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Abstract—In this paper, we study the average throughput
performance of energy beamforming in a multi-antenna wireless-
powered communication network (WPCN). The considered net-
work consists of one hybrid access-point (AP) with multiple
antennas and a single antenna user. The user does not have
constant power supply and thus needs to harvest energy from
the signals broadcast by the AP in the downlink (DL), before
sending its data back to the AP with the harvested energy
in the uplink (UL). We derive closed-form expressions of the
average throughput and their asymptotic expressions at high SNR
for both delay-limited and delay-tolerant transmission modes.
The optimal DL energy harvesting time, which maximizes the
system throughput, is then obtained for high SNR. All analytical
expressions are validated by numerical simulations. The impact of
various parameters, such as the AP transmit power, the energy
harvesting time, and the number of antennas, on the system
throughput is also investigated.

Index Terms—RF Energy harvesting, energy beamforming,
wireless-powered communication network, performance analysis,
throughput.

I. I NTRODUCTION

Limited energy supply has been a serious problem faced
by many wireless communications systems due to a dramatic
increase of their energy consumption. Recharging and replac-
ing batteries may introduce a high cost and sometimes could
be inconvenient or impossible, as for example, in dangerous
and toxic environments or for sensors underwater or inside
the human body. In this context, energy harvesting techniques,
which can prolong the lifetime of energy constrained wireless
networks in a sustainable way, have emerged and attracted
significant attentions, e.g., see [1] and references therein. The
techniques enable wireless nodes to harvest energy from the
surrounding environment. Apart from other techniques that
harvests energy from solar, wind, vibration, thermoelectric
effects or other physical phenomena, radio frequency (RF)
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energy harvesting, which typically refers to the capability
of the wireless nodes to scavenge energy from RF signals,
has emerged as an attractive solution recently [2], [3]. The
feasibility of RF energy harvesting has been experimentally
demonstrated by hardware implementation in [4] and [5].
Wireless-powered communication networks (WPCNs), a new
type of wireless networks emerging along with the RF energy
harvesting technique, refer to networks in which the wireless
devices normally have no internal energy supply (e.g., battery)
and need to harvest energy from the RF signals emitted
from a (dedicated) power transmitter before their information
transmission [6]. In practice, WPCNs can find many potential
applications, such as wireless sensor and RFID networks [7].

There have been several research papers in open literature,
which studied WPCNs for different network setups. Single-
user WPCNs were investigated in [8], [9]. Taking into con-
sideration limited feedback, Chenet al. derived the optimal
time duration for the downlink (DL) wireless energy transfer
(WET) through maximizing upper and lower bounds on the
average information transmission rate of one-user WPCNs
[8]. Furthermore, the impact of channel estimation error on
the average information transmission rate was also analyzed.
[9] optimized the energy efficiency of a single-user WPCN
by jointly designing the time duration and transmit power
for DL wireless energy transfer. Multi-user WPCNs were
first investigated in [10], in which a “harvest-then-transmit”
protocol was developed. In the proposed protocol, the users
first collect energy from the signals broadcast by a single-
antenna hybrid access-point (AP) in the DL and then use
the harvested energy to send independent information to the
hybrid AP in the uplink (UL), based on the time-division-
multiple-access (TDMA) scheme. The sum-throughput of the
considered network, subject to user fairness, was maximized
through optimizing the time allocation for DL WET and UL
wireless information transfer (WIT). A similar network setup
with a multi-antenna AP was investigated in [11], where
multiple users can simultaneously transmit information tothe
AP in the UL through space-division-multiple-access afterthey
harvest energy in the DL. In [11], the minimum throughput
of all users was maximized by jointly optimizing the time
allocation, the DL energy beams, the UL transmit power
allocation, and the receive beamforming vectors.

