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Abstract—This paper presents new results on linear transceiver
designs in a multiple-input-multiple-output (MIMO) link. By
considering the minimal total mean-square error (MSE) criterion,
we prove that the robust optimal linear transceiver design has
a channel-diagonalizing structure, which verifies the conjecture
in the previous work [1]. Based on this property, the original
design problem can be transformed into a scalar problem, whose
global optimal solution is first obtained in this work. Simulation
results show the performance advantages of our solution over
the existing schemes.

Index Terms—Robust design, mean-square error (MSE), linear
transceiver design, convex optimization

I. INTRODUCTION

MIMO technique has attracted a considerable interest from

both academic and industrial fields in recent years. By ex-

ploiting the multiplexing and diversity property, it can sig-

nificantly improve the spectral efficiency and link reliability

of the system [2]. In the literatures, transceiver designs in

MIMO systems have been extensively studied in [1]–[13]. One

approach of the designs is to allow nonlinear process at the

transmitter or the receiver, such as the successive interference

cancelation receiver design discussed by [2], or the Maximum

Likelihood detector investigated in [3], [4].

As an alternative approach, the linear transceiver design,

which only allows linear matrix multiplication of the sig-

nal, is more preferable in a practical system due to low

implementation complexity, and is the focus of this paper.

In [5], the joint optimal linear transceiver design problem

was addressed, and a closed-form solution was derived. Their

result was generalized into the multicarrier MIMO system

in [6], by developing a unified optimization framework. The

aforementioned works [5], [6] enjoy a common favorable

feature that the transceiver processing matrix parallelized the

original channel and allocated power to each data stream. In

light of the optimality of this channel-diagonalizing structure

in the perfect channel state information (CSI) case, one may
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wonder whether the same property holds for the robust design

in the imperfect CSI case.

Robust design, which aims to reduce the sensitivity of the

imperfect CSI to the system performance, has attracted much

attention [1], [7]–[9]. Generally, there are two widely used

CSI uncertainty models in the literature: the stochastic model

and the deterministic model. For the statistical CSI uncertainty

model, where the distribution of CSI uncertainties is assumed

to be known, this channel-diagonalizing structure has been

well established in MIMO channels [7], [8]. However, for

the deterministic CSI uncertainty model, which assumes that

the instantaneous value of CSI error is norm-bounded, this

problem remains unsolved, and only some restricted results

were obtained in [1], [9]. The authors in [9] proposed a semi-

robust scheme, by optimizing only the transmit processing

matrix with some fixed equalizer. Obviously, this scheme

cannot fully exploit the performance gain by the equalizer,

since the fixed equalizer may not be optimal. Later in [1], the

authors considered joint linear transceiver design, and showed

a superior performance over [9]. By imposing certain structural

constraints on the processing matrix at the transmitter or re-

ceiver side, they observed the favorable channel-diagonalizing

structure. Then they transformed the original problem into

the issues of power loading among each data stream, which

were further solved by the alternation optimization method.

However, two problems in [1] were left unsolved:

Q1) Joint Optimal structure: Without any additional structural

restriction, is this channel-diagonalizing structure joint

optimal?

Q2) Global Optimal solution: If it is, does the alternating-

optimization based method converge to the global optimal

solution?

In this paper, we will answer the above two questions raised

by [1]. Without assuming any specific structure for the linear

transmitter-equalizer matrix, we show that the optimal design

actually admits a channel-diagonalizing structure. Based on

this property, the original problem reduces to a scalar con-

vex problem, whose optimal solution can thus be efficiently

obtained. Simulation results in section V show the superior

performance of our solution over that in [1].

Notations: [·]H denotes conjugate transpose of a matrix or

a vector. I and 0 denote the identity and zero matrix, respec-

tively. RN and CN respectively denote the N dimensional

real field and complex field. || · ||2 and ‖ · ‖F denote the the

Frobenius norm of a vector and a matrix, respectively. We

will use boldface lowercase letters to denote column vectors

and boldface uppercase letters to denote matrices. The positive
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semidefinite matrix X is denoted by X � 0. diag{x1, · · · ,xR}
denotes diagonal concatenation of block matrices x1, · · · ,xR.

