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Generalized Space and Frequency Index Modulation
T. Datta, H. S. Eshwaraiah, and A. Chockalingam,

Abstract—Unlike in conventional modulation where informa-
tion bits are conveyed only through symbols from modula-
tion alphabets defined in the complex plane (e.g., quadrature
amplitude modulation (QAM), phase shift keying (PSK)), in
index modulation (IM), additional information bits are con veyed
through indices of certain transmit entities that get involved in
the transmission. Transmit antennas in multi-antenna systems
and subcarriers in multi-carrier systems are examples of such
transmit entities that can be used to convey additional informa-
tion bits through indexing. In this paper, we introduce generalized
space and frequency index modulation, where the indices of active
transmit antennas and subcarriers convey information bits. We
first introduce index modulation in the spatial domain, referred
to as generalized spatial index modulation (GSIM). For GSIM,
where bits are indexed only in the spatial domain, we derive the
expression for achievable rate as well as easy-to-compute upper
and lower bounds on this rate. We show that the achievable
rate in GSIM can be more than that in spatial multiplexing,
and analytically establish the condition under which this can
happen. It is noted that GSIM achieves this higher rate using
fewer transmit radio frequency (RF) chains compared to spatial
multiplexing. We also propose a Gibbs sampling based detection
algorithm for GSIM and show that GSIM can achieve better
bit error rate (BER) performance than spatial multiplexing . For
generalized space-frequency index modulation (GSFIM), where
bits are encoded through indexing in both active antennas as
well as subcarriers, we derive the achievable rate expression.
Numerical results show that GSFIM can achieve higher rates
compared to conventional MIMO-OFDM. Also, BER results show
the potential for GSFIM performing better than MIMO-OFDM.

Index Terms—Multi-antenna systems, multi-carrier systems,
spatial index modulation, space-frequency index modulation,
achievable rate, transmit RF chains, detection.

I. I NTRODUCTION

Multi-antenna wireless systems have become very popular
due to their high spectral efficiencies and improved perfor-
mance compared to single-antenna systems [1]- [3]. Practical
multi-antenna systems are faced with the problem of maintain-
ing multiple radio frequency (RF) chains at the transmitterand
receiver, and the associated RF hardware complexity, size,and
cost [4]. Spatial modulation, a transmission scheme which uses
multiple transmit antennas but only one transmit RF chain,
can alleviate the need for multiple transmit RF chains [5]-
[7]. In spatial modulation, at any given time, only one among
the transmit antennas will be active and the other antennas
remain silent. The index of the active transmit antenna will
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also convey information bits, in addition to the information
bits conveyed through the conventional modulation symbol
(e.g., chosen from QAM/PSK alphabet) sent on the active
antenna. An advantage of spatial modulation over conventional
modulation is that, for a given spectral efficiency, conventional
modulation requires a larger modulation alphabet size than
spatial modulation, and this can lead to spatial modulation
performing better than conventional modulation [8], [9].

In this paper, we take the view that spatial modulation is an
instance of the general idea of ‘index modulation’. Unlike in
conventional modulation where information bits are conveyed
only through symbols from modulation alphabets defined in
the complex plane (e.g., QAM, PSK), in index modulation
(IM), additional information bits are conveyed through indices
of certain transmit entities that get involved in the transmis-
sion. Transmit antennas in multi-antenna systems, subcarriers
in multi-carrier systems, and precoders are examples of such
transmit entities that can be used to convey information bits
through indexing. Indexing in spatial domain (e.g., spatial
modulation, and space shift keying which is a special case
of spatial modulation) is a widely studied and reported index
modulation technique; see [7] and the references therein. Much
fewer works have been reported in frequency and precoder
index modulation techniques; e.g., subcarrier index modulation
in [10], [11], [12], [13], and precoder index modulation in [14].
The focus of this paper is twofold:i) generalization of the idea
of spatial modulation, which we refer to as generalized spatial
index modulation (GSIM), andii) generalization of the idea of
index modulation to both spatial domain (multiple-antennas)
as well as frequency domain (subcarriers), which we refer to
as generalized space-frequency index modulation (GSFIM).

In spatial modulation, the choice of the transmit antenna
to activate in a channel use is made based on a group of
m bits, where the number of transmit antennas isnt = 2m.
On the chosen antenna, a symbol from anM -ary modulation
alphabetA (e.g., M -QAM) is sent. The remainingnt − 1
antennas remain silent. Therefore, the achieved rate in spatial
modulation, in bits per channel use (bpcu), islog2 nt+log2 M .
The error performance of spatial modulation has been studied
extensively, and it has been shown that spatial modulation can
achieve performance gains compared to spatial multiplexing
[15], [16]. Space shift keying is a special case of spatial mod-
ulation [17], where instead of sending anM -ary modulation
symbol, a signal known to the receiver, say +1, is sent on the
chosen antenna. So, the achieved rate in space shift keying
is log2 nt bpcu. In spatial modulation and space shift keying,
the number of transmit RF chains is restricted one, and the
number of transmit antennas is restricted to powers of two.
The first contribution in this paper consists of generalization
of spatial modulation which removes these restrictions [18]-
[21], an analysis of achievable rate, and proposal of a detection
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algorithm. In generalized spatial index modulation (GSIM),
the transmitter hasnt transmit antenna elements andnrf

transmit RF chains,1 ≤ nrf ≤ nt, andnrf out ofnt antennas
are activated at a time, thereby⌊log2

(
nt

nrf

)
⌋ additional bits are

conveyed through antenna indexing. Spatial modulation and
spatial multiplexing turn out to be as special cases of GSIM for
nrf = 1 andnrf = nt, respectively. We derive the expression
for the achievable rate in GSIM and easy-to-compute upper
and lower bounds on this rate. We show that the achievable
rate in GSIM can be more than that in spatial multiplexing,
and analytically establish the condition under which this can
happen. It is noted that GSIM achieves this higher rate using
fewer transmit RF chains compared to spatial multiplexing.
We also propose a Gibbs sampling based detection algorithm
for GSIM and show that GSIM can achieve better bit error
rate (BER) performance than spatial multiplexing.

In the second contribution in this paper, we introduce
GSFIM which uses both spatial as well as frequency domain
to encode bits through indexing. GSFIM can be viewed as a
generalization of the GSIM scheme by exploiting indexing
in the frequency domain as well. Index modulation that
exploits the frequency domain alone – referred to as subcarrier
index modulation (SIM) – has been studied in [10]- [13].
These works have shown that OFDM with subcarrier index
modulation (SIM-OFDM) achieves better performance than
conventional OFDM, particularly at medium to high SNRs.
These works have not exploited indexing in the spatial domain
in MIMO systems. Our contribution addresses, for the first
time, indexing both in space as well as frequency in MIMO
systems. In particular, we(i) propose a signaling architecture
for combined space and frequency indexing,(ii) study in detail
its achieved rate in comparison with conventional MIMO-
OFDM, and (iii) show that better performance compared
to that in conventional MIMO-OFDM can be achieved in
the medium to high SNR regime. The proposed GSFIM
system hasN subcarriers,nt transmit antennas, andnrf

transmit RF chains,1 ≤ nrf ≤ nt. In the spatial domain,
nrf out of nt transmit antennas are chosen for activation
based on⌊log2

(
nt

nrf

)
⌋ bits. In the frequency domain, in a

space-frequency block of sizenrf × N , information bits are
encoded in multiple sub-blocks where each sub-block is of size
nrf×nf and N

nf
is the number of sub-blocks. We characterize

the achievable rate in GSFIM as a function of the system
parameters. We show that GSFIM can offer better rates and
less transmit RF chains compared to those in conventional
MIMO-OFDM. It is also shown that GSFIM can achieve better
BER performance than MIMO OFDM.

