
1

Dynamic Routing for Flying Ad Hoc Networks
Stefano Rosati, Member, IEEE, Karol Krużelecki, Member, IEEE, Grégoire Heitz, Dario

Floreano, Senior Member, IEEE, and Bixio Rimoldi, Fellow, IEEE

Abstract—This paper reports experimental results on
self-organizing wireless networks carried by small flying
robots. Flying ad hoc networks (FANETs) composed of
small unmanned aerial vehicles (UAVs) are flexible, in-
expensive and fast to deploy. This makes them a very
attractive technology for many civilian and military appli-
cations. Due to the high mobility of the nodes, maintaining
a communication link between the UAVs is a challenging
task. The topology of these networks is more dynamic
than that of typical mobile ad hoc networks (MANETs)
and of typical vehicle ad hoc networks (VANETs). As a
consequence, the existing routing protocols designed for
MANETs partly fail in tracking network topology changes.

In this work, we compare two different routing algo-
rithms for ad hoc networks: optimized link-state routing
(OLSR), and predictive-OLSR (P-OLSR). The latter is an
OLSR extension that we designed for FANETs; it takes
advantage of the GPS information available on board. To
the best of our knowledge, P-OLSR is currently the only
FANET-specific routing technique that has an available
Linux implementation. We present results obtained by
both Media Access Control (MAC) layer emulations and
real-world experiments. In the experiments, we used a
testbed composed of two autonomous fixed-wing UAVs and
a node on the ground. Our experiments evaluate the link
performance and the communication range, as well as the
routing performance.

Our emulation and experimental results show that P-
OLSR significantly outperforms OLSR in routing in the
presence of frequent network topology changes.

I. INTRODUCTION

In the case of a calamitous event, when ordinary
communication infrastructure is out of service or simply
not available, a group of small flying robots can provide
a rapidly deployable and self-managed ad hoc Wi-Fi
network to connect and coordinate rescue teams on the
ground. Networks of small unmanned aerial vehicles1

(UAVs) can also be employed for wildfire monitoring

S. Rosati, K. Krużelecki, and B. Rimoldi are with the Mobile
Communications Laboratory (LCM), Swiss Federal Institute of Tech-
nology (EPFL), Lausanne, Switzerland. G. Heitz and D. Floreano
are with Laboratory of Intelligent Systems (LIS), EPFL, Lausanne,
Switzerland. Email: {stefano.rosati, karol.kruzelecki, gregoire.heitz,
dario.floreano, bixio.rimoldi}@epfl.ch

1Small UAVs are also knows as micro-air vehicles (MAVs)

[1], border surveillance [2], and for extending ad hoc
networks on the ground [3], [4], [5].

The recent technological progress in electronics and
communication systems, especially due to the the wide-
spread availability of low-cost micro-embedded com-
puters and Wi-Fi radio interfaces, has paved the way
for the creation of inexpensive flying ad hoc networks
(FANETs), however, a challenging networking problem
arises.

As pointed out in [6], FANETs are a special case of
mobile ad hoc networks (MANETs) characterized by
a high degree of mobility. In a FANET, the topology
of the network can change more frequently than in a
typical MANET or vehicle ad hoc network (VANET).
As a consequence, the network routing becomes a crucial
task [7], [8]. The network routing algorithms, which have
been designed for MANETs, such as BABEL [9] or the
optimized link-state routing (OLSR) protocol [10], [11],
fail to follow the evolution of the network topology. It
is possible to bypass this problem by considering star
networks with static routing [12]. However, star archi-
tectures restrict the operative area of groups of UAVs,
because the nodes cannot fly out of the communication
range of the control center. In this paper, we focus on
partially-connected mesh ad hoc networks that enable
the UAVs to use multi-hop communication to extend
the operative area. In this case, the problem of highly
dynamic routing must be faced.

A few methods for overcoming the problem caused by
a rapidly changing network topology have recently been
proposed: Guo at al. [13] present a UAV-aided cross-
layer routing protocol (UCLR) that aims at improving
the routing performance of a ground MANET network
with aid from one UAV. In [14], the authors propose the
use of directional antennas and two cross-layer schemes,
named Intelligent Media Access Control (MAC), and
Directional-OLSR. The latter is an extension of OLSR.
The choice of the route is based on flight information
(such as attitude variations, pitch, roll and yaw). The
authors report only OPNET simulation results. Benzaid
et al [15], [16] present an OLSR extension denoted Fast-
OLSR that aims at meeting the need for highly dynamic
routing in MANETs composed of fast-moving and slow-
moving nodes. This extension increases the rate of the

ar
X

iv
:1

40
6.

43
99

v3
 [

cs
.N

I]
 1

8
M

ar
 2

01
5

2

Hello messages only for the nodes that move faster than
a given speed. If the fast-moving nodes are a small
percentage of the network’s nodes, the additional over-
head is limited. Otherwise, if the network is composed
mainly of UAVs, the overhead grows significantly. In
[17], we present an extension to the OLSR protocol
named predictive-OLSR (P-OLSR). The key idea of this
extension is to use GPS information available on board
and to weigh the expected transmission count (ETX)
metric by a factor that takes into account the direction
and the relative speed between the UAVs.

In this paper, we present field experiments that com-
pare P-OLSR against OLSR. The experiments involved
two UAVs and a ground station. The carriers were fixed-
wing autonomous planes called eBees and developed
by SenseFly [18]. Each plane carried an embedded
computer-on-module and an 802.11n radio interface.
The field-test results show that P-OLSR can follow
rapid topology changes and provide a reliable multi-
hop communication in situations where OLSR mostly
fails. In order to assess the behavior of P-OLSR in
larger networks, we carried out MAC-layer emulations
considering a network composed of 19 UAVs. To the
best of our knowledge, P-OLSR is currently the only
FANET-specific routing technique that has an available
Linux implementation. The open-source software of the
P-OLSR daemon can be downloaded from [19].

The rest of the paper is organized as follows. In
Section II, we highlight the differences between OLSR
and P-OLSR. In Section III, we specify the modified
structure of the Hello messages and describe the im-
plementation of the P-OLSR daemon. In Section IV,
we describe the testbed and in Section V we describe
the experiments and present the results. In Section VI,
we present the MAC-layer emulation we used to assess
the P-OLSR performance in larger networks. Finally, we
draw our conclusions in Section VII.

II. ROUTING FOR FLYING AD HOC NETWORKS

In [12], Frew and Brown analyze the networking for
systems of small UAVs. They characterize four different
network architectures: direct-link, satellite, cellular, and
ad hoc (also called mesh networking). The direct-link and
the satellite architecture are star networks where all the
UAVs are either directly connected to the ground control
or to a satellite connected to the ground control. This is a
simple network architecture: it does not require dynamic
routing, because all the nodes are directly connected
with the control center. The nodes require, however,
long-range (terrestrial or satellite) links, hence they are
not suitable for small UAVs. Furthermore, UAV-to-UAV
communication is inefficiently routed through the control

center, even if the nodes operate the same area. This
might cause traffic congestion in the control center,
which is also a weakness of the system in case of attack.

In the cellular architecture, the UAVs are connected
to a cellular system with many base stations scattered on
the ground. UAVs can do a handover between different
base stations during the flight. This architecture does not
need a single vulnerable control center. However, the
operating area of the UAVs is limited by the cellular
network extension. In the case of a catastrophic event,
the UAV system can be deployed only if the cellular
network is present and functioning in the area.