The tr(·) is the trace of a matrix. vec(X) stacks the columns

of matrix X into a vector. ⊗ denotes the Kronecker product.

R{·} denotes the real part of a complex number. λmax(·) is

the maximum eigenvalue of a matrix.

II. PROBLEM STATEMENT

We consider a MIMO communication system equipped with

N transmit antennas at the source and M receive antennas at

the destination. The symbol vector s ∈ CL is linearly precoded

by a source precoding matrix F ∈ CN×L, through the MIMO

channel H ∈ C
M×N , and then received by the destination. We

assume that E{ssH} = I without loss of generality. Generally,

the transmitter imposes a power constraint on the precoding

matrix F as tr(FFH) ≤ P . A linear equalizer G ∈ CL×M is

usually applied on the received signal to obtain the estimated

symbol vector ŝ as

ŝ = GHFs+Gn,

where n ∈ CM is the additive white Gaussian noise (AWGN)

observed at the destination with variance σ2
nI. Then the MSE

between ŝ and s is given by

MSE , E{‖ŝ− s‖2} = ‖GHF− I‖2F + σ2
n‖G‖2F .

We assume that L ≤ rank(H), since the number of degrees of

freedom is upper bounded by L ≤ rank(H) = min{M,N}.

In a practical wireless communication scenario, perfect CSI

is usually difficult to obtain. With only imperfect CSI, the

system performance will be deteriorated. This motivates us

to investigate the robust design taking the CSI errors into

account. To characterize the mismatched CSI, we adopt a

common deterministic imperfect CSI model [1], [9], and write

the channel matrix as

H = H̃+E, (1)

where H̃ is the estimated channel matrix and E is the

corresponding CSI error matrix satisfying ‖E‖F ≤ ε for some

ε ≥ 0. As in [1], [9], we assume that only H̃ and ε are

available at both ends.

By taking into imperfect CSI model (1) into account, the

robust transmitter-equalizer design is given by the solution of

the following min-max problem:

min
G,F

max
‖E‖F≤ε

‖G(H̃+E)F− I‖2F + σ2
n‖G‖2F ,

s.t. tr(FFH) ≤ P. (2)

III. ROBUST JOINT OPTIMAL STRUCTURE OF F AND G

In this section, we will determine the joint optimal structure

of F and G in problem (2), showing that they diagonalize the

MIMO channel into eigen subchannels. We also figure out

that the worst-case CSI uncertainty E has the similar singular

value decomposition (SVD) structure as the nominal channel

H̃, which simplifies problem (2) into a scalar problem as we

will shown in section IV.

Denote the SVD structure of F and G by F = UfΣfV
H
f

and G = UgΣgV
H
g , respectively, where Uf ,Vf ,Ug and Vg

are unitary matrices. The matrices Σf and Σg can be written

as

Σf = [Σ̂f ,0]
T ,Σg = [Σ̂g,0],

where Σ̂f , diag{f1, · · · , fL} and Σ̂g , diag{g1, · · · , gL}
are real diagonal matrices. Denote the nominal channel H̃ by

H̃ = UhΣhV
H
h and let Σ̂h be the L × L diagonal matrix

containing the largest L singular values γ1 ≥ · · · ≥ γL. Then

the following theorem determines the optimal structure of F

and G.

Theorem 1: The robust optimal F and G in problem (2) can

be expressed in the following structure:

F = VhΣf , (3)

G = ΣgU
H
h . (4)

Meanwhile the corresponding worst case channel uncertainty

is given by E = Uh∆DVH
h , with ∆D = diag{∆̂D,0}, and

∆̂D ∈ RL×L being diagonal.

