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Interference Alignment for Multicell Multiuser
MIMO Uplink Channels
Khanh Pham and Kyungchun Lee*, Member, IEEE

Abstract—This paper proposes a linear interference alignment
(IA) scheme which can be used for uplink channels in a gen-
eral multicell multiuser MIMO cellular network. The proposed
scheme aims to align interference caused by signals from a
set of transmitters into a subspace which is established by
the signals from only a subset of those transmitters, thereby
effectively reducing the number of interfering transmitters. The
total degrees of freedom (DoF) achievable by the proposed scheme
is given in closed-form expression, and a numerical analysis shows
that the proposed scheme can achieve the optimal DoF in certain
scenarios and provides a higher total DoF than other related
schemes in most cases.

EDICS: SPC-INTF

I. INTRODUCTION

Interference management has been an important research
subject in the field of mobile communication, where the
spectral efficiency is limited mainly by interference [1]. The
recent work by [2] has attracted a great deal of attention by
demonstrating that a K-user interference channel can achieve
a total of K/2 degrees of freedom (DoF) and thus that each
user can obtain half of the interference-free DoF regardless of
the number of users, which suggests that interference channels
are not necessarily interference-limited. This remarkable result
was obtained using the interference alignment (IA) technique
originated by [3].

A. An Overview of IA

The IA technique is an altruistic transmission method in
which signals are transmitted in carefully chosen directions
in order to align interference signals, i.e., in order to make
interference signals overlapped, as much as possible while pre-
serving the decodability of the desired signals. In the literature,
IA has been applied to various scenarios, including the K-user
interference channel [2], the K-user multiple-input multiple-
output (MIMO) interference channel [4], the MIMO X channel
[5], and the wireless X network [6]. Since it first appeared,
IA has not only been thoroughly investigated but also been

This research was supported by Basic Science Research Program through
the National Research Foundation of Korea (NRF) funded by the Ministry of
Education, Science and Technology(2011-0013021). The material in this paper
has been presented in part at the IEEE 79th Vehicular Technology Conference,
May 2014, Seoul, Korea.

Khanh Pham is with the Department of Electrical and Informa-
tion Engineering, Seoul National University of Science and Technol-
ogy, 232 Gongneung-ro, Nowon-gu, Seoul, 139-743, Korea. (e-mail:
kpham@seoultech.ac.kr)

Kyungchun Lee (corresponding) is with the Department of Electrical
and Information Engineering and the Convergence Institute of Biomedical
Engineering and Biomaterials, Seoul National University of Science and
Technology. (email: kclee@seoultech.ac.kr)

significantly enhanced; for example, the circumstances under
which IA can possibly be applied to MIMO interference
channels has been studied [7], and it has been shown that
a higher total DoF can be achieved if IA is used with symbol
extension [5] and that less channel information is required if
IA is conducted by iterative algorithms [8], [9].

The IA techniques can be classified into two categories:
signal-level alignment and signal-space alignment [7]. The
signal-level IA schemes, e.g., the schemes given in [10],
[11], align interferences on the basis of the levels of those
interferences; levels can be generally defined as scalar numbers
that are independent of each other, e.g., levels were defined in
[10] as power levels and in [11] as the rationally independent
products of the beamforming gain and the channel gain. The
main benefit of signal-level IA schemes is that they provide
a powerful tool to characterize the DoF of a given network;
however, they are not suitable for practical systems due to
their requirement of a considerable amount of transmit power
as they require a very large number of transmit directions.

On the other hand, the signal-space IA schemes not only can
be used to characterize the DoF of a given network but can also
be adapted to practical systems. The signal-space IA schemes
align interferences on the basis of their received directions,
which are vectors in the Euclidean space. These schemes
can be classified into two categories: asymptotic and linear
schemes. The asymptotic schemes, e.g., the schemes given in
[2], [6], require an infinite number of time/frequency/spatial
extensions and are mainly used to characterize the DoF of a
network, whereas the linear schemes require a finite number
of extensions and hence can be used for practical systems.

The signal-space linear IA schemes can be further divided
into two types: iterative and non-iterative schemes. The it-
erative schemes, e.g., the schemes given in [8], [9], has been
considered to be more practical than the non-iterative schemes
as they only require local channel knowledge. However, the
number of DoF achievable by the iterative schemes cannot be
tractable, whereas that of the non-iterative schemes can. This
intractability problem leads to another problem of deciding the
optimal number of transmit signals when using the iterative
schemes. The iterative schemes also suffer from the problem
of the convergence of the IA solutions. Specifically, if this
convergence does not exist, only suboptimal IA solutions
can be found, and even if the convergence does exist, it is
usually slow and thus requires a large number of iterations to
approach the IA solution, thereby causing high computational
complexity. These problems can be avoided by using the non-
iterative schemes, and the only price that has to be paid is the
availability of the global channel knowledge.
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B. Related Work

The application of signal-space linear IA for cellular net-
works were considered in [12]–[23], which used non-iterative
schemes, and in [24]–[27], which used iterative schemes. Fur-
thermore, the feasibility of non-iterative schemes was studied
in [23], [25], [27], [28].

The IA scheme given in [12], which is called subspace IA,
is the first IA scheme developed for cellular networks. The
scheme exploits channel decomposibility to align interference
into a subspace smaller than the desired signal space and can
achieve high total DoF when the number of users is large and
the number of cells is small. However, only uplink channels
in single-antenna cellular networks were considered in [12],
and the scheme can only be applied when the channel has the
special property of decomposibility, which, for example, is not
satisfied by channels with independent identically distributed
coefficients [27].