The rest of this paper is organized as follows. In Section II,
we present the GSIM system model, and a detailed analysis
of achievable rate and rate bounds in GSIM. We quantify rate
gains and savings in transmit RF chains in GSIM compared
to spatial multiplexing. The proposed detection algorithm
for GSIM and its BER performance are also presented. In
Section III, we present the GSFIM system model, analysis of
achievable rate in GSFIM, and BER performance of GSFIM.
Conclusions and scope for future work are presented in Section
IV.

Fig. 1. GSIM transmitter.

II. GENERALIZED SPATIAL INDEX MODULATION

In this section, we consider generalized spatial index mod-
ulation (GSIM) which encodes bits through indexing in the
spatial domain. In GSIM, the transmitter hasnt transmit
antennas andnrf transmit RF chains,1 ≤ nrf ≤ nt. In
any given channel use,nrf out of nt antennas are activated.
Information bits are conveyed through both conventional mod-
ulation symbols as well as the indices of the active antennas.
Spatial multiplexing becomes a special case of GSIM with
nrf = nt. We present an analysis of the achievable rates
in GSIM, which shows that the maximum achievable rate in
GSIM can be more than the rate in spatial multiplexing, and
that too using fewer transmit RF chains.

A. System model

A GSIM transmitter is shown in Fig. 1. It hasnt transmit
antennas andnrf transmit RF chains,1 ≤ nrf ≤ nt. An nrf×
nt switch connects the RF chains to the transmit antennas. In a
given channel use,nrf out of nt transmit antennas are chosen
andnrf M -ary modulation symbols are sent on these chosen
antennas. The remainingnt−nrf antennas remain silent (i.e.,
they can be viewed as transmitting the value zero). Therefore,
if A denotes theM -ary modulation alphabet used on the active

antennas, the effective alphabet becomesA0
△
= A ∪ 0.

Define an antenna activation pattern to be ant-length vector
that indicates which antennas are active (denoted by a ‘1’
in the corresponding antenna index) and which antennas are
silent (denoted by a ‘0’). There areL =

(
nt

nrf

)
antenna

activation patterns possible, andK =
⌊
log2

(
nt

nrf

)⌋
bits are

used to choose an activation pattern for a given channel use.
Note that not allL activation patterns are needed, and any2K

patterns out of them are adequate. Take any2K patterns out of
L patterns and form a set called the ‘antenna activation pattern
set’, S. Let us illustrate this using the following example. Let
nt = 4 andnrf = 2. Then,L =

(
4
2

)
= 6, K = ⌊log2 6⌋ = 2,

and2K = 4. The six antenna activation patterns are given by
{
[1, 1, 0, 0]T , [1, 0, 1, 0]T , [0, 1, 0, 1]T , [0, 0, 1, 1]T ,

[0, 1, 1, 0]T , [1, 0, 0, 1]T
}
.

Out of these six patterns, any2K = 4 patterns can be
taken to form the setS. Accordingly, let us take the antenna
activation pattern set as

S =
{
[1, 1, 0, 0]T , [1, 0, 1, 0]T , [0, 1, 0, 1]T , [0, 0, 1, 1]T

}
.

Table I shows the mapping of data bits to GSIM signals for
nt = 4, nrf = 2 for the above activation pattern set. Suppose
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Data bits Antenna activity Antenna status
K = 2 pattern Ant.1 Ant.2 Ant.3 Ant.4

0 0 [1, 1, 0, 0]T ∈ A ∈ A OFF OFF
0 1 [1, 0, 1, 0]T ∈ A OFF ∈ A OFF
1 0 [0, 1, 0, 1]T OFF ∈ A OFF ∈ A

1 1 [0, 0, 1, 1]T OFF OFF ∈ A ∈ A

TABLE I
DATA BITS TO GSIM SIGNAL MAPPING FORnt = 4, nrf = 2.

A: M -ARY MODULATION ALPHABET .

4-QAM is used to send information on the active antennas.
Let x ∈ A

nt

0 denote thent-length transmit vector. Let010011
denote the information bit sequence. GSIM translates thesebits
to the transmit vectorx as follows:i) the first two bits are used
to choose the activity pattern,ii) the second two bits form a
4-QAM symbol, andiii) the third two bits form another 4-
QAM symbol, so that, with Gray mapping, the transmit vector
x becomes

x = [1 + j, 0, −1− j, 0]T ,

wherej =
√
−1.

B. Achievable rates in GSIM

The transmit vector in a given channel use in GSIM is
formed using i) antenna activation pattern selection bits,
and ii) M -ary modulation bits. The number of activation
pattern selection bits is

⌊
log2

(
nt

nrf

)⌋
. The number ofM -ary

modulation bits isnrf log2 M . Combining these two parts,
the achievable rate in GSIM withnt transmit antennas,nrf

transmit RF chains, andM -QAM is given by

Rgsim =

⌊
log2

(
nt

nrf

)⌋

︸ ︷︷ ︸
Antenna index bits

+ nrf log2 M︸ ︷︷ ︸
modulation symbol bits

bpcu. (1)

Let us examine the GSIM rateRgsim in (1) in some detail. In
particular, let us examine howRgsim varies as a function of
its variables. Fig. 2 shows the variation ofRgsim as a function
of nrf for different values ofnt = 4, 8, 12, 16, 22, 32, and 4-
QAM. The value ofnrf in the x-axis is varied from from 0
to nt. As mentioned before,nrf = nt corresponds to spatial
multiplexing. TheRgsim versusnrf plot for a givennt shows
an interesting behavior, namely, for a givennt, there is an
optimum nrf that maximizes the achievable rateRgsim. Let
Rmax

gsim denote the maximum achievable rate, i.e.,

Rmax
gsim = max

1≤nrf≤nt

Rgsim. (2)

In Fig. 2, it is interesting to see thatRmax
gsim does not necessarily

occur atnrf = nt, but at somenrf < nt. Rgsim can exceed
the spatial multiplexing rate ofnt log2 M whenever the first
term in (1) exceeds(nt−nrf) log2 M . The following theorem
formally establishes the condition under which theRmax

gsim will
be more than the spatial multiplexing rate ofnt log2 M .

Theorem 1: The maximum achievable rate in GSIM is
strictly greater than the rate achieved in spatial multiplexing
(i.e., Rmax

gsim > nt log2 M ) iff nt ≥ 2M .
Proof: Consider the two terms on the right-hand side (RHS)

of the rate expression (1). The first term (contribution due to
antenna index bits) increases whennrf is increased from 0
to ⌊nt

2 ⌋ and then decreases, i.e., it peaks atnrf = ⌊nt

2 ⌋. The
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Fig. 2. Achievable rate in GSIM,Rgsim, as a function ofnrf for different
values ofnt, and 4-QAM.

second term (contribution due to modulation symbol bits), on
the other hand, increases linearly withnrf . These two terms
when added can cause a peak at somenrf in the range⌊nt

2 ⌋ ≤
nrf ≤ nt. Observe that, as we reducenrf belownt, we gain
rate from the first term but lose rate in the second term. The
rate loss in the second term islog2 M bpcu per RF chain
reduced. Therefore, we can rewrite (1) as

Rgsim = nt log2 M +

⌊
log2

(
nt

nrf

)⌋

−(nt − nrf ) log2 M. (3)

Case 1:nt ≥ 2M
If nt ≥ 2M , then ⌊log2 nt⌋ > log2 M . By putting nrf =

nt − 1 in (3), we get

Rgsim = nt log2 M + ⌊log2 nt⌋ − log2 M. (4)

Therefore, in this case, theRgsim in (4) is more thannt log2 M ,
i.e., GSIM with nrf = nt − 1 RF chains achieves more rate
than spatial multiplexing. This impliesRmax

gsim > nt log2 M ,
i.e., the maximum rate available in GSIM is more than the
spatial multiplexing rate. Conversely, ifnt < 2M , we show
below thatRmax

gsim is not more than the spatial multiplexing
rate.

