp [−NI(a)] . (11)

Since Ak obeys Poisson’s distribution, we have 442

E[eθAk ] =

∞∑
η=0

eθη
λη

η!
e−λ = exp(λeθ − λ). (12)

Similarly, we may arrive at E[e−θDk ] = exp(μe−θ − μ). Then, 443

we may derive the MGF M(θ) as follows: 444

M(θ) =E[eθIk ]

=E[eθAk ]E[e−θDk ]

= exp(λeθ + μe−θ − λ− μ). (13)

Hence, the corresponding rate function I(a) can be rewritten as 445

I(a) = sup
θ>0

(θa− λeθ − μe−θ + λ+ μ)

= (θa− λeθ − μe−θ + λ+ μ)|
θ=log

a+
√

a2+4λμ
2λ

= a log
a+

√
a2 + 4λμ
2λ

−
√

a2 + 4λμ+ λ+ μ. (14)

If λ and μ are given for any encoding mode m ∈ M, the BOP 446

P (Qn+N > Bh|Qn) can be estimated by using (11) and (14). 447

The problem [see (4) and (5)] can be then solved by calculating 448

the BOPs corresponding to all encoding modes in M. However, 449

in practical situations, both λ and μ depend on the network’s 450

condition and on the source encoding mode, and they are not 451

based on prior knowledge for each encoding mode. 452

An attractive technique is applying an iterative policy to 453

solve the problem [see (4) and (5)]. Specifically, at the current 454

mode update period, we can calculate the BOP corresponding 455

to the current encoding mode by the online estimation of the 456

arrival rate λ and the departure rate μ. Although λ and μ can 457

be estimated by counting the number of RLC SDU arrivals 458

and departures over a time period of T , they may change 459

over time due to time-varying network conditions and dynamic 460

encoding mode switching. The dynamic nature of λ and μ may 461

be modeled using an autoregressive integrated moving average 462

(ARIMA) process [39] as follows: 463(
1 −

p∑
i=1

aiD
i

)
(1 −D)d1λ(t) =

(
1 +

q∑
i=1

biD
i

)
ε(t)

(
1 −

p∑
i=1

ciD
i

)
(1 −D)d2μ(t) =

(
1 +

q∑
i=1

diD
i

)
μ(t)
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where D is the unit time-delay operator, and ε(t) is the estima-464

tion error. Therefore, the task of estimating λ and μ becomes465

the task of estimating parameters p, q, d1, d2, ai, bi, ci, and di466

for the ARIMA model [39]. Once λ and μ have been estimated,467

the corresponding BOP can be directly calculated by using (11)468

and (14). If the BOP estimate fails to satisfy the constraint (5),469

the source encoding rate should be decreased, thus reducing the470

BOP. Otherwise, if the BOP is much lower than pqos, the video471

source bit rate may be increased, thus improving the video472

quality. Applying this iterative encoding mode update, we can473

iteratively solve the problem [see (4) and (5)] to find a new474

optimal encoding mode.475

It should be noted that the aforementioned method relies476

on the classic M/M/1 queuing model, albeit the Poissonian477

assumption may be not the most realistic packet arrival and478

departure model. Moreover, our model of the BOP requires479

estimating both λ and μ. In the next section, we propose an480

online measurement-based RC, which no longer relies on the481

M/M/1 queuing model and on the estimation of the RLC SDU482

arrival rate λ and the departure rate μ.483

IV. ONLINE ENCODING MODE SWITCHING-BASED484

RATE CONTROL FOR VIDEO STREAMING485

Let the index of the current time slot be n and the current486

buffer length be Qm
n , whereas m = Mi denotes the current487

video encoding mode. We estimate the BOP at the (n+N)th488

(N > 0) slot under the assumption of maintaining the current489

encoding mode, where N is referred to as the prediction in-490

terval. Let Pn+N
o (m) denote the overflow probability at slot491

(n+N), which is defined as492

Pn+N
o (m) = P

(
Qm

n+N > Bh

)
. (15)

Subsequently, we derive a BOP estimation model based on the493

aforementioned LDP [19], and then propose an online adaptive494

source RC for video streaming over VBR channels.495

A. BOP Estimation496

When transmitting Dk RLC SDUs containing video data in497

slot k, the increased buffer length may be expressed as498

Ik = Ak −min
(
Q(k−1), Dk

)
. (16)

Since we have 0 ≤ Ak ≤ A and 0 ≤ Dk ≤ D, the set of values499

for Ik is {−D, . . . , 0, . . . , A}. Let us introduce the variable500

πi = P (Ik = i) to denote the probability of having a buffer501

length increase of Ik = i. For a given wired network condition,502

Ak is determined by the video encoding mode since the en-503

coded video frame size is affected by the encoding mode, and504

Dk is related to the channel bit rate. Their difference Ik shows505

the instantaneous mismatch between the video bit rate and the506

channel bit rate. Due to the time-variant RLC SDU arrivals and507

the fluctuating channel bit rate, the sequence Ii(i = 1, 2, . . .)508

may frequently alternate between negative and positive values.509

The total increase in the buffer length during the interval 510

spanning from slot n to slot (n+N) is given by 511

In+N = ΣN
i=1In+i. (17)

Then, the buffer length Qm
n+N at the end of the slot (n+N) 512

may be expressed as 513

Qm
n+N = Qm

n + In+N . (18)

According to (6), the BOP at slot (n+N) may be rewritten as 514

Pn+N
o (m) = P

(
Qm

n + In+N > Bh

)
. (19)

Let us now define the expected value of the average buffer 515

length increase in each of the future N slots as 516

mo = E

[
ΣN

i=1In+i

N

]
(20)

where E[·] denotes the expectation operator.Furthermore, while 517

keeping the current encoding mode fixed as m = Mi, the 518

tolerable average buffer length increase during each slot is 519

defined as 520

ao =
Bh −Qm

n

N
. (21)

Having mo ≥ ao implies that there would be a high BOP after 521

N time slots. 522

Let us now rewrite (19) as 523

Pn+N
o (m) =P

(
Qm

n + In+N > Bh

)
=P

(
In+N/N > (Bh −Qm

n ) /N
)

=P

(
ΣN

i=1In+i

N
> ao

)
. (22)

The term ΣN
i=1In+i/N in (22) represents the average buffer 524

length change during a slot, which is jointly determined by the 525

video encoded bit rate controlled by the encoding mode and the 526

channel bit rate, whereas ao is the tolerable average increase in 527

the buffer length for each of the N future slots, as determined by 528

the current buffer length. Therefore, the probability Pn+N
o (m) 529

in (22) may be viewed as an estimate of the remaining storage 530

capacity in the buffer, which may be used to smoothen the 531

fluctuation of the channel’s affordable throughput in the future. 532

If the probability Pn+N
o (m) exceeds a predefined threshold 533

value pqos, we can decrease the encoding mode index to reduce 534

the video bit rate, thus decreasing both the BOP and the buffer- 535

induced delay. 536

Since Dk(k = 0, 1, . . .) are i.i.d. variables, Ik(k = 1, 2, . . .) 537

are also i.i.d. random variables, which have a finite MGF of 538

M(θ) = EeθIk in the vicinity of 0. Then, provided that ao > 539

mo is satisfied, according to (11), for large N , we have 540

Pn+N
o (m) ≈ exp [−NL(ao)] (23)
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where541

L(ao) = sup
θ>0

{aoθ − logM(θ)} (24)

logM(θ) = log

{
1∑

i=1−sD

πi exp[iθ]

}
. (25)

To calculate the approximate BOP of (23), the knowledge542

of ao, mo, and πi is required. It is straightforward to calculate543

ao according to (21). However, there is no prior knowledge544

about the histogram of Ik, and hence, we cannot derive an-545

alytical expressions for mo and πi. Therefore, we have to546

rely on their buffered history for estimating the current values547

of these parameters using the classic sliding-window-based548

method.549

The observed buffer length increase/decrease sequence con-550

stitutes the input of {I1, I2, I3, . . .}. The sliding window551

takes into account the Ns most recent Ik values of Wn =552

[In, In−1, . . . , In−Ns+1].553

For parameter mo of (20), we use the sample mean as its554

estimate, i.e., we have555

m̂o =

∑n
i=n−Ns+1 Ii

Ns
. (26)

Let Ni(i ∈ {−D, . . . , 0, . . . , A}) denote the number of556

events when Ik = i appears in the sliding window, which is557

given by558

Ni =
n∑

k=n−Ns+1

1(Ik = i) (27)

where 1(·) is an indicator function. Then, the relative frequency559

of encountering Ik = i may be estimated as560

π̂i(n) =
Ni

Ns
(28)

which can be applied in (25) to estimate the BOP.561

B. Online Source RC Algorithm562

The RC strategy advocated will be discussed in the context of563

three scenarios according to both the current buffer length Qn564

and the average buffer length increase per slot m̂o as follows.565

1) Qm
n ≥ Bh: This implies that the current buffer length is566

above the threshold, which will impose an undesirable delay of567

the video frame. Therefore, we should reduce the video bit rate568

by decreasing the encoding mode index as569

m = Mmax{i−1,1}. (29)

2) Qm
n < Bh and m̂o ≥ ao: In this scenario, although the570

buffer length is under the threshold Bh, its average increase per571

slot m̂o exceeds the tolerable average increase ao of the buffer572

length per slot during the forthcoming N slots. This implies573

that, at the current buffer length increase rate, the buffer length574

will become higher than Bh after N slots. Therefore, in this575

case, the current video bit rate should be decreased to reduce 576

the BOP. Then, we can adjust the encoding mode according 577

to (29). 578

3) Qm
n < Bh and m̂o < ao: In this case, the current buffer 579

length is under the threshold Bh, and the average buffer length 580

increase per slot m̂o is within the range defined by the capacity 581

ao. Nevertheless, this does not imply that no buffer overflow 582

will occur in the forthcoming N slots because m̂o is the 583

average buffer length increase per slot, which cannot directly 584

characterize the buffer length increase in a certain time slot. 585

Hence, there is still a chance of buffer overflow. Fortunately, 586

since we have ao > m̂o, buffer overflows remain a rare event. 587

According to the large deviation-based probability estimation 588

model of (23), for a sufficiently large N , the BOP may be 589

approximated as 590

P̂n+N
o (m) = exp [−NL(ao)] . (30)

