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Abstract—In cognitive radio (CR) systems, it is crucial for
secondary users to reliably detect spectral opportunities across a
wide frequency range. This paper studies a novel multi-rate sub-
Nyquist spectrum sensing (MS3) system capable of performing
wideband spectrum sensing in a cooperative CR network over
fading channels. The aliasing effects of sub-Nyquist sampling are
modelled. To mitigate such effects, different sub-Nyquist sampling
rates are applied such that the numbers of samples at different
CRs are consecutive prime numbers. Moreover, the performance
of MS3 over fading channels (Rayleigh fading and log-normal
fading) is analysed in the form of bounds on the probabilities of
detection and false alarm. The key finding is that the wideband
spectrum can be sensed using sub-Nyquist sampling rates in
MS3 over fading channels, without the need of spectral recovery.
In addition, the aliasing effects can be mitigated by the use of
different sub-Nyquist sampling rates in a multi-rate sub-Nyquist
sampling system.

Index Terms—Cognitive radio, wideband spectrum sensing,
sub-Nyquist sampling, Rayleigh fading, log-normal fading.

I. INTRODUCTION

A crucial requirement of cognitive radios (CRs) is that

they must be able to rapidly find and make good use of

spectral opportunities without causing harmful interference

to the primary user (PU) [1], [2]. The ability of finding

spectral opportunities is called spectrum sensing, which is

considered as one of the most critical components in a CR

system. When the frequency range is sufficiently narrow
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such that the channel frequency response can be considered

flat, narrowband spectrum sensing algorithms can be applied,

e.g., matched-filtering, cyclostationary feature detection, and

energy detection [3], [4]. Horgan and Murphy [5] analysed

the performance of energy detection over Nakagami-m fading

channels. Sofotasios et al. [6] investigated the case of applying

energy detection over generalised κ−µ and κ−µ extreme

fading channels. The analysis was then extended to the case of

cooperative spectrum sensing where each CR can transmit its

decision or measurement to a fusion center (FC) where final

decision is made. A simple fusion scheme used in the FC

is hard decision fusion which fuses decisions from multiple

CRs. It is upper bounded by the soft decision fusion scheme

(i.e., square-law combining scheme [7]) where innite precision

energy vectors are transmitted to the FC. Herath et al. [8]

and Atapattu et al. [9], [10] further analysed the performance

of energy detection on the signal processed by maximal ratio

combining (MRC), equal gain combining (EGC), and selection

combining (SC) schemes over Nakagami-m and Rician fading

channels together with shadowing effects.

Ideally we hope that, if a PU reappears, CRs have sev-

eral other possible vacant subbands to access, facilitating a

seamless hand-off from one spectral channel to another. Un-

fortunately, aforesaid narrowband spectrum sensing algorithms

ignore the diversified individual spectral opportunities across

the wideband spectrum. Driven by the desire of exploiting

wider bandwidth in CR networks, revolutionary wideband

spectrum sensing techniques become increasingly important

and deserve exploratory research [11]. In previous work,

Quan et al. [12], [13] proposed a multiband joint detection

(MJD) approach that can sense the primary signal over a wide

frequency range. It has been shown that MJD has superior

performance for wideband spectrum sensing. In [14], Tian

and Giannakis studied a wavelet detection approach, which

could adapt parameters to a dynamic wideband spectrum.

Furthermore, they elegantly applied the compressed sensing

(CS) theory to implement wideband spectrum sensing by using

sub-Nyquist sampling techniques in [15]. Later on, the CS-

based approach has attracted much attention [16]–[21] owing

to its advantage of using much fewer samples to perform

wideband spectrum sensing. In our previous work [23], to save

system energy, adaptive CS-based spectrum sensing approach

was proposed that could find the best spectral recovery with

high confidence. Unfortunately, using CS-based approaches,

the spectral recovery requires high computational complexity,

leading to a high spectrum sensing overhead that may be a

serious issue in CRs with restricted computational resources.
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The major contributions of this paper can be summarized

as follows:

• We introduce a multi-rate sub-Nyquist spectrum sensing

(MS3) approach for cooperative wideband spectrum sens-

ing in a CR network. Since the spectral occupancy is

low, sub-Nyquist sampling is adopted in each sampling

channel to wrap the sparse spectrum occupancy map.

The sensing overhead is therefore significantly reduced.

The effects caused by sub-Nyquist sampling are analyzed,

and the test statistic is represented by a reduced data set

obtained from multi-channel sub-Nyquist sampling.

• We propose to use different sampling rates in different

sampling channels (equivalently different CRs) for im-

proving the spectrum sensing performance. Specifically,

in the same observation time, the numbers of samples

in different sampling channels are chosen as different

consecutive prime numbers.

• We mathematically analyze the performance of MS3 over

fading channels, and derive some closed-form bounds for

the average probabilities of false alarm and detection.

The key advantage of MS3 is that the wideband spectrum us-

ages can be detected directly from a few sub-Nyquist samples

without full spectral recovery that is usually required by other

sub-Nyquist techniques. Compared with the existing spectrum

sensing methods, MS3 can achieve better wideband spectrum

sensing performance with lower implementation complexity.

The rest of the paper is organized as follows. Section II

introduces traditional spectrum sensing using energy detector.

In Section III, we propose the wideband spectrum sensing

approach, i.e., MS3. The performance analysis of MS3 fusing

faded signals is given in Section IV. Section V presents

simulation results, with conclusions given in Section VI.

II. TRADITIONAL SPECTRUM SENSING USING ENERGY

DETECTION

Let us assume that all CRs keep quiet during the spectrum

sensing interval as enforced by protocols, e.g., via the medium

access control (MAC) layer [12]. Therefore, the observed

spectral energy arises only from PUs and the background

noise. Additionally, we assume that on each frequency bin at

most one PU sends data, e.g., when the orthogonal frequency-

division multiple access (OFDMA) transmission scheme is

used by PUs. The total bandwidth of the signal sensed at each

CR is W (Hertz). Over an observation time T , if the sampling

rate f (f ≥ 2W ) is adopted, a sequence of Nyquist samples

will be obtained with the length of fT . The observation time

T is chosen such that fT is a non-prime natural number, e.g.,

T = 14
f ; thus, fT can be written as fT = JN , where both

J and N are natural numbers. Furthermore, this length-JN
sequence is divided into J equal-length segments and each

segment has the length of N . If we use xc,i(t) (t ∈ [0, T ])
to represent the continuous-time signal received at CR i,
after Nyquist sampling, the sampled signal can be denoted

by xi[n] = xc,i(n/f), n = 0, 1, · · · , JN − 1. At CR i, the

sampled signal of segment j (j ∈ [1, J ]) can be written as

xi,j [n] =

{
xc,i

(
(j−1)N+n

f

)
, n = 0, 1, · · · , N − 1

0, Otherwise.
(1)