The signal-space linear non-iterative IA schemes for down-
link channels were considered in [13]–[16]. The scheme in
[13] was specifically developed for two-cell two-user MIMO
downlink channels, and it used IA to make inter-cell inter-
ference (ICI) caused by one base station (BS) at different
interfered users to be the same; thus, the overall ICI caused
by that BS is effectively reduced. This alignment idea was
then used in [14], [15] to develop IA schemes for downlink
channels in multicell multiuser MIMO networks, whereas the
scheme in [16] used the idea of subspace alignment chain
which was introduced in [29].

The signal-space linear non-iterative IA schemes for uplink
channels were considered in [17]–[23]. The scheme in [17]
was designed only for two-cell uplink channels in which the
transmit and receive antennas satisfy some special constraints,
and it was shown that in those special cases the scheme
achieved the optimal DoF. For two-cell uplink channels with
arbitrary numbers of transmit and receive antennas, even
though the structured scheme in [18] can achieve the optimal
DoF, it can only be applied when the number of users in each
cell is two or three, whereas the scheme in [19] can be used
for an arbitrary number of users in each cell. The idea used
by [19] is essentially similar to that used by [13]; that is, IA
was used in [19] to make ICI caused by users in one cell to
be the same at the interfered BS.

For general multicell multiuser uplink channels, [18] pro-
posed a new scheme called unstructured IA scheme which
appeared to provide a high DoF performance, but for a
given uplink channel the feasibility of the scheme cannot be
determined until the scheme is actually applied and checked
by a numerical test. On the other hand, the IA scheme in
[20] aimed to align ICI into a one-dimensional subspace, and
because this IA constraint was too stringent to be satisfied,
only a fraction of the ICI could be aligned. This problem
was then resolved in [21] by consolidating ICI into a multi-
dimensional subspace rather than a one-dimensional subspace.
By extending the scheme in [22], which was designed only
for three-cell multiuser uplink channels, the scheme in [23]
can be applied to a general uplink channel; however, its DoF
performance decreases when the size of the uplink channel

increases as the scheme can only suppress the interference
caused by one interfering user regardless of the size of the
uplink channel.

C. Contributions

The new signal-space linear non-iterative IA scheme can be
used for general multicell multiuser uplink channels in which
not only the numbers of cells, users in each cell, transmit
antennas, and receive antennas, but also the total number of
links from the users in one cell to their interfered receivers,
are arbitrary. To further improve the DoF performance of
the proposed scheme when it is applied to a specific uplink
channel, a new method that can be used to find the best
parameters for the proposed scheme is introduced. The closed-
form expression for the DoF achieved by the proposed scheme
in an uplink channel is also presented.

The basic idea of the proposed IA scheme is to align the
ICI caused by a set of users into a subspace that is as large as
a subspace generated by the ICI caused by a subset of those
users, thereby reducing the dimension of the ICI subspace by a
ratio of (the number of users in the set/the number of users in
the subset). This reduction ratio is similar to the packing ratio,
which was introduced in [18] as the ratio of the dimension of
the interference subspace before IA to that after IA.

The key feature of the proposed scheme is that it does
not explicitly specify the structure of the signal subspace into
which the ICI is aligned but does explicitly specify the size of
that signal subspace. As a result, when the proposed scheme is
applied, the exact structure of the resultant ICI subspace after
IA is unknown, whereas its size is known precisely; that is,
the resultant ICI subspace is as large as the subspace created
by the ICI caused by users in the subset.

Owing to this key feature, the design of the proposed
scheme can focus on the final outcome of the IA rather than on
the details of the IA, simplifying the design itself. The design
approach used by the proposed scheme is quite similar to those
used by the schemes given in [18], [22], [23] but differs from
those used by the schemes given in [19]–[21], which try to
align interference into a specific subspace. Because of their
strict requirements, the IA schemes in [19]–[21] either cannot
be used for a general uplink channel or leave a large amount
of interference unaligned; in contrast, the proposed scheme
does not suffer from these problems, so it can provide more
DoF than the schemes in [19]–[21].

Despite the similarity between the approaches used by the
proposed scheme and the schemes in [18], [22], [23], the
proposed scheme still provides some advantages over the other
schemes in terms of the DoF performance and computational
complexity. Specifically, at each BS, the IA schemes in [22],
[23] can eliminate only one inter-cell interfering user, whereas
the proposed scheme can reduce the number of inter-cell in-
terfering users by a ratio of (the number of users in the set/the
number of users in the subset); therefore, the proposed scheme
can provide a larger space for the desired signals and hence can
achieve more DoF. On the other hand, compared to the scheme
in [18], the proposed scheme not only requires a considerably
lower complexity (as it performs IA only on the inter-cell
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interfering users from the same cell, whereas the scheme in
[18] performs IA on all the inter-cell interfering streams) but
can also provide more DoF in certain scenarios. Furthermore,
the proposed scheme can guarantee the decodability of the
desired signals with high probability, whereas the scheme in
[18] cannot.

This paper is organized as follows. In Section II, we present
the system model of an uplink channel in a multicell multiuser
MIMO network and the DoF metric that will be used to
evaluate the performance of the proposed scheme. In Section
III, we develop the proposed IA scheme for a simple scenario,
and then in Section IV, we present the application of the
proposed scheme in the uplink channel described in Section
II. In Section V, we compare the DoF performance of the
proposed scheme to the optimal DoF and those of other non-
iterative signal-space IA schemes. Finally, in Section VI, we
conclude the paper.

Notation: Throughout this paper, the following notation will
be used. C(A1,A2, · · · ,An) and N (A) denote the column
space of matrix

[
A1 A2 · · · An

]
and the null space of

matrix A, respectively. dim
(
C(A)

)
and rank(A) denote the

dimension of C(A) and the rank of matrix A, respectively.
In and diag

(
A1,A2, · · · ,An

)
represent the n × n identity

matrix and the block diagonal matrix whose ith block is the
matrix Ai, respectively. In order to simplify the representation,
0 is used to denote the zero matrix of any size. Finally, the
symbols “≡”, “\”, and “T ” denote the equivalent, set minus,
and transpose operations, respectively.