An online measurement-based estimation method was pre- 591

sented in the previous section to calculate the BOP. Owing 592

to the exponential decay of the estimated BOP probability 593

with N , we can set N to a moderate value for the sake of 594

acquiring an accurate BOP estimation instead of requiring a 595

large N . 596

Our proposed RC algorithm aims to adjust the encoding 597

mode to satisfy the BOP QoS requirement, i.e., pqos. If we have 598

P̂n+N
o (m) ≥ pqos, this implies that the current encoding mode 599

index is too high to keep the BOP below pqos. Therefore, we 600

should decrease the encoding mode index to reduce the video 601

bit rate, thus reducing the BOP. The future encoding mode 602

index is adjusted as m = Mmax{i−1,1}. 603

By contrast, if we have P̂n+N
o (m) < pqos, the currently 604

affordable bit rate of the channel may be able to support a 605

higher video bit rate. Hence, we should increase the encoding 606

mode index to provide an improved video quality for the sake 607

of fully exploiting the attainable bit rate of the channel. To 608

achieve this, we define a threshold pT (< pqos) for the BOP. 609

If P̂n+N
o (m) < pT is encountered consecutively K > 0 times, 610

we will increase the encoding mode index according to 611

m = Mmin{i+1,L}. (31)

The reason for requiring K consecutive threshold viola- 612

tion occurrences to trigger an encoding mode index adjust- 613

ment is that this prevents frequent adjustments of the encod- 614

ing mode, which would result in perceivable video quality 615

fluctuations. 616

The RC regime is summarized in Algorithm 1. Although the 617

estimated average channel throughput was directly fed back to 618

the BTS to control the source rate in [18], this technique does 619

not characterize the burst-by-burst adaptive channel throughput 620

on a sufficiently fine timescale, which, hence, fails to guarantee 621

a low delay for the video packets. By contrast, Algorithm 1 622

relies on the LDP of [19] to estimate the BOP, when the buffer 623

overflow is a rare event, and applies the BOP constraint to 624

trigger the source RC, thus achieving a low delay for video 625

packets. 626
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Algorithm 1 Online measurement-based adaptive rate control
algorithm for streaming video over VBR channels.

Current encoding mode M = Mi627

if QM
n ≥ Bh then628

i ← max(i− 1, 1)629

else630

Calculate m̂o and âo631

if m̂o ≥ âo then632

i ← max(i− 1, 1)633

else634

Calculate P̂n+N
o (M)635

if P̂n+N
o (M) ≥ pqos then636

i ← max(i− 1, 1)637

else638

if P̂n+N
o (M) < pT consecutively happens K times639

then640

i ← min(i+ 1, L)641

end if642

end if643

end if644

end if645

C. Discussion646

Previously, the proposed solution was discussed in the con-647

text of a single user requesting a single video stream. However,648

it may be also extended to the scenario where multiple users649

having a different link quality desire the same video. A simple650

solution is for the video server to create a dedicated encoder651

instance for each encoding mode, where multiple video streams652

are generated by the encoders with the aid of different encoding653

modes. Then, based on the feedback triggered by the proposed654

method from the BTS, the video server may select an appropri-655

ate video stream for each user associated with a different link656

quality.657

V. PERFORMANCE EVALUATION658

Here, we characterize the performance of our online659

measurement-based adaptive RC (MBARC) algorithm. We first660

describe our simulation setup, including the network model661

and the video sequences employed. Then, the metrics used for662

performance evaluation are described. Finally, our simulation663

results are presented and analyzed. In the simulations, we664

also implemented the heuristic online adaptive RC (HOARC)665

algorithm in [18] and an offline method to provide pertinent666

performance comparisons to cutting-edge benchmarkers. The667

offline method simply relied on all the encoding modes and668

selected the mode having the best performance as the perfor-669

mance benchmark.670

A. Simulation Setup671

We consider an HSPA network [1] relying both on AMC and672

HARQ. We assume a UE (UE in HSPA parlance) belonging673

to category 10. According to the HSPA specifications [2], the674

CQI value ranges from 0 to 30, and the corresponding TB sizes675

TABLE I
PROPERTIES OF THE VIDEO SEQUENCES

are 0, 137, . . . , 25558 bits, respectively. In HSPA, there are 15 676

time-division multiplex slots per 10-ms frame. Three 10/15 = 677

2/3 ms slots form a so-called transmission time interval (TTI) 678

of 2-ms duration, where only one user is allowed to transmit 679

with the aid of multiple spreading codes per TTI. Therefore, 680

the time-varying number of users may result in a time-varying 681

number of TTIs being assigned to each user, which, in turn, 682

leads to a time-varying throughput for each user. Therefore, we 683

simulated a multiuser scenario, where the maximum number 684

of concurrently communicating users was set to U = 8, and 685

the new user arrival process follows a Markov process with an 686

arrival rate of λ = 10−4 per TTI. The service rate was assumed 687

to be υ = 1.5 × 10−5 per TTI. A round robin scheme was 688

applied to schedule the transmissions of the users. Then, our 689

proposed strategy is applied for one of the users to implement 690

its online source RC. Consider an i.i.d. Rayleigh channel for 691

the target user, where the received SNR s is an exponentially 692

distributed random variable described by the probability density 693

function of f(s) = (1/γ)e−(s/γ) having an average of γ. We 694

applied the SNR (in decibels)-to-CQI mapping in [40], i.e., 695

CQI = 
SNR + 4.5�. (32)

According to the specifications, the CQI reporting cycle is 696

defined as 1, 2, 4, 5, 10, 20, 40, and 80 TTIs. In the simulations, 697

we set the CQI reporting cycle to four TTIs. 698

B. Video Sequences Used for Performance Evaluations 699

Three different video sequences are used in our simulations, 700

namely, the “Silence of the Lambs” clip, the “NBC 12 News” 701

clip [17], and the “Shawshank Redemption” clip, scanned at 30 702

frames/s and encoded by the H.264 codec. The two former clips 703

have a Common Intermediate Format (CIF) resolution, whereas 704

the last clip has a D-1 resolution. The duration of the video 705

sequence is 25 min, corresponding to 45 000 video frames, 706

where a GOP is constituted by 16 frames. The properties of 707

these video sequences are listed in Table I. Here, the encoder 708

mode is denoted by (m1,m2,m3), where m1,m2, and m3 709

represent the quantization scales for the I, P, and B frames, re- 710

spectively. The operational modes are listed as follows: M1 = 711

(10, 10, 12), M2 = (16, 16, 18), M3 = (22, 22, 24), M4 = 712

(24, 24, 26), M5 = (28, 28, 30), M6 = (34, 34, 36), M7 = 713
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Fig. 6. Statistics of the video sequences. (a) Mean bit rate. (b) Coefficient of variation of frame size. (c) Mean PSNR.

(38, 38, 40), M8 = (42, 42, 44), and M9 = (48, 48, 50). Fig. 6714

characterizes the bit rate, the frame-size variation coefficient,715

and the peak SNR (PSNR) statistics of the video sequences716

in the different encoding modes, with the frame-size variation717

coefficient being defined in [41] as follows:718

CoV q
X =

1
X̄q

N

√√√√ 1
N − 1

N−1∑
n=0

(
Xq

n − X̄q
N

)2
(33)

where Xq
n denotes the frame size of video frame n encoded719

with the QP q, and X̄q
N is the average frame size of the N video720

frames. In the first two simulations, the former two CIF clips721

were used for basic performance investigations, whereas in the722

rest of the simulations, the D-1 clip was used to characterize the723

achievable performance in the case of higher resolution videos.724

C. Performance Metrics725

In the simulations, each RLC SDU carried the bits of video726

frames. To satisfy the tolerable delay constraint of a specific727

video application, the RLC SDUs are dropped from the buffer728

when their delay exceeded the threshold of l milliseconds. To729

evaluate the quality of a received video sequence, an objective730

video quality evaluation model similar to [43] is adopted, which731

is defined by the rate of dropped video frames (DVFRs) that are732

undecodable at the MS, i.e., by733

DVFR = 1 − Ndec

Ntotal−I +Ntotal−P +Ntotal−B
(34)

where Ndec is the total number of decodable frames, including734

all three types of frames. The decoding dependence values735

between different types of frames are also considered in count-736

ing the decodable frames. A lower DVFR value implies that a737

better quality is perceived by the recipient. Since the proposed738

adaptation method uses different bit rates, when configured739

for adapting the throughput and the quality, we also apply the740

average PSNR as a further performance metric.741

All the results were averaged over 100 independent sim-742

ulation runs. To characterize the performance improvement743

of our MBARC, we also conducted independent simulations744

for each encoder mode, and the best results were selected as745

performance benchmarks.746

D. Simulation Results 747

7481) Performance for Different Delay Thresholds: In the first 749

experiment, the parameters of the proposed online MBARC 750

algorithm were set as follows: length of the sliding window 751

Ns = 80, prediction interval N = 80, buffer length threshold 752

Bh = 16, pqos = 10−5, pT = 10−10, and K = 32. The initial 753

mode index of the encoder is M9, which has the lowest video 754

bit rate. The MBARC was activated every eight video frame 755

intervals. Its performance was investigated for the delay thresh- 756

olds of {60, 100, 140, 180, and 220 ms}, which cover the 757

delay requirements of various video applications. For example, 758

the delay limit of 60 ms is applicable to lip-synchronized 759

real-time interactive video conferencing applications, whereas 760

the delay limit of 100 or 140 ms is applicable to wireless 761

video surveillance, and finally, 180 and 220 ms are for digital 762

television broadcast or video-on-demand services. Fig. 7(a) and 763

(b) shows the DVFR and the average PSNR of Silence of the 764

Lambs and NBC 12 News for different delay thresholds at the 765

average channel SNR of γ = 20 dB. It can be observed in Fig. 7 766

that, as the encoder mode index increases, the DVFR decreases 767

owing to the reduced source rate. For Silence of the Lambs, 768

the DVFR of the operational mode M6 is similar to the DVFR 769

of MBARC, but our MBARC improves the average PSNR by 770

about 3 dB. For NBC 12 News, our MBARC and M7 have 771

a similar DVFR, but MBARC improves the average PSNR by 772

about 1 dB. This implies that the proposed MBARC is capable 773

of adaptively adjusting the encoder mode when the source rate 774

is temporarily higher than the affordable channel rate. 775

2) Performance for Different Channel SNRs: To investi- 776

gate the proposed MBARC’s source rate adaptation capabil- 777

ity for different channel qualities, we conducted experiments 778

at different average channel SNRs, namely, at γ = {12, 16, 779

20, 24, and 28 dB}. The buffer length threshold was set to 780

28, whereas the remaining MBARC parameters were the same 781

as in the first experiment. We set the maximum delay, which 782

triggers dropping of the frames in the buffer to 200 ms. For 783

each average channel SNR considered, we use an offline pro- 784

cedure to select the best encoding mode, which maximizes 785

the average PSNR, while maintaining a DVFR similar to that 786

of MBARC. The simulation results shown for the MBARC, 787

HOARC, and offline mode selection method were plotted in 788

Fig. 8(a) and (b). The results recorded in Fig. 8(b) for dif- 789

ferent average channel SNRs using the offline method were 790

marked with (Mode). Fig. 8(b) demonstrates the average PSNR 791
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Fig. 7. (a) DVFR and Average PSNR of Silence of the Lambs for different delay thresholds with average channel SNR of 20 dB. (b) DVFR and Average PSNR
of NBC 12 News for different delay thresholds with average channel SNR of 20 dB. (a) Silence of the Lambs. (b) NBC 12 News.