The discrete Fourier transform (DFT) spectrum of the sampled

signal in segment j, i.e.,
−−→
Xi,j , is given by

Xi,j [k] =

N−1∑

n=0

xi,j [n]e
−2πkn/N , k = 0, 1, · · · , N − 1 (2)

where  =
√
−1. We model spectrum sensing on frequency

bin k as a binary hypothesis test, i.e., H0,k (absence of PU)

and H1,k (presence of PU) [13]:

Xi,j [k] =

{
Zi,j[k], H0,k or k ∈ Ω

′

i

Hi,j [k]Si,j [k] + Zi,j [k], H1,k or k ∈ Ωi
(3)

where Zi,j [k] is complex additive white Gaussian noise

(AWGN) with zero mean and variance δ2i,k, i.e., Zi,j[k] ∼
CN (0, δ2i,k), Hi,j [k] denotes the discrete frequency response

between the PU and CR i, Si,j [k] is assumed to be a determin-

istic signal sent by the PU on frequency bin k, Ωi denotes the

spectral support such that Ωi = {k|PU presents at Xi,j [k]},

and Ω
′

i = {k|PU does not present at Xi,j [k]}. Here, we

consider that all CRs are sensing the same spectrum caused

by the same set of PUs such that the sets Ω = Ω1 = · · · = Ωi.
In addition, for simplicity, we assume that the noise variance

δ2i,k is normalized to be 1. The observation time T is chosen

to be smaller than the channel coherence time such that the

magnitude of Hi,j [k] remains constant within T at each CR,

i.e., constant |Hi,j [k]| over different segment j.

Since an energy detector does not require any prior in-

formation about the transmitted primary signal, with lower

complexity than other spectrum sensing schemes [22], we

adopt the energy detection approach in this paper. The received

signal energy at each frequency bin can be calculated as

Ei[k] =

J∑

j=1

|Xi,j [k]|2 , k = 0, 1, · · · , N − 1. (4)

The decision rule at frequency bin k is then given by

H1,k

Ei[k] R λk, k = 0, 1, · · · , N − 1 (5)

H0,k

where λk is the detection threshold. The signal energy distri-

bution on frequency bin k can be modeled as [22]

Ei[k] ∼
{
χ2
2J , H0,k or k ∈ Ω

′

i

χ2
2J(2γi[k]), H1,k or k ∈ Ωi

(6)

where γi[k]
△
= |Hi[k]Si[k]|2

δ2
i,k

denotes the SNR on the frequency

bin k at CR i, χ2
2J denotes the central chi-square distri-

bution, and χ2
2J (2γi[k]) denotes the non-central chi-square

distribution. Both of these distributions have 2J degrees of

freedom and 2γi[k] denotes the non-centrality parameter. The

probabilities of false alarm and detection are given by [22]

PNyqf,i,k = Pr(Ei[k] > λk|H0,k) =
Γ(J, λk2 )

Γ(J)
(7)

PNyqd,i,k = Pr(Ei[k] > λk|H1,k) = QJ

(√
2γi[k],

√
λk

)
(8)

where Γ(a) denotes the gamma function, Γ(a, x) denotes
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Fig. 1. Block diagram of multi-rate sub-Nyquist spectrum sensing system.

the upper incomplete gamma function, and Qu(a, x) is the

generalized Marcum Q-function defined by Qu(a, x) =
1

au−1

∫∞
x tue−

a2+t2

2 Iu−1(at)dt in which Iv(a) is the v-th

order modified Bessel function of the first kind.

III. MULTI-RATE SUB-NYQUIST SPECTRUM SENSING

It is difficult to realize wideband spectrum sensing, since

it requires a high-speed Analog-to-Digital-Converter (ADC)

for Nyquist rate sampling. We now present an MS3 scheme

using multiple low-rate sub-Nyquist samplers to implement

wideband spectrum sensing in a CR network.

A. System Description

Consider that there are v synchronized CRs collaborating

for wideband spectrum sensing, and the FC could be one of

the CRs and have good channel gain with the other CRs (e.g.,

geographically nearby). Due to low primary spectral occu-

pancy [15], the received signals at CRs are naturally sparse

in the frequency domain. Here, we assume that the Nyquist

DFT spectrum
−−→
Xi,j defined in (2) is s-sparse (s≪ N ), which

implies that only the largest s out of N components need to

be counted. The spectral sparsity level, i.e., s, can be obtained

from sparsity estimation [18] or other methods. As shown

in Fig. 1, MS3 consists of several CRs, each of which has

one wideband filter, one low-rate sampler, and a fast Fourier

transform (FFT) device, where the wideband filters are set to

have bandwidth of W . The operation of MS3 can be described

as follows:

1) As the coordinator of MS3, the FC allocates different

sub-Nyquist sampling rates to different CRs according

to Theorem 1.

2) CRs perform sub-Nyquist samplings during the obser-

vation time T .

3) The sub-Nyquist DFT spectrum is calculated by using

sub-Nyquist samples and an FFT device.

4) The signal energy vectors are formed by using the sub-

Nyquist DFT spectrum.

5) The CRs transmit these signal energy vectors, i.e.,
~Es,1, · · · , ~Es,v as calculated in (15), to the FC by using

a dedicated common control channel.

6) The received data from all CRs is fused in the FC to

form a test statistic.

7) The FC chooses the detection threshold and performs

binary hypothesis tests.

8) The FC shares the detection results with all CRs via the

dedicated control channel.

