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Location Verification Systems for VANETS in
Rician Fading Channels

Shihao Yan, Robert Malaney, Ido Nevat, and Gareth W. Peters

Abstract—In this work we propose and examine Location [12], or to selfishly enhance its own functionality withineth
Verification Systems (LVSs) for Vehicular Ad Hoc Networks network [13]. The integrity of claimed location in VANETS
(VANETS) in the realistic setting of Rician fading channels In our is therefore important, and motivates the introduction of a

LVSs, a single authorized Base Station (BS) equipped with niti . L . _
ple antennas aims to detect a malicious vehicle that is spoo§ its Location Verification System (LVS) to that scenario. Within

claimed location. We first determine the optimal attack straegy |EEE 1609.2, an LVS will form part of the decision logic in
of the malicious vehicle, which in turn allows us to analyzetie the revocation of malicious-vehicle certificates (see [fb4]a
optimal LVS performance as a function of the Rician K-factor of  review of certificate revocation within IEEE 1609.2).
the channel between the BS and a legitimate vehicle. Our angis Recently, many location verification protocols for VANETs
also allows us to formally prove that the LVS performance limit ' .
is independent of the properties of the channel between the have been pr_oposeq (e.g., [13'15_23])' These studies have
BS and the malicious vehicle, provided the malicious vehiels Proven useful in probing the detection performance of an LVS
antenna number is above a specified value. We also investigat given a range of potential VANETs attack scenarios and an
how tracking information on a vehicle quantitatively improves array of VANETS configurations. However, several important
the detection performance of an LVS, showing how optimal 4ans in our knowledge of LVS performances and reliabilities
performance is obtained under the assumption of the trackig in A th N th timal f f
length being randomly selected. The work presented here caoe remain. mong_ ese are, (') € optmal per orm.a.nce oran
readily extended to multiple BS scenarios, and therefore fons LVS as a function of the wireless channel conditions, and
the foundation for all optimal location authentication schemes (ii) the optimal performance of an LVS as a function of the
within the context of Rician fading channels. Our study clogs tracking information on a vehicle. These two open issues are
important gaps in the current understanding of LVS performance o particular relevance to the VANETS environment, and the
within the context of VANETSs, and will be of practical value to Ut f1h f th f th K ted h
certificate revocation schemes within IEEE 1609.2. reso_u Ion of them 0rm§ ? core of the wor pre_sen €d here.
. o ] . With regard to our first issue, we note that in VANETSs
Index Terms—Location verification, location spoofing detec-  qnyironments Rician channels are anticipated to domiate t
tion, Rician fading, likelihood ratio test, tracking infor mation. channel characteristics [24, 25]. This fact allows us tacipe
more precisely the first question we wish to answw does
the optimal detection performance of an LVS quantitatively

I. INTRODUCTION depend on the proportion of the LOS (line-of-sight) in a

In current wireless networks location-based techniquets afyi'eless channel? The proportion of the LOS in a wireless
services are now ubiquitous. As a consequence of this, ffzannel impacts the characteristics of observations rédai
verification of location information has attracted considée OVer wireless channels, such as the shadowing variance of
research interest in recent years [1-9]. In many locatiased Received Signal Strength (RSS), the estimation error ofeTim
applications the device (client) obtains its location mfiation ©f Arrival (TOA), and the statistics on Angle of Arrival (AQA
directly (e.g., via GPS), and in such a case the wider netwdiRt€rminations. The follow-on impact of such effects on LVS
can only achieve the client's location through requests Rgrformances is non-trivial. Our approach in addressirng th
the client. In such a context, the client can easily spoof §€stion will be to first determine the optimal attack sggte
falsify its claimed location in order to disrupt some netof the malicious vehicle, and to use that in order to conduct
work functionalities (e.g., geographic routing protocfl§], & formal theoretical anglysis on the LVS perform_a_\nce. Wi_th
location-based access control protocols [11]). The a@ver§9ard to our second issue, we pose the specific question:
effects of location spoofing can be more severe in VehiculoWw does the tracking information on a vehicle quantitatively
Ad Hoc Networks (VANETS) due to the possibility of life- improve the detection performance of an LVS? This question is
threatening accidents. Less critically, a malicious viehiould ~ ©f Practical significance since under some channel comitio

spoof its location in order to seriously disrupt other végsc the detection performance of an LVS with a only single
claimed location (no tracking) is unfavorable. We addréss t
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strategy of a malicious vehicle. To this end, after deriving S
the optimal transmit power and the optimal beamformer for y
the malicious vehicle at an arbitrary location, we identife
optimal locations of the malicious vehicle (best locatidas
launch an attack). Our analysis indicates that these optima
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locations are determined solely by a single direction (due t %(B?U /
the ability of the malicious vehicle to vary his transmit pew :’Egs_e_: e S
and beamformer). Our analysis also reveals that the detecti I Station | e
performance of an LVS will not be a function of the number :_(0,_0) | h

= F N \\#/

of antennas held by the malicious vehicle once this number
is above a derived bound. We next establish that the optimal
attack direction is that set by the direction from the claime
location to the BS (Base Station), and show how the malicious
vehicle can perfectly imitate the signals expected from a
legitimate vehicle if the malicious vehicle can find a looati

in this optimal direction with non-zero LOS. However, given
a constraint imposed that the true location of the maliciogsy. 1. ustration of the orientations of the three ULAsdaihe geometry
vehicle should be some minimum distance from its claimedithe BS, the legitimate vehicle, and the malicious vehigle note thatVy,
location, such an optimal attack direction may not be viablé! (*): ¢1(t), and¢: (%) are not assumed to be known to the LVS.
Considering unlimited resources possessed by the madiciou

vehicle (e.g., unlimited number of antennas), the LVS can

determine the actual (now sub-optimal) best attack lonatio Il. SYSTEM MODEL

given the constrf';unt. We present how all of these _flndln% System Assumptions

allow us to establish lower bounds (worst-case scenarith®n ) )
detection performance of the LVS. We next extend our amalysi 1 hroughout this work we represent the inputs of an LVS as
to a tracking version of the LVS where multiple observatiorfdinary hypotheses, the null hypothesis and the alternative
are utilized, showing how an extension of our previous asialy hyPothesis?t;. Under#, the vehicle is legitimate and pro-
can lead to a range of similar outcomes, but with improvefdes to the LVS a claimed location equal to its true location
detection performance. A key part of the tracking LVS whick/nder?#: the vehicle is maliciodsand provides to the LVS
allows for these findings is that the number of observatioAsclaimed location which is not its true location (a spoofed
used for the decision-making process is randomly selecté@fation). We consider a VANETS application scenario, veher
Additional constraints on the tracking LVS solutions, irspd  the BS, the legitimate vehicle, and the malicious vehicte ar
by speed limitations of the malicious vehicle, are presintédll €quipped with uniform linear arrays (ULAs). We discuss
Finally, we present extensions of our analysis that take inter the impact of non-linear antenna arrays. The number
account non-linear antenna arrays, and discuss the aetecfif antenna elements of the ULAs at the BS, the legitimate

performance of the LVS in the presence of colluding attackéehicle, and the malicious vehicle ahg;, No, andXV,, respec-
tively. Utilizing observations obtained over wireless ehals,