Fig. 8. (a) DVFR for different average channel SNRs of Rayleigh channel. (b) PSNR for different average channel SNRs of Rayleigh channel. The note in ()
represents the corresponding encoder mode for the offline method. (a) DVFR. (b) Average PSNR.

improvement of MBARC over the offline method, whereas its792

DVFR remains lower than that of the offline method. This793

demonstrates that MBARC is capable of adaptively accom-794

modating different channel qualities by adjusting the encoding795

mode without any prior knowledge of the channel quality. Al-796

though Fig. 8(b) also shows that the HOARC technique in [18]797

is capable of adapting to time-variant channel conditions and798

approaching the PSNR performance of the proposed MBARC,799

it suffers from a much higher DVFR than that of the MBARC800

technique, as indicated in Fig. 8(a). The basic reason for this801

is elaborated as follows. The linear AR(1) of the HOARC 802

technique may not be appropriate for estimating the average 803

channel throughput since HSPA applies near-instantaneously 804

adaptive burst-by-burst transmissions. Furthermore, the aver- 805

age channel throughput cannot fully characterize the specific 806

near-instantaneously adaptive channel throughput at a certain 807

transmission time instant, which, in turn, increases the delay 808

of a specific packet and results in an increased probability of 809

delay constraint violation. By contrast, the proposed MBARC 810

technique is based on a BOP constraint, which may guarantee a 811
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Fig. 9. Average PSNR for dynamic average channel SNRs for Rayleigh channel. The number in () represents the corresponding DVFR.

Fig. 10. (a) DVFR for different overflow probability thresholds pqos. (b) PSNR for different overflow probability thresholds pqos. (a) Silence of the Lambs.
(b) NBC 12 News.

low delay for the video packets. The application of the LDP [19]812

assists MBARC in achieving an accurate estimation of BOP813

and, thus, improves the DVFR performance.814

3) Performance for Dynamic Channel Quality: The previous815

investigations were conducted in a static environment by fixing816

the average channel SNR. Next, we investigate the performance817

of the MBARC in time-varying scenarios. The initial average818

channel SNR was set to 24 dB. At the instant of the 18 000th819

video frame interval, the average channel SNR was suddenly820

changed to 20 dB. Then, at the instant of the 36 000th frame821

interval, it was further reduced to 16 dB. All the MBARC822

parameters remained the same as in the previous experiment.823

Fig. 9 shows the corresponding simulation results, where each824

bar is marked with “(DVFR)” to characterize the corresponding825

DVFR. It is shown that the DVFR of our MBARC is lower826

than that of M6 for Silence of the Lambs and that it improves827

the PSNR by more than 2 dB in comparison with that of828

M6. For NBC 12 News, although M8 has a similar DVFR829

to that of our MBARC, its average PSNR is 2 dB lower than830

that of the proposed MBARC. This benefit is the result of831

the MBARC’s adaptability, which adjusts the encoder mode832

online for VBR encoding to accommodate diverse dynamically833

fluctuating propagation environments. By contrast, for a fixed834

encoder mode, having a low channel SNR may inflict frame835

dropping events, resulting in low video quality, whereas at high836

SNRs, it fails to promptly decrease the video rate to improve 837

the video quality in a timely manner. Similarly, MBARC is 838

capable of adaptation and achieves an improved performance 839

for the Shawshank Redemption clip having a higher resolution. 840

Observe in Fig. 9 that the HOARC technique [18] approaches 841

the PSNR performance of the proposed MBARC, but it exhibits 842

a significantly higher DVFR than MBARC. This result also 843

illustrates the benefit of the explicit BOP constraint in the 844

problem formulation (4) and (5) and that of applying the LDP 845

for accurately estimating BOP. 846

4) Performance Sensitivity of the Proposed Algorithm: The 847

performance of the proposed method relies on parameters N , 848

Ns, and K, as shown in Algorithm 1. Hence, this section 849

investigates their effect on the performance of the proposed 850

method. In the related experiments, one of these three param- 851

eters was set to different values, whereas the other parameters 852

of our MBARC were the same as those in 2). The average SNR 853

value of our Rayleigh channel model was fixed to 20 dB. The 854

remaining parameters of the channel model were set as in 2). 855

Fig. 10 shows our simulation results of different BOP thresh- 856

olds pqos for the three clips. We may observe in Fig. 10 that 857

a reduced overflow probability threshold provides a reduced 858

DVFR. This is because a reduced probability threshold is 859

capable of activating timely adjustments of the encoder mode 860

to reduce the BOP. On the other hand, we can also observe in 861
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Fig. 11. (a) DVFR for different prediction intervals N . (b) PSNR for different predicting intervals N . (a) DVFR. (b) PSNR.

Fig. 12. (a) DVFR for different lengths of the sliding window Ns. (b) PSNR for different lengths of the sliding window Ns. (a) DVFR. (b) PSNR.

Fig. 13. (a) DVFR for different values of K. (b) PSNR for different values of K. (a) DVFR. (b) PSNR.

Fig. 10 that, as the BOP threshold decreases, the average PSNR862

increases. This is caused by the lower encoding mode index863

used to increase the video quality when the BOP threshold is864

higher. It should be noted that, although the DVFR is related865

to the BOP, their definitions are different. Hence, the value866

of DVFR is not the same as pqos, as shown in Fig. 10(a).867

Fortunately, we may achieve an acceptable DVFR by setting868

pqos to an appropriate value such as 10−5.869

Fig. 11 plots the simulation results for different prediction870

intervals N for the three clips. Fig. 11(a) shows that the DVFR871

is rapidly reduced upon increasing N , whereas Fig. 11(b) shows872

that the average PSNR is decreased as N is increased. The873

basic reason is elaborated as follow. According to (30), a large 874

value of N leads to a more accurate BOP estimate, which 875

assists the proposed method to trigger appropriate adjustments 876

of the encoding mode and thus to reduce the DVFR. The result 877

shows that N ≥ 80 is appropriate for achieving an acceptable 878

performance for the proposed method. 879

Fig. 12 shows the performance sensitivity of the proposed 880

method to the sliding-window duration. It is shown in Fig. 12(a) 881

that a larger value of Ns may result in a higher DVFR. This 882

may be caused by the reduced sensitivity of the buffer variance 883

when using a larger Ns for estimating m̂o according to (26). 884

Fig. 12(b) shows that Ns has only a modest effect on the PSNR. 885



14 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY

Fig. 13 shows the sensitivity of the performance to parameter886

K. The proposed method triggers a video bit rate increase via887

adjusting the encoding mode only when the threshold violation888

of P̂n+N
o < pT is encountered consecutively K times. There-889

fore, having a larger K implies a more conservative adjustment890

policy, which leads to a lower DVFR and to a marginally891

reduced PSNR, which are shown in Fig. 13(a) and (b).892

VI. CONCLUSION893

An online adaptive source RC regime has been proposed for894

streaming videos in HSPA and LTE-like VBR downlink sce-895

narios. Large deviation theory was invoked to derive the online896

measurement-based BOP model, applied at the RLC layer in the897

BS. The advantage of the resultant algorithm is that it exploits898

the online observations of buffer length and its variation for899

RC, requiring no prior knowledge of the channel variations900

and video characteristics. Our simulation results recorded in901

multiuser scenarios demonstrated that the proposed algorithm902

is capable of accommodating the channel quality variations,903

which may be beneficial in HSPA and LTE-style environments.904
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Abstract—Online source rate control (RC) is designed for video5
streaming over high-speed packet access (HSPA) and Long-Term6
Evolution (LTE)-style variable bit rate (VBR) downlink channels.7
The problem is formulated as the adaptive adjustment of the8
operational mode of a video encoder based on the buffer overflow9
probability (BOP) feedback received from the radio link control10
(RLC) layer at the base station (BS). This allows us to maximize11
the attainable visual quality while keeping the transmitter BOP12
below a desired threshold and maintaining a video delay as low as13
possible. We derive an online measurement-based BOP estimation14
model for the RLC buffer, which is capable of operating with15
no prior knowledge of the channel variations and of the video16
characteristics. Based on this estimation model, an online adaptive17
RC algorithm is proposed to seamlessly adapt the bit stream to18
the characteristics of VBR channels. Our experiments are con-19
ducted in multiuser scenarios using VBR video encoding combined20
with adaptive modulation and coding (AMC) in the transceiver.21
The results demonstrate that the proposed source RC regime22
supports near-instantaneous yet smooth bit stream adaptability,23
which makes it useful for HSPA and LTE-style systems for the24
sake of accommodating unknown video traffic characteristics and25
dynamically fluctuating propagation conditions.26

Index Terms—Large deviation principle (LDP), rate control27
(RC), variable bit rate (VBR) channel.