In contrast to the above papers, which mainly focused on
resource allocation in WPCNs, in this paper we concentrate on
analyzing the average performance of one-user multi-antenna
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WPCNs, in order to gain important insights for designing and
implementing multi-antenna WPCNs in practice. Specifically,
we derive the exact closed-form expression for the average
throughput performance of a multi-antenna WPCN with en-
ergy beamforming. It is also worth mentioning that there are
several papers that analyzed the average performance of thesi-
multaneous wireless information and power transfer (SWIPT)
for different network scenarios [12]–[15], which are related
but are essentially different to this paper. These papers focused
on the characterization of the fundamental trade-offs between
energy transfer and information transmission using the same
signal. Moreover, [16]–[19] focused on the development of
cooperative protocols for WPCNs with different setups. Note
that all nodes were assumed to be equipped with single antenna
in these papers. To the authors’ best knowledge, this is the
first paper that derives exact average performance of a multi-
antenna WPCN with energy beamforming.

In this paper, two different transmission modes are consid-
ered for the user, i.e., delay-limited and delay-tolerant1, which
corresponds to different length of the code-words used by the
user [12], [20]. More specifically, in the delay-limited mode,
the received signal at the AP has to be decoded block by block
and the code length should be no longer than the time duration
of each transmission block. Thus, the average throughput of
this transmission mode can be obtained via evaluating the
outage probability. In contrast, in the delay-tolerant mode, the
AP can store the received information blocks in a buffer and
tolerate the delay for decoding the stored signals together. In
this case, the code length can be very long compared to the
transmission block time. The egordic capacity is then used to
calculate the system average throughput in this delay-tolerant
mode.

The main contributions of this paper are summarized as
follows:

• We derive exact closed-form expressions for the average
throughput of the considered network in both delay-
limited and delay-tolerant transmission modes by eval-
uating the outage probability and ergodic capacity with a
given energy harvesting time.

• Asymptotic analyses are performed to gain insights and
derive closed-form expressions of the throughput-optimal
energy harvesting time at high SNR for both transmission
modes. Futhermore, numerical simulations are presented
to provide practical design insights into the impact of
various parameters, such as the transmit power of the AP,
the energy harvesting time, and the number of antennas,
on the system performance.

Notations: ‖x‖ denotes the Euclidean norm of a vector
x. FX (x) and fX (x) are used to represent the cumulative
distribution function (CDF) and probability density function
(PDF) of a random variableX , respectively.

The rest of the paper is organized as follows. Section
II describes the system model. The exact and asymptotic
performance analysis of the considered system is provided in
Section III. Section IV presents the numerical results from

1The delay-tolerant mode is named as no-delay-limited in [20].
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Fig. 1. System model of a one-user multi-antenna WPCN.

which various design insights are given. Finally, Section V
concludes this paper.

II. SYSTEM MODEL

We study a single-user multi-antenna WPCN shown in Fig.
1, with energy transfer in the downlink (DL) and information
transmission in the uplink (UL). We follow [8], [11] and
consider that the AP is equipped withN antennas but the
user carries one single antenna2. Such a network setup could
correspond to a wireless sensor network in practice, where the
user is a sensor node that cannot be equipped with multiple
antennas due to the size and cost constraints. Both the AP and
user work in a half-duplex mode. It is assumed that the user
has no embedded energy supply and thus needs to first harvest
energy from the signals broadcast by the AP in the DL and
then use it for the information transmission to the AP in the
UL. In our model, we consider a battery-free energy storage
design at the user, which has been adopted in several recent
works such as [8], [10], [12], [14]. Specifically, the user just
uses a storage device such as a supercapacitor to keep the
harvested energy among each transmission block.

The “harvest-then-transmit” protocol proposed in [10] is
assumed to implement in the considered network. LetT denote
the duration of one transmission block. The first interval of
the durationτT in each transmission block is used for the DL
wireless energy transfer from the AP to the user and in the
remaining interval of the duration(1 − τ)T , the user applies
the harvested energy to transmit the information to the AP
in the UL . For simplicity but without loss of generality, we
consider a normalized unit block time (i.e.,T = 1) hereafter.
In line with [9], [11], we assume a quasi-static channel model
with perfect channel state information (CSI) at the AP3. In
practice, the CSI can be acquired by various methods, e.g.,
the pilot-assisted reverse-link channel training [30]. Itis worth
mentioning that it would be more general to consider the

2The extension to a general multiple-input multiple-output(MIMO) sce-
nario with single/multiple user(s) [11], [31] would require the development
of a new framework to analyze its system performance, which may constitute
an independent paper and thus out of the scope of this paper.