Proof: We write the first additive term of the objective

function of (2) as

‖G(Ĥ+E)F− I‖2F
(a)
= ‖GUh(Σh +∆)VH

h F− I‖2F
(b)
= ‖G′(Σh +∆)F′ − I‖2F ,

where in (a) we have defined ∆ , UH
h EVh. By the unitary-

invariant property of ‖ · ‖F , we can see that ∆ still satisfies

‖∆‖F ≤ ε. In (b) we have defined G′ , GUh and F′ ,

VH
h F. Now problem (2) can be rewritten as

min
G′,F′

max
‖∆‖F≤ε

MSE(F′,G′,∆)

, ‖G′(Σh +∆)F′ − I‖2F + σ2
d‖G′‖2F ,

s.t. tr(F′F′H) ≤ P, (5)

which is an optimization problem with respect to F′ and G′.

To proceed, we first discuss a particular case when (F′,G′) =
([Σ̂f ,0]

T , [Σ̂g,0]). Then problem (5) becomes

min
Σ̂g ,Σ̂f

max
‖∆̂‖F≤ε

‖Σ̂g(Σ̂h + ∆̂)Σ̂f − I‖2F + σ2
d‖Σ̂g‖2F ,

s.t. tr(Σ̂f Σ̂
H
f ) ≤ P, (6)

where ∆̂ is the upper left L×L submatrix of ∆. We will then

show that there exist an optimal ∆̂ in (6) that is diagonal.

After some matrix manipulations and noticing the fact that

the maximization of a convex function is achieved on the

boundary [9], the inner maximization of problem (6) can be

transformed into the following problem

min
‖δ‖=ε

δH(−BT ⊗C)δ − 2R{dHδ}, (7)

where δ , vec(∆̂), C , Σ̂gΣ̂
H
g , B , Σ̂f Σ̂

H
f , and d ,

vec(Σ̂H
g (Σ̂gΣ̂hΣ̂f − I)Σ̂H

f ).

By the result in [9], δ is a global minimizer of (7) if and

only if there exists an ω such that

(−BT ⊗C+ ωI)δ = d,−BT ⊗C+ ωI � 0, ‖δ‖ = ε,
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which is equivalent to

ω∆̂−C∆̂B = Σ̂H
g (Σ̂gΣ̂hΣ̂f − I)Σ̂H

f , (8)

tr(∆̂∆̂H) = ε2, (9)

ω ≥ λmax(B
T ⊗C). (10)

Since both C and B are diagonal, (8)-(10) tells us that for

any given Σ̂f and Σ̂g , there exists an optimal ∆̂ that is diago-

nal. Denote the optimal solution of (6) as (Σ̂♯
f , Σ̂

♯
g, ∆̂

♯
D) with

∆̂
♯
D being diagonal. To facilitate the analysis, we further de-

fine F′♯ , [Σ̂♯
f ,0]

T , G′♯ , [Σ̂♯
g,0] and ∆

♯
D , diag{∆̂♯

D,0}.

Then by the above definitions and discussions, we have

max
‖∆̂‖F≤ε

MSE(F′♯,G′♯,∆) = MSE(F′♯,G′♯,∆♯
D). (11)

Now we discuss another particular situation when ∆ =
∆

♯
D. Then problem (5) becomes

min
F′,G′

‖G′(Σh +∆
♯
D)F′ − I‖2F + σ2

d‖G′‖2F ,

s.t. tr(F′F′H) ≤ P. (12)

which has been discussed in [5], [7], [10], and the optimal

solution is given by

(F′,G′) = ([Σ̂f ,0]
T , [Σ̂g,0]). (13)

Substituting (13) into problem (12), we have

min
Σ̂f ,Σ̂g

‖Σ̂g(Σ̂h + ∆̂
♯
D)Σ̂f − I‖2F + σ2

d‖Σ̂g‖2F ,

s.t. tr(Σ̂f Σ̂
H
f ) ≤ P. (14)