Case 2:nt < 2M
If nt < 2M ,

log2 nt < 1 + log2 M. (5)

From the properties of binomial coefficients, we have
(

nt

nrf

)
=

(
nt

nt − nrf

)

=
nt(nt − 1) · · · (nrf + 1)

1.2. · · · (nt − nrf)
<

n
nt−nrf

t

2nt−nrf−1
. (6)

Hence,
⌊
log2

(
nt

nrf

)⌋
≤ ⌊(nt − nrf ) log2 nt − nt + nrf + 1⌋ (7)

< ⌊(nt − nrf )(1 + log2 M)− nt + nrf + 1⌋ (8)

< (nt − nrf + 1) log2 M (9)

≤ (nt − nrf ) log2 M. (10)
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The inequality in (7) is obtained by taking logarithm in (6),
and (8) is obtained from (7) and (5). Hence, using (3), we
obtainRgsim ≤ nt log2 M , for 1 ≤ nrf ≤ nt, and thus, for
nt < 2M , Rmax

gsim ≤ nt log2 M . Combining the arguments in
Cases 1 and 2, we getTheorem 1. �

From Fig. 1, the following interesting observations can be
made:

1) by choosing the optimum(nt, nrf ) combination (i.e.,
using fewer RF chains than transmit antennas,nrf <

nt), GSIM can achieve a higher rate than that of spatial
multiplexing wherenrf = nt; and

2) one can operate GSIM at the same rate as that of spatial
multiplexing but with even fewer RF chains.

For example, fornt = 32, the optimumnrf that maximizes
Rgsim is 24 and the corresponding maximum rate,Rmax

gsim ,
is 71 bpcu. Compare this rate with32 log2 4 = 64 bpcu
which is the rate achieved in spatial multiplexing. This is a
11% gain in rate in GSIM compared to spatial multiplexing.
Interestingly, this rate gain is achieved using lesser number
of RF chains; 24 RF chains in GSIM versus 32 RF chains
in spatial multiplexing. This is a 25% savings in transmit RF
chains in GSIM compared to spatial multiplexing. Further, if
GSIM were to achieve the spatial multiplexing rate of 64 bpcu
in this case, then it can achieve it with even fewer RF chains,
i.e., using just 18 RF chains which is a 43% savings in RF
chains compared to spatial multiplexing. Table II gives the
percentage gains in number of transmit RF chains at achieved
rateR = Rmax

gsim andR = nt log2 M , and the percentage gains
in rates achieved by GSIM compared to spatial multiplexing
for nt = 16, 32 with BPSK, 4-QAM, 8-QAM, and 16-QAM.

C. Bounds on achievable rates in GSIM

We now proceed to obtain bounds on the achievable rate in
GSIM. From (1), we observe that

Rgsim ≤ log2

(
nt!

nrf !(nt − nrf )!

)
+ nrf log2 M, (11)

and

Rgsim > log2

(
nt!

nrf !(nt − nrf )!

)
+ nrf log2 M − 1. (12)

From the properties of the factorial operator [22], we have
√
2πn

(n
e

)n
≤ n! ≤ e

√
n
(n
e

)n
, ∀n ∈ N. (13)

Let us define the functionf(nt, nrf , log2 M) as

f(nt, nrf , log2 M)
△
= nt log2 nt − nrf log2 nrf

−(nt − nrf) log2(nt − nrf) + nrf log2 M. (14)

Substituting (13) in (11), using (14), and simplifying, we get

Rgsim ≤ log2
e

2π
+ 0.5 log2

nt

nrf (nt − nrf )

+f(nt, nrf , log2 M). (15)

In a similar way, using (13) in (12), we can write

Rgsim > log2

√
2π

e2
+ 0.5 log2

nt

nrf(nt − nrf)

+f(nt, nrf , log2 M)− 1. (16)

Let us rewrite (15) and (16) in the following way:

Rgsim ≤ f1(nt, nrf) + f2(nt, nrf) + c1, (17)

and

Rgsim > f1(nt, nrf) + f2(nt, nrf) + c2, (18)

where f1(nt, nrf) = 0.5 log2
nt

nrf (nt−nrf )
, f2(nt, nrf) =

f(nt, nrf , log2 M), c1 = log2
e
2π , andc2 = log2

√
2π
e2

−1. For
a fixed nt, the maximum value off1(nt, nrf ) in the range
1 ≤ nrf ≤ nt − 1 is obtained atnrf = 1 or nrf = nt − 1,
and the maximum value is0.5 log2

(
nt

nt−1

)
. Hence,

max{f1(nt, nrf )} = 0.5 log2
nt

nt − 1
. (19)

Also, the termf1(nt, nrf) is minimized fornrf = ⌊nt

2 ⌋, and
the minimum value is0.5 log2

4
nt

= 1 − 0.5 log2 nt for even
nt, and is0.5 log2

nt

(
nt
2
)2−0.25

≥ 1 − 0.5 log2 nt for odd nt.
Hence,

min{f1(nt, nrf )} ≥ 1− 0.5 log2 nt. (20)

Therefore, from (19), (20) and (15), (14), we obtain the upper
bound onRgsim as

Rgsim ≤ f(nt, nrf , log2 M) + 0.5 log2
nt

nt − 1

+ log2
e

2π
. (21)

In a similar way, from (16) and (14), we obtain the lower
bound onRgsim as

Rgsim > f(nt, nrf , log2 M)− 0.5 log2 nt

+ log2

√
2π

e2
. (22)

Sincent, nrf andM take finite positive integer values, and
because of the floor operation in the first term on the RHS in
(1), we can rewrite the bounds in (21) and (22) as

Rgsim ≤
⌊
f(nt, nrf , log2 M) + 0.5 log2

nt

nt − 1

+ log2
e

2π

⌋
, (23)

and

Rgsim ≥
⌈
f(nt, nrf , log2 M)− 0.5 log2 nt

+ log2

√
2π

e2

⌉
. (24)

Note that the above bounds onRgsim can be computed easily
for any nt, nrf , without the need for the computation of
factorials of large numbers in the actual rate expression in
(1). Further, noting that the optimumnrf that maximizes
f2(nt, nrf) is given by

n∗
rf =

ntM

M + 1
, (25)
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M -ary
alphabet Percentagesaving in no. of Tx

RF chains atR = Rmax
gsim

Percentagesaving in no. of Tx RF
chains atR = nt log2 M

Percentageincrease in rate at
R = Rmax

gsim
nt = 16 nt = 32 nt = 16 nt = 32 nt = 16 nt = 32

BPSK 31.25 40.63 68.75 71.88 43.75 46.88
4-QAM 18.75 25 37.5 43.75 9.385 10.94
8-QAM 6.25 12.5 18.75 21.88 2.08 3.13
16-QAM 6.25 3.13 6.25 9.38 0 0.78