3In this paper, we consider the case that at the beginning of each trans-
mission block, the AP first transfers a certain amount of energy to the user
to acquire CSI. After this CSI acquisition duration, the AP delivers wireless
energy to the user again, which will be used for UL information transmission.
We assume that the channel is either static or varies very slowly, which is the
case for wireless sensor networks, and thus the CSI acquisition duration is
very short such that it can be ignored compared with the wholetransmission
block.
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imperfect channel model as in [8]. But this would require
a totally different performance analysis framework, which
may constitute an independent paper. Thus, we would like
to consider this as our future work.

Let h and g represent theN dimensional DL and UL
channel vectors, respectively. Their entries are assumed to
follow independent and identically distributed (i.i.d) circularly
symmetric complex Gaussian distributions4 with a zero mean
and variance ofΩ. Let P denote the transmit power from
the AP during the DL phase. With the CSIh available at the
AP, the maximum ratio transmission (MRT) with beamforming
vector w∗ = h/‖h‖ is known to be optimal for DL energy
transfer [8]. By ignoring the negligible energy harvested from
the noise, the amount of energy harvested by the terminal
during the periodτ , denoted byEh, is given by

Eh = ητP‖h‖2, (1)

whereη is the energy conversion efficiency at the user.
After harvesting the energy from the AP, the user transmits

the information to the AP during the remaining time1 − τ .
The received signal at the AP can be expressed as

yA =

√

Eh
1− τ

gs+ n, (2)

wheres is the transmitted signal, andn is the additive Gaus-
sian white noise with a zero mean and variance matrixσ2

IN .
The maximum ratio combing (MRC) technique is assumed to
be performed at the AP to maximize the received signal-to-
noise ratio (SNR). The resulting SNR at the AP can be written
as [9]

γA =
Eh‖g‖2

(1− τ) σ2
=

τ

1− τ
γ̄‖h‖2‖g‖2, (3)

whereγ̄ = ηP
N0

.

III. PERFORMANCEANALYSIS

In this section, we analyze the average throughput perfor-
mance of the considered system in both delay-limited and
delay-tolerant transmission modes, respectively. This will be
achieved by evaluating the outage probability and ergodic
capacity of this network. We will also perform asymptotic
analysis to obtain some insights on the effect of various
system parameters. Moreover, we derive the expressions of
the throughput-optimal energy harvesting timeτ at high SNR
for both transmission modes.

A. Delay-Limited Transmission Mode

1) Exact Throughput Analysis:In this transmission mode,
the throughput can be obtained by evaluating the outage
probability defined as the instantaneous channel capacity drops
below the source’s fixed transmission rateR [12]. Thus, the

4Note that Rice fading is another practical model to describethe channel
fading between the AP and user when the distance between themis limited and
the light of sight exists. The performance analysis of the considered network
over Rice fading has been treated as our future work.

outage probability of the considered system with a given rate
R and energy harvesting timeτ can be expressed as

Pout(τ) = Pr (log2 (1 + γA) < R) = Pr (γA < γ0)

= 1−
2
N−1
∑

p=0

(√

(1−τ)γ0
τγ̄Ω2

)N+p

KN−p

(

2

√

(1−τ)γ0
τγ̄Ω2

)

p!

(N − 1)!
,

(4)

whereγ0 = 2R−1 andKn (·) is the modified Bessel function
of the second kind with ordern [25, Eq. (9.6.2)]. The last
equation is obtained by noting that the terms‖h‖2 and‖g‖2 in
γA follow independent and identical chi-square distributions
with 2N degree of freedom [21], and applying the PDF of
product of two chi-square distributed variables derived in[22].