The rest of this paper is organized as follows. Section ghe BS is to verify whether the vehicle is indeed at its claime
details our system model. In Section Ill, the optimal attagcation or not, thus inferring whether the vehicle is legte
strategy of the malicious vehicle is determined, based dotwh o majicious. In the first instance we will assume the presenc
the detection performance of the LVS is analyzed. Section bf only one malicious vehicle (we discuss colluding attacks
formalizes the optimal decision rule of the LVS when trackin|gter).
information of the claimed location is available. In Sentd, We adopt the polar coordinate systed, (@) in this work
we present numerical results to verify our analysis and We ¢ {0, 1}), whered, (d;) is the distance from the origin
also draw some important insights based on our analy§§-the center of the legitimate (malicious) vehicle’s ULAda
In Section VI, we discuss potential extension directions gf (4, represents the angle measured counterclockwise from
our analysis and the impact of colluding attacks on an LV§he ;-axis to the line connecting the center of the legitimate
Finally, Section VIl draws concluding remarks. (malicious) vehicle’s ULA to the origin. The location of the

Notation: Scalar variables are denoted by italic symbol®S is selected as the origin, and the BS's ULA is aligned
Vectors and matrices are denoted by lower-case and uppiith the z-axis (antenna elements all on x-axis). A schematic
case boldface symbols, respectively. Given a complex numi§é our assumed set-up is shown in Fig. 1. The claimed
z, | 2| denotes the modulus ofand Re 2} denotes the real partlocation of a vehicle (legitimate or malicious) at time siot
of z. Given a complex vectox, ||x|| denotes the Euclidean(t =1,2,...,T) is denoted as.(t) = (d.(t),0.(t)), which is

norm,x " denotes the transposexfx’ denotes the conjugateSUPPlied to the LVS and to be verified (note, the LVS may be

a square matrixX, tr(X) denotes the trace X and detX) . _ - _

d tes the det ) t 5. The L x L identit trix i Note, although we will often refer to the attacker as thaicious vehicle,
enotes the determinan : eLx - .' entity _ma NX 1S we should bear in mind that in reality the attacker may not beldcle (e.g.,

referred to ad;, and|[-] denotes the ceiling function. could be a generic device/user situated anywhere).

N T
alicious |
Vehicle |




H, (the legitimate vehicle’s true location) atis denoted as scattered component & (¢). The entries of(¢) are inde-
xo(t) = [do(t),00(t)]T. The true location of the vehicle underpendent and identically distributed (i.i.d.) circuladymmetric

1 (the malicious vehicle’s true location) atis denoted as complex Gaussian random variables with zero mean and unit
x1(t) = [di(t),0:(t)]T. Since the legitimate vehicle reportsvariance. We assume tha&l,(¢) is i.i.d. in different time

its true location to the LVS, we hawe.(t) = x((¢). We adopt slots. Denotingys as the space between two adjacent antenna
a practical threat model, in which the distance between tetements of the ULA at the BSH,(t) can be written as
malicious vehicle’s true location and its claimed locatisn Hy(t) = rx(t)t(t) [26], wherer,(t) and t,(t) are given
larger than some specific valug(i.e., ||x1 () — x.(t)|| > r;). by

We note that this assumption is reasonable since the mali- ) T

cious vehicle does not need to spoof its claimed location ~ 5(1) =L+ exp(i(Np = D)7p costi(t))] . (2)

if ||x1(t) — x.(t)|| is very small. The value of; can be ti(t) = [1,- - exp(—j(Nk — )7 cos gy (t))] . (3)

predetermined based on some specific application Scen%i(iZ) and (3), we havey = 21 f.pp/c andy, = 27 fupr/c

and in Qe”e“’;' It is Ilarger thanda vehicle sh|ntr|n§|c PO |\ heref. is the carrier frequency, s the speed of propagation
uncertzlnty.hT € angl e?of(]t)lan_ 1 (1) asds O‘l’m in Flgllsill of the plane waveyp, is the space between two antenna
are under the control of the legitimate and malicious VeISICl o1 mants of the ULA at the legitimate vehicle, apg is

respectively. We note thato(t) (v1(t)) represents the anglethe space between two antenna elements of the ULA at the

measured counterclockwise from the orientation of the ULA alicious vehicle. We note that we assume the LVS knows
at the legitimate (malicious) vehicle to the line conne@tinKO(t) (e.g., through a predetermined measurement campaign
the center of the legitimate (malicious) vehicle’'s ULA teeth in the vicinity of the BS). We assum&, (¢) is known by the

orlg_||n.b:N|thorL]Jt other statemdelnts_, we assuhm? &,‘” 'Tforrkmat'cfnalicious vehicle but not known by the LVS. Note that we will
available to the LVS, BS, and legitimate vehicle is also kKnow, g me that the time dependence for all our variables arises

to the malicious veh|cI¢._We ass‘_lmﬁ’ X1 (t)_’ andvy (t) are solely from the fact that the vehicle is in general moving.(i.
_known only by the maI|C|(_)us veh_lcle. We will assume that . the variables are functions of location). The exceptionhis t

is unbounded ((_)f course in practice this numbe_r is cqnstth!nis ﬁk(t)y for which the time dependence is also due to the
by the communication wavelength and the physical dimessiop, e ment of scatterers. Our channel model covers the entire

of the vehicle). If in practice the malicious vehicle posses range of conditions from a pure Rayleigh chanrigl£ 0) to
less than a critical number of antenna elements (to be dkerive pure LOS channell = o).

later), then the results presented here represent cotiserva
lower bounds on the LVS performance. _
Note in this work we will consider observations collected OPservation Model
by only one BS. In general, this represents the most likely The composite observation model is given by
(default) scenario for many real-world VANETs. As such, ) _
the analysis we provide here should be widely applicable. Hi y(0)=Vpr(0)g(di () Hi(O)br (1) s+ni (1), (4)
The analysis for the single BS also forms the basis fromherep,(t) is the transmit power of the vehicle und#f,,
which other more complicated scenarios can be built upaf(dy(¢)) is the path loss gain undét; given byg(dx(t)) =
For example, in instances where additional BSs are withip/4x f.d,.)? (d,/dx(t))¢, d, is a reference distancé, is the
range of claimed positions, the work presented here can fth loss exponenty(t) is the beamformer adopted by the
readily adapted to account for tHa#h conceptually simple vehicle under} that satisfieg|by(t)|| = 1, s is the publicly
method of doing this would be for each additional BS to bkenown pilot symbol satisfying|s|| = 1, and nx(¢) is the
allocated a separate LVS which can then cooperate with otheiditive white Gaussian noise vectortainder?,;,, of which
LVSs (BSs) in order to make optimally-joint decisions. the entries are i.i.d circularly-symmetric complex Gaassi
random variables with zero mean and variange We note
B. Channel Model that for simplicity we assume tha is independent of a
ehicle’s location and is the same for all power components
.e., Hy(t) and H,(¢)) since we have assumed thay, (t)
is a function of a vehicle’s location [27]. As we show later,
our analysis still holds even i is a function of a vehicle’s
Ki(t) — 1 _ location and is different fodd, () and Hy(¢). We assume
Hy(t) = ﬁHk(t) + ﬁHk(tL (1) that the legitimate vehicle adopts constant transmit ppier
+ K (t) + K (1) po(t) = po. However, we note that, (¢) varies. This is due to
where K (t) is the Riciank-factor of the channel undé;, the fact that the malicious vehicle can adjust its transioigr
(we assumek,(t) is a function the vehicle’s true location),based on each pair ofy(t) andx:(t). We also assume that