28

I. INTRODUCTION29

30 ADVANCED transceiver techniques, including adaptive31

modulation and coding (AMC) and hybrid automatic re-32

peat request (HARQ), are widely applied in wireless systems to33

combat the effects of both fading and interference [1], [2]. For34

instance, both the third-generation (3G) and high-speed packet35
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access (HSPA) apply AMC and HARQ in the physical layer 36

relying on the channel quality indicator’s (CQI) feedback from 37

the user equipment (UE) to achieve prompt link adaptation. The 38

Long-Term Evolution (LTE) Advanced and WiMax standards 39

also provide similar link adaptation based on AMC and short 40

time-slot duration periods. Naturally, agile link adaptation may 41

result in a time-varying effective throughput of the channel. 42

Therefore, supporting near-instantaneous bit rate adaptivity 43

is one of the most important features of video streaming 44

applications. 45

Rate control (RC) aims to control the video bit rate to match 46

the channel’s achievable bit rate, given the prevalent channel 47

quality to keep the video quality as high as possible [3]. Most 48

existing studies of RC focus on allocating a bit rate budget to 49

each group of pictures (GOP), frames, or macroblocks at the 50

encoder. For instance, an efficient RC scheme was designed 51

for MPEG-4 based on a quadratic rate–distortion (R–D) model 52

invoked to maintain the target bit rate in [4]. In [5], the quadratic 53

R–D model was also adopted to derive an adaptive RC for 54

H.264 to meet the target bit rate. In [6], RC was designed 55

for scalable H.264/Advanced Video Coding (AVC) encoding. 56

H.264 reference software JM [7] has implemented the JVT- 57

G012 [8] RC algorithm, which relies on a combination of the 58

available channel bandwidth, the frame rate, the target buffer 59

level, and the actual buffer fullness for determining the number 60

of bits allocated for the current frame. A range of AMC-based 61

schemes were conceived in [9] where no extra buffering was 62

used by the RC. The design philosophy was to instruct the 63

video encoder to produce the exact number of bits for each 64

video frame, which was affordable for the near-instantaneous 65

HSPA-style AMC transceiver mode that was periodically sig- 66

naled back from the receiver to the transmitter. However, the 67

aforementioned RC schemes rely on the knowledge of the target 68

bit rate, which again requires the feedback of the expected bit 69

rate based on the estimated channel quality. Unfortunately, the 70

channel’s bit rate fluctuations are not known a priori at the 71

transmitter and the video encoder. Therefore, these RC schemes 72

may impose substantial video quality fluctuations. 73

Recently, a control-theoretic approach-based RC regime has 74

been proposed in [10] by jointly considering the encoder’s RC 75

and network congestion control. More specifically, an empirical 76

R–D source model, a channel-induced distortion model, and 77

their linearized models were applied to formulate a mathe- 78

matically tractable system model. However, it is a challenge 79

to formulate accurate models when streaming videos over 80
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time-varying channels. Typically, intelligent packet scheduling81

is used at the base station (BS) by most of the existing solutions82

to achieve channel-quality-dependent adaptive video streaming83

over wireless networks. Cross-layer-adaptive scalable video84

streaming has been proposed by informing the media access85

control (MAC) layer of the amount of payload and the index of86

the modulation-and-encoding scheme to improve the attainable87

video quality [11]. An adaptive scalable video streaming strat-88

egy relaying on controlling the MAC buffer was presented in89

[12]. Both the packet deadlines and the channel characteristics90

were considered in video packet scheduling at the BS [13].91

The cross-layer design-aided transmission of scalable video92

streams [14] involves packet scheduling combined with a video93

frame dropping strategy at the BS. Most of these papers discuss94

the channel-dependent adaptation of the MAC layer of the BS95

where no signaling is fed back to instruct the video source to96

adjust its bit rate. Dropping packets at the BS is a waste of97

resources both in the backhaul router and the core network. It98

was shown in [15] that packet dropping at the video source is99

more efficient than MAC layer dropping at the BS when we100

have to reduce the congestion in both the wired core network101

and in the wireless medium to the UE. By translating the102

CQI values to the number of enhancement layers scheduled103

for transmission, the video server facilitates adaptive video104

streaming [16]. However, the link throughput at the BS is105

determined not only by the CQI value but also by the MAC106

layer scheduling strategy of a multiuser scenario. Moreover,107

the bit rate of video clips having different amounts of motion108

activity may be very different even if they have the same num-109

ber of enhancement layers [17]. Therefore, such CQI-mapping-110

based video source adaptation lacks robustness against the111

time-variant number of users and against the heterogeneous112

video bit rates. In [18], although a Markov decision process is113

invoked for dynamic video scheduling, its offline computation114

requires a priori knowledge of the channel dynamics. Hence,115

a heuristic online scheduling algorithm is derived based on the116

average channel throughput estimated with the aid of a first-117

order autoregressive model [AR(1)]. In the HSPA/LTE system,118

using a CQI-based link adaptation mechanism may lead to119

a burst-by-burst transmission block adaptation, and the linear120

estimator based AR(1) may not be appropriate for estimating121

the average channel throughput.122

Against this background, we proposed a novel online source123

RC framework, where a buffer overflow probability (BOP)124

estimator is employed at the radio link control (RLC) layer125

of the BS, and the estimated BOP is signaled back to the126

video source to control its bit rate. The motivation of using a127

BOP-based feedback is that the BOP metric characterizes the128

degree of matching between the video bit rate of the source129

and the link throughput. Since the BOP is estimated before130

a buffer overflow is encountered, its feedback may assist the131

video source in promptly controlling the bit rate. In contrast to132

the methods found in the open literature [9]–[14], [16], [18], the133

main contributions of this paper are threefold.134

• To enable the video encoder to generate a video stream135

that may be reliably delivered over variable bit rate136

(VBR) downlink channels, we formulate a constrained137

optimization problem subject to a constraint imposed on 138

the transmission BOP to guarantee a low delay. 139

• A BOP estimation model based on large deviation prin- 140

ciples (LDPs) [19] is proposed by monitoring the buffer 141

fullness and its variation at the BS’s RLC layer. The 142

reason for applying the LDPs is because it accurately 143

characterizes the probability of rare events, which assists 144

us in achieving fine adjustment of the video source rate. 145

• We conceive an iterative RC algorithm to approach the 146

most beneficial encoder rate, thus circumventing the dif- 147

ficulty of directly solving the related constrained opti- 148

mization problem. The proposed RC algorithm allows the 149

encoder to adjust its bit rate to that of the VBR channel 150

without any a priori knowledge of both the channel 151

quality variations and of the characteristics of the video 152

source. 153

The remainder of this paper is organized as follows. 154

Section II describes the system model, including the formu- 155

lation of the source RC problem of video streaming over a 156

VBR downlink channel. In Section III, we apply the LDP in 157

[19] to derive a BOP estimation model, whereas an online 158

measurement-based RC is proposed in Section IV. Our numeri- 159

cal simulation results are presented in Section V to characterize 160

the attainable performance of the proposed algorithm. Finally, 161

our conclusions are offered in Section VI. 162

II. SYSTEM MODEL 163

164A. System Overview 165

Fig. 1 shows a typical video streaming scenario over a 166

wireless network. The main associated protocol stacks are also 167

shown in the lower part of the figure. Naturally, a video stream- 168

ing service involves not only maintaining the wireless connec- 169

tion between the mobile station (MS) and the base transceiver 170

station (BTS) but supporting the public network connection 171

(Internet) as well. The wired network provides high capacity 172

and stability; hence, video streaming over the wired network 173

has become a well-established service and has many successful 174

applications, including video conferencing, surveillance sys- 175

tems, and Internet Protocol (IP) television. By contrast, video 176

streaming over wireless networks faces unique challenges due 177

to the time-varying nature of the wireless channel and owing to 178

the scarcity of the system resources, which makes it difficult to 179

guarantee any specific video quality of service (QoS). Hence, 180

the wireless transmission in the video streaming service is likely 181

to be a bottleneck, which is the focus of this paper. 182

Fig. 2 shows the basic video processing in the video network 183

abstract layer (NAL) units of the 3GPP framework. A NAL 184

unit may be encapsulated in a Real-Time Transport Protocol 185

(RTP) data unit, and then, it may be transmitted over User 186

Datagram Protocol (UDP)/IP. HTTP-based streaming protocols 187

such as Apple HTTP Live Streaming (HLS) [20] are alternative 188

media streaming communication protocols, which are capable 189

of traversing any firewall or proxy server that lets through 190

standard HTTP traffic, unlike UDP-based protocols such as 191

RTP. 3GPP standardized an adaptive HTTP streaming protocol 192
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Fig. 1. Typical scenario for wireless video streaming in 3G Partnership Project (3GPP) framework.

Fig. 2. Video data packetization at different layers in the 3GPP framework.

in Rel-9 [21]. Subsequently, we concentrate on the terminology193

used in HSPA NB/eNB, as shown in Fig. 2. The IP/UDP/RTP194

or IP/Transmission Control Protocol (TCP)/HTTP packet gen-195

erated is encapsulated into a single Packet Data Convergence196

Protocol (PDCP) packet that becomes an RLC service data197

unit (SDU). Since a typical RLC SDU has a larger size than198

an RLC protocol data unit (PDU), it has to be segmented into199

smaller units. The length of the RLC PDU depends both on the200

selected bearer and on the AMC mode used. The RLC PDUs are201

forwarded to the MAC layer and are then encapsulated as MAC202

PDUs. The main functions of the PDCP layer are robust header203

compression and decompression, ciphering and deciphering,204

the transfer of data, and PDCP sequence number maintenance.205

The RLC layer in wireless systems is capable of operating206

in both an unacknowledged mode (UM) and acknowledged207

mode (AM), and both are capable of providing RLC PDU208

loss detection. However, while the UM is unidirectional and209

data delivery is not guaranteed, in the AM, automatic repeat210

request (ARQ) is applied for reliable data transmission. The211

main functions of the RLC layer include the transfer of upper212

layer PDUs; error correction relying on ARQ (only for AM); 213

and the concatenation, segmentation, and reassembly of RLC 214

SDUs, whereas the main functions of the MAC layer are 215

resource scheduling and multiplexing/demultiplexing of MAC 216

SDUs belonging to one or several logical channels into/from the 217

relevant transport blocks (TBs). By comparing the functions of 218

the RLC layer with those of the PDCP and MAC, the RLC is an 219

appropriate layer for us to construct a model for characterizing 220

the degree of matching between the network’s throughput and 221

the video source bit rate. Generally, the detection of a lost 222

RLC PDU results in the loss of an entire PDCP packet; hence, 223

the encapsulated IP and the NAL unit are lost. From the 224

perspective of reacting to both the dynamics of the statistical 225

fluctuation of the teletraffic and the variable channel conditions, 226

agile bit rate adaptivity is one of the most important features 227

for seamless video streaming over wireless systems. There 228

are several ways of achieving bit rate adaptivity. For online 229

encoding applications, the bit rate adaptivity can be achieved 230

by controlling encoding parameters. For instance, H.264/AVC 231

supports these features mainly by dynamically varying the 232

quantizers but also by controlling temporal resolution. Scalable 233

Video Coding (SVC) is another technique of implementing 234

the bit rate adaptivity. It encodes the raw video clip into a 235

base layer and a number of enhancement layers with different 236

priorities. Naturally, the base layer has the highest priority since 237

it contains the video bits with the highest importance, which can 238

provide a minimum video quality. The enhancement layers with 239

lower priorities may be progressively encoded to further refine 240

the quality of the base-layer stream. This layered approach 241

of the SVC codec allows an encoded stream to be flexibly 242

prepared for meeting the bit rate constraint. In [22], the base- 243

layer rate for a given video sequence is optimized to achieve the 244

highest possible average perceived quality for heterogeneous 245

clients, whereas in [23], a distribution regime was conceived 246

for scalable videos, which guaranteed fairness for all end users. 247

In Dynamic Adaptive Streaming over HTTP (DASH), the video 248

content is partitioned into a sequence of small HTTP-based file 249
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Fig. 3. Adaptive source RC framework for online video encoding.