Considering that the user transmits with a fixed rateR and
the effective communication time from the user to AP after
the energy harvesting phase is1 − τ , the average throughout
of the delay-limited transmission mode,ρlim, is given by

ρlim = (1− Pout(τ))R (1− τ)

=
2R (1− τ )

(N − 1)!

N−1
∑

p=0

(

√

(1−τ)γ0
τ γ̄Ω2

)N+p

KN−p

(

2
√

(1−τ)γ0
τ γ̄Ω2

)

p!
,

(5)

where the throughputρlim depends onτ , N , γ0, Ω, and γ̄.
Although the expression (5) gives exact value of the system
throughput and may not be computationally complicated to
evaluate, it does not offer explicit insights into the impacts of
the system parameters. Thus, we are motivated to look into the
system performance for this transmission mode at high SNR,
where simpler expressions can be obtained.

2) Asymptotic Throughput Analysis:To this end, we can
apply the series representation of Bessel functions in (5).But,
due to complex structure of (5), this method is shown to be not
tractable mathematically. To address this, let us first derive a
tight approximation for (5). Recall that the end-to-end SNRγA
in (3) can be regarded as a product of two chi-square random
variables. In addition, the chi-square distribution can bere-
garded as a special case of the generalized gamma distribution.
Recently, Chenet al. proposed a novel analytical framework
for evaluating the statistics of the product of independent
random variables in [24], where a tight approximation to the
CDF of the product of generalized gamma random variables
was provided. By applying the results obtained in [24], we
can approximate the CDF ofγA as

FγA (z) ≈
γ
(

m0 + 2N − 2, 2m0

Ω0

√

z
Ω2

)

Γ (m0 + 2N − 2)
, (6)

where γ (a, x) =
∫ x

0
e−tta−1dt is the lower incomplete

gamma function andΓ (a) =
∫

∞

0
e−tta−1dt is the complete

gamma function. Besides,m0 = 1.6467 andΩ0 = 1.5709 are
heuristically obtained [24].

Consequently, the average throughput of the delay-limited
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transmission mode can be approximately expressed as

ρlim ≈ R (1− τ )









1−
γ

(

m0 + 2N − 2, 2m0

Ω0

√

(1−τ)γ0
τ γ̄Ω2

)

Γ (m0 + 2N − 2)









.

(7)
As shown by numerical results in Sec. IV, the above approx-
imation is very tight.

In high SNR regime (i.e.,̄γ → ∞), the term2m0

Ω0

√

(1−τ)γ0
τ γ̄Ω2

inside the incomplete game function approaches to0. By
applying the asymptotic property of the incomplete gamma
function near zeroγ (a, x) ≈ xa/a, we further have

ρlim ≈ R (1− τ )











1−

(

2m0

Ω0

√

(1−τ)γ0
τ γ̄Ω2

)m0+2N−2

Γ (m0 + 2N − 1)











. (8)

From (8), we now can observe the impact of the system
parameters on the throughput performance. Specifically, when
any of the parametersN , Ω and γ̄ increases, the ratio term in-
side the square brackets of (8) will decrease, thereby improving
the system throughput. However, the system throughput cannot
keep increasing because the value of the term inside the square
brackets is limited by1 no matter how large are the values
of N , Ω and γ̄. In other words, the system throughput in the
delay-limited transmission mode should converge to a ceiling
value ofR(1 − τ) by increasing the parametersN , Ω and
γ̄. Moreover, the impact of the parameterτ is not so explicit
as that of the aforementioned ones. Particularly, the valueof
the term inside the square brackets rises when the value of
τ increases. But, this will lead to the decrease of the term
(1 − τ) at the same time. Thus, we claim that there should
exist an optimal energy harvesting time, denoted byτ∗lim, that
can achieve the maximal throughput of the delay-limited mode.