TABLE II
PERCENTAGE SAVING IN TRANSMITRF CHAINS AND PERCENTAGE INCREASE IN RATE INGSIM COMPARED TO SPATIAL MULTIPLEXING FORnt = 16, 32

AND BPSK, 4-/8-/16-QAM.

we obtain upper and lower bounds onRmax
gsim , by substituting

n∗
rf in (25) into (23) and (24), respectively, as

Rmax
gsim ≤

⌊
nt log2(M + 1) + 0.5 log2

nt

nt − 1

+ log2
e

2π

⌋
, (26)

and

Rmax
gsim ≥

⌈
f

(
nt,

⌊
nt

M

M + 1

⌉
, log2 M

)
− 0.5 log2 nt

+ log2

√
2π

e2

⌉
. (27)

These bounds onRmax
gsim can be calculated for any givennt and

M directly, without exhaustive computation of the rate for all
possible values ofnrf . From (26) and (27), we observe that
asnt → ∞, Rmax

gsim can be approximated bynt log2(M + 1).
Note that a spatial multiplexing system which uses a zero-
augmented alphabetA0 achieves the rate ofnt log2(M + 1),
if all the symbols inA0 are equiprobable.

In Fig. 3(a), we plot the upper and lower bounds ofRgsim

computed using (23) and (24), respectively, along with exact
Rgsim, for nt = 16 and BPSK (M = 2). The number of
RF chains,nrf , is varied from 1 to 15. It can be observed
that the upper and lower bounds are tight (within2 bpcu of
the actual rate). In Fig. 3(b), we plot the upper and lower
bounds ofRmax

gsim obtained from (26) and (27), respectively,
for different values ofnt and M = 2, 4 (i.e., BPSK, 4-
QAM). The corresponding exactRmax

gsim values are also plotted
for comparison. It can be observed that the lower and upper
bounds ofRmax

gsim are within2 bpcu of the exactRmax
gsim .

D. GSIM signal detection

In this subsection, we consider detection of GSIM signals.
Let H denote thenr×nt channel matrix, wherenr is the num-
ber of receive antennas. Assume rich scattering environment
where the entries ofH are modeled as circularly symmetric
complex Gaussian with zero mean and unit variance. Lety

denote thenr × 1-sized received vector, which is given by

y = Hx+ n, (28)

wherex is thent × 1-sized transmit vector andn is thenr ×
1-sized additive white Gaussian noise vector at the receiver,
whoseith elementni ∼ CN (0, σ2), ∀i = 1, 2, · · · , nr. Let U
denote the set of all possible transmit vectors, given by

U = {x|x ∈ A0
nt×1, ‖x‖0 = nrf , t

x ∈ S}, (29)
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Fig. 3. (a) Bounds onRgsim with BPSK fornt = 16 and varyingnrf . (b)
Bounds onRmax

gsim with BPSK and 4-QAM for varyingnt.

where‖x‖0 denotes the zero norm of vectorx (i.e., number of
non-zero entries inx), andtx denotes the antenna activation
pattern vector corresponding tox, where txj = 1, iff xj 6=
0, ∀j = 1, 2, · · · , nt. Note that|U| = 2Rgsim. The activation
pattern setS and the mapping between elements ofS and
antenna selection bits are known at both transmitter and
receiver. Hence, from (28) and (29), the ML decision rule
for GSIM signal detection is given by

x̂ = argmin
x∈U

‖y −Hx‖2. (30)

For small values ofnt and nrf , the setU may be fully
enumerated and ML detection as per (30) can be done. But
for medium and large values ofnt and nrf , brute force
computation of̂x in (30) becomes computationally prohibitive.
Here, we propose a low complexity algorithm for detection of
GSIM signals.
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The proposed approach is based on Gibbs sampling, where
a Markov chain is formed with all possible transmitted vectors
as states. As the total number of non-zero entries in the
solution vector has to be equal tonrf , one can not sample
each coordinate individually as is done in the case of Gibbs
sampling based detection in conventional MIMO systems [23].
To address this issue, we propose the following sampling
approach: sample two coordinates at a time jointly, keeping
other(nt− 2) coordinates fixed which contain(nrf − 1) non-
zero entries.

1) Proposed modified Gibbs sampler:For any vector
x(t) ∈ A

nt

0 , ‖x(t)‖0 = nrf , where thet in the superscript
of x(t) refers to the iteration index in the algorithm. Let
i1, i2, · · · , inrf

denote the locations of non-zero entries and
j1, j2, · · · , jnt−nrf

denote the locations of zero entries inx(t).

We will samplex(t)
il

andx(t)
jk

jointly, keeping other coordinates
fixed, wherel = 1, 2, · · · , nrf andk = 1, 2, · · · , (nt − nrf).
As any possible transmitted vector can have onlynrf non-
zero entries, the next possible statex(t+1) can only be
any one of the following2|A| candidate vectors denoted by
{zw, w = 1, 2, · · · , 2|A|}, which can be partitioned into two
sets. In the first set corresponding tow = 1, 2, · · · , |A|, we
enlist the vectors which have the same activity pattern asx(t).
Hence,zwil = Aw, zwjk = 0, zq = x

(t)
q , q = 1, 2, · · · , nt, q 6=

il, jk, ∀w = 1, 2, · · · , |A|. Forw = |A|+1, |A|+2, · · · , 2|A|,
we enlist the vectors whose activity pattern differs from that
of x(t) in locations jk and il. Hence, zwil = Aw, zwjk =

0, zq = x
(t)
q , q = 1, 2, · · · , nt, q 6= il, jk, ∀w = 1, 2, · · · , |A|.

For w = |A| + 1, |A| + 2, · · · , 2|A|, we enlist the vectors
whose activity pattern differs from that ofx(t) in locations
jk and il. Hence,zwjk = A

(w−|A|), zwil = 0, zq = x
(t)
q , q =

1, 2, · · · , nt, q 6= il, jk, ∀w = |A|+ 1, |A|+ 2, · · · , 2|A|.
To simplify the sampling process, we calculate the best

vectors from the two sets corresponding to not swapping and
swapping the zero and non-zero locations, and choose among
these two vectors. LetxNS denote the best vector from the
first set corresponding to no swap. We setxNS = x(t) + λeil
and minimize‖y−HxNS‖2 overλ. For this, we have

‖y−HxNS‖2 = ‖y −H(x(t) + λeil)‖2

= yHy − 2ℜ
(
yMFx(t)

)
+ x(t)HRx(t)

− 2ℜ
(
λyMF eil

)
+ 2ℜ

(
λx(t)HReil

)
+ |λ|2Ril,il , (31)

whereyMF = yHH and R = HHH. Differentiating (31)
w.r.t λ and equating it to zero, we get

λopt =

(
yMF
il

− x(t)Hril

)H

Ril,il

, (32)

whereril is the ilth column vector ofR. We obtainxNS =
[x(t)+λopteil ]A, where[x]A denotes the element-wise quanti-
zation ofx to its nearest point inA. Similarly, we obtainxS ,
the best vector from the second set corresponding to swap. The
next statex(t+1) is chosen betweenxS andxNS with proba-
bility pS andpNS , respectively, wherepS = (1 − q)p̃S + q

2 ,

pNS = 1− pS , and

p̃S =
exp(− ‖y−HxS‖2−‖y−HxNS‖2

σ2 )

1 + exp(− ‖y−HxS‖2−‖y−HxNS‖2

σ2 )
. (33)

Here,q gives the probability of mixing between Gibbs sam-
pling and sampling from uniform distribution. We useq = 1

nt
,

because the simulation plots of BER as a function ofq have
shown that the best BER is achieved at aroundq = 1

nt
. After

sampling, the best vector obtained so far is updated. The above
sampling process is repeated for alll and k. The algorithm
is stopped after it meets the stopping criterion or reaches the
maximum number of allowable iterations, and outputs the best
vector in terms of ML cost obtained so far.