B. Sub-Nyquist Sampling and Data Combining

At CR i, we use sub-Nyquist rate fi (fi < 2W ≤ f ) to

sample the continuous-time signal xc,i(t). The sampled signal

can be denoted by yi[n] = xc,i(n/fi), n = 0, 1, · · · , JMi−1
where JMi = fiT and Mi is chosen to be a natural

number. The sampled signal is then divided into J equal-length

segments. The segment j (j ∈ [1, J ]) can be written as

yi,j [n] =

{
xc,i

(
(j−1)Mi+n

fi

)
, n = 0, 1, · · · ,Mi − 1

0, Otherwise.
(9)

The DFT spectrum of the sampled signal of segment j (j ∈
[1, J ]) is then given by

Yi,j [m] =

Mi−1∑

n=0

yi,j[n]e
−2πmn/Mi ,m = 0, 1, · · · ,Mi − 1

(10)

With the aid of Poisson summation formula [24], the DFT

spectrum of sub-Nyquist samples can be represented by the

DFT spectrum of Nyquist samples as proved in Appendix A:

Yi,j [m] =
Mi

N

∞∑

l=−∞
Xi,j [m+ lMi], m = 0, 1, · · · ,Mi − 1

(11)

where l is an unknown integer within [0, N/Mi− 1] such that

m+ lMi ∈ Ωi.
One issue caused by sub-Nyquist sampling is signal over-

lapping in Yi,j [m]. However, if we choose parameter N such

that N ≫ s and let the sub-Nyquist sampling rate satisfy

Mi ∼ O(
√
N), the probability of signal overlapping is very

small (as proved in Appendix B). As such, we only focus on

two cases: no signal on frequency bin m and one signal on

frequency bin m. In the first case, only noise exists. In the

second case, only a single l is active in (11), and the other

terms in the summation of (11) can be modeled as noise based

on (3). Thus, the following equation holds from (3) and (11):

Yi,j [m] =



Mi

N

∑
ν Zi,j [m+ νMi], First case;

Mi

N Xi,j [m+ lMi] +
Mi

N

∑
ν 6=l Zi,j [m+ νMi],

Second case.

(12)

Furthermore, using (3) and (12), we can model the DFT

spectrum distribution of sub-Nyquist samples by
√

N

Mi
Yi,j

[
|k| mod (Mi)

]
∼





CN
(
0, δ2s,i,k

)
, k ∈ Ω

′

i

CN
(√

Mi

N Hi,j [k]Si,j [k], δ
2
s,i,k

)
, k ∈ Ωi

(13)
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where δ2s,i,k is the noise variance of sub-Nyquist DFT spec-

trum, which can be represented by the noise variance of

Nyquist DFT spectrum using (11):

δ2s,i,k =

⌈
N

Mi

⌉

︸ ︷︷ ︸
No. of sums

(
Mi

N

√
N

Mi︸ ︷︷ ︸
Scaling of Yi,j

)2

δ2i,k ≈ δ2i,k (14)

where ⌈ NMi
⌉ (the smallest integer not less than N

Mi
) denotes

the number of summations in (11).

The signal energy of sub-Nyquist DFT spectrum at each CR

node is then calculated as

Es,i[m] =

J∑

j=1

|Yi,j [m]|2 , m = 0, 1, · · · ,Mi − 1. (15)

whose distribution can be modeled with (13) and (15) as

N

Mi
Es,i

[
|k| mod (Mi)

]
∼
{
χ2
2J , k ∈ Ω

′

i

χ2
2J

(
2Mi

N γi[k]
)
, k ∈ Ωi,

(16)

where the length of energy vector ~Es,i is Mi. We note that,

due to the sub-Nyquist sampling, the noise is folded from

the whole bandwidth onto all signals of interest as shown

in (12). As a result, comparing (16) with (6), we find that

the received SNR in the sub-Nyquist sampling channel i is

degraded from γi to Mi

N γi. This SNR degradation depends on

the ratio between the number of samples at the sub-Nyquist

rate and that of at the Nyquist rate (i.e., Mi

N ).

In MS3, the signal energy vectors ~Es,1, · · · , ~Es,v calculated

in (15) are then transmitted from CRs to the FC, which leads

to a test statistic:

Ês[k] =
v∑

i=1

N

Mi
Es,i[|k| mod (Mi)], k = 0, 1, · · · , N − 1

(17)

where N
Mi

is a scaling factor to reconcile the different noise

variance of CRs caused by different sub-Nyquist sampling

rates. To test whether the PU is present or not, we adopt the

following decision rule:

H1,k

Ês[k] R λk, k = 0, 1, · · · , N − 1. (18)
H0,k

To analyse the performance of the decision rule in (18), we

aim to model Ês through the use of (16) and (17). However,

this is very challenging since different energy vectors in

(17) may contain different mirror images of the original PU

frequencies. To assist the analysis, we divide the set Ω
′

i

of (16) into two disjoint subsets Ω
′

A,i and Ω
′

U,i such that

Ω
′

A,i ∪ Ω
′

U,i = Ω
′

i and Ω
′

A,i ∩ Ω
′

U,i = ∅. Here, let Ω
′

A,i denote

a set of aliased frequencies (i.e., false frequencies appear

as mirror images of the original PU frequencies around the

sub-Nyquist sampling frequency), and Ω
′

U,i represent a set of

unaffected/unoccupied frequencies. Accordingly, the set Ω
′

A,i

can be written as

Ω
′

A,i
△

=
{
k
∣∣∣k = |m| mod (Mi)+ lMi, k ∈ [0, N−1],m ∈ Ωi

}

(19)

where |m| mod (Mi) is used for describing the aliasing effect

due to sub-Nyquist sampling and lMi is used for accounting

for the index extension from 0, · · · ,Mi − 1 to 0, · · · , N − 1
in (17). Consequently, the set Ω

′

U,i can be defined as

Ω
′

U,i
△

=
{
k
∣∣∣k /∈ Ω

′

A,i, k ∈ Ω
′

i

}
. (20)

Note that the aliased frequencies set Ω
′

A,i can lead to the same

distribution as that of Ωi due to the aliasing effect. Thus, we

can model N
Mi

~Es,i using (16) as

N

Mi
Es,i [k] ∼





χ2
2J , k ∈ Ω

′

U,i

χ2
2J

(
2Mi

N γi[m]
)
, k ∈ Ω

′

A,i,m ∈ Ωi
χ2
2J

(
2Mi

N γi[k]
)
, k ∈ Ωi.

(21)

where γi[m] denotes the SNR on the frequency bin m which is

related to the observed frequency bin k by k = |m| mod (Mi)+
lMi as shown in (19). Such a representation is used for

explaining the aliasing effect: observing a frequency bin k,

we may find spectral component from another frequency bin

m which folds back to k due to sub-Nyquist sampling.

Revisiting (17), we find that summing up energy vectors

from different CRs will result in two new sets: Ω
′

A

△

= ∪vi=1Ω
′

A,i

and Ω
′

U

△

= ∩vi=1Ω
′

U,i, where Ω
′

A denotes the set of aliased

frequencies and Ω
′

U is the set of unaffected/unoccupied fre-

quencies of Ês due to the sum operation. The definition

of the set Ω
′

U is based on the fact that the frequency bin

k of Ês can be classified as unaffected/unoccupied only if

k ∈ Ω
′

U,i, ∀i ∈ [1, v]. Furthermore, since Ês[k], k ∈ Ω
′

U is

only affected by the noise, we can model it by the central chi-

square distribution with 2Jv degrees of freedom. On the other

hand, the definition of Ω
′

A is due to the fact that the frequency

bin k of Ês can be classified as aliased if k ∈ Ω
′

A,i in one or

more than one channels (i.e., CRs). For convenience, let Υk
denote the set of CRs in which each CR can generate aliased

frequencies on the frequency bin k, i.e., Υk
△
= {i|k ∈ Ω

′

A,i}.