Based on the approximate system throughput (7), we can
derive an approximate expression for the value ofτ∗lim in high
SNR regime, which is given in the following proposition:

Proposition 1: The throughput-optimal energy harvesting
time at high SNR in the delay-limited transmission mode can
be approximately expressed as

τ∗lim ≈ 1

1 +

{

A+2
B W

(

− B
A+2

(

2Γ(A)
BA

)1/(A+2)
)}2 , (9)

whereW (x) is the Lambert W function, which is the solution
of the equationWeW = x. Besides,A = m0 + 2N − 2 and
B = 2m0

Ω0

√

γ0
γ̄Ω2 are defined for notation simplification.

Proof: See Appendix A.
Note that the above expression for the optimal energy

harvesting time is derived for high SNR regime. To obtain
the optimalτ of any given SNR, we can calculate the first-
order derivative of (5) with respect toτ and set it equal to zero.
However, due to the complexity of (5), it is hard to achieve
closed-form expressions for the roots of the obtained equation,
which can only be calculated via numerical methods.

B. Delay-Tolerant Transmission Mode

1) Exact Throughput Analysis:In this subsection, we an-
alyze the average throughput performance of the considered
system with a delay-tolerant transmission mode. In this trans-
mission mode, it is assumed that the AP can store the received
information blocks in a buffer and tolerate the delay for decod-
ing the stored signals together. Then, the average throughput
can be determined by evaluating the ergodic capacity at the
AP [12].

We first evaluate the ergodic capacity of the considered
network for a given energy harvesting timeτ . According to
the definition, the ergodic capacity of the system, denoted by
C (τ), is given by

C (τ) =

∫

∞

0

log2 (1 + z) fγ
A
(z)dz

=
2

(N − 1)! ln 2

(

1−τ
τ γ̄Ω2

)N

(N − 1)!
×

∫

∞

0

ln (1 + z) zN−1K0

(

2

√

(1− τ ) z

τγ̄Ω2

)

dz,

(10)

wherefγA (z) denotes the PDF of the random variableγA,
which can be expressed as [22]

fγA (z) =

2
(

1−τ
τ γ̄Ω2

)N

zN−1K0

(

2
√

(1−τ)z
τ γ̄Ω2

)

(N − 1)!(N − 1)!
.

(11)

Note that the ergodic capacity can also be calculated by using
the CDF, which is, however, essentially the same with the
adopted method using PDF.

Inspired by [26], we can evaluate the integral term in (10) in
a closed-form by applying the Meijer G-functions as follows.
Firstly, we express the termsln (1 + x) and xaKν (x) in
Meijer G-functions by using the equations given in [27, Ch.
2]. Then, we can solve the integral and write (10) in a closed-
form through the following calculation

C (τ) =
1− τ

τ γ̄Ω2
×

∫

∞

0 G1,2
2,2

(

z

∣

∣

∣

∣

1, 1
1, 0

)

G2,0
0,2

(

(1−τ)z
τ γ̄Ω2

∣

∣

∣
N − 1, N − 1

)

dx

(N − 1)!(N − 1)! ln 2

=

1−τ
τ γ̄Ω2G

4,1
2,4

(

1−τ
τ γ̄Ω2

∣

∣

∣

∣

−1, 0
−1,−1, N − 1, N − 1

)

(N − 1)!(N − 1)! ln 2
,

(12)

whereGm,np,q

(

x

∣

∣

∣

∣

a1, . . . , ap
b1, . . . , bq

)

is the Meijer G-function [23,

Eq. (9.301)], which is a standard built-in function in most of
the available mathematical software packages, such as MAT-
LAB, MAPLE and MATHEMATICA. Besides, the integral
of Meijer G-function is solved based on [23, Eq. (7.811)].
Now, we can obtain the average throughput of the considered
system, denoted byρtol, by calculating the product of the
ergodic capacityC(τ) and the effective time duration for
information transmission of1− τ . That is,

ρtol = (1− τ )C (τ) , (13)
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where the average throughputρtol depends onτ , N , Ω and
γ̄. However, due to the complexity of the Meijer G-functions,
it is hard to observe the specific relationships between the
throughput and the aforementioned parameters from (13).