Remember that the optimal solution of (6) is denoted by

(Σ̂♯
f , Σ̂

♯
g, ∆̂

♯
D). Then it is easy to know that the optimal

solution of (14) is given by (Σ̂♯
f , Σ̂

♯
g), which means that when

the channel uncertainty is ∆
♯
D = diag{∆̂♯

D,0}, the optimal

(F′,G′) of problem (12) is given by ([Σ̂♯
f ,0]

T , [Σ̂♯
g,0]), or

we have

MSE(F′,G′,∆♯
D) ≥ MSE(F′♯,G′♯,∆♯

D). (15)

We will next show that from these two special cases given

in (11) and (15), the joint optimal structure of F′ and G′ can

be obtained. This technique has also been used in [11]–[13],

and is detailed as follows

max
‖∆‖F≤ε

MSE(F′,G′,∆)
(a)

≥ MSE(F′,G′,∆♯
D)

(b)

≥ MSE(F′♯,G′♯,∆♯
D)

(c)
= max

‖∆‖F≤ε
MSE(F′♯,G′♯,∆) (16)

where (a) is due to the fact that ∆
♯
D is only a particular

channel, (b) is due to (15) and (c) is due to (11). Inequality

(16) shows that the optimal F′ and G′ must be given by

(F′♯,G′♯). The proof is completed.

Remark 1: Theorem 1 provides some interesting insights

into the robust optimal transceiver design, showing that its

optimal structure is given by Vf = Ug , Uf = Vh and

Vg = Uh, which diagonalizes the MIMO channel into eigen

subchannels, and is consistent with the results under perfect

and stochastic CSI assumptions. Therefore, the answer to

question Q1 is yes! Note that problem (2) was also considered

in [1], where only partial results of Theorem 1 was obtained.

That is, by assuming Vg = Uh, then Vf = Ug and Uf = Vh

were proved to be optimal; on the other hand, given Uf = Vh,

then Vf = Ug and Vg = Uh were proved to be optimal.

IV. ROBUST GLOBAL OPTIMAL DESIGN BASED ON

SCALAR OPTIMIZATION

Based on Theorem 1, we know that the optimal solution

of problem (2) is determined by problem (6), where ∆̂ is

diagonal. Denote ∆̂ , diag{x1, · · · , xL}, f , [f1, · · · , fL]T
and g , [g1, · · · , gL]T , then problem (6) is equivalent to

min
f ,g

max∑
L
i=1

x2

i
≤ε2

L
∑

i=1

(figi(γi + xi)− 1)2 + σ2
n

L
∑

i=1

g2i

s.t.

L
∑

i=1

f2
i ≤ P. (17)

Introducing a slack variable t, problem (17) can be con-

verted to

min
f ,g,t

t+ σ2
n

L
∑

i=1

g2i (18a)

s.t.

L
∑

i=1

(figi(γi + xi)− 1)2 ≤ t,

L
∑

i=1

x2
i ≤ ε2 (18b)

L
∑

i=1

f2
i ≤ P. (18c)

Generally speaking, it is difficult to derive a closed-

form solution of (18). Thus we will solve it in numerical

results. Let η , [f1g1γ1 − 1, · · · , fLgLγL − 1]T , Γ ,

diag{f1g1, · · · , fLgL}, and x , [x1, · · · , xL]
T . Constraint

(18b) can be rewritten as

‖η + Γx‖22 ≤ t, ‖x‖2 ≤ ε. (19)

Following the similar lines in [1], [9], one can transform (19)

into




t− µ ηH 0

η I εΓ
0 εΓH µI



 � 0, ∃µ ≥ 0. (20)

By applying Schur’s Complement [14], (20) is equivalent

to the following constraint

[

t− µ ηH

η I

]

− 1

µ

[

0

εΓ

]

[

0 εΓH
]

=

[

t− µ ηH

η I− 1
µ
ε2ΓΓH

]

� 0. (21)

Using Schur’s Complement again, (21) can be written as

t− µ− ηH(I− 1

µ
ε2ΓΓH)−1η ≥ 0,

or equivalently

µ+

L
∑

i=1

(figiγi − 1)2

1− ε2f2
i g

2
i /µ

≤ t. (22)
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Combining (18) and (22), we get the following problem

min
f ,g,µ

L
∑

i=1

(γifigi − 1)2

1− ε2f2
i g

2
i /µ

+ µ+ σ2
n

L
∑

i=1

g2i

s.t.