Additionally, applying the property of the sum of non-central

chi-square variables to (17), we can model Ês[k], k ∈ Ω
′

A

as a non-central chi-square distribution with 2Jv degrees of

freedom and non-centrality parameter of 2
∑
i∈Υk

Mi

N γi[m] by

using (16). Based on above discussions, the distribution of Ês

can be modelled as

Ês[k] ∼





χ2
2Jv, k ∈ Ω

′

U

χ2
2Jv

(
2
N

∑
i∈Υk

Miγi[m]

)
, k ∈ Ω

′

A,m ∈ Ω

χ2
2Jv

(
2
N

v∑
i=1

Miγi[k]

)
, k ∈ Ω

(22)

where both k ∈ Ω
′

U and k ∈ Ω
′

A mean that the frequency bin k
is not used by PUs, thus corresponding to the hypothesis H0,k.

The former case denotes that there are no aliased frequencies

on the frequency bin k, while the latter case implies that there

are card(Υk) aliased frequencies on the frequency bin k. Here,

card(Υk) means the cardinality of the set Υk, i.e., the number

of elements of the set Υk, which is equivalent to the number

of CRs that have aliased frequencies on the frequency bin k.

Thus, when analysing the probability of false alarm, we know
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that the former case leads to a lower probability of false alarm

since Ês[k], k ∈ Ω
′

U contains noise only. In contrast, the latter

case Ês[k], k ∈ Ω
′

A leads to a higher probability of false alarm

since it contains not only noise energy but also the energy

of aliased frequencies due to sub-Nyquist sampling. Hence,

the probability of false alarm on the frequency bin k can be

bounded by considering two cases k ∈ Ω
′

U and k ∈ Ω
′

A in

(22) and applying similar approach used in (6), (7), and (8):

Γ(Jv, λk2 )

Γ(Jv)
≤ Pf,k ≤ QJv



√

2

N

∑

i∈Υk

Miγi[m],
√
λk


. (23)

C. Multi-rate Sub-Nyquist Spectrum Sensing

To improve the probability of false alarm, we shall reduce

the number of elements in the set Υk in (23). This is mainly

because the sum term
∑
i∈Υk

Miγi[m] will decrease as the

number of elements in the set Υk decreases, thus leading

to a smaller upper bound on the probability of false alarm.

Obviously, the card(Υk) is affected by sub-Nyquist sampling

rates, since the card(Υk) describes how many CRs have aliased

frequencies on the frequency bin k, which are originally

caused by sub-Nyquist rate sampling. Using the same sub-

Nyquist sampling rates in MS3 is not recommended because

it could lead to card(Υk)= v, resulting in a high probability of

false alarm. Hence, we focus on applying different sub-Nyquist

sampling rates in MS3. For choosing sub-Nyquist sampling

rates that can reduce the card(Υk), we start from the simplest

case (for the purpose of analysis) where we only have one

original PU frequency, i.e., only one frequency bin k1 ∈ Ω is

occupied by the PU and the spectral sparsity level s = 1.

Lemma 1: If the numbers of samples at multiple CRs, i.e.,

M1,M2, ...,Mv, are different primes, and meet the require-

ment of

MiMj > N, ∀ i 6= j ∈ [1, v], (24)

two or more CRs cannot have mirrored frequencies on the

same frequency bin.

The proof of Lemma 1 is given in Appendix C.

Second, considering the case where we have multiple orig-

inal PU frequencies, we reach the following conclusion.

Lemma 2: If the numbers of samples at multiple CRs

satisfy the conditions in Lemma 1, the number of elements

in the set Υk will be bounded by the sparsity level s.
Proof : Based on the result of Lemma 1, only one CR can

map the original frequency bin kj ∈ Ωi to the aliased fre-

quency in Ω
′

A. Furthermore, recall Υk
△
= {i|k ∈ Ω

′

A,i} and the

definition of Ω
′

A,i in (19), we know card(Υk) ≤ card(Ωi) = s.
�

Based on these two Lemmas, we quantify the detection

performance of MS3 as below.

Theorem 1: In MS3, different sub-Nyquist sampling rates

are adopted at different CRs such that the numbers of sam-

ples at CRs, i.e., M1,M2, · · · ,Mv, are different consecutive

primes, and meet the requirement of MiMj > N, ∀ i 6=
j ∈ [1, v]. Using the decision rule of (18), we can obtain the

probabilities of false alarm and detection with the following

bounds:

Γ(Jv,
λk
2

)

Γ(Jv) ≤ Pf,k

≤ QJv

(√
2
N

∑
i∈Υk,card(Υk)≤s

Miγi[k],
√
λk

)
,

(25)

Pd,k ≥ QJv



√√√√ 2

N

v∑

i=1

Miγi[k],
√
λk


 . (26)

Proof : Using (23) and the bound card(Υk) ≤ s, (25) fol-

lows. Furthermore, when the energy of one spectral component

in Ω maps to another spectral component in Ω, the probability

of detection will increase. Thus, the inequality of (26) holds.

�
Remark 1: It is worth noting that the exact expression of the

probabilities of false alarm and detection cannot be obtained

in MS3 systems. This is mainly caused by the aliasing effects

of sub-Nyquist sampling, which unpredictably fold original

frequencies back to different but unknown frequency bins. In

detail, the set Ω
′

A,i in (21) is unknown and different from that

of the other channel because of the sub-Nyquist sampling and

unknown Ωi (actually the purpose of spectrum sensing is to

find it). Therefore, the set Ω
′

A in (22) is typically unknown,

making us impossible to know the exact expression of the

probability of false alarm. This also occurs for analysing the

probability of detection.