2) Asymptotic Throughput Analysis:To gain more insight,
next let us derive the asymptotic throughput. For sufficiently
high SNR, we can approximatelog2 (1 + z) in the integral of
(10) aslog2 (z). The asymptotic throughput can be calculated
without the need of Meijer G-function as

ρtol ≈
2 (1− τ)

(N − 1)!

(

1−τ
τ γ̄Ω2

)N

(N − 1)! ln 2
×

∫

∞

0

zN−1 ln z K0

(

2

√

(1− τ ) z

τγ̄Ω2

)

dz

=
2 (1− τ)

(N − 1)!

(

1−τ
τ γ̄Ω2

)N

(N − 1)! ln 2
×

∫

∞

0

t2N−22 ln t K0

(

2

√

(1− τ )

τ γ̄Ω2
t

)

2tdt

=
1− τ

ln 2

[

2ψ (N) + ln γ̄ + 2 lnΩ− ln

(

1− τ

τ

)]

,

(14)

where [28, Eq. (2.16.20.1)] is used to solve the integral,ψ (·)
is the Euler Psi function [23, Eq. (8.36)].From (14), we can
see that for a given value ofτ , the system throughput is
proportional to the Psi function of the number of antennas
N at high SNR. This indicates that the system throughput
increases with the rising of the number of antennas but
the increasing rate is gradually decreasing, according to the
properties of the Psi function. The average throughput is also
proportional to the logarithm functions of the parametersγ̄
andΩ in a high SNR regime. In addition, similar to the case
in the delay-limited mode, we can clearly observe from (14)
that the energy harvesting timeτ plays two opposite roles in
the system throughput. Specifically, increasing the value of τ
will decrease the value of the term outside the square brackets
but increase the value of the term inside the square brackets.
Thus, we also deduce that there exists an optimal value for
the energy harvesting time, denoted byτ∗tol, that can maximize
the system throughput.

Based on (14), we can obtain a closed-form expression
for the optimal energy harvesting timeτ∗tol at high SNR for
the delay-tolerant transmission mode, given in the following
proposition:

Proposition 2: The throughput-optimal energy harvesting
time at high SNR in the delay-tolerant transmission mode can
be expressed as

τ∗tol≈
1

1 +W
(

γ̄Ω2e2ψ(N)−1
) . (15)

Proof: See Appendix B.
It is worth emphasizing that the above equation for the
throughput-optimal energy harvesting time is actually a high-
SNR approximate solution as it is obtained based on the high-
SNR approximation in (14).

From (15), we can see that the value of the optimal energy
harvesting timeτ∗ is inversely proportional to the parameters
γ̄, Ω and N , since the Lambert W functionW (x) is a
monotonically increasing function forx ≥ 0. This observation
will be verified by simulation results in next section.

IV. SIMULATION RESULTS

In this section, we provide simulation results to validate the
derived analytical results. We also investigate the effects of
the transmit power of the APP , the number of antennasN ,
and the energy harvesting timeτ , on the system throughput. To
capture the effect of path-loss on the network performance,we
use the channel model thatΩ = 10−3 (dAU )

−α, wheredAU
is the distance between the AP and the user, andα ∈ [2, 5]
is the path-loss factor [29]. Note that a 30dB average signal
power attenuation is assumed at a reference distance of1m
in the above channel model [10]. In all following simulations,
we set the distance between the AP and userdAU = 10m, the
path-loss exponentα = 2, the noise powerσ2 = −80dBm,
the energy harvesting efficiencyη = 0.5, and the transmission
rate of the userR = 2 in the delay-limited mode.