segments, which are made available at a variety of different bit250

rates. More explicitly, segments encoded at different bit rates251

covering appropriately aligned short intervals of playback time252

are made available. Naturally, DASH also provides a flexible253

way of adjusting the video source bit rate. 3GPP has defined its254

Rel-10 version of DASH, termed as 3GP-DASH [24], which255

is a profile compatible with MPEG-DASH [25]. More work256

on HTTP-based adaptive video streaming can be found in257

[26]–[28].258

Since the RLC buffer fullness indicates the degree of match-259

ing between the source video bit rate and the channel bit rate,260

we subsequently design a buffer fullness estimation scheme261

where the buffer fullness estimated at the RLC layer is fed262

back to the video source to adapt its bit rate. Without loss263

of generality, we consider a specific scenario of the online264

encoding RC relying on controlling encoding parameters, i.e.,265

dynamically changing the quantization parameters (QPs). It266

is straightforward to extend the proposed method to both267

SVC streaming and to HTTP-DASH scenarios, as discussed in268

Section II-C.269

B. Problem Formulation270

The block diagram of a wireless video streaming system271

equipped with an encoder parameter optimizer conceived to272

control the source rate is shown in Fig. 3, which relies on a273

camera, a video encoder, and a BTS. The camera samples the274

video scene at certain frame scanning and forwards the frames275

to the encoder, which forwards the compressed video to the276

transmitter’s buffer at the RLC layer for transmission. Here, we277

assume that the channel between the video source and the BTS278

is wired and reliable. The source RC problem is eliminating the279

congestion in the BTS while satisfying the delay constraints.280

Our basic philosophy is to feed back the mismatch between the281

current source rate and the channel’s affordable throughput to282

the encoder parameter optimizer to adapt the source rate. If a283

mismatch does occur, the encoder parameter optimizer sends284

a command to the video encoder to adjust the video source285

rate. To quantitatively characterize this mismatch, we define286

BOP as the probability that the current wireless channel quality287

provides an insufficient throughput for the current video bit rate.288

A sufficiently low BOP indicates that we may increase the video289

bit rate for transmission over the wireless channel to achieve a290

higher video quality.291

Fig. 4. Relation between BOP and received video quality by using three
different video clips, namely, the Silence of the Lambs, NBC 12 News, and
Star Wars IV. AQ1

Let M Δ
= {M1, . . . ,ML} be the operational mode set of the 292

video encoder. The video bit rate corresponding to the opera- 293

tional mode Mi(i = 1, . . . , L) is denoted by ri. Let us assume 294

that r1 < r2 < · · · < rL, which implies that a higher opera- 295

tional mode results in a higher video bit rate and hence achieves 296

a better video quality. The operational mode is controlled by the 297

encoder parameters. For instance, we can control the encoding 298

mode by appropriately setting the I-P-B quantization mode or 299

the target video bit rate parameter of the JM encoder. Here, 300

we consider adapting the source rate to the channel quality by 301

dynamically adjusting the operational mode (i.e., the encoding 302

parameters) of the video encoder. 303

We used transmission slots of equal duration, which are nor- 304

malized to unity. The RLC SDUs, which contain the video data 305

generated by the video encoder, arrive at the RLC buffer, and 306

they are then queued until they are transmitted. Since the data 307

are processed at packet level instead of bit granularity, we define 308

the length of the RLC buffer as the number of RLC SDUs. Let 309

An ∈ A Δ
= {0, . . . , A} denote the number of RLC SDU arrivals 310

in slot n, where A is the maximum number of RLC SDU ar- 311

rivals in a single slot, whereas Dn ∈ D Δ
= {0, . . . , D} is defined 312

as the number of RLC SDUs transmitted in slot n, where D is 313

the maximum number of RLS SDUs transmitted in a single slot. 314

It should be noted that an agile and sophisticated link adaptation 315

mechanism based on AMC and HARQ is applied to maintain 316

the required target bit error rate in most state-of-the-art wireless 317

communication systems such as high-speed downlink packet 318

access, 3G LTE, and WiMAX. Both AMC and HARQ rely on 319

the CQI feedback received from the mobile terminals, which 320

results in a burst-by-burst adaptive channel throughput. Hence, 321

the downlink packet departure process Dn is assumed to be 322

an independent identically distributed (i.i.d.) sequence. Let Qn 323

denote the buffer fullness expressed in terms of the number of 324

packets at the end of slot n. The dynamics of the buffer fullness 325

may be described as 326

Qn = max
{
Q(n−1) −Dn, 0

}
+An. (1)

According to Little’s theorem [29], we have 327

Q̄ = λD̄ (2)
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Fig. 5. Adaptive source RC framework for the DASH streaming application.

where Q̄ is the average buffer fullness, D̄ is the average delay,328

and λ is the packet arrival rate. This implies that, if λ is given,329

having a higher buffer fullness value implies a higher delay.330

Hence, we treat the delay as being synonymous with buffer331

fullness. Our objective is to select the best encoding mode for332

controlling the buffer fullness to satisfy the delay constraint333

of the specific video application. Let us formally define the334

BOP as335

po = P (Q > Bh) (3)

where Q is the buffer fullness and Bh is the buffer threshold.336

Higher BOP implies higher buffer fullness in the near future,337

in turn inducing a higher delay. To guarantee lip-synchronized338

interactive low-delay video transmission, the BOP should be339

kept low. Hence, the problem of RC may be reinterpreted as the340

problem of selecting the best encoding mode subject to a given341

BOP, which can be formulated as342

max
m∈M

m (4)

s.t. P (Qm > Bh) < pqos (5)

whereQm denotes the buffer fullness corresponding to the video343

encoding mode m, and pqos is the maximum tolerable BOP.344

It should be noted that the queue length P (Q > x) in the345

scenario of an infinite buffer system is called an overflow346

probability or a tail probability [30], which has been used347

as a performance metric for an infinite buffer-aided system348

[31]–[33]. However, practical systems have a limited buffer349

capacity. When a video frame arrives at a full buffer, it gets350

dropped. Hence, the packet loss probability (PLP) PL(Bh)351

is invoked to characterize the performance of a finite-buffer-352

based system having a capacity Bh of video frames. For video353

streaming services, the PLP is an important QoS measure, but354

it is difficult to directly estimate the PLP of a general finite-355

buffer-based system. Fortunately, a theoretical justification was356

provided to approximate the PLP of a finite-buffer-based sys-357

tem with the aid of estimating the BOP of its infinite buffer358

counterpart [33]. Hence, we treat the BOP as being identical to359

the PLP, which implies that the video source rate optimization360

problem of a finite-buffer-based system having a capacity Bh361

of frames can be mapped to the mathematical model of (4) and 362

(5). We have confirmed, by our simulation studies, the plausible 363

fact that a high BOP may severely degrade the QoS, which is 364

quantitatively characterized in Fig. 4 and motivates us to use 365

the BOP for the feedback control. 366

C. Extensions for SVC and DASH Scenarios 367

The scheme shown in Fig. 3 is a point-to-point representation 368

of our proposed framework, which may be also used for stream- 369

ing to multiple users, as shown in our forthcoming SVC/HTTP- 370

DASH streaming applications. 371

The framework detailed in Section II-B may be readily 372

extended to SVC and HTTP-DASH scenarios. For an SVC 373

scenario, a scalable video stream consists of a base layer 374

l1 and (L− 1) enhancement layers, i.e., {l2, l3, . . . , lL}. The 375

operational mode Mi(i = 1, . . . , L) is defined as the scenario 376

when the first i layers are selected for transmission. Thus, the 377

source RC via adaptive enhancement layer selection can be also 378

formulated as the problem [see (4) and (5)]. The correspond- 379

ing video source in Fig. 3 may be also replaced by a video 380

streaming server, which maintains the sessions corresponding 381

to the multiple video users and receives the BOP feedback of 382

a specific session for adjusting the number of the transmitted 383

enhancement layers. 384

It should be noted that HTTP-DASH applied the pull-based 385

streaming paradigm rather than the traditional push-based 386

streaming paradigm relying on protocols such as the Real-Time 387

Streaming Protocol. The client plays the central role of driving 388

the video adaptation. To comply with the basic rule of DASH, 389

the framework for the DASH streaming applications shown 390

in Fig. 5 is based on the BOP feedforward to the client. The 391

client may then use the received BOP to select the future video 392

segments to be fetched. The DASH streaming server maintains 393

multiple sessions for the sake of supporting video streaming to 394

multiple users. In a DASH scenario, the operational mode set 395

M is defined as the adaptation set, where the operational mode 396

Mi(i = 1, . . . , L) denotes streaming the chunks corresponding 397

to the ith quality level. Then, the source RC via HTTP-DASH 398

can be similarly described as in (4) and (5) since a higher video 399

quality implies a higher bit rate. 400
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III. LARGE DEVIATION-BASED OVERFLOW401

PROBABILITY ESTIMATION402

Naturally, the BOP estimation is a key step to successfully403

solve the problem [see (4) and (5)]. To provide a high quality404

of experience for a video streaming service, an occurrence of405

buffer overflow is expected to be a rare event. The theory of406

large deviation provides a useful way of accurately characteriz-407

ing the probability of rare events. Therefore, we present a large408

deviation-based BOP estimation model here. Although our409

practical buffer is of finite size, the BOP of the corresponding410

infinite-buffer-based system can be invoked to estimate the411

PLP, as shown in [31]–[33]. Hence, we subsequently aim to412

estimate the BOP of the corresponding infinite-buffer-based413

system. To derive an analytical model, the BOP is estimated414

based on the M/M/1 queueing model, which has been widely415

applied in wireless networks [34]–[37]. The buffer at the RLC416

is modeled as the M/M/1 queue, where λ RLC SDUs/slot and417

μ RLC SDUs/slot denote the Poissonian arrival rate and the418

departure rate (or service rate), respectively. Let us now defineAQ2 419

the large deviation theory in [19] for estimating the probability420

of P (Qn+N > Bh|Qn), where Qn is the buffer length during421

the current time slot n. During the kth slot, the evolution of422

buffer length can be represented by423

Ik = Ak −min
(
Q(k−1), Dk

)
. (6)

Then, we have Qn+N = Qn +Σn+N
k=n+1Ik. Furthermore,424

P (Qn+N > Bh|Qn) can be rewritten as425

P (Qn+N > Bh|Qn) =P
(
Qn +Σn+N

k=n+1Ik > Bh

)
=P

(
1
N

Σn+N
k=n+1Ik > a

)
(7)

where we have a = (Bh −Qn)/N . Next, we apply the LDP to426

the sequence In+1, In+2, . . . to derive P ((1/n)Σn
k=1Ik > a).427

The LDP can be briefly described as follows [38].428

Definition: A sequence X1, X2, . . . obeys the LDP associ-429

ated with rate function I(·) if the following conditions apply.430

1) For any closed set F , we have431

lim sup
N→∞

1
N

logP

(
1
N

N∑
i=1

Xi ∈ F

)
≤ − inf

a∈F
I(a).