Remark 2: It is noteworthy to emphasize that the proposed

sub-Nyquist system cannot achieve the same performance

as the counterpart multi-CR Nyquist system due to its sub-

Nyquist operations; however, it can obtain comparable spec-

trum sensing performance to a single-CR Nyquist system

(at the same total sampling rate) with better flexibility and

scalability. In particular, comparing (8) with (26), we find

that the performance of MS3 is comparable to the single-

CR system when
∑v
i=1Mi ≃ N where “ ≃ ” means

approximately equal, given that:

Pd,k ≥ QJv



√√√√ 2

N

v∑

i=1

Miγi[k],
√
λk


 (27)

≃ QJv

(√
2γi[k],

√
λk

)

QJv

(√
2γi[k],

√
λk

)
> QJ

(√
2γi[k],

√
λk

)
= PNyquistd,i,k

(28)

and the probabilities of false alarm are similar when the

sparsity level s is sufficiently small. Additionally, we note that

MS3 is more flexible and scalable than the single-CR Nyquist-

sampling based detection system, since both the sub-Nyquist

sampling rates at CRs and the number of CRs can be flexibly

chosen to meet the condition
∑v

i=1Mi ≃ N . Furthermore, we

emphasize that MS3 is applicable to the scenario of insufficient

measurements, i.e.,
∑v
i=1Mi < N .

Remark 3: It can be seen from Theorem 1 that the sampling

rates in MS3 can be set much lower than the Nyquist rate

since Mi ∼ O(
√
N). On the other hand, a higher average

sampling rate can provide us with tighter bounds, since the

probability of signal overlapping in the aliased spectrum can
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be reduced with a larger Mi in each sampling channel as

discussed in Section III-B. Thus, there is a trade-off between

the bound accuracy and the sampling rate saving. It should

be emphasized that there is no exact closed-form expression

for the probabilities in Theorem 1, since the exact number

of CRs that have aliased frequencies on the frequency bin k
cannot be quantified. Moreover, we note that the upper and

lower bounds in Theorem 1 can be easily computed since the

Marcum-Q function can be efficiently computed using power

series expansions [25]. Under the Neyman-Pearson criterion,

we should design a test with the constraint of Pf,k ≤ α. In

such a scenario, we must let the upper bound of (25) to be

α and solve the detection threshold λk from the inverse of

the Marcum-Q function. It has been shown in [26] that the

detection threshold can be calculated with low computational

complexity. In addition, to calculate the detection threshold,

the noise power is required to be known at the FC.

IV. MS3 OVER FADING CHANNELS

In this section, we consider that the primary signals are

propogated from PUs to CRs over fading channels, subject

to either a Rayleigh or log-normal distribution. Recall the

fusion rule in (17), we find that it is difficult to model

the distribution of the sum of weighted independent random

variables in (17) over fading channels. Hence, we use the sum

of uniformly weighted random variables to approximate the

sum of differently weighted random variables in Theorem 1:

2
v∑
i=1

Miγi

N
≃ 2M

N

v∑

i=1

γi = ψγv,

2
∑
i∈Υk

Miγi

N
≃ 2M

N

∑

i∈Υk

γi = ψγs (29)

where M is the average of Mi over multiple CRs, ψ
△
= 2M

N ,

γv
△
=
∑v

i=1 γi, and γs
△
=
∑

i∈Υk
γi. We note that the above

approximation accuracy mainly depends on
|M−Mi|

N , where a

smaller
|M−Mi|

N corresponds to a more accurate approxima-

tion. Since M1, ...,Mv are chosen to be v different consecutive

prime numbers and the distance between primes could be

very small compared to N , the parameter
|M−Mi|

N approaches

zero as N increases. Thus, the above approximation has little

impact on the final result for large Ns.

A. Rayleigh Distribution

If the magnitudes of received primary signals at different

CRs follow Rayleigh distributions, the SNRs will follow

exponential distributions. Hence, γv and γs follow Gamma

distributions:

f(γv) =
γv−1

v

γvΓ(v)
e−

γv
γ , γv ≥ 0,

f(γs) =
γs−1

s

γsΓ(s)
e−

γs
γ , γs ≥ 0 (30)

where γ = E( |HS|
2

δ2 ) denotes the average SNR over multiple

CRs, and f(·) denotes a generic probability density function

(PDF) of its argument.

The bounds for the average probabilities of false alarm and

detection in MS3 can be obtained by averaging (25) and (26)

over all possible SNRs, respectively.

Theorem 2: If the magnitudes of received signals at differ-

ent CRs follow Rayleigh distribution, the average probabilities

of false alarm (Pf,k) and detection (Pd,k) in MS3 will have the

following bounds

Γ(Jv, λk2 )

Γ(Jv)
≤ Pf,k ≤ Θ(s, Jv, ψ, γ[k], λk) (31)

Pd,k ≥ Θ(v, Jv, ψ, γ[k], λk) (32)

where Θ(x, Jv, ψ, γ, λ) is defined as

Θ =
(
1 +

ψγ

2

)−x ∞∑

n=0

Cnn+x−1

(
ψγ

ψγ + 2

)n Γ
(
n+ Jv, λ2

)

Γ (n+ Jv)

(33)

in which Cba is the binomial coefficient, i.e., Cba = b!
a!(b−a)! .

The proof of Theorem 2 is given in Appendix D.

Remark 4: From Theorem 2, we have 0 ≤ Θ ≤ 1, since the

term
Γ(a,b)
Γ(a) ∈ [0, 1] and the remaining terms can be simplified

to 1. In addition, it can be proved that Θ is a monotonically

increasing function with respect to ψ, γ, and x, respectively.

Therefore, both probabilities will either increase or remain

the same when the average sampling rate and the average

SNR increase, more sampling channels will lead to a higher

probability of detection, and the average probability of false

alarm can be reduced with smaller s.

Remark 5: Since (33) contains infinite sums, its computa-

tional complexity is directly related to the number of computed

terms, which are required to obtain a specific accuracy. As the

number of computed terms (i.e., P ) varies, the magnitude of

the truncation error can be written as

TΘ(P )

=

(
1 +

ψγ

2

)−x ∞∑

n=P

Cnn+x−1

(
ψγ

ψγ + 2

)n Γ
(
n+ Jv, λ2

)

Γ (n+ Jv)

(34)

≤
(
1 +

ψγ

2

)−x ∞∑

n=P

Cnn+x−1

(
ψγ

ψγ + 2

)n
(35)

= 1−
(
1 +

ψγ

2

)−x P−1∑

n=0

Cnn+x−1

(
ψγ

ψγ + 2

)n
(36)

where the inequality of (35) holds for
Γ(n,λ

2
)

Γ(n) ≤ 1, and (36) is

obtained by using the binomial expansion. It can be shown that

(33) converges very quickly. For example, in order to achieve

double-precision accuracy, only P = 30 ∼ 40 calculated terms

are required; therefore, the bounds are tractable. To solve for

the detection threshold λk , we could use the lower bound on

Pf,k in (32). This is due to the fact that the lower bound can

approximate Pf,k very well as analyzed in Appendix D.
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B. Log-normal Distribution

The strength of the transmitted primary signal may also be

affected by shadowing from buildings, hills, and other objects.