2) Stopping and restart criterion:The following stopping
criterion and restart criterion are employed in the algorithm.
Let us denote the best vector so far asz. The stopping
criterion works as follows: compute a metricΘs(z) =⌈
max

(
cmin, c1 exp(φ(z))

)⌉
, whereφ(z) = ‖y−Hx̂‖2−nrσ

2

√
nrσ2

is the normalized ML cost ofz. If z has not changed for
Θs(z) iterations, then stop. This concludes one restart andz

is declared as the output of this restart. Now, check whether
tx belongs toS or not to check its validity. Several such runs,
each starting from a different initial vector, are carried out till
the best valid output obtained so far is reliable in terms of ML
cost. Let us denote the best vector among restart outputs ass

and the number of restarts that has givens as output asrs.
We calculate another metricΘr(s) = ⌊max (0, c2φ(s))⌋ + 1
and comparers with this. If rs is equal toΘr(s) or maximum
number of restarts is reached, we terminate the algorithm. The
listing of the proposed algorithm is given inAlgorithm 1 .

3) Complexity: The complexity of the proposed Gibbs
sampling based detector can be separated into three parts:
i) computation of starting vectors,ii) computation ofyMF

and R, and iii) computations involved in the sampling and
updating process. In our simulations, we use MMSE output as
the starting vector for the first restart, and random starting vec-
tors for the subsequent restarts. The MMSE output needs the
computation of

(
HHH + σ2Int

)−1
HHy, whose complexity

is O(n3
t ). Note that this operation includes the computations

of yMF and R. For the sampling and updating process, in
each iteration, i.e., for each choice ofl andk, the algorithm
needs to computex(t)Hril and x(t)Hrjk , which requires
O(nrf ) computations. The rest of the computations areO(1).
The number of iterations before the algorithm terminates is
found to beO(nrf (nt − nrf)) by computer simulations.
Thus, the total number of computations involved iniii) is
O(n2

rf (nt−nrf)). Hence, the total complexity of the proposed
algorithm for GSIM detection isO(n3

t ) +O(n2
rf (nt − nrf )).

E. BER performance results

We now present the BER performance of GSIM. For
systems with smallnt, we present brute-force ML detection
performance. For systems with largent where brute-force ML
detection is prohibitive, we present the performance usingthe
proposed detection algorithm. We also compare the perfor-
mance of GSIM with the performance of spatial multiplexing.
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Algorithm 1 Proposed Gibbs sampling based algorithm for
GSIM detection

1: input: y, H, nt, nrf ; MAX-ITR: max. no. of iterations; MAX-
RST: max. no. of restarts;

2: ComputeyMF = yHH and R = HHH; initialize r = 0,
κ = 1010, q = 1

nt
;

3: φ(.) : ML cost fn; Θs(.) : stopping criterionfn; Θr(.) : restart
criterion fn;

4: while r < MAX-RST do
5: x(0) : initial vector ∈ A0

nt×1; ‖x(0)‖0 = nrf ; β =
φ(x(0)); z = x(0); t = 0;

6: while t < MAX-ITR do
7: for l = 1 to nrf do
8: for k = 1 to nt − nrf do
9: find il and jk indices;

10: Computeλopt from (32); computexNS = [x(t) +
λopteil ]A; computexNS ;

11: Computep̃S from (33); computepS = (1−q)p̃S+ q

2
,

pNS = 1− pS ;
12: Choosex(t+1) betweenxS andxNS with probability

pS & pNS ;
13: γ = φ(x(t+1));
14: if (γ ≤ β) then
15: z = x(t+1); β = γ; calculateΘs(z);
16: end if
17: t = t+ 1; β

(t)
v = β;

18: end for
19: end for
20: if Θs(z) < t then
21: if β

(t)
v == β

(t−Θs(z))
v then

22: goto step 26
23: end if
24: end if
25: end while
26: r = r + 1;
27: if tz ∈ S then
28: if β < κ then
29: κ = β; rs = 1; s = z; ComputeΘr(s);
30: end if
31: if β == κ then
32: rs = rs + 1;
33: end if
34: if rs == Θr(s) then
35: goto step 39
36: end if
37: end if
38: end while
39: output: s. s : output solution vector

For notation purpose, a GSIM system withnt transmit anten-
nas andnrf transmit RF chains is referred to as “(nt, nrf)-
GSIM” system. Also, we use the term “(nt, nrf )-SM” system
to refer the spatial multiplexing system wherent = nrf . The
following parameters are used in proposed detection algorithm:
cmin = 10nrf(nt − nrf), c1 = 10nrf(nt − nrf) log2 M ,
MAX-ITR = 8ntnrf(nt − nrf)

√
M , MAX-RST= 20, c2 =

0.5(1 + log2 M). Let nmid
rf denote the minimum number of

RF chains in GSIM that achieves the same rate as in spatial
multiplexing for a givennt andM . Letnopt

rf denote the number
of RF chains that achievesRmax

gsim for a givennt andM .
In Fig. 4, we show the BER comparison betweeni) (4, 2)-

GSIM with 4-QAM, ii) (4, 1)-GSIM with 16-QAM, andiii)
(2, 2)-SM with 8-QAM, usingnr = 2. Note that in all the
three systems, the modulation alphabets have been chosen such
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Fig. 4. BER comparison between(4, 2)-GSIM, (4, 1)-GSIM, and(2, 2)-SM
systems with 6 bpcu,nr = 2, and brute-force ML detection.
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nr = nt , 4−QAM

Fig. 5. BER comparison between MMSE detection, proposed detection,
and brute-force ML detection in (4,3)-GSIM and (8,7)-GSIM systems with
nr = nt, and 4-QAM.

that the rate is the same 6 bpcu. Since the systems are small,
brute-force ML detection is used. It can be seen that (4,2)-
GSIM system performs better than (2,2)-SM system. That is,
for the same rate of 6 bpcu andnrf = 2, GSIM achieves
better performance than spatial multiplexing by about 1 dB
better performance at 0.01 uncoded BER. As we will see in
Figs. 6 and 7, this improvement increases to about 1.5 to 2 dB
for 24 bpcu and 48 bpcu systems. It is noted that GSIM needs
extra transmit antennas than spatial multiplexing to achieve
this improvement. But the additional resources used in GSIM
are not the transmit RF chains (which are expensive), but only
the transmit antenna elements (which are not expensive). Itcan
also be seen that even (4,1)-GSIM performs close to within
0.5 dB of (2,2)-SM performance in medium to high SNRs.
This shows that GSIM can save RF transmit chains without
losing much performance compared to spatial multiplexing.

Fig. 5 shows the BER performance of different detection
schemes for GSIM. (4,3)-GSIM and (8,7)-GSIM withnr = nt

and 4-QAM are considered. Note that the choice ofnrf in both
systems corresponds tonopt

rf . Three detectors, namely, MMSE
detector, proposed detector, and brute-force ML detector are
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considered. It can be seen that MMSE detector yields very
poor performance, but the proposed detector yields a perfor-
mance which almost matches the ML detector performance.
The proposed detector achieves this almost ML performance
in just cubic complexity innt, whereas ML detection has
exponential complexity innt.