(8)

2) For any open set G, we have432

lim inf
N→∞

1
N

logP

(
1
N

N∑
i=1

Xi ∈ G

)
≥ − inf

a∈G
I(a). (9)

Obviously, Ik ∈ R (k ∈ [n+ 1, n+N ]) represents i.i.d.433

random variables with a mean of E[Ik] = λ− μ and moment-434

generating function (MGF) of M(θ) = E[eθIk ] that is finite435

in a neighborhood of 0. According to Cramér’s theorem [38],436

In+1, In+2, . . . obeys the LDP associated with the rate function437

I(a) = supθ>0(θa− logM(θ)), which implies that, for any 438

a > λ− μ, we have 439

lim
N→∞

1
N

logP

(
1
N

n+N∑
i=n+1

Ii > a

)
= −I(a). (10)

It should be noted that (10) is logarithmically asymptotic. 440

Hence, when N is large, the BOP can be approximated as 441

P

(
1
N

n+N∑
i=n+1

Ii > a

)
≈ exp [−NI(a)] . (11)

Since Ak obeys Poisson’s distribution, we have 442

E[eθAk ] =

∞∑
η=0

eθη
λη

η!
e−λ = exp(λeθ − λ). (12)

Similarly, we may arrive at E[e−θDk ] = exp(μe−θ − μ). Then, 443

we may derive the MGF M(θ) as follows: 444

M(θ) =E[eθIk ]

=E[eθAk ]E[e−θDk ]

= exp(λeθ + μe−θ − λ− μ). (13)

Hence, the corresponding rate function I(a) can be rewritten as 445

I(a) = sup
θ>0

(θa− λeθ − μe−θ + λ+ μ)

= (θa− λeθ − μe−θ + λ+ μ)|
θ=log

a+
√

a2+4λμ
2λ

= a log
a+

√
a2 + 4λμ
2λ

−
√

a2 + 4λμ+ λ+ μ. (14)

If λ and μ are given for any encoding mode m ∈ M, the BOP 446

P (Qn+N > Bh|Qn) can be estimated by using (11) and (14). 447

The problem [see (4) and (5)] can be then solved by calculating 448

the BOPs corresponding to all encoding modes in M. However, 449

in practical situations, both λ and μ depend on the network’s 450

condition and on the source encoding mode, and they are not 451

based on prior knowledge for each encoding mode. 452

An attractive technique is applying an iterative policy to 453

solve the problem [see (4) and (5)]. Specifically, at the current 454

mode update period, we can calculate the BOP corresponding 455

to the current encoding mode by the online estimation of the 456

arrival rate λ and the departure rate μ. Although λ and μ can 457

be estimated by counting the number of RLC SDU arrivals 458

and departures over a time period of T , they may change 459

over time due to time-varying network conditions and dynamic 460

encoding mode switching. The dynamic nature of λ and μ may 461

be modeled using an autoregressive integrated moving average 462

(ARIMA) process [39] as follows: 463(
1 −

p∑
i=1

aiD
i

)
(1 −D)d1λ(t) =

(
1 +

q∑
i=1

biD
i

)
ε(t)

(
1 −

p∑
i=1

ciD
i

)
(1 −D)d2μ(t) =

(
1 +

q∑
i=1

diD
i

)
μ(t)
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where D is the unit time-delay operator, and ε(t) is the estima-464

tion error. Therefore, the task of estimating λ and μ becomes465

the task of estimating parameters p, q, d1, d2, ai, bi, ci, and di466

for the ARIMA model [39]. Once λ and μ have been estimated,467

the corresponding BOP can be directly calculated by using (11)468

and (14). If the BOP estimate fails to satisfy the constraint (5),469

the source encoding rate should be decreased, thus reducing the470

BOP. Otherwise, if the BOP is much lower than pqos, the video471

source bit rate may be increased, thus improving the video472

quality. Applying this iterative encoding mode update, we can473

iteratively solve the problem [see (4) and (5)] to find a new474

optimal encoding mode.475

It should be noted that the aforementioned method relies476

on the classic M/M/1 queuing model, albeit the Poissonian477

assumption may be not the most realistic packet arrival and478

departure model. Moreover, our model of the BOP requires479

estimating both λ and μ. In the next section, we propose an480

online measurement-based RC, which no longer relies on the481

M/M/1 queuing model and on the estimation of the RLC SDU482

arrival rate λ and the departure rate μ.483

IV. ONLINE ENCODING MODE SWITCHING-BASED484

RATE CONTROL FOR VIDEO STREAMING485

Let the index of the current time slot be n and the current486

buffer length be Qm
n , whereas m = Mi denotes the current487

video encoding mode. We estimate the BOP at the (n+N)th488

(N > 0) slot under the assumption of maintaining the current489

encoding mode, where N is referred to as the prediction in-490

terval. Let Pn+N
o (m) denote the overflow probability at slot491

(n+N), which is defined as492

Pn+N
o (m) = P

(
Qm

n+N > Bh

)
. (15)

Subsequently, we derive a BOP estimation model based on the493

aforementioned LDP [19], and then propose an online adaptive494

source RC for video streaming over VBR channels.495

A. BOP Estimation496

When transmitting Dk RLC SDUs containing video data in497

slot k, the increased buffer length may be expressed as498

Ik = Ak −min
(
Q(k−1), Dk

)
. (16)

Since we have 0 ≤ Ak ≤ A and 0 ≤ Dk ≤ D, the set of values499

for Ik is {−D, . . . , 0, . . . , A}. Let us introduce the variable500

πi = P (Ik = i) to denote the probability of having a buffer501

length increase of Ik = i. For a given wired network condition,502

Ak is determined by the video encoding mode since the en-503

coded video frame size is affected by the encoding mode, and504

Dk is related to the channel bit rate. Their difference Ik shows505

the instantaneous mismatch between the video bit rate and the506

channel bit rate. Due to the time-variant RLC SDU arrivals and507

the fluctuating channel bit rate, the sequence Ii(i = 1, 2, . . .)508

may frequently alternate between negative and positive values.509

The total increase in the buffer length during the interval 510

spanning from slot n to slot (n+N) is given by 511

In+N = ΣN
i=1In+i. (17)

Then, the buffer length Qm
n+N at the end of the slot (n+N) 512

may be expressed as 513

Qm
n+N = Qm

n + In+N . (18)

According to (6), the BOP at slot (n+N) may be rewritten as 514

Pn+N
o (m) = P

(
Qm

n + In+N > Bh

)
. (19)

Let us now define the expected value of the average buffer 515

length increase in each of the future N slots as 516

mo = E

[
ΣN

i=1In+i

N

]
(20)

where E[·] denotes the expectation operator.Furthermore, while 517

keeping the current encoding mode fixed as m = Mi, the 518

tolerable average buffer length increase during each slot is 519

defined as 520

ao =
Bh −Qm

n

N
. (21)

Having mo ≥ ao implies that there would be a high BOP after 521

N time slots. 522

Let us now rewrite (19) as 523

Pn+N
o (m) =P

(
Qm

n + In+N > Bh

)
=P

(
In+N/N > (Bh −Qm

n ) /N
)

=P

(
ΣN

i=1In+i

N
> ao

)
. (22)

The term ΣN
i=1In+i/N in (22) represents the average buffer 524

length change during a slot, which is jointly determined by the 525

video encoded bit rate controlled by the encoding mode and the 526

channel bit rate, whereas ao is the tolerable average increase in 527

the buffer length for each of the N future slots, as determined by 528

the current buffer length. Therefore, the probability Pn+N
o (m) 529

in (22) may be viewed as an estimate of the remaining storage 530

capacity in the buffer, which may be used to smoothen the 531

fluctuation of the channel’s affordable throughput in the future. 532

If the probability Pn+N
o (m) exceeds a predefined threshold 533

value pqos, we can decrease the encoding mode index to reduce 534

the video bit rate, thus decreasing both the BOP and the buffer- 535

induced delay. 536

Since Dk(k = 0, 1, . . .) are i.i.d. variables, Ik(k = 1, 2, . . .) 537

are also i.i.d. random variables, which have a finite MGF of 538

M(θ) = EeθIk in the vicinity of 0. Then, provided that ao > 539

mo is satisfied, according to (11), for large N , we have 540

Pn+N
o (m) ≈ exp [−NL(ao)] (23)
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where541

L(ao) = sup
θ>0

{aoθ − logM(θ)} (24)

logM(θ) = log

{
1∑

i=1−sD

πi exp[iθ]

}
. (25)

To calculate the approximate BOP of (23), the knowledge542

of ao, mo, and πi is required. It is straightforward to calculate543

ao according to (21). However, there is no prior knowledge544

about the histogram of Ik, and hence, we cannot derive an-545

alytical expressions for mo and πi. Therefore, we have to546

rely on their buffered history for estimating the current values547

of these parameters using the classic sliding-window-based548

method.549

The observed buffer length increase/decrease sequence con-550

stitutes the input of {I1, I2, I3, . . .}. The sliding window551

takes into account the Ns most recent Ik values of Wn =552

[In, In−1, . . . , In−Ns+1].553

For parameter mo of (20), we use the sample mean as its554

estimate, i.e., we have555

m̂o =

∑n
i=n−Ns+1 Ii

Ns
. (26)