Fig. 2 plots the average throughput curves of the considered
network versus the transmit power of the AP for both delay-
limited and delay-tolerant modes with various numbers of
antennas at the AP. We can see from Fig. 2 that the derived
exact analytical results tightly coincide with the corresponding
simulated ones, which verified the correctness of the derived
closed-form expressions for the average throughput given in
(5) and (13). Besides, it can be observed from Fig. 2 (a)
that the approximate throughput of the delay-limited mode
calculated via (7) can estimate the exact one very well,
which confirms the effectiveness of the approximation. More-
over, for the delay-tolerant mode, the asymptotic throughput
quickly approaches the exact one as the AP transmit power
increases in both transmission modes, although there are
gaps between them when the transmit power is low. This
observation validates our asymptotic analysis in (14). It can
also be observed from this figure that the system throughput
in both transmission modes is improved as either the transmit
power or the number of antennas increases. However, the
trends for the increasing of the system throughput are different
in two transmission modes. Specifically, in the delay-limited
transmission mode, the system throughput tends to be saturated
when the transmit power of the AP is high enough. In addition,
the larger the number of antennas at the AP, the lower the value
of the transmit power from which the saturation of the system
throughput starts. In contrast, the system throughput grows
monotonically as the transmit power of the AP increases.
These observations are actually consistent with our theoretical
analyses discussed in Sec. III.

Fig. 3 illustrates the effect of the number of antennas at the
AP on the system throughput, in which the throughput curves
of both transmission modes are plotted versus the number of
antennas for different values of the energy harvesting time
τ . As we expected, the system throughput in delay-limited
mode first increases and then converges to a ceiling as the
number of antennas at the AP increases. This is because that
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Fig. 2. Average throughput versus the transmit power of the AP for (a) delay-limited transmission mode and (b) delay-tolerant transmission mode with
different number of antennas, whereτ = 0.5.
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Fig. 4. Average throughput versus the energy harvesting time τ for (a) delay-limited transmission mode and (b) delay-tolerant transmission mode with
different values ofN andP .
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Fig. 3. Average throughput versus the number of antennas at the AP for
both delay-limited transmission mode and delay-tolerant transmission mode
with different values ofτ , whereP = 30 (dBm).

the system throughput in this delay-limited mode is limited
by the value ofR(1 − τ). On the other hand, the system
throughput increases accordingly when the number of antennas
becomes larger in the delay-tolerant mode. However, the slope
of the throughput curves gradually decreases, which coincides
with our theoretical analysis because the average throughput
is proportional to the Psi function of the number of antennas.
Moreover, we can see from Fig. 3 that the impact of the
energy harvesting timeτ on the system throughput of both
transmission modes is not so clearly as that of the number of
antennas does. For example, the throughput performance in
the delay-tolerant mode is improved when the value ofτ is
increased to0.3 from 0.1. However, asτ increases from0.3 to
0.5, the system throughput forN ≥ 2 significantly decreases.

To clearly demonstrate the impact of the energy harvesting
time τ , we plot the throughput curves versusτ for both trans-
mission modes with variable numbers of antennas and transmit
powers of the AP in Fig. 4. It can be observed from this
figure that there exists a throughput-optimal energy harvesting
time for all the considered cases in both transmission modes,
which coincides with our analytical results. Recall that we
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also derive the closed-form expressions for the optimal energy
harvesting time at high SNR for both transmission modes in
Sec. III. To validate these two derived expressions given in(9)
and (15), we compare them with the corresponding optimal
energy harvesting time found via exhaustive search in Fig.
5. We can see from Fig. 5 that the values of the optimalτ ,
calculated by (9) and (15), coincide with the corresponding
ones obtained via exhaustive search when the transmit power
of the AP is high enough (i.e., at high SNRs), which verifies
the correctness of our derivations of these two equations. In
addition, as expected, the values of the optimalτ decrease as
either the number of antennas or the transmit power increases.
This is because the user can harvest the same amount of energy
in a shorter time when either the number of antennas or the
transmit power increases, and more time could be allocated
to the UL information transmission to improve the system
throughput.