A common model is that the received power fluctuates with

a log-normal distribution. In such a scenario, the PDF of the

SNR at CR i, i.e., f(γi), is given by

f(γi) =
ξ√

2πσiγi
exp

(
− (10 log10(γi)− γi)

2

2σ2
i

)
, γi > 0

(37)

where ξ = 10/ ln(10), and σi (dB) denotes the standard

deviation of 10 log10 γi at CR i. Note that the PDF in (37) can

be closely approximated by a Wald distribution [22], [27]:

f(γi) =

√
ηi
2π
γ
−3/2
i exp

(
−ηi(γi − θi)

2

2θ2i γi

)
, γi > 0 (38)

where θi = E(γi) denotes the expectation of γi, and ηi is the

shape parameter for CR i. Via the method of moments, the

parameters ηi, θi and γi, σi are related as follows:

θi = exp

(
γi
ξ

+
σ2
i

2ξ2

)
, ηi =

θi

exp(
σ2
i

ξ2 )− 1
. (39)

In the proposed system, the condition ηi
θ2i

= E(γi)
Var(γi)

= b

(constant) can be satisfied. Thus, γs and γv also follow the

Wald distribution [28]. The PDFs of γs and γv are given by

f(γs) =

√
sη

2π
γ−3/2

s exp

(
−η(γs − sθ)2

2sθ2γs

)
, γs > 0 (40)

f(γv) =

√
vη

2π
γ−3/2

v exp

(
−η(γv − vθ)2

2vθ2γv

)
, γv > 0 (41)

where η and θ denote the averages of ηi and θi, respectively.

Theorem 3: If the magnitudes of received signals at differ-

ent CRs follow log-normal distributions, the average probabil-

ities of false alarm (P̃f,k) and detection (P̃d,k) in MS3 will be

bounded as

Γ(Jv, λk2 )

Γ(Jv)
≤ P̃f,k ≤ Λ(s, Jv, ψ, λk, θ[k], η[k]) (42)

P̃d,k ≥ Λ(v, Jv, ψ, λk, θ[k], η[k]) (43)

where Λ(x, Jv, ψ, λ, θ, η) is defined by (44) as presented on

the top of the next page, in which Kn− 1
2
(a) denotes the

modified Bessel function of the second kind with order n− 1
2 .

The proof of Theorem 3 is given in Appendix E.

Remark 6: Because (44) contains infinite sums, the trun-

cation error TΛ(P ) must be considered. Similar to (35), the

truncation error can be written by (45) as presented on the top

of the next page.

V. SIMULATION RESULTS AND ANALYSIS

In our simulations, we assume that the CRs are organized as

shown in Fig. 1 and adopt the following configurations unless

otherwise stated. We use the wideband analog signal model in
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Fig. 2. Comparisons of simulation results and theoretical bounds on the
probabilities of false alarm and detection in Theorem 1 and Theorem 2,
respectively, when MS3 combining (a) non-faded signals, (b) Rayleigh faded
signals with the received SNR= 5 dB at CRs.

[29] and thus the received signal xc,i(t) at CR i has the form:

xc,i(t) =
Nb∑

l=1

|Hi,l|
√
ElBl sinc (Bl(t−∆)) cos (2πfl(t−∆)) + z(t)

(46)

where Nb denotes the number of non-overlapping subbands,

sinc(x) = sin(πx)
πx , ∆ denotes a random time offset, z(t) is

AWGN, i.e., z(t) ∼ N (0, 1), El is the transmit power at PU,

and Hi,l denotes the discrete frequency response between the

PU and CR i in subband l. We assume that there are v = 22
CRs in the CR network and the channels from PUs to CRs

are independent and subject to fading. The received signal

xc,i(t) consists of Nb = 6 non-overlapping subbands. The l-
th subband is in the frequency range of [fl − Bl

2 , fl +
Bl
2 ],

where the bandwidth Bl = 1 ∼ 10 MHz and fl denotes the

center frequency. The center frequency of the subband l is

randomly located within [Bl2 ,W−Bl
2 ] (i.e., fl ∈ [Bl2 ,W−Bl

2 ]),
where the overall signal bandwidth W = 10 GHz. In MS3, the

received signal is sampled by using different sub-Nyquist rates

at different CRs for T = 20 µs. To be specific, the numbers

of samples at multiple CRs are chosen following Theorem 1

and we choose the first prime M1 ≈ a
√
N (a ≥ 1) along with

its v−1 neighboring and consecutive primes in the increasing

direction. The spectral observations are obtained by applying

an FFT to these sub-Nyquist samples in each channel. Then the

signal energy is calculated in the spectral domain using (15),

and the energy vectors are transmitted from the CRs to the FC

using dedicated common control channels. In the FC, we form

the test statistic with (17). We define the compression rate as

the ratio between the number of samples at the sub-Nyquist

rate and the number of samples at the Nyquist rate, i.e., M
N ,

where M denotes the average number of sub-Nyquist samples

at CRs. Spectrum sensing results are obtained by using the

decision rule (18) and varying the detection threshold λk.

In Fig. 2, we verify the theoretical results in (25)-(26)
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Λ =

√
2xη

π
e
η
θ

∞∑

n=0

(
ψ
2

)n
Γ
(
n+ Jv, λ2

)

n!Γ (n+ Jv)

(√
x2ηθ2

xψθ2 + η

)n− 1
2

Kn− 1
2

(√
η(xψθ2 + η)

θ2

)
(44)

TΛ(P ) ≤ 1−
√

2xη

π
e
η
θ

P−1∑

n=0

(
ψ
2

)n (√
x2ηθ2

xψθ2+η

)n− 1
2

n!
Kn− 1

2

(√
η(xψθ2 + η)

θ2

)
. (45)
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Fig. 3. Receiver operating characteristic curves of MS3 for combining non-
faded signals or faded signals when the compression rate M

N
= 0.0219 and

the number of segments J = 5. The wideband signal is observed by 22 CRs
at different sampling rates (the average sampling rate is 448.68 MHz).

and (31)-(32) by comparing these bounds with the simulated

results. It shows that the bounds on the probabilities of false

alarm and detection can predict the simulated results. Fig. 2

also illustrates that the lower bound on the probability of de-

tection can successfully predict the trend of simulated results.