II. SYSTEM MODEL AND DOF
In this section, we present the system model of an uplink

channel in a multicell multiuser MIMO network and give a
brief review on the DoF metric.

A. System Model

The main system considered in this paper is an uplink
channel in a cellular network consisting of L cells, each having
one BS serving K users. Each BS has Mr receive antennas,
while each user has Nt transmit antennas and transmits d data
streams.

As each BS receives signals from all users in the network,
the signal vector received at BS i is given by

yi =

K∑
k=1

Hik
i Viksik︸ ︷︷ ︸

Desired Signals

+

L∑
l=1
l 6=i

K∑
k=1

Hlk
i Vlkslk

︸ ︷︷ ︸
Inter-cell interference

+zi, (1)

where Hlk
i ∈ CMr×Nt is the channel matrix between BS i

and user k in cell l, Vlk ∈ CNt×d is the precoder matrix used
by user k in cell l, slk ∈ Cd×1 is the data vector that user
k in cell l transmits to its serving BS, and zi ∈ CMr×1 is a
zero mean unit variance circularly symmetric additive white
Gaussian noise vector at BS i. It is assumed that all channel
matrices are known and that the channel is Rayleigh fading;
hence, the coefficients in the channel matrices are complex
independent identically Gaussian distributed random variables
with zero mean and unit variance.

Owing to the average power constraint in cellular networks,
the precoder and data vector from user k in cell i are
normalized such that the average transmit power of the user
is limited by P ik, i.e., E

[
||Viksik||2

]
≤ P ik, where E[.] and

||.|| are respectively the expectation and norm functions, and
P ik is the maximum transmit power for user k in cell i. This
average power constraint can be guaranteed by selecting the
precoder and data vector satisfying{

E
[
sik(sik)H

]
= diag(pik1 , p

ik
2 , · · · , pikd ),

||vikj ||2 = 1, j = 1, 2, · · · , d,

where pikj is the transmit power for the j-th signal stream from
user k in cell i and satisfies

∑d
j=1 p

ik
j ≤ P ik, and vikj is the

j-th column in Vik.

B. Degree of Freedom

In high-signal-to-noise-ratio regimes, the DoF of one user
can be numerically calculated from the data rate of that user.
Specifically, if dik is the DoF of user k in cell i, then the data
rate of that user is expressed as

Rik = dik log2(SNRik) + o
(

log2(SNRik)
)
,

where SNRik is the signal-to-noise ratio corresponding to
user k in cell i, and SNRik = P ik as the noise has unit
power. When P ik is large, dik log2(P ik) approaches Rik

as the contribution of o
(

log2(P ik)
)

becomes negligible [2].
Thus, the DoF of user k in cell i is given by

dik = lim
P ik→∞

Rik

log2(P ik)
.

The DoF of one user can alternatively be interpreted as the
number of data streams transmitted by that user and decodable
by the desired receiver of that user [6]. The decodability is
achieved when the transmitted streams are received in the
directions independent of the directions on which the other
signals are received. Therefore, each user in the uplink channel
of (1) achieves d DoF if at each BS the desired signals are
both independent of each other and independent of the ICI
signals.

III. THE PROPOSED IA SCHEME

In this section, the proposed IA scheme is presented. The
proposed scheme is developed in this section for a different
scenario from the uplink channel given in (1). Specifically,
the scenario considered in this section consists of Kt Nt-
antenna transmitters that cause interference to the same Kr

Mr-antenna receivers. Furthermore, with an abuse of the
notation, this section uses Hji ∈ CMr×Nt and Vi ∈ CNt×d

to denote the channel matrix from transmitter i to receiver j
and the precoder of transmitter i, respectively. The scenario is
depicted in Fig. 1.

The proposed IA scheme aims to jointly design the pre-
coders of the Kt users so that the following two goals are
satisfied: (1) the interference caused by the Kt users at the
same receiver is aligned into a subspace spanned by the
interference caused by κt users among those Kt users, and (2)
the precoders are of full column rank. By doing so, the number
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Fig. 1. Interference signals received at receiver j in the specific scenario
used in Section III to develop the proposed scheme.

of interference signals is reduced by a ratio of Kt/κt, while
the signals of those Kt users are guaranteed to be decodable
by their desired receiver.

The basic idea of the proposed IA scheme is to design the
precoders on the basis of the following lemma:

Lemma 1: Given
{
Ak : Ak ∈ Cm1×m2 , rank(Ak) ≤ r,

k = 1, 2, · · · , n1

}
; if we have

γi1A1 + γi2A2 + · · ·+ γin1
An1

= 0,

∀i = 1, 2, · · · , n1 − n2, (2)

where γik, k = 1, 2, · · · , n1, i = 1, 2, · · · , n1 − n2 are inde-
pendent identically distributed (i.i.d.) scalars and 0 ≤ n2 ≤ n1,
then

dim
(
C
(
A1, A2, · · · , An1

))
≤ n2r.

The equality occurs when n2 subspaces among n1 subspaces
C(Ak), k = 1, 2, · · · , n1 are of dimension r and disjoint, and
m1 ≥ n2r.

Proof: See Appendix A.
The lemma basically states that if (2) is satisfied, then the
column vectors of n1 matrices Ak, k = 1, 2, · · · , n1 are
aligned into a subspace spanned by the column vectors of
n2 matrices among those n1 matrices.