In the ad hoc architecture, every node can act as
a router. These networks are also know as FANETs:
they have no central infrastructure, therefore, they are
very robust against isolated attacks or node failures.
Moreover, as these networks do not rely on any external
support they can be rapidly deployed anywhere. These
characteristics, on one hand, make FANETs the most
suitable solution for many applications, but on the other
hand, they raise a challenging networking problem.

In fact, due to the rapid and erratic movement of the
UAVs, the topology of a FANET can vary rapidly and
the nodes must react by automatically updating their
routing tables. Therefore, in a FANET it is crucial to
employ a fast and reactive routing procedure. In [17]
we show that some of the most popular routing algo-
rithms for MANETs, such as OLSR and BABEL, fail
to track the fast topology changes of a FANET. Similar
conclusions are also drawn in [7]. For this reason, in
[17], we introduce P-OLSR. To predict how the quality
of the wireless links between the nodes is likely to
evolve, P-OLSR exploits the GPS information, which
is typically available from the UAV’s autopilot. For the
sake of completeness, in this section we briefly report the
definition of ETX, as well as, the key concepts behind
P-OLSR.

A. Link-Quality Estimation

OLSR is currently one of the most popular proactive
routing algorithms for ad hoc networks. It is based on
the link-state routing protocol. The original OLSR design
does not consider the quality of the wireless link. The
route selection is based on the hop count metric, which
is inadequate for mobile wireless networks. However,
by using the ETX metric [20], the OLSR link-quality
extension enables us to take into account the quality of
the wireless links. The ETX metric was introduced in
[21], and it is defined as

ETX(R) =
∑
η∈R

ETX(η) =
∑
η∈R

1

φ(η)ρ(η)
, (1)

3

where, R is a route between two nodes of the network,
and η is a hop of the route R. φ(η) is the forward
receiving ratio, i. e., the probability that a packet sent
through the hop η is successfully received. ρ(η) is
the reverse receiving ratio, i.e., the probability that the
corresponding ACK packet is successfully received. In
other words, ETX estimates the expected number of
transmissions (including re-transmissions) necessary to
deliver a packet from the source to its final destination.
Then OLSR selects the route that has the smallest ETX,
which is not necessarily the one with the least number
of hops. If all the hops forming R are errorless (i.e.,
φ(η) = ρ(η) = 1) the ETX(R) is equal to the number
of hops of R.

The receiving ratios are typically estimated by link-
probe messages. The OLSR link-quality extension uses
the control messages named Hello messages as a link-
probe. φ is computed by means of an exponential moving
average, as follows,{

φl = αhl + (1− α)φl−1
φ0 = 0

, 0 ≤ α ≤ 1 , (2)

where

hl =

{
1 if the l-th Hello message is received
0 otherwise

; (3)

and α is an OLSR parameter, named link-quality aging,
that drives the trade-off between the accuracy and re-
sponsiveness of the receiving ratio estimation. On one
hand, with a greater α, the receiving ratios will be
averaged for a longer time, thus yielding a more stable
and reliable estimation. On the other hand, with a lower
α, the system will react faster. Another important OLSR
parameter is the Hello Interval (HI) that indicates how
frequently Hello messages are broadcasted.

B. Speed-Weighted ETX

In a FANET the nodes move rapidly, for example, the
cruising speed of our flying robots is around 12 meters
per second. The network topology changes rapidly, and
a wireless link between two UAVs can break suddenly.
In these networks, the ETX metric might be inadequate,
because it is not reactive enough to follow the link vari-
ations. Due to the delay introduced by the exponential
moving average, a node notices that a certain wireless
link has broken with a non-negligible delay. Therefore,
for a significant amount of time, it will continue routing
packets on a link that is actually broken.

To solve this problem, we modify the ETX metric to
take into account the position and the direction of the
UAV, with respect to its neighbors. The ETX(η) metric

of the hop η between the nodes i and j is weighed by a
factor that accounts for the relative speed between i and
j as follows:

ETX(η) =
ev

i,j
` β

φ(η)ρ(η)
, (4)

where vi,j` is the relative speed between nodes i and j,
and β is a non-negative parameter.

If the nodes i and j move closer to each other, the
relative speed is negative, thus the ETX will be weighted
by a factor smaller than 1. Otherwise, if the nodes i
and j move apart from each other, the relative speed
is positive, thus the ETX will be weighted by a factor
greater than 1. In other words, a hop between two nodes
that move closer to each other is preferred rather than
a hop between two nodes that move apart, even if they
have the same values of φ and ρ.

In order to compute the speed-weighted ETX, we as-
sume that every node knows the position of its neighbors.
As illustrated in the Appendix III, to distribute the GPS
coordinates across the network we add a field to the
Hello messages.

The instantaneous relative velocity between i and j at
time ti is computed as

ṽi,j` =
di,j` − d

i,j
`−1

t` − t`−1
, (5)

where, t` and t`−1 are, the arrival time of the last and
second to last Hello message. di,j` and di,j`−1 are the
corresponding distances between the nodes i and j. As
the GPS positions are subject to errors, and gusts of
wind can perturb the motion of the UAVs, it is preferable
to average the instantaneous speed using a exponential
moving average as follows:

{
vi,j` = γṽi,j` + (1− γ)vi,j`−1
vi,j0 = 0

, 0 ≤ γ ≤ 1 , (6)

where γ is a P-OLSR parameter. Acting on the P-OLSR
parameter β and γ, we can optimize the routing selection
to the cruising speed of the UAVs, and to the chosen HI.

Fixed-wing UAVs require forward motion for flying.
They also require a minimum air-speed and turning
radius. Therefore the direction of the UAV is a good
indicator for predicting its position in the near future, and
then to foresee how the link quality is likely to evolve.

III. IMPLEMENTATION DETAILS

In order to implement the P-OLSR protocol, we forked
an open-source implementation of OLSR called OLSRd
[22]. In the modified version, the Hello messages are

4

augmented to contain position information. Thus, every
node knows its neighbors’ positions and can compute
the corresponding ETX according to (4).

A. OLSRd with Link-Quality Extension

OLSRd uses link-quality sensing and ETX metrics
through the so-called link-quality extension [20]. It re-
places the hysteresis mechanism of the OLSR protocol
with link-quality sensing algorithms that are intended to
be used with ETX-based metrics. To do so, the link-
quality extension uses the OLSR Hello messages to
probe link quality and to advertise link-specific quality
information, (i.e. receiving ratios, φ and ρ), in addition to
detecting and advertising neighbors. Likewise, it includes
the link-quality information also in OLSR Topology
Control (TC) messages that are to be distributed to the
whole network. Clearly the modified messages are not
RFC-compliant anymore because they include new fields
for link-quality information. Therefore, all the nodes in
the network have to use the link-quality extension.

B. P-OLSRd Implementation

To implement P-OLSR, we have to share the coordi-
nates (i.e. longitude, latitude, and altitude) of each node
with its neighbors. This is done through the Hello mes-
sages. Subsequently, each node uses its neighbors’ co-
ordinates to compute the corresponding relative speeds,
and share them across the whole network via both Hello
and TC messages.