Fig. 3 shows the receiver operating characteristic (ROC) curves

of MS3 when combining non-faded and faded signals. When

the average SNR as received at CRs is 5 dB, the performance

of MS3 combining faded signals is roughly the same as that

of combining non-faded signals, since the strength of the

signal is mostly masked by the noise. In contrast, the detection

performance of MS3 combining non-faded signals outperforms

that of combining faded signals when SNR=10 dB. In addition,

we see that the performance of MS3 combining log-normal

shadowed signals is the poorest. Nonetheless, even for log-

normal shadowed signals, MS3 has a probability of nearly 90%
for detecting the presence of PUs when the probability of false

alarm is 10%, with the compression rate of M
N = 0.0219.

To investigate the influence of s and SNR, we use Fig. 4

to show the performance of MS3 when the received signals

are faded according to Rayleigh distribution with different

values of s (proportional to the number of subbands). We

see that, as the number of subbands decreases, the detection

performance improves for the same SNR. The performance

improvement of MS3 stems from that, for a fixed number of

sampling channels, decreasing s makes it easier to distinguish

the occupied frequencies from the aliased frequencies as
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Fig. 4. The performance of MS3 for combining Rayleigh faded signals with
v = 22 and M

N
= 0.0219, when the received SNR at CRs and the number

of subbands change.

discussions in Section III-C.
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Fig. 5. The probability of detection (Pd) and the probability of false alarm
(Pf ) of the proposed MS3 system and Nyquist systems over log-normal
shadowing channels when the standard deviation σ = 5 dB and the average
subband SNR varies. In the proposed MS3 system, the wideband signal is
sampled at different sampling rates by 22 ADCs with the average sampling
rate of 448.68 MHz, and the compression rate is M

N
= 0.0219.

In Fig. 5, we compare the performance of MS3 against that

of Nyquist systems when all systems have similar probabilities

of false alarm. In the Nyquist system type I, each CR is given

an orthogonal subband (wideband spectrum is divided into

several equal-length subbands) to sense at Nyquist rate, while

their decisions are sent back to the FC. In the Nyquist system
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type II, we assume that each CR must measure the whole wide-

band spectrum independently, thus requiring multiple standard

ADCs in each node to cover all wideband spectrum. After

signal sampling, all measurements are sent back to the FC,

where equal gain combining approach is adopted to fuse data

and then energy detection is used for spectrum sensing. Fig. 5

shows that the proposed system has superior performance to

the Nyquist system type I. On the other hand, it can also be

seen that the Nyquist system type II has performance gain over

the proposed system; however, at the expense of much higher

implementation complexity as discussed below.

In Table I, we compare the implementation complexity of

MS3 with that of the Nyquist systems, when the received

signals at different CRs are faded according to Rayleigh distri-

bution. Here, we consider the following comparison metric: the

number of same-sampling-rate ADCs for achieving Pd ≥ 90%
and Pf ≤ 10%, since practical CRs often have requirements

on the probabilities of detection and false alarm to secure the

performance of both CRs and PUs. We see that, when there

exist 10 CRs, MS3 requires each CR to be equipped with a

single ADC with an average sampling rate of 957.54 MHz;

thus, the whole CR network only requires 10 low-rate ADCs.

In contrast, the Nyquist system type I requires 21 ADCs in

total, because of 21 × 957.54 MHz≈ 20 GHz for covering

10 GHz spectrum based on Nyquist sampling theorem. In the

Nyquist system type II, 210 ADCs (with the average sampling

rate 957.54 MHz) will be required since each CR requires 21

ADCs and there are 10 CRs. Thus, the system complexity of

MS3 is approximately half of that of the Nyquist system type I

and much less than that of the Nyquist system type II.
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Fig. 6. Comparison between MS3 and CS-based system [15]. The probability
of successful sensing which is defined as the probability of achieving both
Pd ≥ 90% and Pf ≤ 10%. In simulations, the average SNR as received at
CRs is 10 dB and the number of CRs is v = 22.

In Fig. 6, we choose the CS-based system in [15] as a

benchmark system due to its high impact and outstanding per-

formance. In [15], the wideband spectrum was firstly modelled

as a train of subbands which are smooth, but exhibit discon-

tinuities or singularities at the subbands boundaries or edges.

The wideband spectrum sensing was formulated as a stan-

dard CS problem. Basis pursuit-based optimisation algorithms

were then applied to estimate the average frequency response

amplitude of each subband, by which each subband can be

coarsely detected. In Fig. 6, it is seen that, compared with the

benchmark system, MS3 has better compression capability.

Using MS3, the probability of successful sensing becomes

larger than 90% when the compression rate M
N ≥ 0.023. In

contrast, the benchmark system can achieve the probability

of successful sensing at 90% only when the compression rate

satisfies M
N ≥ 0.045.

Furthermore, as shown in Table II, we find that the com-

putational complexity of MS3 is O(N logN) due to energy

detection with FFT operations, rather than O (N(M + logN))
in the CS-based system, where M is usually much larger than

logN . The complexity of the CS-based system is hurt by both

the matrix multiplication operations and the FFT operations for

spectral recovery. To summarize, with the same computational

resources, MS3 has a relatively smaller spectrum sensing

overhead than the CS-based system, due to not only the

better compression capability (less data transmissions result in

shorter transmission time), but also the lower computational

complexity.

VI. CONCLUSIONS

In this paper, we have presented a novel system, MS3,

for cooperative wideband spectrum sensing in CR networks.

MS3 can relax the wideband spectrum sensing requirements

of CRs due to its capability of sub-Nyquist sampling. It has

been shown that, using sub-Nyquist samples, the wideband

spectrum can be sensed in a cooperative manner without the

need of spectral recovery, leading to a low spectrum sensing

overhead. Moreover, we have derived closed-form bounds for

the performance of MS3 when combining faded or shadowed

signals.

Simulation results have verified the derived bounds on the

probabilities of false alarm and detection. It has also been

shown that using partial measurements, MS3 has superior

performance even under low SNRs. The performance of MS3

improves as the number of CRs or the average sampling rate

increases. Compared with the existing wideband spectrum

sensing methods, MS3 not only provides computation and

memory savings, but also reduces the hardware acquisition

requirements and the energy costs at CRs.

APPENDIX A

RELATIONSHIP BETWEEN NYQUIST DFT SPECTRUM AND

SUB-NYQUIST DFT SPECTRUM

Using the Poisson summation formula [24], (9), and (10),

we obtain:

fi
∑

l∈Z

Xc,i(w + fil) =
∑

n∈Z

yi[n]e
−2πwn

=

Mi−1∑

n=0

yi[n]e
−2πwn = Yi(w) (47)
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TABLE I
IMPLEMENTATION COMPLEXITY COMPARISON OF MS3 AND THE NYQUIST SYSTEMS WHEN THE RECEIVED SIGNALS ARE FADED ACCORDING TO

RAYLEIGH DISTRIBUTION WITH TEN DECIBEL RECEIVED SNR AT CRS.