H,(t) is the LOS component of,(t), and Hy(t) is the nx(t) is ii.d in different time slots. We note thay(¢) and
po are under the control of the legitimate vehicle. We assume

2We note that other trusted vehicles within range of the aairposition
could also be used as additional reference stations. Indeaitles which are  3We will be conservative and assume the attacker has untinptaver
considered legitimate (e.g., by consistently passing @ ldecisions over a resources. If a power constraint (on attacker) is introdus@me of the attacks
length of time) can be used to dynamically create/updateKfhmap for a we describe later may not be possible, and in these circocesathe LVS
particular BS, at least with regard to all locations on thadro performances shown can be considered lower bounds (wasstgcenarios).

We assume the channel from a vehicle (legitimate or maﬁ
cious) to the BS is subject to Rician fading. Then, ¥gx Ny
channel matrix at under#;, is given by



that the legitimate vehicle cooperates with the BS to fad#i whether the vehicle is legitimate or malicious, respetyive
the location verification. To this end, the legitimate védic Given the decision rule in (8), the false positive and déeact
setsby(t) = tg(t)/||t0(t)|| S0 as to maximizét,(t)bo(t)|. In rates of the LVS are functions of. Note, the false positive
addition, the legitimate vehicle sets its transmit poweth® rate is given bya(\) = Pr(A (y) > MHo), and detection
required value by the BS (we assumgis publicly known). rate is given bys(\) = Pr(A(y) > A[H1). The specific
Again, we assume neither, (t) nor by (¢) is known to the value of A can be set through predetermining a false positive
LVS. According to (1) and (4), the likelihood function gf¢) rate, minimizing the Bayesian average cost, or maximizing

conditioned on a knowr underHy is the mutual information between the system input and output
1 [8]. In order to quantitatively examine the impact of some
fy(®)|He)= W(l:{k(t)) X system parameters on the detection performance of the LVS,

we have to adopt a unique metric to evaluate the LVS. When it
exp [y (t)-my(t) 'R, (1) (y()-mx(8)] . (6) g necessary, Wpe adop?a special Bayesian average cost as the
wheremy,(t) and Ry (t) are the mean vector and covariancghique performance metric, which is the total error. Thaltot
matrix of y(¢) under#y, respectively, which are given by  error is obtained by setting the costs of correct and incbrre
decisions as zeros and ones, respectively [29]. The tatat er
i (t) = \/pk(t)lg(dk]?))t[(k(t)ﬁk(t)bk(t)7 (©) can be expressed as
+ ) €N = Pa) + (1- R)1-BO)),  (©)

Ry.(t) = (71 e + ok (7) where P, and 1 — P, are thea priori probabilities that the
k(1) S o -7 .
vehicle is legitimate and malicious, respectively. Basedh®
We note that undet, we haveH(t)bo(t) = v/Noro(t) Bayesian framework, the optimal value afthat minimizes
due toby(t) = t§(t)/|[to(t)||. We also note thaf (y(t)|H1) e(A) is given by\* = Py/(1 — Fy) [29]. Substituting\* into
is dependent op, (t), by (¢), andx; (¢). Thus, we also denote (9), we can obtain the minimum value ef)\), referred to as
F(y(@)|H1) asf (y|p1(t), b1(t),x1(t), H1). These parametersthe minimum total error and denoted by*.
(i.e.,p1(t), bi(t), andx;(t)) are all under the control of the
malicious vehicle and are unknown to the LVS. In the nex Optimal Attack Strategy Against the LVS
section, we will discuss how the malicious vehicle optimpall
sets these parameters in order to minimize the probability 8
being detected by the LVS. !

PO (1) ) I,

Knowing (8), the malicious vehicle is to minimize the

fference betweerf (y|p1, b1, x1,H1) andf (y|Ho) in order

to minimize the detection rate. It can be shown that min-

imization of the Kullback-Leibler (KL) divergence leads to

the minimum detection rate [30]. This is due to that the KL

divergence is also the expected log likelihood ratio when th
In this section we examine the performance of the LVS taternative hypothesig{; is true. The KL divergence from

considering only one claimed location and one observatigny|p, by, x;, %) to f (y|Ho) is defined as [31]

snapshot at the BS antennas (i.e., BS measurements made in

one time slot, and” = 1). As such, we drop explicit reference  Pxz (f (y|p1, i, x1, Ha) [|f (y[Ho))

to (¢) for all variables in this section. We first present the :/ n A b d 10
decision rule and performance metrics adopted in this LVS. A (vlpr,brx1, Ha) dy. - (10)

We then discuss the optimal attack strategy of the malicioggyen this, the optimization problem for the malicious \@éi
vehicle (i.e., how to optimally sei;, by, andx;) in order to an pe written as
minimize the probability to be detected. Finally, we analyz .
the detection performance of the LVS based on this optimal(pl’bl’xl) -
attack strategy. argmax  Drr (f (y[p1, b1, x1, Ha) [|f (y|Ho)) . (11)

Pr120,[by =1,
[[xc—x1l=r;

IIl. L OCATION VERIFICATION SYSTEM
WITHOUT TRACKING

A. Decision Rule of the LVS We present the solutions to (11) in two steps. We first derive

We adopt the LRT as the decision rule of the LVS. This id1® oPtimal values of; andb, for any givenx; in Theorem 1.
due to the fact that the LRT achieves the highest detectiten rghenz we search for the optimal valuexof numerically, with
(the probability to correctly detect a malicious vehicle) &ny the aid of Theorem 2'_ A
given false positive rate (the probability to incorrectlgteict Theorem 1. The optimal v_alues Obs a”‘?'bl that minimize
a legitimate vehicle as malicious) [28]. The LRT decisioteru (€ detection rate for any given, are derived as

is given b y Ky +1 d
g y (%) = 1 (Pog( 0) n (2)_ U%) ’ (12)
£ (ylpr,b ’H)D>1 g(di) \ 1+ Ko
A A Y|pP1,Db1,X1, 1 = )\’ 3 b*(xl) _ U*p*, (13)
v T s © 1

where U, is the left singular and orthogonal matrix of the
where A (y) is the likelihood ratio ofy, \ is the threshold Singular Value Decomposition (SVD) fo&lG,, G, =
for A (y), andD, and D, are the binary decisions that infer\/p}(x1)g(d1) K1 /(1 + K1) Hi, p*[1] = ULGImg[1]/1.,




n. is the unique eigenvalue o&lG., and p*[i] for i = We also note that the maximum value|nfr0|2 is N2, which