Following Lemma 1, the first goal can be achieved by
designing the precoders for the Kt users such that

γji1Hj1V1 + γji2Hj2V2 + · · ·+ γjiKt
HjKtVKt = 0,

∀i = 1, 2, · · · ,Kt − κt, ∀j = 1, 2, · · · ,Kr, (3)

where γjik, ∀i, j, k are i.i.d. scalars.
As the precoder selection is constrained by the first goal,

which requires that the precoders satisfy (3), the second goal
can be achieved only if the precoders found by solving (3) are
also of full column rank. In the following, we will show that
these precoders are in fact of full column rank when

(Kt − 1)Nt ≤ Kr(Kt − κt)Mr < KtNt. (4)

Let us first rewrite (3) as (5), which is given at the top
of the next page. As

[
VT

1 ,V
T
2 , · · · ,VT

Kt

]T
is the solution

to (5), the necessary condition for Vi, i = 1, 2, · · · ,Kt to

be of full column rank is that dim
(
N (C)

)
≥ d, where C is

the coefficient matrix in (5). According to Lemma 2, which is
given in Appendix B, if Nt ≤ KrMr, C is a full rank matrix,
which leads to dim

(
N (C)

)
= KtNt − Kr(Kt − κt)Mr.

Consequently, given that Nt ≤ KrMr, the necessary condition
of dim

(
N (C)

)
≥ d can always be satisfied by choosing d such

that
KtNt −Kr(Kt − κt)Mr ≥ d. (6)

Given the constraint (4) and the necessary condition (6), the
proof that the precoders of the Kt users are of full column
rank is presented in detail in Appendix C. Here we give a
simple example to illustrate the basic idea of the proof; in the
example, we assume that Kr = 1, Kt = 3, κt = 1, Mr = Nt,
and d = 2. The proof is then given as follows.

We first assume the contradiction that V1 is not a full
column rank matrix; then there exist two scalars {λi, i =
1, 2 : ∃λi 6= 0} satisfying

λ1v1,1 + λ2v1,2 = 0, (7)

where vi,j is the j-th column in Vi.
The IA system of (5) for this example is given by[

γ1
11H11 γ1

12H12 γ1
13H13

γ1
21H11 γ1

22H12 γ1
23H13

] v1,1 v1,2

v2,1 v2,2

v3,1 v3,2

 = 0, (8)

which then leads to[
γ1

11H11 γ1
12H12 γ1

13H13

γ1
21H11 γ1

22H12 γ1
23H13

] λ1v1,1 + λ2v1,2

λ1v2,1 + λ2v2,2

λ1v3,1 + λ2v3,2

 = 0.

According to (7), we have[
γ1

11H11 γ1
12H12 γ1

13H13

γ1
21H11 γ1

22H12 γ1
23H13

]  0
λ1v2,1 + λ2v2,2

λ1v3,1 + λ2v3,2

 = 0,

and hence

C2

[
λ1v2,1 + λ2v2,2

λ1v3,1 + λ2v3,2

]
= 0,

where

C2 =

[
γ1

12H12 γ1
13H13

γ1
22H12 γ1

23H13

]
.

Therefore, either
[
(λ1v2,1 + λ2v2,2)T , (λ1v3,1 + λ2v3,2)T

]T
is a non-zero vector and belongs to N (C2), or

[
(λ1v2,1 +

λ2v2,2)T , (λ1v3,1 + λ2v3,2)T
]T

= 0. The first possibility
cannot be the case, as C2 is a full column rank matrix
according to Lemma 2 and the constraint (4). On the other
hand, according to the necessary condition (6), the solution to
(8) can always be chosen to be of full column rank; thus, the
second possibility cannot be the case, as it will lead toλ1v1,1 + λ2v1,2

λ1v2,1 + λ2v2,2

λ1v3,1 + λ2v3,2

 = λ1

v1,1

v2,1

v3,1

+ λ2

v1,2

v2,2

v3,2

 = 0,

which implies that the solution to (8) is not of full column
rank. Because the consequences of the assumed contradiction
(7) are impossible, we conclude that (7) cannot occur, and
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Kr(Kt − κt)Mr





γ1
11H11 γ1

12H12 · · · γ1Kt
H1Kt

γ1
21H11 γ1

22H12 · · · γ1
2Kt

H1Kt

...
...

. . .
...

γ1
(Kt−κt)1

H11 γ1
(Kt−κt)2

H12 · · · γ1
(Kt−κt)Kt

H1Kt

γ2
11H21 γ2

12H22 · · · γ2
1Kt

H2Kt

γ2
21H21 γ2

22H22 · · · γ2
2Kt

H2Kt

...
...

. . .
...

γ2
(Kt−κt)1

H21 γ2
(Kt−κt)2

H22 · · · γ2
(Kt−κt)Kt

H2Kt

...
...

. . .
...

γKr
11 HKr1 γKr

12 HKr2 · · · γKr

1Kt
HKrKt

γKr
21 HKr1 γKr

22 HKr2 · · · γKr

2Kt
HKrKt

...
...

. . .
...

γKr

(Kt−κt)1
HKr1 γKr

(Kt−κt)2
HKr2 · · · γKr

(Kt−κt)Kt
HKrKt


︸ ︷︷ ︸

KtNt


V1

V2

...
VKt

 = 0.
(5)

hence V1 is of full column rank. Similarly, we can show that
Vk, k = 2, 3, · · · ,Kt are also of full column rank.

To summarize, the outcomes of the proposed IA scheme are
given in the following proposition:

Proposition 1: Given a scenario where Kt Nt-antenna
transmitters cause interference to the same Kr Mr-antenna
receivers and Nt ≤ KrMr, the proposed IA scheme can
design the precoders for Kt users such that

Vk ∈ CNt×d is of full column rank, ∀k = 1, 2, · · · ,Kt,

dim
(
C
(
Hj1V1,Hj2V2, · · · ,HjKt

VKt

))
≤ κtd,

∀j = 1, 2, · · · ,Kr,

where κt and d satisfy (4) and (6), respectively.
Remark: When Nt > KrMr, the interference caused by the

Kt users can be completely eliminated by selecting Vk, k =
1, 2, · · · ,Kt from the nullspace of the matrix

H̄k =
[
HT

1k,H
T
2k, · · · ,HT

Krk

]T
.