Number of CRs for
10 20 30 40

Wideband Spectrum Sensing (v)

Required Number of ADCs
10 20 30 40

in the Proposed MS3 System

Required Number of ADCs in
21 40 58 74

the Nyquist System Type I

Required Number of ADCs in
21×10 40×20 58×30 74×40

the Nyquist System Type II

Average Sampling Rate of ADCs
957.54 513.08 350.34 276.77

in the Above Systems (f in MHz)

Sample Reduction Rate I 47.62% 50% 51.72% 54.05%

(
Total samples in MS3

Total samples in Nyquist type I
)

Sample Reduction Rate II 4.76% 2.5% 1.72% 1.35%

(
Total samples in MS3

Total samples in Nyquist type II
)

TABLE II
COMPARISONS OF WIDEBAND SPECTRUM SENSING TECHNIQUES.

Approach
Compression ADC/DSP Implementation Computational

Capability Type Complexity Complexity

Wavelet detection × Nyquist low O(N logN)
Multiband joint detection × Nyquist high O (N logN)

CS-based detection
√

sub-Nyquist medium O (N(M + logN))

Proposed system
√

sub-Nyquist low O(N logN)

where Xc,i(w) =
∫∞
−∞ xc,i(t)e

−2πwtdt. Similar to (47), by

using (1) and (2), we can obtain:

f
∑

l∈Z

Xc,i(w + fl) =
∑

n∈Z

xi[n]e
−2πwn

=

N−1∑

n=0

xi[n]e
−2πwn = Xi(w). (48)

As the received signal is bandlimited and f ≥ 2W , Xi(w) =
fXc,i(w) holds for w ∈ [−W

2 ,
W
2 ]. Substituting it to (47), we

obtain Yi(w) = fi
f

∑∞
l=−∞Xi(w + fil). In a discrete form,

we end up with:

Yi[m] =
Mi

N

∞∑

l=−∞
Xi[m+ lMi], m = 0, 1, · · · ,Mi − 1.

(49)

APPENDIX B

PROBABILITY OF SIGNAL OVERLAP AT SUB-NYQUIST

SAMPLING

As s spectral components are distributed over the frequency

bins of 0, 1, · · · , N−1, the probability of the frequency bin k
belonging to the spectral support Ω is P = Pr(k ∈ Ω) = s

N .

Let q denote the number of spectral components overlapped

on the frequency bin m, using (11) the probability of no signal

overlap is given by

Pr(q < 2) = Pr(q = 0)+Pr(q = 1)

= (1−P )⌈ NMi ⌉+
(⌈ NMi

⌉
1

)
P (1−P )⌈ NMi ⌉−1 (50)

where ⌈ NMi
⌉ denotes the number of summations in (11).

Substituting P = s
N into (50) while choosing sub-Nyquist

sampling rate in MS3 such that Mi =
√
N , we obtain

Pr(q < 2) =

(
N − s

N

) N
Mi

+
s

Mi

(
N − s

N

)N−Mi
Mi

=
(N−s
N )

√
N (N − s+ s

√
N)

N − s
. (51)

It can be tested that Pr(q < 2) approaches to 1 when choosing

N such that N ≫ s. Thus the probability of signal overlap

approaches to zero under the condition we choose.

APPENDIX C

PROOF OF LEMMA 1

Let Mi and Mj denote the number of samples at CRs i
and j, respectively. Using (19), we can represent the aliased

frequencies projected from k1 ∈ Ω by

gi = |k1| mod (Mi) + lMi = k1 − hMi + lMi, h 6= l (52)

gj = |k1| mod (Mj) + ľMj = k1 − ȟMj + ľMj , ȟ 6= ľ (53)

where integers h and ȟ are quotients from modulo operations,

and l−h ∈ [−⌈ NMi
⌉+1, ⌈ NMi

⌉−1], ľ−ȟ ∈ [−⌈ NMj
⌉+1, ⌈ NMj

⌉−
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1], in which ⌈ NMi
⌉ gives the smallest integer not less than N

Mi
.

Avoiding gi = gj is equivalent to avoiding (l − h)Mi =
(ľ − ȟ)Mj . If Mi and Mj are different primes, the condition

max(|l − h|) < Mj (i.e., ⌈ NMi
⌉ − 1 < Mj) will satisfy this.

After simplification, the condition MiMj > N is obtained.

Moreover, if it holds for any two CRs, the case for more than

two CRs will also hold.

APPENDIX D

PROOF OF THEOREM 2

If the received signals at CRs are Rayleigh faded, the lower

bound on the average probability of false alarm will remain

as it is independent of the SNR. Using (25), (29), and (30),

the upper bound on the average probability of false alarm can

be calculated by

Pf,k
up

=

∫ ∞

0

QJv

(√
ψγs,

√
λk

) γs−1
s

γsΓ(s)
e−

γs
γ dγs. (54)

Rewriting the Marcum Q-function by using (4.74) in [30] and

(8.352-2) in [31], we obtain:

QJv

(√
ψγs,

√
λk

)
=

∞∑

n=0

(
ψγs

2

)n
e−

ψγs
2

n!

Γ(n+ Jv, λk2 )

Γ(n+ Jv)
.

(55)

Substituting (55) into (54), we can rewrite (54) as

Pf,k
up

=

1

γs

∞∑

n=0

(
ψ
2

)n
Γ(n+ Jv, λk2 )

n!(s− 1)!Γ(n+ Jv)

∫ ∞

0

γn+s−1
s e−

ψγs
2

−γs
γ dγs.

(56)

Calculating the integral by using (3.351-3) in [31], we end up

with

Pf,k
up

=
(
1 +

ψγ

2

)−s ∞∑

n=0

Cnn+s−1

(
ψγ

ψγ + 2

)n Γ
(
n+ Jv, λk2

)

Γ (n+ Jv)
.

(57)

Similarly, we can obtain the lower bound on the average

probability of detection.

APPENDIX E

PROOF OF THEOREM 3

If the received signals are shadowed according to log-

normal distribution, the lower bound on P̃f,k in (42) will

remain. By (40), the upper bound on the probability of false

alarm can be given by (58). Substituting (55) into (58), we

calculate P̃f,k

u
as (59). Using (3.471-9) in [31] for calculating

the integral in (59), we obtain (60). The equations (58-60) are

shown on the top of the next page. Likewise, the lower bound

on the average probability of detection can be approximated.
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P̃f,k
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0

QJv
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)√ sη
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s exp
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=
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