In Fig. 6, we compare the performance of three systems,
each achieving 24 bpcu:i) (8,8)-SM with 8-QAM and ML
detection using sphere decoder (SD),ii) (12,8)-GSIM with
4-QAM and proposed detection, andiii) (12,12)-SM system
with 4-QAM using generalized sphere decoder (GSD)1. All
the three systems usenr = 8. Fig. 6 shows that the (12,8)-
GSIM with proposed detection outperforms (8,8)-SM with SD
employing same RF resources by about 2 dB in high SNR
regime by using four extra transmit antennas. The performance
of (12,8)-GSIM with proposed detection is very close to thatof
(12,12)-SM system with GSD which uses more RF resources
to achieve the same rate. Also, the proposed detector has
a much lower complexity than GSD which has exponential
complexity innt.

Fig. 7 shows the BER comparison between GSIM and SM
using same RF resources fornrf = n

opt
rf , nr = nrf to achieve

48 bpcu. GSIM usesnt = 22 and 4-QAM, whereas (16,16)-
SM scheme uses 8-QAM modulation alphabet to match the
rate. For GSIM, the proposed detection is used. For SM, sphere
decoding is used. It can be seen that, (22,16)-GSIM scheme
outperforms (16,16)-SM scheme using same RF resources by
about 2 dB in the medium to high SNR regime by using six
extra transmit antennas. Also, the proposed detection has a
much lower complexity than SD.

In Figs. 6 and 7, we also observe that at low SNRs
the SM schemes have better BER performance compared to
the corresponding GSIM schemes. This can be explained as
follows. First, it can be observed that, to achieve the same
rate, GSIM needs smaller-sized constellation compared to SM.
Hence, GSIM will have a larger minimum distance among the
constellation points than that in SM. Second, unlike in SM
where there are no antenna index bits, the following two types
of error events are observed in GSIM:i) the antenna activity
pattern itself is decoded wrongly, and thus both the antenna
index bits and modulation symbol bits are incorrectly decoded,
and ii) the antenna activity pattern is decoded correctly, but
the modulation symbol bits are wrongly decoded. At medium
to high SNRs, the error event of the second type is more likely
to occur and therefore this type of error events dominates the
resulting performance. Coupled with this, a larger minimum
distance among constellation points in GSIM than that in the
corresponding SM makes GSIM to outperform SM in medium
to high SNRs. But at low SNRs, the error event of the first type
is more likely to occur and this error event type dominates the
resulting performance. Since there are no antenna index bits in
SM, error events of the first type do not occur in SM, leading
to better performance for SM in the low SNR regime.

1Since nr = 8, the (12,12)-SM system is an underdetermined system.
Therefore, we have used the GSD in [24] which achieves ML detection in
such underdetermined systems. GSD for spatial modulation has been reported
in [25].
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Fig. 6. BER comparison among three systems achieving 24 bpcu: i) (8,8)-
SM system with 8-QAM,ii) (12,8)-GSIM system with 4-QAM, andiii)
(12,12)-SM system with 4-QAM,nr = 8.
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Fig. 7. BER comparison between GSIM and SM systems using sameRF
resources fornrf = n

opt
rf

, nr = nrf to achieve 48 bpcu.

III. G ENERALIZED SPACE-FREQUENCY INDEX

MODULATION

In this section, we propose a generalized space-frequency
index modulation (GSFIM) scheme which encodes bits
through indexing in both spatial as well as frequency domains.
GSFIM can be viewed as a generalization of the GSIM scheme
presented in the previous section by exploiting indexing inthe
frequency domain as well. In the proposed GSFIM scheme,
information bits are mapped through antenna indexing in the
spatial domain, frequency indexing in the frequency domain,
andM -ary modulation. After mapping, the signal is modulated
using OFDM and is transmitted through the selected antennas.
We obtain the rate equation for the proposed GSFIM system
and study its achievable rate, rate variation as a function
of the parameters involved, and the rate gain compared to
conventional MIMO-OFDM.

A. System model

The proposed GSFIM system usesnt transmit antennas,
nrf transmit RF chains,1 ≤ nrf ≤ nt, N subcarriers,
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b

nrf nrf × nt

M-ary modulation bits

Fig. 8. Block diagram of GSFIM transmitter and receiver.

andnr receive antennas. The channel between each transmit
and receive antenna pair is assumed to be frequency-selective
fading withL multipaths. The block diagrams of the GSFIM
transmitter and receiver are shown in Fig. 8. At any given
time, onlynrf transmit antennas are active and the remaining
nt − nrf antennas remain silent. The GSFIM encoder takes
⌊log2

(
nt

nrf

)
⌋ bits and maps tonrf out of nt transmit antennas

(antenna index bits). It also takes additional bits to indexsub-
carriers (frequency index bits) and bits forM -ary modulation
symbols on subcarriers. The frequency and antenna indexing
mechanisms are detailed below.

1) Frequency indexing:Consider a matrixB of sizenrf ×
N whose entries belong toA0, where A0 = A ∪ 0 with
A denoting anM -ary modulation alphabet. The frequency
index bits andM -ary modulation bits are embedded inB
as follows. The matrixB is divided into nb sub-matrices
B1,B2, · · ·Bnb

, each of sizenrf × nf , wherenf = N
nb

is
the number subcarriers per sub-matrix (see Fig. 9). Letk,
1 ≤ k ≤ nrfnf denote the number of non-zero elements in
each sub-matrix, where each of the non-zero elements belong
to A. This k is a design parameter. Then, for each sub-matrix,
there arelf =

(
nrfnf

k

)
possible ‘frequency activation patterns’.

A frequency activation pattern for a given sub-matrix refers to
a possible combination of zero and non-zero entries in that
sub-matrix. Note that not alllf activation patterns are needed
for frequency indexing. Any2Kf patterns out of them, where
kf =

⌊
log2

(
nrfnf

k

)⌋
, are adequate. Take any2Kf patterns out

of lf patterns and form a set called the ‘frequency activation
pattern set’, denoted bySf . The frequency activation pattern
for a given sub-matrix is then formed by choosing one among
the patterns in the setSf usingkf bits. Thesekf bits are the
frequency index bits for that sub-matrix. So, there are a total of
nbkf frequency index bits in the entire matrixB. In addition
to these frequency index bits,knb log2 M bits are carried as
M -ary modulation bits in the non-zero entries ofB.

Example:Let us illustrate this using the following example.
Let nrf = 2, N = 16, nb = 4, andk = 7. Then,nf = 16

4 = 4,
lf =

(
8
7

)
= 8, kf = ⌊log2 8⌋ = 3, and 2kf = 8. In this

example,lf = 2Kf = 8, i.e., all the 8 possible patterns are in
the frequency activation pattern set, given by

2

1

1 3 4 5 6 7 8 9 10 11 12 13 14 15 162

X

XX

X0X

X X
RF chains

X X X X

XXX0 0 0

X X X X

XXX X X X

XXXX

nf = 4

N = 16 Subcarriers

nrf = 2

nb = 4, k = 1 and X∈ A

B2 B3 B4B1

Fig. 9. Frequency indexing in GSFIM.

Sf =

{[
0 1 1 1
1 1 1 1

]
,

[
1 0 1 1
1 1 1 1

]
,

[
1 1 0 1
1 1 1 1

]
,

[
1 1 1 0
1 1 1 1

]
,

[
1 1 1 1
0 1 1 1

]
,

[
1 1 1 1
1 0 1 1

]
,

[
1 1 1 1
1 1 0 1

]
,

[
1 1 1 1
1 1 1 0

]}
.