V. CONCLUSION

In this paper, we derived exact and asymptotic closed-
form expressions for the average throughput of a multiple-
antenna wireless-powered communication network with en-
ergy beamforming in both delay-limited and delay-tolerant
transmission modes. The correctness and effectiveness of
these theoretical analysis were verified by simulation results.
Numerical results showed that the system throughput in the
delay-limited mode first improves as either the number of
antennas or the transmit power of the AP increases and then
get saturated when these two parameters are large enough.
In contrast, the system throughput in the delay-tolerant mode
is always proportional to the number of antennas and the
transmit power of the AP. Based on the asymptotic analysis,
we also derived closed-form expressions of the throughput-
optimal energy harvesting time at high signal-to-noise ratio
(SNRs) for both transmission modes. Numerical simulations
showed that the value of the optimal energy harvesting time
is inversely proportional to the number of antennas and the
transmit power of the AP. The optimal energy harvesting time
calculated by the derived expressions can coincide well with
the one obtained via exhaustive search when the SNR is high
enough. Furthermore, the larger the number of antennas, the
more accurate the optimal energy harvesting time calculated
by the derived expressions.

APPENDIX

A. Proof of Proposition 1

The approximate expression of the system throughput given
in (7) instead of the exact one is adopted to calculate the
optimal energy harvesting timeτ∗lim since it is more tractable5.
To proceed, we calculate the first-order derivative of (7) with
respect toτ and set it equal to0. After some algebraic

5Originally, the asymptotic expression (8) should be used tofind the optimal
energy harvesting time. However, due to the special polynomial structure of
(8), we found it is hard to obtain a closed-form expression for the optimal
energy harvesting time from (8). Thus, we choose to use (7) instead.

manipulations, we have

γ

(

A,B

√

1− τ

τ

)

+
1

2τ

[

B

√

1− τ

τ

]A

e−B
√

1−τ
τ = Γ (A) ,

(16)
where A = m0 + 2N − 2 and B = 2m0

Ω0

√

γ0
γ̄Ω2 . For

high SNR, the termB approaches to 0. By applying the
asymptotic property of the incomplete gamma function near
zero γ (a, x) ≈ xa/a once again and performing variable

substitutiony =
√

1−τ
τ , we can simplify (16) as

yA

(

1 +
A
(

y2 + 1
)

2
e−By

)

=
AΓ (A)

BA
. (17)

Furthermore, in high SNR regime, only a small fraction of
each transmission block is needed for DL energy transfer and
the majority of time should be allocated to the UL information

transmission. This means thaty =
√

1−τ
τ ≫ 1 should hold.

In this case, we can ignore the two “1” terms on the left-hand
side of (17) and obtain the following equation

yA+2e−By =
2Γ (A)

BA
. (18)

By equaling the{A+2}th roots of both sides in (18), we have

ye−
B

A+2y =

(

2Γ (A)

BA

)
1

A+2

⇔− B

A+ 2
ye−

B
A+2y = − B

A+ 2

(

2Γ (A)

BA

)
1

A+2

⇔− B

A+ 2
y =W

(

− B

A+ 2

(

2Γ (A)

BA

)
1

A+2

)

.

(19)

Substituting the relationshipy =
√

1−τ
τ into the last equation

and rearranging it, we can obtain the desired results given in
(9).

B. Proof of Proposition 2

To find the optimal energy harvesting timeτ∗tol, we calculate
the first-order derivative of the right-hand side of (14) with
respect toτ and set it to zero. After some algebraic manipu-
lations, we obtain the following equation:

2ψ (N) + ln
(

γ̄Ω2
)

− 1

τ
= ln

1− τ

τ
. (20)

By performing an exponential operation on both sides of the
above equation, we have

γ̄Ω2e2ψ(N)e−
1
τ =

1− τ

τ
,

⇔ γ̄Ω2e2ψ(N)−1e
τ−1
τ =

1− τ

τ
,

⇔ γ̄Ω2e2ψ(N)−1 =
1− τ

τ
e

1−τ
τ ,

⇔ 1− τ

τ
=W

(

γ̄Ω2e2ψ(N)−1
)

,

⇔ τ =
1

1 +W
(

γ̄Ω2e2ψ(N)−1
) ,

(21)

which completes the proof.
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(a) Delay-limited mode
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Fig. 5. The optimal energy harvesting time versus the transmit power of the AP for (a) delay-limited transmission mode and (b) delay-tolerant transmission
mode with different values ofN .
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