As H̄k ∈ CKrMr×Nt consists of i.i.d. entries and Nt >
KrMr, a non-trivial nullspace of H̄k always exists, and thus
a full column rank Vk can be found.

From the development of the proposed scheme, we can
see that it can be applied to a variety of networks where the
channel coefficients are generic and there are Kt transmitters
causing interference to the same Kr receivers. Examples of
these networks include uplink channels in multicell multiuser
MIMO networks, partially connected uplink channels [30], and
Z-interference uplink channels [19]. In the next section, we
will present in detail the application of the proposed scheme
to an uplink channel in a multicell multiuser cellular network.

IV. THE APPLICATION OF THE PROPOSED IA SCHEME IN
MULTICELL MULTIUSER UPLINK MIMO CHANNELS

In this section, we show how the proposed IA scheme is ap-
plied to the uplink channel given in (1). In the first subsection,
we develop the method of determining Kt and Kr so that the
proposed scheme can achieve the best DoF performance, and

we also present the closed-form expression for the achievable
DoF of the proposed scheme. In the second subsection, we
describe in detail the application of the proposed scheme in
the uplink channel. Finally, in the third subsection, we derive
the upper bound of the achievable DoF of the proposed scheme
in the uplink channel.

A. Method of determining the best values of Kt and Kr

As the goal of the method is to find the values of Kt and
Kr that produce the best DoF performance for the proposed
scheme, we need to solve two problems when developing the
method. First, we need to determine all the possible values
of Kt and Kr. Second, we need to establish the closed-
form expression for the achievable DoF, which enables us to
determine which values of Kt and Kr yield the best DoF
performance.

Regarding the first problem, we notice that in the uplink
channel given in (1), all the users in the same cell cause
interference to the same receivers. Therefore, as there is a
total of K users in each cell and a total of (L − 1) BSs to
which the K users cause interference, the values of Kt and
Kr fall in the intervals of [1,K] and [1, L− 1], respectively;
i.e., {

1 ≤ Kt ≤ K,
1 ≤ Kr ≤ L− 1.

To handle the second problem, we need to find the number
of transmitted signals that can be decoded by their desired
receivers, i.e., the number of decodable transmitted signals.
This number depends on the number of transmit directions
that can be found by the proposed scheme, the amount of
interference caused by these transmit directions, and the size
of the signal space at each receiver.

As the proposed scheme designs the transmit directions
by solving the IA systems having a form similar to (5), the
number of transmit directions that it can find depends on
both the number of IA systems and the number of transmit
directions selected from one IA system. Because for each set



6

of Kt users we can establish one IA system, the maximum
number of IA systems that contain one common user is(
K−1
Kt−1

)
. For example, let us assume that K = 4 and Kt = 3;

then the transmit directions of user 1 can be found by solving(
3
2

)
= 3 IA systems formed by the following sets of users:

{1, 2, 3}, {1, 2, 4}, and {1, 3, 4}. On the other hand, the
number of transmit directions of one user found by solving one
IA system needs to satisfy the necessary condition of (6) in
order for those transmit directions to be linearly independent
of each other. Therefore, the maximum number of transmit
directions of one user that can be found by solving all possible
IA systems is given by(

K − 1

Kt − 1

)(
KtNt −Kr(Kt − κt)Mr

)
,

which leads to

d ≤
(
K − 1

Kt − 1

)(
KtNt −Kr(Kt − κt)Mr

)
. (9)

Note that even though the transmit directions of one user
might be found from different IA systems, they are still inde-
pendent of each other. This is because the transmit directions
found from one system are independent of each other owing to
the nature of the proposed scheme, and the transmit directions
found from different systems are also independent of each
other, as the channel is generic and all the IA systems are
different [18].

The amount of interference caused by the transmitted sig-
nals depends on both the number of transmit directions and
the efficiency of the proposed IA scheme. When Kr < L, the
IAs at each cell, i.e., the IAs for K users in each cell, do not
consider all the interfered BSs; thus, two types of ICI signals
exist at each BS: one consists of the ICI signals remaining
after IA, and one consists of those that are not involved in
any IA. Because the IAs at each cell involve Kr interfered
BSs and produce Kd transmit directions, the total number of
ICI signals involved in the IAs at each cell is given by KrKd.
Owing to the efficiency of the proposed scheme, the number
of these ICI signals is effectively reduced by a ratio of Kt/κt.
Therefore, the total number of ICI signals remaining after IA
at all the BSs is

LKrKd(κt/Kt). (10)

On the other hand, as the IAs at each cell do not consider
(L− 1−Kr) interfered BSs, the total number of ICI signals
that are not involved in any IA is

L(L− 1−Kr)Kd. (11)

Because the network is symmetric, it is always possible to
select Kr interfered BSs for the IAs at each cell so that the
numbers of ICI signals at different BSs are equivalent to each
other. Thus, from (10) and (11), the total number of ICI signals
at each BS is given by

nICI = KrKd(κt/Kt) + (L− 1−Kr)Kd.