Let Ni(i ∈ {−D, . . . , 0, . . . , A}) denote the number of556

events when Ik = i appears in the sliding window, which is557

given by558

Ni =

n∑
k=n−Ns+1

1(Ik = i) (27)

where 1(·) is an indicator function. Then, the relative frequency559

of encountering Ik = i may be estimated as560

π̂i(n) =
Ni

Ns
(28)

which can be applied in (25) to estimate the BOP.561

B. Online Source RC Algorithm562

The RC strategy advocated will be discussed in the context of563

three scenarios according to both the current buffer length Qn564

and the average buffer length increase per slot m̂o as follows.565

1) Qm
n ≥ Bh: This implies that the current buffer length is566

above the threshold, which will impose an undesirable delay of567

the video frame. Therefore, we should reduce the video bit rate568

by decreasing the encoding mode index as569

m = Mmax{i−1,1}. (29)

2) Qm
n < Bh and m̂o ≥ ao: In this scenario, although the570

buffer length is under the threshold Bh, its average increase per571

slot m̂o exceeds the tolerable average increase ao of the buffer572

length per slot during the forthcoming N slots. This implies573

that, at the current buffer length increase rate, the buffer length574

will become higher than Bh after N slots. Therefore, in this575

case, the current video bit rate should be decreased to reduce 576

the BOP. Then, we can adjust the encoding mode according 577

to (29). 578

3) Qm
n < Bh and m̂o < ao: In this case, the current buffer 579

length is under the threshold Bh, and the average buffer length 580

increase per slot m̂o is within the range defined by the capacity 581

ao. Nevertheless, this does not imply that no buffer overflow 582

will occur in the forthcoming N slots because m̂o is the 583

average buffer length increase per slot, which cannot directly 584

characterize the buffer length increase in a certain time slot. 585

Hence, there is still a chance of buffer overflow. Fortunately, 586

since we have ao > m̂o, buffer overflows remain a rare event. 587

According to the large deviation-based probability estimation 588

model of (23), for a sufficiently large N , the BOP may be 589

approximated as 590

P̂n+N
o (m) = exp [−NL(ao)] . (30)

An online measurement-based estimation method was pre- 591

sented in the previous section to calculate the BOP. Owing 592

to the exponential decay of the estimated BOP probability 593

with N , we can set N to a moderate value for the sake of 594

acquiring an accurate BOP estimation instead of requiring a 595

large N . 596

Our proposed RC algorithm aims to adjust the encoding 597

mode to satisfy the BOP QoS requirement, i.e., pqos. If we have 598

P̂n+N
o (m) ≥ pqos, this implies that the current encoding mode 599

index is too high to keep the BOP below pqos. Therefore, we 600

should decrease the encoding mode index to reduce the video 601

bit rate, thus reducing the BOP. The future encoding mode 602

index is adjusted as m = Mmax{i−1,1}. 603

By contrast, if we have P̂n+N
o (m) < pqos, the currently 604

affordable bit rate of the channel may be able to support a 605

higher video bit rate. Hence, we should increase the encoding 606

mode index to provide an improved video quality for the sake 607

of fully exploiting the attainable bit rate of the channel. To 608

achieve this, we define a threshold pT (< pqos) for the BOP. 609

If P̂n+N
o (m) < pT is encountered consecutively K > 0 times, 610

we will increase the encoding mode index according to 611

m = Mmin{i+1,L}. (31)

The reason for requiring K consecutive threshold viola- 612

tion occurrences to trigger an encoding mode index adjust- 613

ment is that this prevents frequent adjustments of the encod- 614

ing mode, which would result in perceivable video quality 615

fluctuations. 616

The RC regime is summarized in Algorithm 1. Although the 617

estimated average channel throughput was directly fed back to 618

the BTS to control the source rate in [18], this technique does 619

not characterize the burst-by-burst adaptive channel throughput 620

on a sufficiently fine timescale, which, hence, fails to guarantee 621

a low delay for the video packets. By contrast, Algorithm 1 622

relies on the LDP of [19] to estimate the BOP, when the buffer 623

overflow is a rare event, and applies the BOP constraint to 624

trigger the source RC, thus achieving a low delay for video 625

packets. 626
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Algorithm 1 Online measurement-based adaptive rate control
algorithm for streaming video over VBR channels.

Current encoding mode M = Mi627

if QM
n ≥ Bh then628

i ← max(i− 1, 1)629

else630

Calculate m̂o and âo631

if m̂o ≥ âo then632

i ← max(i− 1, 1)633

else634

Calculate P̂n+N
o (M)635

if P̂n+N
o (M) ≥ pqos then636

i ← max(i− 1, 1)637

else638

if P̂n+N
o (M) < pT consecutively happens K times639

then640

i ← min(i+ 1, L)641

end if642

end if643

end if644

end if645

C. Discussion646

Previously, the proposed solution was discussed in the con-647

text of a single user requesting a single video stream. However,648

it may be also extended to the scenario where multiple users649

having a different link quality desire the same video. A simple650

solution is for the video server to create a dedicated encoder651

instance for each encoding mode, where multiple video streams652

are generated by the encoders with the aid of different encoding653

modes. Then, based on the feedback triggered by the proposed654

method from the BTS, the video server may select an appropri-655

ate video stream for each user associated with a different link656

quality.657

V. PERFORMANCE EVALUATION658

Here, we characterize the performance of our online659

measurement-based adaptive RC (MBARC) algorithm. We first660

describe our simulation setup, including the network model661

and the video sequences employed. Then, the metrics used for662

performance evaluation are described. Finally, our simulation663

results are presented and analyzed. In the simulations, we664

also implemented the heuristic online adaptive RC (HOARC)665

algorithm in [18] and an offline method to provide pertinent666

performance comparisons to cutting-edge benchmarkers. The667

offline method simply relied on all the encoding modes and668

selected the mode having the best performance as the perfor-669

mance benchmark.670

A. Simulation Setup671

We consider an HSPA network [1] relying both on AMC and672

HARQ. We assume a UE (UE in HSPA parlance) belonging673

to category 10. According to the HSPA specifications [2], the674

CQI value ranges from 0 to 30, and the corresponding TB sizes675

TABLE I
PROPERTIES OF THE VIDEO SEQUENCES

are 0, 137, . . . , 25558 bits, respectively. In HSPA, there are 15 676

time-division multiplex slots per 10-ms frame. Three 10/15 = 677

2/3 ms slots form a so-called transmission time interval (TTI) 678

of 2-ms duration, where only one user is allowed to transmit 679

with the aid of multiple spreading codes per TTI. Therefore, 680

the time-varying number of users may result in a time-varying 681

number of TTIs being assigned to each user, which, in turn, 682

leads to a time-varying throughput for each user. Therefore, we 683

simulated a multiuser scenario, where the maximum number 684

of concurrently communicating users was set to U = 8, and 685

the new user arrival process follows a Markov process with an 686

arrival rate of λ = 10−4 per TTI. The service rate was assumed 687

to be υ = 1.5 × 10−5 per TTI. A round robin scheme was 688

applied to schedule the transmissions of the users. Then, our 689

proposed strategy is applied for one of the users to implement 690

its online source RC. Consider an i.i.d. Rayleigh channel for 691

the target user, where the received SNR s is an exponentially 692

distributed random variable described by the probability density 693

function of f(s) = (1/γ)e−(s/γ) having an average of γ. We 694

applied the SNR (in decibels)-to-CQI mapping in [40], i.e., 695

CQI = 
SNR + 4.5�. (32)

According to the specifications, the CQI reporting cycle is 696

defined as 1, 2, 4, 5, 10, 20, 40, and 80 TTIs. In the simulations, 697

we set the CQI reporting cycle to four TTIs. 698

B. Video Sequences Used for Performance Evaluations 699

Three different video sequences are used in our simulations, 700

namely, the “Silence of the Lambs” clip, the “NBC 12 News” 701

clip [17], and the “Shawshank Redemption” clip, scanned at 30 702

frames/s and encoded by the H.264 codec. The two former clips 703

have a Common Intermediate Format (CIF) resolution, whereas 704

the last clip has a D-1 resolution. The duration of the video 705

sequence is 25 min, corresponding to 45 000 video frames, 706

where a GOP is constituted by 16 frames. The properties of 707

these video sequences are listed in Table I. Here, the encoder 708

mode is denoted by (m1,m2,m3), where m1,m2, and m3 709

represent the quantization scales for the I, P, and B frames, re- 710

spectively. The operational modes are listed as follows: M1 = 711

(10, 10, 12), M2 = (16, 16, 18), M3 = (22, 22, 24), M4 = 712

(24, 24, 26), M5 = (28, 28, 30), M6 = (34, 34, 36), M7 = 713
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Fig. 6. Statistics of the video sequences. (a) Mean bit rate. (b) Coefficient of variation of frame size. (c) Mean PSNR.

(38, 38, 40), M8 = (42, 42, 44), and M9 = (48, 48, 50). Fig. 6714

characterizes the bit rate, the frame-size variation coefficient,715

and the peak SNR (PSNR) statistics of the video sequences716

in the different encoding modes, with the frame-size variation717

coefficient being defined in [41] as follows:718

CoV q
X =

1
X̄q

N

√√√√ 1
N − 1

N−1∑
n=0

(
Xq

n − X̄q
N

)2
(33)

where Xq
n denotes the frame size of video frame n encoded719

with the QP q, and X̄q
N is the average frame size of the N video720

frames. In the first two simulations, the former two CIF clips721

were used for basic performance investigations, whereas in the722

rest of the simulations, the D-1 clip was used to characterize the723

achievable performance in the case of higher resolution videos.724

C. Performance Metrics725

In the simulations, each RLC SDU carried the bits of video726

frames. To satisfy the tolerable delay constraint of a specific727

video application, the RLC SDUs are dropped from the buffer728

when their delay exceeded the threshold of l milliseconds. To729

evaluate the quality of a received video sequence, an objective730

video quality evaluation model similar to [43] is adopted, which731

is defined by the rate of dropped video frames (DVFRs) that are732

undecodable at the MS, i.e., by733

DVFR = 1 − Ndec

Ntotal−I +Ntotal−P +Ntotal−B
(34)