L
∑

i=1

f2
i ≤ P, µ ≥ ε2f2

i g
2
i , (23)

where the constraint µ ≥ ε2f2
i g

2
i is implicitly included in the

constraint (21).

Problem (23) is still difficult to deal with. However, we will

next show that by some variable transformations, the global

optimal solution of problem (23) can be obtained. Define m ,

[m1, · · · ,mL]
T and n , [n1, · · · , nL]

T , where mi = figi and

ni = g2i , for i = 1, · · · , L. Then problem (23) becomes

min
m,n,µ

φ1(m,n, µ) ,
L
∑

i=1

(γimi − 1)2

1− ε2m2
i /µ

+ µ+ σ2
n

L
∑

i=1

ni

s.t.

L
∑

i=1

m2
i /ni ≤ P, µ ≥ ε2m2

i , (24)

Let s , [s1, · · · , sL]T . We claim that (24) is equivalent to the

following problem

min
m,n,µ,s

φ2(m,n, µ, s) ,

L
∑

i=1

(γimi − 1)2

1− si
+ µ+ σ2

n

L
∑

i=1

ni

s.t.

L
∑

i=1

m2
i /ni ≤ P, ε2m2

i /µ ≤ si < 1. (25)

This can be explained as follows. First, suppose that

(m♯,n♯, µ♯, s♯) is the optimal solution of (25). In view of

(24), it follows that

min
m,n,µ

φ1(m,n, µ) ≤ φ1(m
♯,n♯, µ♯)

(a)

≤ φ2(m
♯,n♯, µ♯, s♯) = minφ2(m,n, µ, s),

where in (a) we have used the constraint ε2m♯2
i /µ♯ ≤ s♯i .

Then we know that minφ1(m,n, µ) ≤ minφ2(m,n, µ, s).
On the other hand, for any feasible (m,n, µ) of (24), we can

always find some s, which makes the equality holds in (25).

This means that, it is also feasible to (25). Then we must have

minφ1(m,n, µ) ≥ minφ2(m,n, µ, s). Thereby we must have

minφ1(m,n, µ) = minφ2(m,n, µ, s).
Introducing the slack variable z , [z1, · · · , zL]T , problem

(25) can be written as

min
m,n,µ,s,z

L
∑

i=1

zi + µ+ σ2
n

L
∑

i=1

ni

s.t.

[

zi γimi − 1
γimi − 1 1− si

]

� 0, i = 1, · · · , L,
[

µ εmi

εmi si

]

� 0, si < 1, i = 1, · · · , L,
L
∑

i=1

m2
i

ni

≤ P. (26)

Problem (26) is a semidefinite programming (SDP) problem,

which can be efficiently solved by the MATLAB package tools

such as CVX [15]. Then the optimal fi and gi are obtained

by fi = mi/
√
ni and gi =

√
ni.

Remark 2: By fixing f or g, problem (23) becomes problem

(6) or (7) in [1], where they were proved to be convex and

can be optimally solved, respectively. This process is repeated

until convergence. However, the solution of this alternating

optimization based method depends on the initial point f (0),

and may not be optimal if problem (23) has local minimal.

Thus it is natural to ask question Q2, does this method

converge to the global optimal solution? Unfortunately, this is

not guaranteed. As will be seen in section V, different initial

point f (0) will lead to different results, and may also incur

some performance loss. Therefore, our answer to question Q2
is not always, and it depends on the initial point.

V. DISCUSSIONS AND SIMULATIONS

In this section, we first provide the complexity comparison

between our joint optimal design and the robust design in [1],

and then give numerical results to compare the two robust

designs.