The transmitted signals are decodable when the transmit
directions are linearly independent of each other and the
subspaces created by the desired signals and the ICI signals

are separated at each BS. In the proposed scheme, the first
constraint is satisfied. On the other hand, as the uplink channel
given in (1) is generic and the direct channel matrices are not
involved in any IA system, the separability is almost surely
satisfied as long as the signal space at each BS is large enough
to accommodate both the desired signal subspace and the ICI
subspace [18]. Therefore, when the proposed scheme is used,
the transmitted signals are decodable if

Mr ≥ Kd+ nICI. (12)

Consequently, when each user transmits d signals, the
decodability of all the transmitted signals is guaranteed by the
constraints (4), (9), and (12). Thus, the closed-form expression
for the DoF achieved by each user is given by

d = min
( Mr

K +KrK(κt/Kt) + (L− 1−Kr)K
,(

K − 1

Kt − 1

)(
KtNt −Kr(Kt − κt)Mr

))
, (13)

in which κt satisfies (4).
When Mr > Kd + nICI, the total achievable DoF can be

further enhanced because the signal space at each BS is not
completely filled. The idea is to reuse the proposed scheme to
design the new set of precoders to fill that remaining space.
Two issues need to be addressed when the proposed scheme is
reused. First, the dimension of the available space at each BS
is not the number of receive antennas Mr but the dimension
of the remaining space. Second, the already-designed and to-
be-designed precoders belonging to the same user need to
be independent of each other. This issue can be resolved
by designing the new precoders with respect to the effective
channel matrices formed by right-multiplying the channel
matrices by the matrices orthogonal to the already-designed
precoders [18]. This guarantees that the new precoders belong
to the subspace orthogonal to the old precoders; however, the
drawback is that the number of transmit antennas is reduced
to the dimension of the subspace orthogonal to the already-
designed precoders.

To summarize, the basic steps of the method used to
determine the best values of Kt and Kr are presented in Table
I. In the algorithm, the parameters ηr and ηt are the numbers of
available receive directions at each BS and available transmit
directions at each user, respectively. Hence, in the first run of
the algorithm, ηr and ηt are set to Mr and Nt, respectively;
subsequently, they are set to the dimensions of the remaining
space at each BS and the subspace orthogonal to the already-
designed precoders, respectively.

B. Application of the proposed scheme in the uplink channel

As the achievable DoF of the proposed scheme in the uplink
channel is determined by the method given in the previous
subsection, it is straightforward that the application of the
proposed scheme has to follow the ideas used to develop the
method. To simplify the explanation, we present the basic steps
of the application in Table II.

Remark: It can be seen from (13) that d might be non-
integer, as the first term of the min function is not necessarily
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TABLE I
METHOD OF DETERMINING THE BEST VALUES OF Kt AND Kr

Require: L, K, Mr , ηr , ηt
1: Nt := ηt
2: for Kr := 1 to (L− 1) do
3: for Kt := 1 to K do
4: if there exists κt satisfying (4) then
5: Calculate d using (13), but replace Mr in the first term of the

min function with ηr .
6: if ηr > Knt + nICI then
7: ηr := ηr −Knt − nICI
8: ηt := ηt − d
9: Run this algorithm with the new values of ηr and ηt; then

save the new values of d, Kt, κt, and Kr as d2, Kt,2, κt,2,
and Kr,2, respectively.

10: D := d+ d2
11: end if
12: end if
13: end for
14: end for
15: return (d,Kt, κt,Kr) and (d2,Kt,2, κt,2,Kr,2) (if any) correspond-

ing to the largest D.

TABLE II
APPLICATION OF THE PROPOSED IA SCHEME IN THE UPLINK CHANNEL

GIVEN IN (1)

1: Run the algorithm in Table I to obtain (d,Kt, κt,Kr) and
(d2,Kt,2, κt,2,Kr,2) corresponding to the largest achievable DoF.

2: for l := 1 to L do
3: Use (d,Kt, κt,Kr) to set up a sufficient number of IA systems at

cell l such that at least d transmit directions can be found by solving
the IA systems, and the K users in cell l cause the same amount of
ICI to each of L BSs.

4: Solve the IA systems to obtain the precoders of K users in cell l.
5: end for
6: if there exists (d2,Kt,2, κt,2,Kr,2) then
7: Form the effective channel matrices by right-multiplying the channel

matrices by the matrices orthogonal to the already-designed precoders
obtained by steps 2–5.

8: Run steps 2–5, but replace (d,Kt, κt,Kr) with
(d2,Kt,2, κt,2,Kr,2).

9: end if

an integer value. This problem can be resolved by combining
the proposed IA scheme with the technique of symbol exten-
sion. The details of this combination are omitted here.

C. Upper bound of the total DoF achieved by the proposed
scheme

For simplicity, the upper bound is derived only for the case
where the best values of Kt and Kr are K and (L − 1),
respectively; however, as will be seen in Section V, the total
DoF achieved by the proposed scheme is in fact restricted
by this upper bound in all cases. Furthermore, it will also be
shown that the total DoF achieved by the proposed scheme
approaches the upper bound as K increases.

According to (13), the total achievable DoF of the proposed
scheme is not larger than LKMr/

(
K + (L − 1)κt

)
, and as

the constraint (4) yields

κt >
K
(
(L− 1)Mr −Nt

)
(L− 1)Mr

,

the upper bound of the total DoF achieved by the proposed
scheme in the uplink channel is given by

DUB =
LM2

r

LMr −Nt
.

V. NUMERICAL ANALYSIS

This section compares the DoF performance of the proposed
scheme and the other related IA schemes in the uplink channel
of (1). Through the comparisons, we show that in certain
scenarios the proposed scheme can achieve the optimal DoF,
and that in other scenarios where it cannot achieve the optimal
DoF, it still provides a high DoF gain over the other related
IA schemes.