where Ndec is the total number of decodable frames, including734

all three types of frames. The decoding dependence values735

between different types of frames are also considered in count-736

ing the decodable frames. A lower DVFR value implies that a737

better quality is perceived by the recipient. Since the proposed738

adaptation method uses different bit rates, when configured739

for adapting the throughput and the quality, we also apply the740

average PSNR as a further performance metric.741

All the results were averaged over 100 independent sim-742

ulation runs. To characterize the performance improvement743

of our MBARC, we also conducted independent simulations744

for each encoder mode, and the best results were selected as745

performance benchmarks.746

D. Simulation Results 747

7481) Performance for Different Delay Thresholds: In the first 749

experiment, the parameters of the proposed online MBARC 750

algorithm were set as follows: length of the sliding window 751

Ns = 80, prediction interval N = 80, buffer length threshold 752

Bh = 16, pqos = 10−5, pT = 10−10, and K = 32. The initial 753

mode index of the encoder is M9, which has the lowest video 754

bit rate. The MBARC was activated every eight video frame 755

intervals. Its performance was investigated for the delay thresh- 756

olds of {60, 100, 140, 180, and 220 ms}, which cover the 757

delay requirements of various video applications. For example, 758

the delay limit of 60 ms is applicable to lip-synchronized 759

real-time interactive video conferencing applications, whereas 760

the delay limit of 100 or 140 ms is applicable to wireless 761

video surveillance, and finally, 180 and 220 ms are for digital 762

television broadcast or video-on-demand services. Fig. 7(a) and 763

(b) shows the DVFR and the average PSNR of Silence of the 764

Lambs and NBC 12 News for different delay thresholds at the 765

average channel SNR of γ = 20 dB. It can be observed in Fig. 7 766

that, as the encoder mode index increases, the DVFR decreases 767

owing to the reduced source rate. For Silence of the Lambs, 768

the DVFR of the operational mode M6 is similar to the DVFR 769

of MBARC, but our MBARC improves the average PSNR by 770

about 3 dB. For NBC 12 News, our MBARC and M7 have 771

a similar DVFR, but MBARC improves the average PSNR by 772

about 1 dB. This implies that the proposed MBARC is capable 773

of adaptively adjusting the encoder mode when the source rate 774

is temporarily higher than the affordable channel rate. 775

2) Performance for Different Channel SNRs: To investi- 776

gate the proposed MBARC’s source rate adaptation capabil- 777

ity for different channel qualities, we conducted experiments 778

at different average channel SNRs, namely, at γ = {12, 16, 779

20, 24, and 28 dB}. The buffer length threshold was set to 780

28, whereas the remaining MBARC parameters were the same 781

as in the first experiment. We set the maximum delay, which 782

triggers dropping of the frames in the buffer to 200 ms. For 783

each average channel SNR considered, we use an offline pro- 784

cedure to select the best encoding mode, which maximizes 785

the average PSNR, while maintaining a DVFR similar to that 786

of MBARC. The simulation results shown for the MBARC, 787

HOARC, and offline mode selection method were plotted in 788

Fig. 8(a) and (b). The results recorded in Fig. 8(b) for dif- 789

ferent average channel SNRs using the offline method were 790

marked with (Mode). Fig. 8(b) demonstrates the average PSNR 791
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Fig. 7. (a) DVFR and Average PSNR of Silence of the Lambs for different delay thresholds with average channel SNR of 20 dB. (b) DVFR and Average PSNR
of NBC 12 News for different delay thresholds with average channel SNR of 20 dB. (a) Silence of the Lambs. (b) NBC 12 News.

Fig. 8. (a) DVFR for different average channel SNRs of Rayleigh channel. (b) PSNR for different average channel SNRs of Rayleigh channel. The note in ()
represents the corresponding encoder mode for the offline method. (a) DVFR. (b) Average PSNR.

improvement of MBARC over the offline method, whereas its792

DVFR remains lower than that of the offline method. This793

demonstrates that MBARC is capable of adaptively accom-794

modating different channel qualities by adjusting the encoding795

mode without any prior knowledge of the channel quality. Al-796

though Fig. 8(b) also shows that the HOARC technique in [18]797

is capable of adapting to time-variant channel conditions and798

approaching the PSNR performance of the proposed MBARC,799

it suffers from a much higher DVFR than that of the MBARC800

technique, as indicated in Fig. 8(a). The basic reason for this801

is elaborated as follows. The linear AR(1) of the HOARC 802

technique may not be appropriate for estimating the average 803

channel throughput since HSPA applies near-instantaneously 804

adaptive burst-by-burst transmissions. Furthermore, the aver- 805

age channel throughput cannot fully characterize the specific 806

near-instantaneously adaptive channel throughput at a certain 807

transmission time instant, which, in turn, increases the delay 808

of a specific packet and results in an increased probability of 809

delay constraint violation. By contrast, the proposed MBARC 810

technique is based on a BOP constraint, which may guarantee a 811
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Fig. 9. Average PSNR for dynamic average channel SNRs for Rayleigh channel. The number in () represents the corresponding DVFR.

Fig. 10. (a) DVFR for different overflow probability thresholds pqos. (b) PSNR for different overflow probability thresholds pqos. (a) Silence of the Lambs.
(b) NBC 12 News.

low delay for the video packets. The application of the LDP [19]812

assists MBARC in achieving an accurate estimation of BOP813

and, thus, improves the DVFR performance.814

3) Performance for Dynamic Channel Quality: The previous815

investigations were conducted in a static environment by fixing816

the average channel SNR. Next, we investigate the performance817

of the MBARC in time-varying scenarios. The initial average818

channel SNR was set to 24 dB. At the instant of the 18 000th819

video frame interval, the average channel SNR was suddenly820

changed to 20 dB. Then, at the instant of the 36 000th frame821

interval, it was further reduced to 16 dB. All the MBARC822

parameters remained the same as in the previous experiment.823

Fig. 9 shows the corresponding simulation results, where each824

bar is marked with “(DVFR)” to characterize the corresponding825

DVFR. It is shown that the DVFR of our MBARC is lower826

than that of M6 for Silence of the Lambs and that it improves827

the PSNR by more than 2 dB in comparison with that of828

M6. For NBC 12 News, although M8 has a similar DVFR829

to that of our MBARC, its average PSNR is 2 dB lower than830

that of the proposed MBARC. This benefit is the result of831

the MBARC’s adaptability, which adjusts the encoder mode832

online for VBR encoding to accommodate diverse dynamically833

fluctuating propagation environments. By contrast, for a fixed834

encoder mode, having a low channel SNR may inflict frame835

dropping events, resulting in low video quality, whereas at high836

SNRs, it fails to promptly decrease the video rate to improve 837

the video quality in a timely manner. Similarly, MBARC is 838

capable of adaptation and achieves an improved performance 839

for the Shawshank Redemption clip having a higher resolution. 840

Observe in Fig. 9 that the HOARC technique [18] approaches 841

the PSNR performance of the proposed MBARC, but it exhibits 842

a significantly higher DVFR than MBARC. This result also 843

illustrates the benefit of the explicit BOP constraint in the 844

problem formulation (4) and (5) and that of applying the LDP 845

for accurately estimating BOP. 846

4) Performance Sensitivity of the Proposed Algorithm: The 847

performance of the proposed method relies on parameters N , 848

Ns, and K, as shown in Algorithm 1. Hence, this section 849

investigates their effect on the performance of the proposed 850

method. In the related experiments, one of these three param- 851

eters was set to different values, whereas the other parameters 852

of our MBARC were the same as those in 2). The average SNR 853

value of our Rayleigh channel model was fixed to 20 dB. The 854

remaining parameters of the channel model were set as in 2). 855

Fig. 10 shows our simulation results of different BOP thresh- 856

olds pqos for the three clips. We may observe in Fig. 10 that 857

a reduced overflow probability threshold provides a reduced 858

DVFR. This is because a reduced probability threshold is 859

capable of activating timely adjustments of the encoder mode 860

to reduce the BOP. On the other hand, we can also observe in 861
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Fig. 11. (a) DVFR for different prediction intervals N . (b) PSNR for different predicting intervals N . (a) DVFR. (b) PSNR.

Fig. 12. (a) DVFR for different lengths of the sliding window Ns. (b) PSNR for different lengths of the sliding window Ns. (a) DVFR. (b) PSNR.

Fig. 13. (a) DVFR for different values of K. (b) PSNR for different values of K. (a) DVFR. (b) PSNR.

Fig. 10 that, as the BOP threshold decreases, the average PSNR862

increases. This is caused by the lower encoding mode index863

used to increase the video quality when the BOP threshold is864

higher. It should be noted that, although the DVFR is related865

to the BOP, their definitions are different. Hence, the value866

of DVFR is not the same as pqos, as shown in Fig. 10(a).867

Fortunately, we may achieve an acceptable DVFR by setting868

pqos to an appropriate value such as 10−5.869

Fig. 11 plots the simulation results for different prediction870

intervals N for the three clips. Fig. 11(a) shows that the DVFR871

is rapidly reduced upon increasing N , whereas Fig. 11(b) shows872

that the average PSNR is decreased as N is increased. The873

basic reason is elaborated as follow. According to (30), a large 874

value of N leads to a more accurate BOP estimate, which 875

assists the proposed method to trigger appropriate adjustments 876

of the encoding mode and thus to reduce the DVFR. The result 877

shows that N ≥ 80 is appropriate for achieving an acceptable 878

performance for the proposed method. 879

Fig. 12 shows the performance sensitivity of the proposed 880

method to the sliding-window duration. It is shown in Fig. 12(a) 881

that a larger value of Ns may result in a higher DVFR. This 882

may be caused by the reduced sensitivity of the buffer variance 883

when using a larger Ns for estimating m̂o according to (26). 884

Fig. 12(b) shows that Ns has only a modest effect on the PSNR. 885
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Fig. 13 shows the sensitivity of the performance to parameter886

K. The proposed method triggers a video bit rate increase via887

adjusting the encoding mode only when the threshold violation888

of P̂n+N
o < pT is encountered consecutively K times. There-889

fore, having a larger K implies a more conservative adjustment890

policy, which leads to a lower DVFR and to a marginally891

reduced PSNR, which are shown in Fig. 13(a) and (b).892

VI. CONCLUSION893

An online adaptive source RC regime has been proposed for894

streaming videos in HSPA and LTE-like VBR downlink sce-895

narios. Large deviation theory was invoked to derive the online896

measurement-based BOP model, applied at the RLC layer in the897

BS. The advantage of the resultant algorithm is that it exploits898

the online observations of buffer length and its variation for899

RC, requiring no prior knowledge of the channel variations900

and video characteristics. Our simulation results recorded in901

multiuser scenarios demonstrated that the proposed algorithm902

is capable of accommodating the channel quality variations,903

which may be beneficial in HSPA and LTE-style environments.904
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