2,3,---, Ny can be any value which enablgp*|| = 1, is achieved whemr; = rq. Then, as per (17) we have
Proof: Substituting (5) into (10), we have
UfGt do) K 1+ K N
Dict, (F (ylpr ba,xca, 1) 1 (1H0)) (TG moll | Jroao)lo [ 1x R [Ro (o)
det R, 7 1+ Ko \ pig(di)K1 VN
_ —1R. Y Np_
_tr(RO Rl) Np—In <det R0> LN
14
hi(p1) (14) In order to guarante€(N;) < 1, the malicious vehicle has
+ (mo—m;) Ry (mp—my) . to guaranteeN; > N, where N is obtained by setting
L(N1) =1 and is given by
ha(p1,b1)
Based on (14), we know that only the termy (p1,b1) N = [max{Q, Pog(do) KoNo — H (23)
is a function ofb;. As such, we first derive the optimal Ki[pog(do)+ (14 Ko)(og —07)]

by that minimizeshs (p1,b1) for a givenp;. Given the The reason forN; > 2 is that the minimum dimension of
format of Ry presented in (7), we can see that(p1,b1) p must be2 if r; is to remain a function of;. We assume
is minimized when|mo — m,|[* is minimized. Defining the malicious vehicle can guarantdg > N, and therefore
G = \/pig(d1) K1 /(1 + K;) Hy, we have guaranted|UTGmy||/n < 1. As such, the optimal solution
hs (b1) 2 [mg — my |2 p°[l] = UTGTmO[l]/n ggn alwgys be achieved. This optimal
et i bt ; solution mdu;ates thap°[é], for ¢ > 2, can take any values in
= blG Gbl—mOGbl—blG mg+1mgymy. (15) order to reallzd\p"H - 1.

Performing the SVD for the symmetric positive semidefinite We next derive the optimal value pf. Substitutingp®[1] =

matrix Q £ G'G, we have U'G'my[1]/7 into (18), we have
2
UvuU' = Q. (16) o (b2) = mtmo — |UTGTm||
We note thatQ is a rank-1 matrix and we denote the unique 1 :
eigenvalue ofQ asn. Then, we have _ Pog(do) KoNo (NB _ |r1r0|2> (24)
1+ Ky Ng |’
1+ K,

whereb? = Up°. We note thatriry|? is a function of only

Denotingb, = Up (i.e.,p = U'b,), following (15) and (16) Nz, 6y, andd;. Thus,h3(b?) is not a function ofp; anymore.

we have Based on (14), we know that (p,) is a function of onlyp;.
This indicates that the optimal, is the one that minimizes

hs (b1)=p'Vp—m{GUp-p'U'G'mo + mimy. (18) hi(p1). After some algeb?a, V\?ie} can show that thatp,) is

We note thatUTGm, is a complex)V; x 1 vector and we minimized whenR, = R4, which results in the desirable

denote thei-th complex element otJTGmg ascp; + jer;.  Tesultin (12). We note that to achieve (12) we requife<

Since Q is a rank-1 matrix, we hav&Gimg[i] = 0 for pog(do)/ (14 Ko)+o3. This is reasonable as the channel noise

i=2,3,---,Ny. Denoting thei-th complex element op as Variance will be lower than the useful signal power. Finally
pri + jpr, following (18) we have substitutingpi (x1) into (20) we obtain the desirable result in
(13). [ |

(2 2 f
hy (b1) =n(PR1+p11) =2 (cripr1+cnpn) + memo. (19) We note that if the conditiodv; > N cannot be guaran-

Using (19), we haverz; = cgrin andpy = cy1n in order to  teed, the minimum KL divergence for any given will be
minimize hs (b1) without any constraints, which results in larger than that forV, > N7. To prove this statement, we
have to prove the following equation
p’[1] = U'Gmy[1]/n, (20)

/ /
wherep® denotes the optimab that minimizeshs(p) for a DK>L g lp: (Xl);bl(xll))lxl’ﬂl) ||£[(Y|7'lo)) ”
givenp;. We note that there is a constraint for the minimiza- = ~%F (f (ylpiGer), by (), 31, Ha) 1 f (y1Ho))
tion of i3 (b1), whichis|[by|| = 1 (i.e.,|[p|| = 1 sinceUisa where p/(x;) and b}(x,) denote the optimal values of,
unitary matrix). As such, we have to guarantg§g+c7, <7, and by under the conditionN; < N; for any givenx;.
which means that we have to guaranfdé’G'my||/n < 1. Following (19), we havehs(b(x1)) > hs(b%(x1)). This
Based on the definitions a& andm,, and notingt:1t] = N1 is due to the fact thab/(x;) minimizes s (b;) under the

(25)

we have constraintp%, +p?, < 1, but bj(x;) minimizes h3(b;)
Sifell 2 _ it 2 without any constraints. thlr?@l(pi‘(xl)) = 0, we have
| mol| | I;Og{ N N hi(pi(x1)) > hi(pi(x1)). This is due toh;(p;) > 0 for any
- Pog(do) KoNo p1g(d1) lrgrltltiriro values ofp; since the KL divergence is not negative. Then,
1+ Ky 1+ K, we have

_ pog(do)KoNo p1g(di) K1 Ny
1+ K, 11K,

Iwirol @Y g ) (B (1)) 2 o (0] (1) + a5 (1)) (26)



Since Ry is independent ofV,, following (14) we can see
(26) proves (25).

Theorem 2: The optimal value off; that minimizes the
detection rate can be obtained through

o1

(27)

argmax  |r]ro|?.
[Ixc—x1][>7

Proof: Substituting (12) and (13) into (14), we obtain the

minimum value of D, (f (y|p1, b1, x1, H1) ||f (y|Ho)) for
any givenx; as
) . (28)

Drcr (f (ylp1(x1), bY(x1), x1, Ha) [|f (¥[Ho))
B pog(do) KoNo
= > Ng
pog(do) + 05 (1 + Ko)

The malicious vehicle will determine its optimal true laoat
by finding the value ofk; that minimizes (28). We note that
in (28) only the term|r1r0|2 is a function of#,. As such,
the malicious vehicle needs only to maximitér(ﬂ2 in order
find the optimalf,. As such, we obtain (27). |

~[rfrol?
Np
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Fig. 2. |riro|2 and Ng —[riro|2/Np versuss; /= for different values of
Np andfy, whererp = .