A. Comparisons between DoF performance of the proposed
scheme and the optimal DoF

We compare the optimal total DoF achieved by the struc-
tured IA scheme given in [18] and the bounds of the total DoF
given in [16]. The structured IA scheme is applicable only to
certain scenarios where L = 2, whereas the bounds given
in [16] can be used for general multicell multiuser cellular
networks. Specifically, when L = 2, K ≥ 4 or L ≥ 3, and
Dop denotes the optimal total DoF, then Dop satisfies [16]{

Dop = Ddecom = LK MrNt

Mr+Nt
, if Mr

Nt
∈ Region 1,

Ddecom ≤ Dop ≤ Dproper = LKMr+Nt

LK+1 , if Mr

Nt
∈ Region 2,

where Region 1 = (CB∞, C
A
∞), Region 2 = (0, CB∞] ∪

[CA∞,∞), CB∞ =
(
(L− 1)K −

√
(L− 1)2K2 − 4K

)
/2, and

CA∞ =
(
(L− 1)K +

√
(L− 1)2K2 − 4K

)
/2. Regions 1 and

2 can also be identified on the basis of Dproper and Ddecom, as
Dproper < Ddecom in Region 1 and Dproper ≥ Ddecom in Region
2 [16].
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Fig. 2. Total DoF versus the number of receive antennas Mr when L = 2,
K = 2, and Nt = 6.

Figs. 2–5 present the values of Dproper, Ddecom, the total
DoF achieved by the proposed scheme, and that realized by
the structured IA scheme for various scenarios where L = 2.
It can be seen from the figures that the proposed scheme
can achieve the optimal DoF in all the cases where the
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Fig. 3. Total DoF versus the number of receive antennas Mr when L = 2,
K = 3, and Nt = 4.
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Fig. 4. Total DoF versus the number of receive antennas Mr when L = 2,
K = 4, and Nt = 5.

structured IA scheme achieves the optimal DoF. The structured
IA scheme is specifically designed for small networks where
L = 2, K ∈ {2, 3} and is developed from the concept
of the packing ratio, which is similar to the ICI reduction
ratio of Kt/κt in this paper but is found manually in [18];
on the other hand, the proposed scheme can be applied to a
general multicell multiuser cellular network and can find the
best packing ratios automatically. Thus, the proposed scheme
can be viewed as a generalization of the structured IA scheme.

Another observation from Figs. 2–5 is that when Dproper
is much larger than Ddecom, the total DoF achieved by the
proposed scheme tends to lie between Dproper and Ddecom. For
example, when Mr ∈ {5, 6, 7} ∪ {14, 15} in Fig. 4 or when
Mr ∈ {4, 5} ∪ {15, 16} in Fig. 5, Dproper is much larger than
Ddecom, and the total DoF of the proposed scheme lies between
Dproper and Ddecom. Because the optimal total DoF Dop also
lies between Dproper and Ddecom when Dproper > Ddecom, it can
be concluded that when Dproper is much larger than Ddecom,
the DoF achieved by the proposed scheme is either equal to
or very close to the optimal DoF. Furthermore, when the gap
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Fig. 5. Total DoF versus the number of receive antennas Mr when L = 2,
K = 5, and Nt = 4.

between Dproper and Ddecom is small, even though there are
cases where the proposed scheme cannot achieve the optimal
DoF, it can still achieve a significant portion of the optimal
DoF in these cases, as illustrated in Figs. 4–5. Therefore, we
conclude that when Dproper is larger than or close to Ddecom,
the proposed scheme can achieve either the optimal DoF or a
significant portion of the optimal DoF.

When Ddecom is much larger than Dproper, the optimal total
DoF is given by Dop = Ddecom; on the other hand, as will be
shown in Figs. 7–8, the total DoF achieved by the proposed
scheme approaches the upper bound DUB as K increases.
Therefore, when Ddecom is much larger than Dproper and as
K increases, the ratio of the optimal DoF to the DoF of the
proposed scheme approaches KNt(LMr−Nt)

Mr(Mr+Nt)
, from which it

can be concluded that the gap between the optimal DoF and
the DoF achieved by the proposed scheme increases as the
network becomes larger.

B. Comparisons between the proposed scheme and the other
related IA schemes

We compare the coordinated orthogonal scheme (COS),
the unstructured IA scheme in [18], and the IA schemes in
[19], [23]. To guarantee fair comparisons, symbol extension
is incorporated in the schemes given in [19], [23].1 The total
DoF achieved by the COS and the schemes in [19], [23] are
presented in closed forms in Table III, whereas the total DoF
achieved by the scheme in [18] cannot be presented in closed
form and is obtained numerically. Owing to the similarity
between the proposed scheme and the unstructured IA scheme,
we first compare only these two algorithms, and then we
compare the proposed scheme, the COS, and the schemes in
[19], [23].

Fig. 6 presents the total DoF achieved by the proposed
scheme and that realized by the unstructured IA scheme
for various scenarios. To guarantee fair comparisons, the
maximum length of symbol extension used by the unstructured

1Because it is not trivial to incorporate symbol extension in the scheme
in [21], this scheme is not included in the comparisons.
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TABLE III
TOTAL DOF ACHIEVED BY THE OTHER IA SCHEMES

Total achievable DoF

COS min(Mr, LKNt).

[19] (L = 2)

{
2Nt, if Nt ≤ KM/(K + 1),

2KM/(K + 1), otherwise.

[23] LKmin
( Mr
LK−1

, L(KNt −Mr)
)
.
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Unstructured IA [18], L = 3
Proposed scheme, L = 7
Unstructured-IA upper bound [18], L = 7

Fig. 6. Total DoF versus the number of users in each cell K when Mr = 3
and Nt = 3.

scheme is set to be equal to the length of symbol extension
used by the proposed scheme. From the figures, it is observed
that when L = 2, the proposed scheme outperforms the un-
structured scheme and that when L = 3, the proposed scheme
is slightly outperformed by the unstructured scheme. Because
the unstructured scheme can obtain an ICI reduction ratio of
(L− 1)Kd/τ , where τ < (L− 1)Kd, whereas the proposed
scheme can obtain only the ratio Kt/κt, the unstructured
scheme has more options for selecting the reduction ratio when
L > 2; hence, the unstructured scheme can achieve a better
IA than the proposed scheme. However, when the number of
users in each cell increases, the variety in the reduction ratio of
the proposed scheme also increases, giving the scheme more
options for performing IA, and as can be seen in the figure
for L = 3, the gap between the two schemes tends to decrease
when K increases.