Fig. 1 depicts the structure of the original Hello
message in OLSRd. The first block of 8 bytes carries
information about the node itself. Note that in this block
there are 3 reserved bytes that are not used by the OLSR
daemon and are filled with zeros. Then, a block of 8
bytes is appended for each neighbor seen by the node.
This block is formatted as follows: 4 bytes are for the
IP address of the neighbor, 1 byte is for the forward
receiving ratio2 φ(η′), 1 byte is for the reverse receiving
ratio ρ(η′), and 2 bytes that are not used, hence filled
with zeros.

Fig. 2 depicts the modified structure of the Hello mes-
sage. We highlight in gray the fields that were added or
modified. The first part of the message contains 16 bytes
instead of 8. It contains the latitude and the longitude,
formatted as single-precision floating-point numbers that

2η′ is the hop between the node the is producing the Hello message
and its neighbor.

9

Neighbor interface address

Link Code Link Message SizeReserved

0 1 2 3 4 5 6 7
0 21 3byte byte byte byte

Reserved Htime Willingness
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

φ(η′) ρ(η′) Reserved

Neighbor interface address

φ(η′′) ρ(η′′) Reserved

......

...

Fig. 1. Format of the original (i.e. OLSRd) Hello message.

...

Link Code Link Message SizeReserved

0 1 2 3 4 5 6 7
0 21 3byte byte byte byte

Altitude Htime Willingness
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

φ(η′) ρ(η′) vi,j
′

ℓ (rel. speed)

Neighbor interface address

Latitude

φ(η′′) ρ(η′′) vi,j
′′

ℓ (rel. speed)

Neighbor interface address

...

...

Longitude

Fig. 2. Format of the modified (i.e. P-OLSRd) Hello message.

0 1 2 3 4 5 6 7
0 21 3byte byte byte byte

Reserved

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

advertise neighbor main address

Reserved

......

...

ANSN

φ(η′′) ρ(η′′)

advertise neighbor main address

Reservedφ(η′) ρ(η′)

Fig. 3. Format of the original (i.e. OLSRd) Topology Control message. ANSN stands for Advertised Neighbor Sequence Number.

0 1 2 3 4 5 6 7
0 21 3byte byte byte byte

Reserved

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

advertise neighbor main address

ρ(η′′)

......

...

ANSN

vi,j
′′

ℓ (rel. speed)

advertise neighbor main address

φ(η′) ρ(η′) vi,j
′

ℓ (rel. speed)

ρ(η′′)

Fig. 4. Format of the modified (i.e. P-OLSRd) Topology Control message.

November 4, 2014 DRAFT

Fig. 1. Format of the original (i.e. OLSRd) Hello message.

9

Neighbor interface address

Link Code Link Message SizeReserved

0 1 2 3 4 5 6 7
0 21 3byte byte byte byte

Reserved Htime Willingness
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

φ(η′) ρ(η′) Reserved

Neighbor interface address

φ(η′′) ρ(η′′) Reserved

......

...

Fig. 1. Format of the original (i.e. OLSRd) Hello message.

...

Link Code Link Message SizeReserved

0 1 2 3 4 5 6 7
0 21 3byte byte byte byte

Altitude Htime Willingness
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

φ(η′) ρ(η′) vi,j
′

ℓ (rel. speed)

Neighbor interface address

Latitude

φ(η′′) ρ(η′′) vi,j
′′

ℓ (rel. speed)

Neighbor interface address

...

...

Longitude

Fig. 2. Format of the modified (i.e. P-OLSRd) Hello message.

0 1 2 3 4 5 6 7
0 21 3byte byte byte byte

Reserved

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

advertise neighbor main address

Reserved

......

...

ANSN

φ(η′′) ρ(η′′)

advertise neighbor main address

Reservedφ(η′) ρ(η′)

Fig. 3. Format of the original (i.e. OLSRd) Topology Control message. ANSN stands for Advertised Neighbor Sequence Number.

0 1 2 3 4 5 6 7
0 21 3byte byte byte byte

Reserved

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

advertise neighbor main address

ρ(η′′)

......

...

ANSN

vi,j
′′

ℓ (rel. speed)

advertise neighbor main address

φ(η′) ρ(η′) vi,j
′

ℓ (rel. speed)

ρ(η′′)

Fig. 4. Format of the modified (i.e. P-OLSRd) Topology Control message.

November 4, 2014 DRAFT

Fig. 2. Format of the modified (i.e. P-OLSRd) Hello message.

occupy 4 bytes each3. The altitude is formatted as a 16-
bit fixed-point number that replaces the 2 reserved bytes
not used by the OLSR daemon. Similarly to the original
Hello message, a block of 8 bytes is appended for each
neighbor seen by the node. The only difference here
is that we use the 2 empty bytes to communicate the
averaged relative speed between the nodes. The speed is
formatted as a 16-bit fixed-point number.

The size difference between the original and the
modified Hello message is 8 bytes, independently of the
numbers of nodes in the network. The Hello message
is encapsulated into a UDP datagram that, in turn, is
encapsulated in an IP packet and then into a 802.11
frame. For medium and large networks, the additional
8 bytes constitute a negligible overload compared to the
total size of the frame.

Figs. 3 and 4 illustrate the structure of the TC message
for OLSRd and P-OLSRd respectively. They differ only
by one field: P-OLSRd exploits the 2 reserved bytes to
convey the averaged relative speed formatted as a 16-bit
fixed-point number. The original and the modified TC
message have the same size.

3In order to have at least one-meter precision, we could have
formatted the latitude and longitude with 26-bit fixed-point repre-
sentation each. This, however, would have required rearranging the
latitude and longitude, and adding some padding in order to complete
the byte.

5

9

Neighbor interface address

Link Code Link Message SizeReserved

0 1 2 3 4 5 6 7
0 21 3byte byte byte byte

Reserved Htime Willingness
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

φ(η′) ρ(η′) Reserved

Neighbor interface address

φ(η′′) ρ(η′′) Reserved

......

...

Fig. 1. Format of the original (i.e. OLSRd) Hello message.

...

Link Code Link Message SizeReserved

0 1 2 3 4 5 6 7
0 21 3byte byte byte byte

Altitude Htime Willingness
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

φ(η′) ρ(η′) vi,j
′

ℓ (rel. speed)

Neighbor interface address

Latitude

φ(η′′) ρ(η′′) vi,j
′′

ℓ (rel. speed)

Neighbor interface address

...

...

Longitude

Fig. 2. Format of the modified (i.e. P-OLSRd) Hello message.

0 1 2 3 4 5 6 7
0 21 3byte byte byte byte

Reserved

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

advertise neighbor main address

Reserved

......

...

ANSN

φ(η′′) ρ(η′′)

advertise neighbor main address

Reservedφ(η′) ρ(η′)

Fig. 3. Format of the original (i.e. OLSRd) Topology Control message. ANSN stands for Advertised Neighbor Sequence Number.

0 1 2 3 4 5 6 7
0 21 3byte byte byte byte

Reserved

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

advertise neighbor main address

ρ(η′′)

......

...

ANSN

vi,j
′′

ℓ (rel. speed)

advertise neighbor main address

φ(η′) ρ(η′) vi,j
′

ℓ (rel. speed)

ρ(η′′)

Fig. 4. Format of the modified (i.e. P-OLSRd) Topology Control message.

November 4, 2014 DRAFT

Fig. 3. Format of the original (i.e. OLSRd) Topology Control
message. ANSN stands for Advertised Neighbor Sequence Number.

9

Neighbor interface address

Link Code Link Message SizeReserved

0 1 2 3 4 5 6 7
0 21 3byte byte byte byte

Reserved Htime Willingness
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

φ(η′) ρ(η′) Reserved

Neighbor interface address

φ(η′′) ρ(η′′) Reserved

......