Based on Theorem 1 and Theorem 2 we obtain the following

important insights. (i) We note that ond€, = Ny, further

increases inN; offer no further benefit to the malicious
vehicle. That is, the additional degrees of freedom offer
by additional antennas beyond; serve no purpose (in the

éd =

+6y (i.e., 07 = £0. due tod. = 6,). Following (29), we
note that the minimum KL divergence presented in (28) is zero

beamformer solution the malicious vehicle can set powf ¢i = *f.. This indicates that the malicious vehicle can

allocated to these additional antennas - if it has them -tto)ze
(i) We can see that the minimum KL divergence presented
(28) increases gs, g(doy), Ko, or Ny increases. (iii) We note
that the minimum KL divergence presented in (28) is ze
when Ky = 0, and thus the malicious vehicle can alway
perfectly imitate the legitimate vehicle (again this isshat

could be neutralized by using additional BSs). (iv) We no

that the minimum KL divergence provided in (28) is not &act thaté, minimizes|riro|? at arccos (cosfy +

function of K; or 0. However, we highlight that a&’; — 0,

perfectly imitate the signals expected from a legitimateicie
# x. if the malicious vehicle can séf = +6..* In Fig. 2 (b)
we also observe this effect, but this figure also illustrétes if

{ = +0. was not possible (as was the case in this simulation

in which the malicious vehicle could not access this angke du
to the presence of a non-accessible area) Lﬁhm? does not

faecessarily increase # approached,. This is due to the

2N,
o for

ng = 1,...,Ng — 1. Comparing Fig. 2 (c) with Fig. 2 (d),

N7 — 0o, meaningK; = 0 represents the worst case for thave can see thatvz — |r]ry|?/Np increases for the larger

malicious vehicle. (v) Based on Theorem 2 we note tHais
a function of onlyrg (i.e., only depends oW and#f,). This
indicates that the malicious vehicle can directly searchitfo
true location as per Theorem 2, no need to calcykate;) or
bj(x1) for eachx;. (vi) We also note tha#] is not a function
of K or o? (except thatd; not defined fork; = 0). This

Np case. This is consistent with the general rule that the
minimum KL divergence presented in (28) increasesNas
increases, and thus indicates that the detection perfaenain

the LVS increases as the number of antenna elements at the
BS increases.

This above discussion also illustrates the very importalet r

demonstrates that the optimal true location of the malgioplayed by the constraintx, — x;|| > in (27) in limiting
vehicle does not depend on the inherent properties of thry attack. For example, if a claimed location is withinto

malicious channel (the channel between the malicious lehithe BS, and a building is between the claimed location and
and the BS). (vii) Following Theorem 2, we note that there ihie malicious vehicle, then no LOS component to the BS at
no unique solution to the optimal true location of the malicioughe anglef; = +6. is available to the malicious vehicle. Its
vehicle since (28) does not depend @n This is due to the actual optimal (now sub-optimal) attack location is theh se
fact that the malicious vehicle can adjust its transmit polwe at another angle. Assuming the malicious vehicle can always
counteract the change @i (i.e., pj(x;) is a function ofd;). access #; = +0.. location, with a non-zero LOS component

Following (2), we have to the BS, is therefore the most conservative scenario {wors

N2, case scenario from the LVS perspective).
|I‘II‘0|2 = (sin(%NBug)
Tsin(Luy) 4If additional BSs are in range of the claimed location thisrfaf perfect

attack can be neutralized. However, even in the one BS dodaarwe discuss

sin(%ue)
wherery = 75 (COS 6o —cos 91)_ To gain some further insights, later), when tracking is brought to bear on this issue thie tpf attack can

T t. 9 . . minimized and even completely neutralized if constraimdte threat model
we plot|rjro|* and N —[riro|*/Np versusty /min Fig. 2. In 46 assumed (e.g., if the attacker is assumed to be anothietevphysically

Fig. 2 (a), we first observe that the optimal attack is indged @ the same highway as the legitimate vehicle).

cos 6y = cos by,

2
) , cosby # cosb, (29)



C. Detection Performance of the LVS Proof: Following (31), we derive the distributions of the
Without loss of generality, we first analyze the detectiof§st statisticT(y) for 6, # +6. under?, and#, as follows

performance of the LVS based on any givén Based on try1

the proof of Theorem 1, we know th&,; = Ry when the T(y)[Ho NN<2Re{[m1(91)_m0] Ry mo},

malicious vehicle setg; = pj(x1). Substituting (5), (12), and

(13) into (8), the LRT decision rule presented in (8) can be

written as
D>1
T(y) Z T, (30)
Do
whereT(y) is the test statistic given by
T(y) = 2Re{[mj (1) — mo] 'Ry 'y}, (31)
T is the threshold fofl(y) given by
P=In) + Re{[mj (1) —mo]'Rg ' [m7(61) +mo]},  (32)

andmj(6;) is obtained by substituting (12) and (13) into (6)

and is given by

pog(do)KoNg 1‘11‘11‘0

*(0,) =
mi(61) 1+ K, Np

(33)

2[mt<91>—morRol[mtwl)—mo]), (40)
T(y)[Hs ~N<2Re{[m1<el>—mowR&ml(el)},

2[m1‘(91)—mo]TRol[m*{(@l)—mo])- (41)

Based on the decision rule in (30) and the definitions of the
false positive and detection rates, we obtain the falsetipesi
and detection rates fdt; # 46, in (36) and (37) after some
algebraic manipulations. Fat; = +6., following (31) and
(32) we haveT(y) = 0 andT" = In\. Then, based on the
decision rule presented in (30) we obtain the desirabletsesu
for #, = +6. as detailed in (34) and (35). This completes the
proof of Theorem 3. [ |

We note that bothv(A,6;) and (), 6,) are functions of
D(61), which is the minimum KL divergence for a given
61 presented in (28). Based on the propertiesQif:) and

Next, we derive the false positive rate,\,0:), and the the expressions forv(),61) and B(X,60;), we know that

detection ratej(\, 0;), of the LVS for any givend; in the
following theorem.

the detection performance of the LVS increasesi¥¥,)
increases (e.g., for a given(A,01), B(A,01) increases as

Theorem 3: The false positive and detection rates of thg)(g,) increases). This confirms that the malicious vehicle

LVS with p; = pj(x1) andb; = bj(x;) for any givend; are
derived as

_ [ a0, 6, # 0,
0‘“’9”‘{ (D) = 1a(- ), 6 =<0, G
_ B()\,H ) 0 #iec’
s = { L 1, 02 9
where

I' — 2Re{[m}(61) — mo] Ry 'myo} }

(36)

/201 (61) —mo] TRy [m (61) —my)

In A — D(6))
2D(61) |’

(37)

Qz) = \/%j;" exp (—%) dt, D(6y) is the minimum KL
divergence for any; given by (following (28))

D(61) = [mj(61) —mo] Ry [m7 (1) —my]

P0g(do) KoNo riro|?
_ Np — . (38
pog(do) + o2 (1 + Ko) b Np (38)

and14(z) is a indicator function defined by

1, >0,

is to search forxj through minimizing the minimum KL
divergence presented in (28). By setting= \*, following (9)
the minimum total error conditioned onfa can be expressed
as [29]

6*(91) = P()OZ(A*,Hl) + (1 — P()) (1 — B(/\*,Gl)) .