SupposeA is 4-QAM. Let [00101001111000110] denote the
information bit sequence for sub-matrixB1. The GSFIM
encoder translates these bits to the sub-matrixB1 as follows:
the first 3 bits are used to choose the frequency activity pattern
(i.e., 001 chooses the activation pattern

[

1 0 1 1
1 1 1 1

]

in the
set Sf above), and the next 14 bits are mapped to seven 4-
QAM symbols so that one 4-QAM symbol gets mapped to
one active subcarrier. The sub-matrixB1 then becomes

B1 =

[
−1− j 0 −1 + j 1− j

1− j −1 + j −1− j 1 + j

]
,

wherej =
√
−1. Likewise, the sub-matricesBi, i = 2, 3, 4 are

formed. The full matrixB of sizenrf ×N is then formed as

B = [B1 B2 B3 B4].

Each row of the matrixB is of dimension1 ×N . There are
nrf rows. EachN -length row vector inB is fed to the IFFT
block in the OFDM modulator to generate anN -length OFDM
symbol. A total ofnrf such OFDM symbols, one for each
row in B, are generated. Thesenrf OFDM symbols are then
transmitted throughnrf active transmit antennas in parallel.
The choice of thesenrf active transmit antennas among the
nt available antennas is made through antenna indexing as
described below.

2) Antenna indexing:The selection ofnrf out of nt

antennas for transmission is made based on antenna index bits.
The antenna index bits choose an ‘antenna activation pattern’,
which tells whichnrf antennas out ofnt antennas are used for
transmission. There arela =

(
nt

nrf

)
antenna activation patterns

possible, andka =
⌊
log2

(
nt

nrf

)⌋
bits are used to choose one

among them. Theseka bits are the antenna index bits. Note
that not all la activation patterns are needed, and any2ka

patterns out of them are adequate. Take any2ka patterns out
of la patterns and form a set called the ‘antenna activation
pattern set’, denoted bySa.

Example:Let us illustrate this using the following example.
Let nt = 3, nrf = 2. Then,la =

(
3
2

)
= 3, ka =

⌊
log2

(
3
2

)⌋
=

⌊log2 3⌋ = 1, and 2ka = 2. The possible antenna activation
patterns are given by

{
[1, 1, 0]T , [1, 0, 1]T , [0, 1, 1]T

}
. The set

Sa is formed by selecting any two patterns out of the above
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three patterns. For example,Sa can be

Sa =
{
[1, 1, 0]T , [1, 0, 1]T

}
.

An nrf × nt switch connects the transmit RF chains to
the transmit antennas. The chosennrf out of nt transmit
antennas transmit the MIMO-OFDM symbol constructed using
the frequency index bits andM -ary modulation bits. The
active transmit antennas can change from one MIMO-OFDM
symbol to the other.

B. Achievable rate, rate variation, and rate gain

In GSFIM, the information bits are encoded usingi) fre-
quency indexing over each sub-matrixBi, i = 1, 2, · · · , nb,
ii) M -ary modulation symbols in each sub-matrix, andiii)
antenna indexing. The number of frequency indexing bits per
sub-matrix is

⌊
log2

(
nrfnf

k

)⌋
. The number ofM -ary modu-

lation bits in each sub-matrix isk log2 M . The number of

antenna indexing bits is
⌊
log2

(
nt

nrf

)⌋
. Combining these three

parts, the achievable rate in GSFIM withnt transmit antennas,
nrf transmit RF chains,N subcarriers,nb sub-matrices, and
M -ary modulation is given by

Rgsfim =




⌊
log2

(
nt

nrf

)⌋

N + L− 1




︸ ︷︷ ︸
RA

+

(⌊
log2

(
nrfnf

k

)⌋
nb

N + L− 1

)

︸ ︷︷ ︸
RF

+

(
knb log2 M

N + L− 1

)

︸ ︷︷ ︸
RQ

bpcu. (34)

Note that in a conventional MIMO-OFDM system, there is
no contribution to the rate by antenna or frequency indexing,
and the achieved rate is only throughM -ary modulation
symbols. Also, in MIMO-OFDM,M -ary modulation symbols
are mounted on allN subcarriers on each of thenrf active
transmit antennas. Therefore, the achieved rate in MIMO-
OFDM (with no antenna and frequency indexing) for the same
parameters as in GSFIM is given by

Rmimo-ofdm =

(
1

N + L− 1

)
nrfN log2 M bpcu. (35)

From (34) and (35), we can make the following observa-
tions:

• conventional MIMO-OFDM becomes a special case of
GSFIM for nrf = nt, nf = N (i.e., nb = 1).

• GSIM presented in Section II becomes a special case of
GSFIM for N = nf = nb = 1, k = nrf .

• for nrf < nt, RA > 0, which is the additional rate con-
tributed by antenna indexing. In this case,Rgsfim in (34)
can be more or less compared toRmimo-ofdm depending on
the choice of parameters. For example, the parameterk

can take values in the range 1 tonrfnf . An instance
where Rgsfim is more thanRmimo-ofdm happens when
k = nrfnf , in which caseRF = 0 andRQ = Rmimo-ofdm.
Therefore,RA is the excess rate (rate gain) in GSFIM
compared to MIMO-OFDM. Likewise, an instance where
Rgsfim is less thanRmimo-ofdm happens whenk = 1, in
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Fig. 10. RateR1 = RF + RQ as a function ofk for different values of
Nf = nrfnf .

which caseRgsfim becomesnb log
2
(nrfnfM)

N+L−1 which is less

thanRmimo-ofdm given by nbnrfnf log
2
(M)

N+L−1 .
• the sum of ratesRF and RQ in (34) as a function of

k reaches its maximum for a value ofk in the range
⌊nrfnf

2 ⌋ andnrfnf , and so does the total rateRgsfim. The
maximumRgsfim will be more than or equal toRmimo-ofdm.

We now illustrate the above observations through numerical

results. DefineR1
△
= RF + RQ and Nf

△
= nrfnf . In Fig.

10, we plotR1 as a function ofk, for different values of
Nf = 8, 16, 32, L = 4, andM = 2, 4. We observe thatR1

reaches its maximum value fork between⌊Nf

2 ⌋ andNf . Also,
the maximumR1 increases asNf increases because theRF

term in (34) increases withNf .
In Fig. 11, we plot the maximumRgsfim as a function of

nt for nrf = 8, N = 32, L = 4, andnf = 1, 2, 4, 8, 16, 32.
Rmimo-ofdm is also plotted for comparison. We observe that for
a givennf , the maximumRgsfim increases withnt because
of the increase in antenna index bits carried. For a givennt

andnrf , the maximumRgsfim increases with increase innf

because of increase inNf and the associated increase inRF.
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From this figure, we can see that GSFIM can achieve a rate
gain of up to 65% forM = 2 and up to 19% forM = 4,
compared to MIMO-OFDM. In Fig. 12, we have plotted the
percentage rate gain in GSFIM compared to MIMO-OFDM
(i.e., difference between maximumRgsfim and Rmimo-ofdm in
percentage), as a function ofnrf for nt = 32, N = 32, L = 4,
andnf = 2, 4, 8, 16, 32. As can be observed in Fig. 12, GSFIM
can achieve rate gains up to 65% forM = 2 and 20% for
M = 4, compared to MIMO-OFDM.