...

Fig. 1. Format of the original (i.e. OLSRd) Hello message.

...

Link Code Link Message SizeReserved

0 1 2 3 4 5 6 7
0 21 3byte byte byte byte

Altitude Htime Willingness
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

φ(η′) ρ(η′) vi,j
′

ℓ (rel. speed)

Neighbor interface address

Latitude

φ(η′′) ρ(η′′) vi,j
′′

ℓ (rel. speed)

Neighbor interface address

...

...

Longitude

Fig. 2. Format of the modified (i.e. P-OLSRd) Hello message.

0 1 2 3 4 5 6 7
0 21 3byte byte byte byte

Reserved

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

advertise neighbor main address

Reserved

......

...

ANSN

φ(η′′) ρ(η′′)

advertise neighbor main address

Reservedφ(η′) ρ(η′)

Fig. 3. Format of the original (i.e. OLSRd) Topology Control message. ANSN stands for Advertised Neighbor Sequence Number.

0 1 2 3 4 5 6 7
0 21 3byte byte byte byte

Reserved

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

advertise neighbor main address

ρ(η′′)

......

...

ANSN

vi,j
′′

ℓ (rel. speed)

advertise neighbor main address

φ(η′) ρ(η′) vi,j
′

ℓ (rel. speed)

ρ(η′′)

Fig. 4. Format of the modified (i.e. P-OLSRd) Topology Control message.

November 4, 2014 DRAFT

Fig. 4. Format of the modified (i.e. P-OLSRd) Topology Control
message.

IV. UAV TESTBED

We can distinguish two main types of small UAVs:
rotary-blade and fixed-wing. Rotary-blade UAVs, which
are also know as mini-copters or multi-copters, fly using
the lift force generated by one or more blades, like
helicopters. Typically, rotary-blade UAVs are composed
of four blades, in this case they are know as quadri-
copters. They are able to takeoff and land vertically, fly
in every direction and maintain a fixed position in the
air.

Fixed-wing UAVs fly by exploiting the lift force
generated by the forward speed of the vehicle in the air,
hence, forward motion is required for flying. They have a
minimum speed and turning radius and can fly at higher
speeds and with a higher energy efficiency compared to
rotary-blade UAVs. Therefore, they can cover a greater
area, but the network topology is likely to change very
rapidly. This makes the ad hoc networking of fixed-wing
UAVs more challenging and, at the same time, more
interesting.

In this work, we address fixed-wing UAVs instead
of those with rotary-blades. For the experiments we
use two fixed-wing UAVs, named eBee, developed by
SenseFly [18]. The vehicle’s body is made of expanded
polypropylene (EPP), and it has a single rear-mounted
propeller powered by an electric motor. The eBee plat-
form is illustrated in Fig. 5(a). It has an integrated
autopilot capable of flying with winds up to 12 m/s, at
a cruising speed of about 57 km/h, with an autonomy of
45 minutes. In case of emergency, they can be remotely

controlled up to a distance of 3 km via a Microhard
Systems Nano n2420 [23] link connection, and this low
data-rate control link is only used for controlling the
plane. The data produced by the UAV is instead carried
by the 802.11n link. Due to its small dimensions (the
wingspan is 96 centimeters) and weight (under 630 g),
flying eBees are not considered to be dangerous. In some
countries (e.g., Switzerland) they can be used without
specific authorization.

On each plane, we mount a Gumstix Overo Tide
[24], an ARM-based computer-on-module produced by
Gumstix Inc. The computer runs a customized Linux
distribution (kernel version 3.5.0), and it is connected
to a compatible expansion board that we designed and
produced. The expansion board incorporates a USB 2.0
hub with four powered ports and a serial port connected
to the autopilot. Using this serial port, the Gumstix
can fetch the current GPS data, as well as other flight
parameters. The computer is also connected via USB to a
HD camera and to a Wi-Fi radio interface. The embedded
computer setup is shown in Fig. 5(b).

The Wi-Fi radio interface is the Linksys AE3000 USB
dongle, using 802.11n. Despite the small dimensions,
they support a MIMO system with three antennas. Dur-
ing the experiments, we enabled 802.11n space-time
block coding (STBC) to exploit channel diversity. The
transmission bandwidth was set to 20 Mhz in the 5 Ghz
unlicensed band. We used QPSK modulation, code rate
1/2, and one spatial stream (MODCOD 1).

V. EXPERIMENTS

In this section, we describe the two experiments that
we carried out on the EPFL campus. The aim of the
first experiment was to characterize the end-to-end link
performance between an UAV and a node on the ground.
Specifically, we determined the communication range in
which the two nodes can communicate with a tolerable
amount of lost packets. In the second experiment, we
compared the OLSR protocol with P-OLSR protocol.

A. Link Performance Assessment

In this experiment, we had a 2-node network com-
posed of a node on the ground and a flying UAV.
The UAV flew between two checkpoints positioned 450
meters apart. For both checkpoints, we set a turning
radius of 30 meters, and the height-above-ground was
75 meters. The node on the ground was located at the
center of one of the checkpoints. Using iperf, we took
one measurement of the link quality per second. Every
second, the UAV sent 85 UDP datagrams (totaling 1
Mbit) to the node on the ground. All the datagrams

6

battery
HD camera

pitot tube control link

motor & propeller

802.11 dongle

embedded

computer

(a) SenseFly eBee with HD camera, Linksys AE3000 USB
dongle, and Gumstix computer-on-module.

Gumstix

computer

customized

expansion board

power supply

& serial port

to the autopilot

(b) Computer and expansion board in the rear compartment of
the UAV.

Fig. 5. UAV platform used in the experiments.

received with a delay greater than 5 seconds were
considered lost. We also counted as correctly received the
datagrams that arrived out of order (provided that their
delay was smaller than 5 seconds). This is what can be
tolerated by a video streaming, where the video is played
with a 5-second delay. Every second, we computed the
datagram loss rate (DLR), which is the ratio between the
datagram lost and their total number.

The results are reported in Fig. 6. The black crosses
represent the DLR measured at a given distance. The
dashed line represents the corresponding non-linear
least-square regression function. The function that we
use as a model is

1

1 + e−(p1+p2d)
, (7)

where d is the distance in meters and p1 and p2 are the
coefficients to be estimated. Using a non-linear fitting
method, we compute the value of p1 and p2, thus yielding
the best fitting in the least square sense. They are p1 =
8.9 and p2 = 0.025.

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

distance [m]

D
L

R

regression function
experimental DLR

Fig. 6. Experimental datagram loss rate vs. distance. The black
crosses are the DLR measured values, and the dashed red line is the
corresponding non-linear least-square regression function.

0

50

100

150

200

250

N
um

be
r

of
m

ea
su

re
m

en
ts

Number of measurements

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

distance [m]

D
L

R
Average DLR

Fig. 7. Average datagram loss rate vs. distance. The blue bars
represent the number of measurements per distance interval. The
green solid line is the average DLR.

In Fig. 7, we quantize the distance between transmitter
and receiver with a bin width of 20 meters. For each bin
we compute the average DLR. The resulting curve is
plotted in green. We also report the number of measure-
ments per bin.