We note that the detection performance of the LVS based on
the malicious vehicle’s optimal true location can be oledin
by substitutingd; into our deriveda(), 6;) and 3(X, 61).

In summarizing this section we note the following. The
analysis given above provides the optimal decision franikwo
for the LVS, and provides analytical solutions for the datet
performance of the LVS as a function of the Ricidn-
factors. The performance analysis given is valid for sdesar
in which the optimald; value is forbidden to the malicious
vehicle. The closest work to the results of this section are
perhaps those detailed in [23]. However, in [23], due to the
assumption of a severely restrictive threat model in whigh t
malicious vehicle must be on the same road as the legitimate
vehicle, the allowed attack scenarios are severely canstta
and far from optimal (e.g.f;’s allowed are small). Also,
for simplicity, the beamformer in [23] is set using a single
parameter, which means it does not possess independently-
set antenna coefficients. Such a simple beamformer provides
poorer performance (relative to the solutions presented)he
when an attack from a non-optimal location is launched.

(42)

IV. L OCATION VERIFICATION SYSTEM
WITH TRACKING

In this section we examine the LVS when tracking informa-
tion on the claimed location is available. That is, whenrked



locations and BS measurements are available at multiplalue of A\, that minimizes the total error of the tracking
(sequential) time slotsI{ > 2). We refer to this LVS as the LVS is given by}, ... = Po/(1 — Fy) [29].

tracking LVS. We first present the decision rule adopted in this

tracking LVS, and then present the optimal attack stratdgy o

the malicious vehicle against the tracking LVS. Finally, w8. Optimal Attack Strategy Against the Tracking LVS

analyze the detection performance of the tracking LVS base

on this optimal attack strategy. dKnowmg (43), in order to minimize the detection rate, the

malicious vehicle is to minimize the following KL divergesc
[30]
A. Decision Rule of the Tracking LVS

In the tracking LVS we assume that we collect opg)  Dxrz (f (Y(T)[p(T), B1(T), X1 (T), H1) ||

for each claimed locatiox.(t). There are several questions F (Y (T)|Ho))
we could pose given the introduction of tracking informatio
to the LVS. However, perhaps the most pragmatic question= | [0 Atrack(Y(T))] x

for a tracking LVS is how to make an optimal decision (e.g., ),B1(T aY
minimize the total error) on whether the vehicle is legitima F (Y (D)lp1(T), Ba(T), X (T), H1) dY(T)
or malicious given the last sequence of observations at itsﬁ/ lz Ay

Hf |p1 (t)vxl(t)v,Hl)

disposal. An important system-model issue in tracking mode P

is that we will let the tracking LVS randomly select the numbe

of time slots to be used prior to each LVS decision. That is,
once a decision is made based on gaytime slots, the next
decision is made independently based on the nexflsdime T
slots, wherel, andT), are specific realizations of the random — ZDKL (f (y@®)|p1(t), b1 (t),x1(t), H1) [|f (y(#)[Ho))
variableT'. Operationally, this means the specific realizations ;=1

of 7' will always be unknown to the malicious vehidle. (46)
Henceforth, when we us& we will mean a realization of

the random variabl€'. Under such conditions the optlmaIB""sed on (46), we know that the KL divergence for=

decision rule (per decision) for the tracking LVS will be a2 7T is the sum of the KL divergence presented in
expanded version of our previously utilized LRT, namely, (10) for eacht. We also can see that the KL divergence at
t is independent of the system settings at other time slots.

x dY (T)

2 This indicates that the malicious vehicle can optimize fadl t
Atrack (Y(T)) 2 Mrack: (43)  parameters under his controltate.g.,p (¢), by (t), andx; (1))

2 by considering only the system settings for the current time
where Y(T) = [y(1), -, y(T)], Atrack (Y(T)) is the like- Slott (e.g., the values ok.(t), o3(t), ando(t)). As such,
lihood ratio of Y (T') given by the optimal attack strategy for the malicious vehicle is to

optimize all parameters under its control for the curremieti
Atrack (Y(T)) = fF (XY (D)|p1(T), Bo(T), Xl(T)’H1)7 slot. To this end, for eachthe malicious vehicle first optimizes
f(Y(T)[Ho) p1(t) andb; (t) according to Theorem 1 for any giveq (t).

(44) Then, the malicious vehicle is to optimizag (t) under some
pi(T) = [pi(1),---,pi(T)], By(T) = [by(1),---,by(T)], constraints detailed in the following. Fat.(1), the malicious

1
X (T) = [x1(1),--- ,x1(T)], and Ajyqcr is the threshold for vehicle can optimize; (¢) according to Theorem 2. We would
Aprac (Y (T)). Smcey(t) are independent for differenf we like to highlight that in addition to|x.(t) — xi(¢)| >
further have there is another constraint ot (¢) for ¢ > 2, which is that
T |x%(t—1) —x1(t)| < r., Wherer, can be determined through
Airack (Y (T)) = [l f (y(t;|p1 (8),b1(), 1 (t)’Hl). imposition of a realistic vehicle speed limitation. Thisdge
[Ti= f (y(©)[Ho) to the fact that the malicious vehicle cannot move too fanawa

(45)  fromits previous location (i.e., its location in the prewgtime
Again, the false positive rate of the tracking LVS is given bglot). Then, the optimaf (¢) for ¢t > 2 is given by
O‘track(/\track) = Pr (Atrack (Y(T)) > A257“¢1¢:k|7'£0)1 and the

detection rate of the tracking LVS is given By,qcr (Airack) = 01(t) = ,, Jremax_ BIGIIGI (47)
Pr (Atrack (Y(T)) > Atrack|H1). The specific value okyyqck uxf§H>fx1<nﬁsl#u

can be set based on a methodology similar to that used
in setting \. We again adopt the total error as the unlqu\éve note that the optimal attack strategy against the trgckin

performance metric to evaluate the tracking LVS. The optimk?S for the malicious vehicle is to find an anglg (t) =
+6.(t) with a non-zero LOS component towards the BS for

5The (non-tracking) LVS discussed earlier is now seen as aiapease every time slot. Should the two distance constraints imgose

of the tracking LVS with the realization df* always set equal to one and g the malicious vehicle maké*( ) — 440 (t) impossible
without the additional constraint,,. Note, due to the additional constraint ¢ !

., the tracking solution in general is not identical to a sohutderived from then a sub-optimal attack &t (t) # +6.(t) must take place
the direct use of individual uniti{ = 1) timeslot decisions. at some of the time slots.