In Fig. 13, we plot the maximumRgsfim as a function of
nrf for a givennt = 32, N = 32, L = 4 and nf = 1, 32.
We can observe that for a givennf , the rate increases with
nrf because of the increase inRF. For a givennrf , the the
maximumRgsfim increases with increase innf . In Fig. 14,
we have plotted bar graphs showing the percentage savings
in transmit RF chains in GSFIM compared to MIMO-OFDM
nt = N = 32, L = 4, andnf = 1, 4, 32. It can be observed
that this savings is high for small-sized modulation alphabets
– e.g., the savings is up to 42% forM = 2 and 20% for
M = 4.

In Fig. 15, we plot the maximumRgsfim as a function of
nf for nt = 32, nrf = 8, L = 4, and N = 32. We can
observe that the maximumRgsfim increases for up to certain
nf and thereafter it saturates. This is because the maximum
R1 saturates to a valueNfnb log

2
(M+1)

N+L−1 for largeNf .

C. GSFIM signal detection and performance

In this subsection, we consider GSFIM signal detection
and performance. LetHn denotenr × nt channel matrix on
subcarriern. Let Ha

n denote thenr × nrf channel matrix
corresponding to the chosennrf antennas. The superscripta in
Ha

n refers to the antenna activation pattern that tells whichnrf

antennas are chosen. Let us denote thenr × 1-sized received
vector on subcarriern asyn, which can be written as

yn = Ha
nzn +wn, n = 1, 2, · · · , N, (36)

wherezn is thenrf ×1-sized transmitted vector on subcarrier
n, andwn is thenr × 1-sized additive white Gaussian noise
vector at the receiver,wn ∼ CN (0, σ2Inr

). Consider the
system model in (36) for theith sub-matrix, given by

yl = Ha
l zl +wl, l = i1, i2, · · · , ij, · · · , inf

, (37)

whereij = (i− 1)nf + j. Write (37) as

yi = Ga
i z

i +wi, i = 1, 2, · · · , nb, (38)

where

yi =




yi1

yi2

...
yinf


 , zi =




zi1
zi2
...

zinf


 ,

Ga
i =




Ha
i1

0
Ha

i2

. ..
0 Ha

inf


 .

The ML metric for a given antenna activation patterna and
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Fig. 11. MaximumRgsfim as a function ofnt, for nrf = 8 and different
values ofnf .

vectorszi, i = 1, · · · , nb representing the frequency activation
pattern andM -ary modulation bits is

d(a, z1, z2, · · · , znb) =

nb∑

i=1

‖yi −Ga
i z

i‖2. (39)

Let U denote the set of all possibleNf -length transmit vectors
corresponding to a sub-matrix. Then,U is given by

U = {x|x ∈ A0
Nf×1, ‖x‖0 = k, tx ∈ Sf}, (40)

wheretx denotes the frequency activity pattern corresponding
to x, where txj = 1, iff xj 6= 0 , ∀j = 1, 2, · · · , Nf . The
antenna activation and frequency activation pattern sets (Sa,
Sf ), and the antenna and frequency index bit maps are known
at both transmitter and receiver. Therefore, from (39) and (40),
the ML decision rule for GSFIM signal detection is given by

(â, ẑ1, ẑ2, · · · , ẑnb) = argmin
a∈Sa, zi∈U,∀i

d(a, z1, z2, · · · , znb).(41)

By inverse mapping, the antenna index bits are recovered
from â and the frequency index bits are recovered from
ẑ1, ẑ2, · · · , ẑnb .
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In Figs. 16(a) and (b), we show the BER performance
of GSFIM in comparison with MIMO-OFDM under ML
detection. In Fig. 16(a), the GSFIM system hasnt = 3,
nrf = 2, N = 8, nf = 4, nr = 2, 4, 4-QAM, and
the achieved rate isRgsfim = 3.1818 bpcu. The MIMO-
OFDM hasnt = nrf = 2, N = 8, nr = 2, 4, 4-QAM,
and the achieved rate isRmimo-ofdm = 2.9091 bpcu. In Fig.
16(b), the GSFIM system hasnt = 3, nrf = 2, N = 16,
nf = 4, nr = 2, 3, L = 4, 4-QAM, and the achieved
rate isRgsfim = 3.6316 bpcu. The MIMO-OFDM system has
nt = nrf = 2, N = 16, nr = 2, 3, L = 4, 4-QAM, and
the achieved rate isRmimo-ofdm = 3.3684 bpcu. It is seen
that in Figs. 16(a) and (b), GSFIM has higher rates than
MIMO-OFDM. In terms of error performance, while MIMO-
OFDM performs better at low SNRs, GSFIM performs better
at moderate to high SNRs. This performance cross-over can be
explained in the same way as explained in the case of GSIM in
the previous section (Sec. II-E, Figs. 6 and 7); i.e., at moderate
to high SNRs, errors in index bits are less likely and this makes
GSFIM perform better; at low SNRs, index bits and hence
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Fig. 13. MaximumRgsfim as a function ofnrf , for nt = N = 32, and
nf = 1, 4, 32.

the associated modulation bits are more likely to be in error
making MIMO-OFDM to perform better. Similar performance
cross-overs have been reported in the literature for single-
antenna OFDM with/without subcarrier indexing (e.g., [12]),
where it has been shown that OFDM with subcarrier indexing
outperforms classical OFDM without subcarrier indexing at
moderate to high SNRs, whereas classical OFDM outperforms
OFDM with subcarrier indexing at low SNRs. The plots in
Figs. 16(a) and (b) essentially capture a similar phenomenon
when there are index bits both frequency as well as spatial
domains.

IV. CONCLUSIONS

We introduced index modulation where information bits
are encoded in the indices of the active antennas (spatial
domain) and subcarriers (frequency domain), in addition to
conveying information bits through conventional modulation
symbols. For generalized spatial index modulation (GSIM),
where bits are indexed only in the spatial domain, we derived
the expression for achievable rate as well as easy-to-compute
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Fig. 16. BER performance of GSFIM and MIMO-OFDM under ML
detection. (a) GSFIM withnt = 3, nrf = 2, N = 8, nf = 4, nr = 2, 4,
L = 4, 4-QAM, 3.1818 bpcu, and MIMO-OFDM withnt = nrf = 2,
N = 8, nr = 2, 4, L = 4, 4-QAM, 2.9091 bpcu. (b) GSFIM withnt = 3,
nrf = 2, N = 16, nf = 4, nr = 2, 3, L = 4, 4-QAM, 3.6316 bpcu, and
MIMO-OFDM with nt = nrf = 16, N = 16, nr = 2, 3, L = 4, 4-QAM,
3.3684 bpcu.

upper and lower bounds on this rate. We showed that the
achievable rate in GSIM can be more than that in spatial
multiplexing, and analytically established the conditionunder
which this can happen. We also proposed a Gibbs sampling
based detection algorithm for GSIM and showed that GSIM
can achieve better BER performance than spatial multiplexing.
GSIM achieved this better performance using fewer transmit
RF chains compared to spatial multiplexing. For generalized
space-frequency index modulation (GSFIM), where bits are
encoded in the indices of both active antennas as well as sub-
carriers, we derived the achievable rate expression. Numerical
results showed that GSFIM can achieve higher rates compared
to conventional MIMO-OFDM. Also, BER results using ML
detection showed the potential for GSFIM performing better
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than MIMO-OFDM at moderate high SNRs. Low complexity
detection methods for GSFIM can be taken up for future
extension to this work.
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