As we can see from these results, the connection is
good when the distance is shorter than 250 meters. In
this region, the observed DLR is always lower than 0.2.
We observe a transition from 250 meters to 300, where
the DLR can be as high as 1, but on average it is lower
than 0.3. When the distance is greater than 300 meters,
the connection degrades significantly and the DLR is
often close to 1. The average DLR is 0.5 at 350 meters.
We observe some sporadic cases of a good connection
even when the distance is greater than 400 meters.

7

B. Routing Performance Assessment

In the second experiment, we compared the routing
performance of OLSR with link-quality extension and
P-OLSR. For both OLSR and P-OLSR, we set the HI
equal to 0.5 seconds. This value is a good trade-off
between the amount of overhead and the reactivity-speed
of the algorithm. Using the default HI value, which in
OLSRd is equal to 2 seconds, the algorithm would have
been too slow to pursue the topology changes. As P-
OLSR exploits the GPS information to estimate the link-
quality evolution, it could work also with a longer HI.
Nevertheless, for the sake of fairness, we use the same
value for both algorithms.

We set the link-quality aging, α, equal to 0.2 for
OLSR, and to 0.05 for P-OLSR. This parameter controls
the trade-off between the accuracy and the responsive-
ness of the receiving ratio estimation. As before, as P-
OLSR can predict the link-quality evolution, it can work
with a smaller α, yielding a more accurate estimation
of the receiving ratio. OLSR, on the contrary, needs an
greater aging value to increase its responsiveness, at the
expense of accuracy. The other P-OLSR parameters were
β = 0.2, and γ = 0.04.

We had a network of three nodes: one fixed destination
on the ground (node 1), one flying UAV source (Node 2),
and one flying UAV relay (Node 3). Node 1 was on the
terrace of the BC building on the EPFL campus (latitude:
46.51843◦ N; longitude: 6.561591◦ E). The UAV source,
Node 2 flew following a straight trajectory of 600 meters
west from Node 1, then it returned to the starting point.
The UAV relay, Node 3, followed a circular trajectory
of radius 30 meters and centered at 250 meters west
from Node 1. Both the UAVs flew about 75 meters
above the ground, and the terrace of the BC building is
approximately 10 meters above the ground. The actual
trajectories followed by the planes are illustrated in Fig.
8.

We performed 10 loops for each routing algorithms.
The loop-time is affected by the weather conditions,
especially the wind. During our experiment, the eBee
took on average 120 seconds to complete a loop. The
time difference between the fastest and the slowest loop
was around 10 seconds. In each loop, Node 2 changed
its routing to reach Node 1, from a direct connection
to a two-hop connection, and vice versa. Therefore the
network topology was expected to change two times
during the each loop.

Fig. 9 shows the evolution of the DLR during the 10
runs. For OLSR, we notice some peaks of the DLR that
correspond to the moments when the routing algorithm
has to switch from the direct link to a two-hop. This

−650 −600 −550 −500 −450 −400 −350 −300 −250 −200 −150 −100 −50 0 50
−50

0

50

[2]
[3]

[1]

x[m]

y[
m

]

UAV Source UAV Relay Destination

Fig. 8. Trajectories of the UAVs during the network field experi-
ments.

0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200
0

0.2

0.4

0.6

0.8

1

time [s]

D
L

R

Emulation
OLSR

P-OLSR
Experiments

OLSR
P-OLSR

Fig. 9. Evolution of the average DLR. Dashed lines report the
results of MAC-layer emulations, solid lines report the results of
field experiments.

happens because OLSR takes several seconds to detect
that a wireless direct-link is broken. This translates into
an interruption of the service. P-OLSR, however, reacts
promptly to topology changes. As we can see from the
field-test results, P-OLSR is able to predict a change in
the topology and reacts before the previous link breaks.
The DLR peaks that we see on the P-OLSR results are
due to the fading of the wireless channels rather than to
incorrect routing.

VI. MAC-LAYER EMULATIONS WITH LARGER

NETWORKS

In this section, we examine the behavior of P-OLSR
operating on larger FANETs. When many UAVs are
involved, field experiments become expensive. For this
reason, we analyze the performance of P-OLSR via a
network emulation platform that integrates all the testbed
aspects.

A. Emulation Platform

In order to analyze the routing performance in
medium/large FANETs, we developed the emulation
platform illustrated in Fig. 10. It creates a Linux con-
tainer (LXC) for each node of the network. The nodes
are connected using a MAC-layer real-time emulator
called Extendable Mobile Ad-Hoc Network Emulator
(EMANE). EMANE is an open-source framework, de-
veloped primarily by Naval Research Laboratory [25].
The MAC and the physical layers are emulated, whereas
the remaining layers use the real software implemen-
tations used by the Linux machine. For a propagation

8
16

Application

Transport

Network OLSR, Predictive-OLSR

TCP, UDP

iperf

MAC

Physical

running
on

L
X

C
s

802.11 EMANE model

802.11 TGn model UAVs’ positions

Experiments Emulations

IEEE 802.11

running
on

G
um

Stixs GPS Error model

Fig. 10. Emulation platform.

VI. MAC-LAYER EMULATIONS WITH LARGER NETWORKS

In this section, we examine the behavior of P-OLSR operating on larger FANETs. When

many UAVs are involved, field experiments become expensive. For this reason, we analyze the

performance of P-OLSR via a network emulation platform that integrates all the testbed aspects.

A. Emulation Platform

In order to analyze the routing performance in medium/large FANETs, we developed the

emulation platform illustrated in Fig. 10. It creates a Linux container (LXC) for each node of

the network. The nodes are connected using a MAC-layer real-time emulator called Extendable

Mobile Ad-Hoc Network Emulator (EMANE). EMANE is an open-source framework, developed

primarily by Naval Research Laboratory [25]. The MAC and the physical layers are emulated,

whereas the remaining layers use the real software implementations used by the Linux machine.

For a propagation channel model, we use the IEEE 802.11 TGn model D, defined in [26]. This

model was proposed for outdoor environments with line-of-sight conditions. EMANE imports

the positions of the UAVs from log files and uses them to compute the pathloss for each link.

These log files can be obtained from real-flight data logs, or by a flight simulator that reproduces

realistic flight conditions. Before passing the UAV’s position to the P-OLSR daemon, we add an

error to take into account imperfect GPS receivers. We model GPS errors following the statistical

characterization of GPS error provided in [27].

November 4, 2014 DRAFT

Fig. 10. Emulation platform.

channel model, we use the IEEE 802.11 TGn model D,
defined in [26]. This model was proposed for outdoor
environments with line-of-sight conditions. EMANE im-
ports the positions of the UAVs from log files and uses
them to compute the pathloss for each link. These log
files can be obtained from real-flight data logs, or by a
flight simulator that reproduces realistic flight conditions.
Before passing the UAV’s position to the P-OLSR dae-
mon, we add an error to take into account imperfect GPS
receivers. We model GPS errors following the statistical
characterization of GPS error provided in [27].

B. Emulation Results

We carried out two network emulation campaigns. In
the first one, we reproduced the conditions we had in
the experiments. This was done to test the emulator. We
used the positions reported in the log files of the actual
experiments. Fig. 9 shows emulation results (dashed
lines) side-by-side with the experimental results (solid
lines) for OLSR and for P-OLSR. The emulation results
match with the experimental ones.