C. Detection Performance of the Tracking LVS The minimum total error of the tracking LVS for any given
Without loss of generality, we analyze the detection pefa(T) is [29]

formance of the tracking LVS for any givef.(7) = * _ A*
[01(1),---,0.(T)] by consideringp;(t) = p*{(xl(t()))and €irack(61(T)) = Pourack Nirack 61(T))
b1 (t) = bi(x1(t)). We denote the track of claimed locations + (1= Po) (1 = Brrack(Airack, 01(T))) -
as 0.(T) = [0.(1),---,0.(T)]. Following (45), the LRT (56)
decision rule presented in (43) can be rewritten as We note that the minimum KL divergence provided in (28) is
o) greater than zero for any, (t) as long a% (t) # +0.(t). As
Tyrack (Y (T)) i Tiracks (48) such, Dipacr(01(T)) mon_otonically increases db increase§
o for 0,(t) # +6.(t). This demonstrates that the detection
) o performance of the tracking LVS increases/’asncreases as
whereT,,.... (Y (T)) is the test statistic given by long asf;(t) # +0.(t) (€..,c,...(0:(T)) decreases a¥
T increases).
Tirack(Y(T)) = 2Re{2[m’{(91(t)) —my()]'Ry 'y (1) ¢, In summarizing this section we note the following. The
t=1 above analysis on the tracking LVS makes the following key
(49) points. Under the assumption tHAtis randomly selecteger
and @'y, is the threshold fofl';,.... (Y (7)) given by decision by the tracking LVS, the optimal decision framework
is a reasonably extension of the non-tracking framework.
Lirack=In Arack+ The optimal attack scenario is for the malicious vehicle to
T be atfj(t) = +6.(t). However, physical constraints (such
RG{Z[mT(91 (t))—mo(t)] "Ry ' [m] (61 (t))+mo(t)] p . as limited speed) may make this impossible. The next sub-
t=1 (50) optimal malicious vehicle location can then be calculated -

and this location may not necessarily be thét) closest to
We then derive the false positive ratey,.qck (Airack, 01(T)),  0Oo(t) with non-zero LOS components. The performance of the
and the detection rate%;,q.x (Mirack, 01(T)), Of the tracking tracking LVS under any potential sequence of the malicious

LVS for any given@,(T) in the following theorem. vehicle’s locations is provided analytically. The closestk to
Theorem 4: The false positive rate and the detection ratdie analysis presented in this section is perhaps [16], iatwh
of the tracking LVS for any give®,(T) are derived as a wireless intrusion detection system based on the utoiz aif
position tracking and the localization error bounds of BExied
Arack(Atrack, 01(T)) Kalman Filters is developed. It is shown in [16] that the
_ { Gtrack(Merack, 01(T)),  01(T) # £0.(T), (51) detection errors of the system with tracking informatiom ca
14(—=InXpack)s 0:(T) = £0.(T), be an order of magnitude smaller relative to that of the
Birack Merack, 01(T)) system with only a static location. However, the optimality

of the location spoofing detection system with tracking was
not discussed in [16].

{ Btrack ()\traclw 01 (T))7 01 (T) 7é iOC(T)a (52)
1,4(111 )\track)7 01 (T) = iOC(T)a

where V. NUMERICAL RESULTS
Grraek(Nrack, 01 (T)) = O In Arack + Dirack(01(T)) ’ In this section, we present numerical simulations to verify
2D¢rack(01(T)) the accuracy of our provided analysis on the LVS and the

(53) tracking LVS. We also provide some useful insights on the

10 Arack — Dirac (61 (T))} impact of pg, 07, Ng, Ny, and K, on the detection perfor-

2Dt7‘ack (01 (T))

Birack Merack, 01(T))=Q { mance of the LVS. We further examine the impactfof and
o? on Nj.

(54)

and Dyyqck(01(T)) is the minimum KL divergence for any o Numerical Results for the LVS

given 8, (T), which is given by (following (28) and (46)) ) , ) .
We first consider the LVS (i.e., the non-tracking LVS) and
Dirack(01(T)) thus we drop the indext) in this subsection. In Fig. 3, we
T present the Receiver Operating Characteristic (ROC) curve
= ZDKL( (y(®)|pi(t), by (t), x1(t), H1) ||f (¥ (t)|Ho)) of the LVS. In this figure, we first observe that the Monte
t=1 Carlo simulations precisely match the theoretic resultsictv
T pog do (1)) Ko(t)No ey (t)tro(t)]2 confirms our analysis presenteinn Theorem 3. We also observe
Z N2 (1+Ko()) (N —T> - that the ROC curves fqiyg(dy) /o5 = 5dB dominate the ROC
t=1 0 curves forpgg(do)/o2 = 0dB. This observation demonstrates
(55) that the detection performance of the LVS increases as the
Proof: The proof of Theorem 4 is very similar to that ofsignal-to-noise ratio (SNR) of the legitimate channel (the
Theorem 3, we therefore omit it here. B channel between the BS and the legitimate vehicle) incsease
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9 imiinum total efror of the LVs Verstuss and Yo for o tracking LVS versusT for Py = 0.6, Ng = 3, No = 2, Ny > N7,

0y = , 0% = 1/4, K1 = 0dB, d, 2 = 0dB, p1 = p¥ ,
0 = /3, 07 = m/4 Ki =008, pog(do)/og = 0B, pr = pi(xa). o e 1 = _10dB, € = 3, ¢ = 3 x 10°mis, fo — 5.9GHzZ,
b; = bl(xl), andN1 > Nl'

rp = 100m, ryy = 3m, 7p = 7, andxy (t) = xj (¢).

As expected, we further observe that the ROC curve shifireases ag; decreases or? increases. This demonstrates
towards the right-lower corner @& moves closer td. that N7 is highly dependent on the inherent properties of the
In Fig. 4, we present the minimum total errdf’7) versus malicious channel. We also observe théf is a reasonable
the number of antenna elements at the legitimate vehié§¢ ( value (e.g.,15) even whenk, is small (e.g.,—5dB).
and the number of antenna elements at the B$)( As
expected, we first observe tha®;) decreases ad’p or Ny ) _
increases. We also observe thé;) decreases as the RicianB- Numerical Results for the Tracking LVS
K-factor of the legitimate channek()) increases. From the |n Fig. 6, we examine the impact df on the detection
simulations to obtain Fig. 4, we confiriV; increases a8V, performance of the tracking LVS. In the simulations to obtai
or Ky increases, but is not a function ofg. Fig. 6, we have assumed the claimed locatigiit) is moving

In Fig. 5, we plot NJ versus RicianK-factor of the towards the BS along a straight line with a constant velocity
malicious channelk;, and the noise variance of the maliciou®0km/h andx,(1) = [10v/2, 7/4]. We have also assumed that
channelo?. As expected from (23), we first observe théf  x;(¢) is on the straight line an&, is a constant for atkq ().
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These settings mimic a practical VANETSs scenario, where tipeovides the attacker no additional benefit. Finally, weerair

BS is on the roadside, the legitimate vehicle is moving aloranalysis can be readily adapted to cases where antenna array
the road towards the BS, and the malicious vehicle is alsmder the control of the LVS (e.g., at the BS and legitimate
on the same road. The observation frequency and claimeéhicle) are also non-linear arrays.