The channel fading is modeled as Rayleigh fading, and

each channel entry satisfies the complex normal distribution

CN (0, 1). The noise is assumed to be zero-mean unit variance

complex Gaussian random variables. In our simulations, we set

M = N = L and vary ε through the normalized parameter

ρ ∈ [0, 1), i.e., ε2 = ρ‖H̃‖2F . Then the larger the ρ is, the

poorer the CSI quality will be. All results are averaged over

1000 channel realizations.

A. Complexity Comparison

Since we have derived the optimal structure of tranceiver

design in Theorem 1, the major computing step in our work

remains in solving problem (26). The complexity for solving

the SDP problem (26) is O(L2) per iteration and the number

of iterations typically lies between 5 and 50, for an SDP

problem [16]. On the other hand, the complexity analysis of

the method in [1] is a little complicated. In their work, when

fixing g, the optimal f was obtained by the three-level primal-

primal decomposition method, where a close-form solution

was given in the lowest level, while the bisection method and

the gradient method were applied at the middle and third level,

respectively. Similarly, the problem for determining optimal g

under fixed f was also solved in two levels, where a close-

form solution was derived at the first level, while the bisection

method was used at the second level. It can be seen that it is

hard to determine the complexity of each iteration as well

as the exact (or even approximate) iteration number in this

method. Upon this observation, we resort to the CPU time

comparison required by the two methods.

Fig. 1 shows the average CPU time comparison between

our robust optimal method and the robust method in [1]. We

set P = 20dBW and choose different initial points for the

method in [1]: a) Scheme I: set the initial point f (0) with equal

elements. b) Scheme II: set f (0) as the non-robust solution

that takes the nominal channel H̃ as the actual channel [5].

c) Scheme III: set f (0) as a random variable that satisfies

‖f (0)‖22 = P . It can be observed from Fig. 1 that scheme III
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is the most time-consuming scheme among all the schemes.

Although the time cost by Scheme I and II is similar to that

in our our global optimal solution, it increases more rapidly

as the number of data streams L goes large. From Fig. 1, we

know that the required CPU time for the method in [1] tends to

be more random in nature, and heavily depends on the initial

point. On the other hand, our method is not only efficient but

also has a more stable runtime performance.

B. Numerical Results

We now study the system MSE performance in different

scenarios. In Fig. 2, we set the same network configuration

as that in Fig. 1, and investigate the average worst-case

MSE performance versus L of our method and three different

schemes in [1]. As shown in the plot, scheme I and scheme

II suffer some marginal performance loss, while scheme III

incurs some apparent loss, which grows even larger when L
increases. Hence, the method in [1] does not always lead to

the optimal solution.
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L = 2.

As an other example, Fig. 3 depicts the average worst-

case MSE performance versus different transmit power with

ρ = 0.01 and ρ = 0.03. We consider the case when

M = N = L = 2. Fig. 3 verifies the superior performance of

robust schemes over the non-robust scheme in [5]. Moreover,

it can be observed that scheme II has an almost optimal

performance, while scheme I approximately approaches to

the optimal solution. Therefore, when the advanced software

package (such as CVX) is not available, scheme I (or scheme

II) can be viewed as a simple implementation of the global

optimal method.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we investigate the global optimal transceiver

design in the MIMO link under deterministic CSI uncer-

tainty model. We first prove that the optimal design of the

transmitter-equalizer has a favorable channel-diagonalizing

structure. Then we simplify the original problem into a scalar

optimization problem, and obtain the global optimal solution

via an SDP problem. Simulation results show that our method

outperforms the existing schemes.

We only considered the point-to-point MIMO system in this

work. However, as pointed out in [4], the transmission can

also be affected by the multiple access interference (MAI), if

the transmit-receive nodes are active over a communication

network which employs non-orthogonal multiplexing. In this

case, the received signal at the destination is contaminated by

the spatially colored Gaussian noise and the robust optimal

transceiver design must be reconsidered. Hence, it would be

interesting to address this issue in our future research.
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