In the second emulation campaign, we assessed the
behavior of P-OLSR in larger networks and we analyzed
the role of various parameters, namely the Hello interval
(HI), the link-quality aging (α), and the P-OLSR specific
parameters (β and γ). The network consisted of 19
moving UAVs. One UAV (Node 2) scanned a rectangular
area of 1200 square meters, by following the trajectory
plotted with a dashed line in Fig. 11. It took 380 seconds
to complete the trajectory. The other UAVs (Nodes
1, 3, . . . , 19) are uniformly spread within the area. They
circulated around the respective waypoints, reproducing
the behaviour of actual fixed-wing UAVs. The radius of
the circular trajectories was 30 meters, the speed was
12 m/s and the initial phase was uniformly distributed
between zero and 2π. The distance between the relays
was such that only the closest neighbors had a direct
link. For example, node 10 can communicate directly
only with Nodes 5, 7, 8, 12, 13, and 15.

−600−400−200 0 200 400 600

−400

−200

0

200

400

600

[7]

[1]

[12]

[17]

[5]

[10]

[15]

[3]

[8]

[13]

[18]

[6]

[11]

[16]

[4]

[9]

[14]

[19]

[2]

x[m]

y[
m

]

Relays Destination Source

Fig. 11. Emulations set-up. A network composed of 19 nodes. Node
2 is flying with a speed of 12 m/s following the trajectory markers
with red dashed line.

As we did in the experiments, we sent 85 UDP
datagrams per second (totaling 1 Mbit) from Node 2 to
Node 1, using iperf. In order to have a more compact
representation of the results, we compared the network
performance in terms of average outage time. We say
that an outage occurs when the DLR becomes greater
than 0.2. The outage duration of such an event is the
length of the interval during which the DLR stays above
0.2. The outage time of a run is the sum of all the outage
durations. In order to average the results, we repeated the
emulation 10 times for each configuration.

In Figs. 12 and 13 we compare OLSR and P-OLSR
for different durations of the HI while keeping the aging
parameter α equal to 0.2. We present several P-OLSR
configurations: In Fig. 12, we maintain a fixed value of
β, (β = 0.2) and we vary the speed aging parameter γ. In
Fig. 13, we fix γ (γ = 0.08) and we vary the value of β.
Notice that P-OLSR reduces drastically the outage time
compared to OLSR. In all its configurations, P-OLSR
cuts down the outage time by at least 85%. Considering
only the best performing P-OLSR configurations, the
outage reduction is about 95%, 92%, and 90%, for HI
durations equal to 0.5, 1, and 2 seconds, respectively.

In Fig. 12, we compare P-OLSR configurations for
different values of γ. We see that when the HI is short,
it is convenient to decrease the value of γ, and vice
versa. The reason is that if the Hello message rate is
low, it is convenient to have a fast aging of the previous
speed estimates. In Fig. 13, we examine the role of the
parameter β. We notice that when the HI is long, it is
more convenient to increase β, meaning that the speed
term has a greater weight in the EXT computation, (see

9

HI = 0.5s HI = 1s HI = 2s
0

10

20

30

40

54.8 74.6 112.3

2.4

6

18.6

6.4 6.5

11.6
12.6

10.4 11.1

O
ut

ag
e

Ti
m

e
[s
]

OLSR P-OLSR(γ = 0.04)

P-OLSR(γ = 0.08) P-OLSR(γ = 0.16)

Fig. 12. Average outage time for OLSR and P-OLSR with α = 0.2,
β = 0.2, and different HI values.

HI = 0.5s HI = 1s HI = 2s
0

10

20

30

40

54.8 74.6 112.3

2.3
3.4

21

6.4 6.5

11.6

O
ut

ag
e

Ti
m

e
[s
]

OLSR P-OLSR(β = 0.1) P-OLSR(β = 0.2)

Fig. 13. Average outage time for OLSR and P-OLSR with α = 0.2,
and γ = 0.08, and different HI values.

Eq. (4)). Intuitively, when the Hello message rate is
low, the link-quality estimation is slow in tracking the
channel fluctuations, therefore it is convenient to give
more weight to the speed term than to the link-quality
term.

In Fig. 14, we can examine the role of the HI and the
link quality aging, α. We compare P-OLSR and OLSR
considering different values of aging and different HI
durations. To avoid overcrowding the plots, we consider
only one P-OLSR configuration, that is (β = 0.2 and
γ = 0.08).

As we notice in Fig. 14, the shorter the HI the better
the performance. However the improvement brought by
halving the HI from 1 to 0.5 seconds might not be large
enough to justify the increase of the signalling traffic.
This is more evident when P-OLSR is used. In fact,
by exploiting the GPS information, P-OLSR is able to
track the evolution of the network topology also when the
Hello message rate is lower. As an example, we note that
P-OLSR with HI of 2 seconds reduces the outage time
by 80% with respect to OLSR with HI = 0.5 seconds,
even if it generates about 1/4 of the Hello messages.

We also compare the performance in terms of goodput.
In perfect link conditions, the goodput is equal to 1
Mbit/s. In Fig. 15, we plot the goodput achieved by
OLSR and P-OLSR during an emulation with HI = 1

HI = 0.5s HI = 1s HI = 2s
0

50

100

150

63.8

103.6

156.4

54.8

74.6

112.3

62.1
67.5

92.6

6 7.3

23.1

6.4 6.5
11.6

7.6 5.9
10.1

O
ut

ag
e

Ti
m

e
[s
]

OLSR(α = 0.1) OLSR(α = 0.2) OLSR(α = 0.4)
P-OLSR(α = 0.1) P-OLSR(α = 0.2) P-OLSR(α = 0.4)

Fig. 14. Average outage time for OLSR and P-OLSR with different
HI values and α.

second, α = 0.1, and the specific-P-OLSR parameters
γ = 0.08, β = 0.2. As we can see from the plot, the
goodput achieved by OLSR is unstable. It often drops be-
low 0.6 Mbit/s, and it also reaches zero. This is because
OLSR does not reacts promptly to the topology changes.
On the other hand, P-OLSR, which reacts promptly to
topology changes and avoids outages, achieves a more
stable goodput. It never drops under 0.6 Mbit/s and most
of the time it is above 0.8 Mbit/s. The goodput is lower
than 1 Mbit/s because some packets are lost due to
random channels fluctuations. In the plot, we report also
the average goodput over the whole emulation duration,
which is 0.83 Mbit/s for OLSR and 0.95 Mbit/s for P-
OLSR. All the other cases behave similarly. For the sake
of more compact representations, for the other cases we
report the average goodput over the emulation duration
(Figs. 16-18). As before, we repeated the emulation
10 times for each configuration and report the average
results. In Figs. 16 and 17, we compare OLSR and P-
OLSR for several HI values while keeping α = 0.2.
In Fig. 16, we fix the value of β, (β = 0.2) and vary
γ. In Fig. 17, we fix the value of γ (γ = 0.08) and
vary β. We see that in all cases, P-OLSR increases
the average goodput compared to OLSR. The gap is
greater when the Hello message rate is lower (HI = 2
seconds), because OSLR is slower to reacts to topology
changes. In Fig. 18, we compare P-OLSR and OLSR
considering different values of aging and different HI
durations. Again, to avoid overcrowding the plots, we
consider only the P-OLSR configuration with β = 0.2
and γ = 0.08. Once again, P-OLSR outperforms OLSR
in every configuration. The gap is smaller when the Hello
message rate is high.

VII. CONCLUSION

In this paper we compared the performance of P-
OLSR and that of OLSR in a FANET composed of small
fixed-wing UAVs.