location reception are both set at 10 Hz (10 time slots per

secqnd). Other parameters adopted are specified in the_anapg_ Colluding Attacks

of Fig. 6. As expected, we observe that the false positive rat

and the minimum total error decreasesiamcreases and the
detection rate increases dsincreases. With the aid of the
derived false positive and detection rates provided in €51

We note that in practice the malicious vehicle may launch
colluding attacks to the LVS and the tracking LVS by co-
operating with other malicious vehicles. However, colhgli

(52), we can quantify the detection performance improveime"i"r[""_dfS of any form cannot bring any additional benefit_s_m th
brought by increased. For example, the minimum total error M&liCious vehicle that can séf(t) = +0.(¢) at every decision
for T = 10 is only about30% of that for T = 1 step. This is because the minimum KL divergence presented

Finally, in this section we note the effect some of ouirn (28) will always be zero whef;(f) = £0.(). This is the

channel and system model assumptions have on our resfits® fo_r bo_th the (non-tracking) LVS and the tracking LVS.
More specifically, we probe circumstances where non-zeroConSIderIng the_ case wherd (1) 7& +0e(t), there are
errors on the claimed location are present (inclusion of 1§vo gener_al speglf]c attack_ strate_g|e5 that can _adopted by
cation errors also probes the impact of other issues sucht%% coIIugMng mallClqug vehicles, 5|ngle-transm|35|omc§l¢§
inaccuracies in thd({ map and potential shadowing effects)‘."md multiple-transmission attas:ks. n Fh.e smgle-_transsrpn

In general, we find such real-world effects have a IimiteﬁttaCk only one c_)f thg colluding malicious vehlc_les IS ac-
impact on our results. For example, for the localizatioroerr V& and transmitting signals. As SU.Ch' the .COIIUS'Or.' irs thi
(average distance between the estimated positions anédhe fype of attack take_s _the form_of mfo_rma’qor_l-sharmg gnd
positions) of 5 meters we find the results of Fig. 6 are imphct € §ubsequent decision of which \{eh|cle IS 1n _thg optima|
only at the 10% level (e.g., the false positive rate for thi9cation to launch an attack. The single-transmissionchtta

localization error is about 10% higher than that for the zeff" help a maI|C|9us vehicle aga|_nst the tracking LVS (.bUt
localization error). not the non-tracking LVS). This is because the colluding

malicious vehicles can potentially cooperatively seldutirt
true locations over different time slots in order to avoi@ th
second constraint in (47), i.exi(t — 1) — x1(¢)|| < 7.
A. Other Antenna Arrays As the number of colluding malicious vehicles approach
Although we assumed that the malicious vehicle is equipp#tinity, this constraint can be removed from (47) entirgiy.
with a ULA, our main analysis provided in this work stillthe multiple-transmission attack, all the colluding mialics
holds if the ULA is replaced by other antenna arrays (e.¢/€hicles are active and transmitting signals simultanigous
non-uniform linear arrays, circular arrays, rectangleysy. If As such, the collusion takes the form of information-shgrin
the malicious vehicle is equipped with other antenna arrayd the subsequent decisions on the optimal transmit power,
only (3) under#; will be modified. For example, if the ULA beamformer, and locations of the colluding malicious vigisic
at the malicious vehicle in Fig. 1 is replaced by a UniforrPbviously such a sophisticated attack could outperform the
Circular Array (UCA) centered at the malicious vehicle, (3§ingle transmission attack in the general scenario. Buinaga
under#; will be replaced by the following equation (droppingve stress that wheéy (1) = +0.(t) is allowed none of these
the indext) [32] colluding attacks are of importance. As such, adopting the
detection rates fof;(t) = +6.(¢) always provides a worst-
t1 = [exp(—j7i cos ¢1), - exp(—jricoson, )], (57)  case bound for the LVS and the tracking LVS.

wherer{ = 2w f.a1/c, a1 is the radius of the UCA at the

malicious vehicle, andp,, = 2w(m — 1)/N; + ¢1 (where VIl. CONCLUSION

m = 1,2,---,N;) is the angle measured counterclockwise In this work we have proposed a generic LVS framework
from the reference line (the line connecting the center ef thior multi-antenna communication systems, and conducted a
malicious vehicle’s UCA and the center of the ULA at theletailed analysis of the framework’s location authenticat
BS) to them-th antenna element of the UCA. Based on (5ferformance. Although our work is general and can cover
andH; = rit; we can see thaH; still only contains the many application scenarios, we have focussed here on the
directional information of the malicious channel (i.H; only emerging VANETSs paradigm under the assumption of Rician
depends orf; and¢;). Noting Q mﬁiﬁl, we know that the channels. Such channels are anticipated to dominate real-
matrix Q involved in Theorem 1 is still a rank-1 matrix dueworld VANETs communication conditions. The LVS solution

to rer = Np. In addition, as we have shown in Theorem 8ve have proposed is very general and provides a founda-
the detection performance of the LVS is not a functiontpf tion for all optimal location authentication schemes in the
as long as the malicious vehicle adopts the optimal transt/ANET scenario. Taking as inputs a claimed location and
power and beamformer. As such, all the analysis provideaw observations across the receiving BS antennas, our LVS
earlier still holds exactly for the case where the malicioushecks its knowledge of the Rician channel conditions in
vehicle is equipped with the UCA. That is, the use of a UCAs vicinity, forms a view as to the optimal attack location

VI. DISCUSSION
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(from the attacker’s viewpoint), and then outputs a binafgo] 0. Abumansoor, A. Boukerche, “A secure cooperative raggh for

decision on whether a vehicle is providing a legitimate lo-
cation. Our analysis quantifies the dependence between [tﬂ(]e

detection performance limit of the LVS and the Rici&

factor of the legitimate channel, and formally reveals th
the LVS performance limit is independent of the properti
of the malicious channel. In addition, our analysis disetos

nonline-of-sight location verification in VANETJEEE Trans. Veh. Tech-

nol., vol. 61, pp. 275-285, Jan. 2012.

P. Zhang, Z. Zhang, and A. Boukerche, “Cooperative tiocaverifica-
tion for vehicular ad-hoc networks”, iRroc. IEEE ICC, Jun. 2012, pp.

t 3741

22] M. Fogue, F. Martinez, P. Garrido, M. Fiore, C. ChiagselC. Casetti,

Sy Cano, C. Calafate, and P. Manzoni, “Securing warning agesslis-
semination in VANETS using cooperative neighbor positienification,”

that once the malicious vehicle’s number of antennas reache 'EEE Trans. Veh. Technol., DOI: 10.1109/TVT.2014.2344633.

a derived bound, further increases in this number does r%ei]

S. Yan, R. Malaney, |. Nevat, and G. Peters, “Locatiooadimg detection
systems for VANETS by a single base station in Rician fadingnnels,”

reduce the detection rate. We also formalized the optimal submitted tol EEE VTC Spring, arXiv:1410.2960, Oct. 2014.

decision rule when tracking information is added to the LvV$24l
The work presented here will be of importance to emerging

intelligent vehicular network scenarios, particularlyrélation
to certificate revocation schemes within IEEE 1609.2.
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