10

0 50 100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

1

1.2

[12]

time [s]

G
oo

dp
ut

[M
bi

ts
/s

]

Goodput
OLSR

P-OLSR
Average Goodput

OLSR
P-OLSR

Fig. 15. Goodput during an emulation, considering HI = 1 second,
α = 0.1, β = 0.2, and γ = 0.08.

HI = 0.5s HI = 1s HI = 2s
0.7

0.8

0.9

1

A
ve

ra
ge

G
oo

dp
ut

[M
bi

ts
/s

]

OLSR P-OLSR(γ = 0.04)

P-OLSR(γ = 0.08) P-OLSR(γ = 0.16)

Fig. 16. Average goodput for OLSR and P-OLSR with α = 0.2,
β = 0.2, and different HI values.

HI = 0.5s HI = 1s HI = 2s
0.7

0.8

0.9

1

A
ve

ra
ge

G
oo

dp
ut

[M
bi

ts
/s

]

OLSR P-OLSR(β = 0.1) P-OLSR(β = 0.2)

Fig. 17. Average goodput for OLSR and P-OLSR with α = 0.2,
and γ = 0.08, and different HI values.

HI = 0.5s HI = 1s HI = 2s
0.7

0.8

0.9

1

A
ve

ra
ge

G
oo

dp
ut

[M
bi

ts
/s

]

OLSR(α = 0.1) OLSR(α = 0.2) OLSR(α = 0.4)
P-OLSR(α = 0.1) P-OLSR(α = 0.2) P-OLSR(α = 0.4)

Fig. 18. Average goodput for OLSR and P-OLSR with different HI
values and α.

Such networks are characterized by a high degree
of mobility, which constitutes a challenge to the rout-
ing protocol. Routing protocols designed for MANETs
mostly fail in tracking the evolution of the network
topology. We address this problem by designing an
OLSR extension, called P-OLSR: it takes advantage of
the GPS information to predict how the quality of the
wireless links will evolve. The network emulations and
fields experiments confirm our expectations. With P-
OLSR, the routing follows the topology changes without
interruptions, which is not the case with OLSR. We make
use of P-OLSR to improve the routing in the SMAVNET
II project [19]. SMAVNET II is a research project for
developing a self-organizing UAV network.

ACKNOWLEDGMENTS

This work is supported by armasuisse, competence
sector Science+Technology for the Swiss Federal De-
partment of Defense, Civil Protection and Sport.

REFERENCES

[1] C. Barrado, R. Messeguer, J. Lopez, E. Pastor, E. Santamaria,
and P. Royo, “Wildfire monitoring using a mixed air-ground
mobile network,” Pervasive Computing, IEEE, vol. 9, no. 4,
pp. 24–32, October 2010.

[2] Z. Sun, P. Wang, M. C. Vuran, M. Al-Rodhaan, A. Al-Dhelaan,
and I. F. Akyildiz, “BorderSense: Border patrol through
advanced wireless sensor networks.” Ad Hoc Networks,
vol. 9, no. 3, pp. 468–477, 2011. [Online]. Available:
http://dx.doi.org/10.1016/j.adhoc.2010.09.008

[3] I. Rubin and R. Zhang, “Placement of UAVs as Communication
Relays Aiding Mobile Ad Hoc Wireless Networks,” in Military
Communications Conference, 2007. MILCOM 2007. IEEE, Oct
2007, pp. 1–7.

[4] E. P. de Freitas, T. Heimfarth, I. F. Netto, C. E. Lino,
C. E. Pereira, A. M. Ferreira, F. R. Wagner, and T. Larsson,
“UAV relay network to support WSN connectivity.” in
ICUMT. IEEE, 2010, pp. 309–314. [Online]. Available:
http://dx.doi.org/10.1109/ICUMT.2010.5676621

[5] F. Jiang and A. Swindlehurst, “Dynamic UAV relay positioning
for the ground-to-air uplink,” in GLOBECOM Workshops (GC
Wkshps), 2010 IEEE, Dec 2010, pp. 1766–1770.

[6] I. Bekmezci, O. K. Sahingoz, and S. Temel, “Flying Ad-
Hoc Networks (FANETs): A survey.” Ad Hoc Networks,
vol. 11, no. 3, pp. 1254–1270, 2013. [Online]. Available:
http://dx.doi.org/10.1016/j.adhoc.2012.12.004

[7] O. Sahingoz, “Mobile networking with UAVs: Opportunities
and challenges,” in Unmanned Aircraft Systems (ICUAS), 2013
International Conference on, May 2013, pp. 933–941.

[8] K. Zhang, W. Zhang, and J.-Z. Zeng, “Preliminary Study of
Routing and Date Integrity in Mobile Ad Hoc UAV Network,”
in Apperceiving Computing and Intelligence Analysis, 2008.
ICACIA 2008. International Conference on, Dec 2008, pp. 347–
350.

[9] J. Chroboczek, “The Babel Routing Protocol,” RFC 6126,
Apr. 2011. [Online]. Available: http://www.rfc-editor.org/rfc/
rfc6126.txt

[10] T. Clausen and P. Jacquet, “Optimized Link State Routing
Protocol (OLSR),” RFC 3626, Oct. 2003. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc3626.txt

http://dx.doi.org/10.1016/j.adhoc.2010.09.008
http://dx.doi.org/10.1109/ICUMT.2010.5676621
http://dx.doi.org/10.1016/j.adhoc.2012.12.004
http://www.rfc-editor.org/rfc/rfc6126.txt
http://www.rfc-editor.org/rfc/rfc6126.txt
http://www.rfc-editor.org/rfc/rfc3626.txt

11

[11] C. Dearlove, T. Clausen, and P. Jacquet, “The Optimized
Link State Routing Protocol version 2,” IETF Draft RFC
draft-ietf-manet-olsrv2-10, 2009. [Online]. Available: http:
//tools.ietf.org/id/draft-ietf-manet-olsrv2-19.txt

[12] E. W. Frew and T. X. Brown, “Networking Issues for
Small Unmanned Aircraft Systems,” Journal of Intelligent and
Robotic Systems, vol. 54, no. 1-3, p. 21, 2008. [Online].
Available: http://dx.doi.org/10.1007/s10846-008-9253-2

[13] Y. Guo, X. Li, H. Yousefi’zadeh, and H. Jafarkhani, “UAV-aided
cross-layer routing for MANETs,” in Wireless Communications
and Networking Conference (WCNC), 2012 IEEE, April 2012,
pp. 2928–2933.

[14] A. Alshbatat and L. Dong, “Cross layer design for mobile Ad-
Hoc Unmanned Aerial Vehicle communication networks,” in
Networking, Sensing and Control (ICNSC), 2010 International
Conference on, April 2010, pp. 331–336.

[15] M. Benzaid, P. Minet, and K. Al Agha, “Integrating fast
mobility in the OLSR routing protocol,” in Mobile and Wireless
Communications Network, 2002. 4th International Workshop
on, 2002, pp. 217–221.

[16] M. Benzaid, P. Minet, and K. Al-Agha, “Analysis and simula-
tion of fast-OLSR,” in Vehicular Technology Conference, 2003.
VTC 2003-Spring. The 57th IEEE Semiannual, vol. 3, April
2003, pp. 1788–1792 vol.3.

[17] S. Rosati, K. Krużelecki, L. Traynard, and B. Rimoldi, “Speed-
Aware Routing for UAV Ad-Hoc Networks,” in 4th Interna-
tional IEEE Workshop on Wireless Networking & Control for
Unmanned Autonomous Vehicles: Architectures, Protocols and
Applications, 2013.

[18] Sensefly eBee. [Online]. Available: http://www.sensefly.com/
drones/ebee.html

[19] SMAVNET II website. [Online]. Available: http://smavnet.epfl.
ch

[20] olsrd Link Quality Extensions. [Online]. Available: http:
//www.olsr.org/docs/README-Link-Quality.html

[21] D. S. J. De Couto, D. Aguayo, J. Bicket, and R. Morris, “A
High-throughput Path Metric for Multi-hop Wireless Routing,”
in Proceedings of the 9th Annual International Conference
on Mobile Computing and Networking, ser. MobiCom ’03.
New York, NY, USA: ACM, 2003, pp. 134–146. [Online].
Available: http://doi.acm.org/10.1145/938985.939000

[22] Optimized Link State Routing Deamon. [Online]. Available:
http://www.olsr.org/

[23] Microhard Systems Inc. Spread Spectrum Wireless Modem.
[Online]. Available: http://www.microhardcorp.com/n2420.php

[24] Gumstix Web Page: Overo Tide COM Product overview.
[Online]. Available: https://www.gumstix.com/store/app.php/
products/257/

[25] Extendable Mobile Ad-hoc Network Emulator (EMANE).
[Online]. Available: http://cs.itd.nrl.navy.mil/work/emane/

[26] IEEE P802.11 Wireless LANs, “TGn Channel Models,” IEEE
Std 802.11 11-03/940r4, Tech. Rep., 2004.

[27] E. Akim and D. Tuchin, “GPS errors statistical analysis for
ground receiver measurements,” Keldysh Institute of Applied
Mathematics, Russia Academy of Sciences, 2002.

Stefano Rosati (S’07-M’11) is a Post-Doc
Research Engineer at the École Polytechnique
Fédérale de Lausanne (EPFL), Switzerland. He
received the Laurea degree (summa cum laude)
and Ph.D. degree in Telecommunications Engi-
neering from the University of Bologna, Italy,
in 2007 and 2011, respectively. From 2007
to 2011, he was with the Advanced Research
Center for Electronic Systems (ARCES) of

the University of Bologna. In 2010, he was an Intern Engineer at
Corporate R&D Department of Qualcomm Inc. (San Diego, CA).
In 2011 he joined the Information Processing Group (IPG) and the
Mobile Communications Laboratory (LCM) at EPFL.

His interests are in various aspects of digital communications, in
particular next-generation cellular communication systems, and both
terrestrial and satellite broadcast networks. His research activities are
also focused on flying ad-hoc networks and self-organizing networks
of Unmanned Aerial Vehicles (UAVs). He has authored several
scientific papers and internationals patents regarding these topics.

Karol Krużelecki (M’09) is a research engi-
neer working at EPFL, Lausanne, Switzerland.
He received his Msc. Eng. degree in Computer
Science and in Computational Mechanics from
Cracow University of Technology, Poland, in
September and November 2008 respectively.
Between 2008 and 2011 he was working at
The European Organization for Nuclear Re-
search (CERN) on the development of auto-

matic build and test system used to improve the software quality and
reliability for the Large Hadron Collider beauty experiment (LHCb).
In 2012 he joined the Information Processing Group (IPG) and the
Mobile Communications Laboratory (LCM) of the EPFL.

Grégoire Heitz is an engineer working at the
Laboratory of Intelligent System at EPFL since
September 2012. He obtained a M.Sc in Elec-
tronic from the ENSCPE of Lyon (France) in
2012. He was working in senseFly SA for his
master thesis, working on the development of a
new flying robot in 2011. His research interest
lies in embedded systems development.

http://tools.ietf.org/id/draft-ietf-manet-olsrv2-19.txt
http://tools.ietf.org/id/draft-ietf-manet-olsrv2-19.txt
http://dx.doi.org/10.1007/s10846-008-9253-2
http://www.sensefly.com/drones/ebee.html
http://www.sensefly.com/drones/ebee.html
http://smavnet.epfl.ch
http://smavnet.epfl.ch
http://www.olsr.org/docs/README-Link-Quality.html
http://www.olsr.org/docs/README-Link-Quality.html
http://doi.acm.org/10.1145/938985.939000
http://www.olsr.org/
http://www.microhardcorp.com/n2420.php
https://www.gumstix.com/store/app.php/products/257/
https://www.gumstix.com/store/app.php/products/257/
http://cs.itd.nrl.navy.mil/work/emane/

12

Dario Floreano (SM’06) received the M.A.
and Ph.D. degrees from the University of Tri-
este, Trieste, Italy, in 1988 and 1995, respec-
tively, and the M.S. degree from the University
of Stirling, Stirling, Scotland, in 1991. He
is Full Professor at the École Polytechnique
Fédérale de Lausanne, Lausanne, Switzerland,
where he is Director of the Laboratory of
Intelligent Systems and Director of the Swiss

National Center of Competence in Robotics. His research interests
are at the convergence of biology, artificial intelligence, and robotics.
He authored more than 300 peer-reviewed articles and 3 books on
the topics of evolutionary robotics, bio-inspired artificial intelligence,
and biomimetic flying robots, and spun two companies off

Bixio Rimoldi (S’83-M’85-SM’92-F’00) re-
ceived his Diploma and his Doctorate from
the Electrical Engineering department of the
Eidgenoössische Technische Hochschule in
Zurich (ETHZ). During 1988-1989 he held
visiting positions at the University of Notre
Dame and Stanford. In 1989 he joined the fac-
ulty of Electrical Engineering at Washington
University, St. Louis, and since 1997 he is

a Full Professor at the École Polytechnique Fédérale de Lausanne
(EPFL) and director of the Mobile Communications Lab. He has
spent sabbatical leaves at MIT (2006) and at the University of
California, Berkeley (2003-2004).

In 1993 he received a US National Science Foundation Young
Investigator Award. In 2000 he was elected to the grade of Fellow
of the IEEE. During the period 2002-2009 he has been on the Board
of Governors of the IEEE Information Theory Society where he
served in several offices including President. He was co-chairman
with Bruce Hajek of the 1995 IEEE Information Theory Workshop on
Information Theory, Multiple Access, And Queueing (St Louis, MO),
and co-chairman with Jim Massey of the 2002 IEEE International
Symposium in Information Theory (Lausanne, Switzerland). He was
a member of the editorial board of ”Foundations and Trends on
Communications and Information Theory,” and was an editor of
the European Transactions on Telecommunications. During 2005
and 2006 he was the director of EPFL’s undergraduate program in
Communication Systems.

His interests are in various aspects of digital communications, in
particular information theory, and software-defined radio.

	I Introduction
	II Routing for Flying Ad Hoc Networks
	II-A Link-Quality Estimation
	II-B Speed-Weighted ETX

	III Implementation Details
	III-A OLSRd with Link-Quality Extension
	III-B P-OLSRd Implementation

	IV UAV Testbed
	V Experiments
	V-A Link Performance Assessment
	V-B Routing Performance Assessment

	VI MAC-layer emulations with Larger Networks
	VI-A Emulation Platform
	VI-B Emulation Results

	VII Conclusion
	References
	References
	Biographies
	Stefano Rosati
	Karol Kruzelecki
	Grégoire Heitz
	Dario Floreano
	Bixio Rimoldi