Fig. 6 also shows that when L = 7 and as K increases, the
total DoF achieved by the proposed scheme approaches the
upper bound of the total DoF achieved by the unstructured
scheme, which is given by LM2

r /(LMr −Nt) [18]. Because
this upper bound is strictly larger than the total DoF achieved
by the unstructured scheme, it can be concluded that, when
the network is large, i.e., when both L and K are large,
the total DoF of the proposed scheme approaches that of the
unstructured scheme.

Even though the unstructured IA scheme can in some cases
achieve more DoF than the proposed scheme, the latter still
provides the following two advantages over the former. First,
the achievable DoF of the proposed scheme is analytically

tractable, but that of the unstructured scheme is intractable.
Second, the proposed scheme requires a considerably lower
complexity than the unstructured scheme. To find the pre-
coders for all users in the channel, the proposed scheme
in the worst case needs to solve L

(
K
Kt

)
IA systems, each

of which requires about O
(
(KtSN)3

)
complex operations,

whereas the unstructured IA scheme needs to solve one
IA system, which requires about O

(
(LKS2dN)3

)
complex

operations, where S is the length of the symbol extension.
Furthermore, because the L

(
K
Kt

)
IA systems that the proposed

scheme needs to solve are independent of each other, the
actual complexity of the proposed scheme can be significantly
reduced by employing parallel computing; in contrast, the
actual complexity of the unstructured scheme is as manifold
as O((LKS2dN)3) because the unstructured scheme does not
guarantee the decodability of the desired signals; thus, it needs
to be executed many times, each of which corresponds to a
different number of desired signals, until the decodability is
verified.
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Ma et al. [23], L = 3

DUB, L = 3
Proposed scheme, L = 3
Ma et al. [23], L = 7

DUB, L = 7
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Fig. 7. Total DoF versus the number of users in each cell K when Mr = 3
and Nt = 3.

Figs. 7–8 present the total DoF achieved by the proposed
scheme and its upper bound DUB, the total DoF achieved by
the COS, and those realized by the schemes in [19], [23] for
various scenarios. The figures show that the proposed scheme
outperforms the other schemes in all cases. The DoF gain
of the proposed scheme over the other schemes is significant
when L is small, but it tends to decrease as L increases.
This is because as L increases, the DoF performance of both
the proposed scheme and the other schemes suffers from the
bottleneck caused by the intensification of the ICI.

Despite the reductions in the gaps between the proposed
scheme and the other schemes as L increases, the proposed
scheme tends to provide a constant gain over the COS and
the scheme in [23] as K increases. Because the total DoF
achieved by the scheme in [23] is given by LKMr/(LK−1),
as K increases it approaches Mr, which is also the total
DoF achieved by the COS. On the other hand, as can be
seen in Figs. 7–8, as K increases, the total DoF achieved
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Fig. 8. Total DoF versus the number of users in each cell K when Mr = 6
and Nt = 4.

by the proposed scheme approaches its upper bound, which is
given by LM2

r /(LMr − Nt). Therefore, as K increases, the
total DoF achieved by the proposed scheme is approximately
LMr/(LMr − Nt) times as many as those achieved by the
COS and the scheme in [23]; in particular, when Mr = Nt,
the DoF gain over the COS is simplified to L/(L− 1).

VI. CONCLUSION

A new signal-space linear non-iterative IA scheme that can
be applied to a general uplink channel is proposed in this
paper. The proposed scheme can reduce the ICI by a ratio
of Kt/κt, as it can consolidate the ICI from Kt users into
a subspace that is as large as a subspace created by the ICI
from κt users, where Kt and κt are chosen so that the ratio
is the largest one that can guarantee the decodability of the
transmitted signals. Consequently, numerical analysis shows
that in certain scenarios the proposed scheme can achieve
the optimal DoF, and in other scenarios where the proposed
scheme cannot achieve the optimal DoF, it can still provide
DoF gains over the other signal-space linear non-iterative
IA schemes. Furthermore, as the number of users in each
cell increases, the proposed scheme provides a constant DoF
gain of LMr/(LMr −Nt) over the conventional coordinated
orthogonal scheme.

APPENDIX A
PROOF OF LEMMA 1

For n2 = n1, Lemma 1 is correct as we always have

dim
(
C
(
A1,A2, · · · ,An1

))
≤

n1∑
k=1

dim
(
C
(
Ak

))
≤ n1r.

For 0 ≤ n2 < n1 and q = n1 − n2, (2) can be rewritten as
γ11A1 + · · ·+ γ1qAq = −γ1(q+1)Aq+1 − · · · − γ1n1An1 ,

γ21A1 + · · ·+ γ2qAq = −γ2(q+1)Aq+1 − · · · − γ2n1An1 ,

...
γq1A1 + · · ·+ γqqAq = −γq(q+1)Aq+1 − · · · − γqn1

An1
.

(14)
If we consider (14) as a system of linear equations with respect
to the “variables” Ak, k = 1, 2, · · · , q, then the coefficient
matrix of (14) is given by

Γ =


γ11 γ12 · · · γ1q

γ21 γ22 · · · γ2q

...
...

. . .
...

γq1 γq2 · · · γqq

 .
As γik, i = 1, 2, · · · , q; k = 1, 2, · · · , n1 are i.i.d. scalars,
Γ is almost surely of full rank. Thus, each matrix Ak, k =
1, 2, · · · , q can be expressed as a linear combination of (n1−q)
matrices Ak, k = q + 1, q + 2, · · · , n1. It follows that

C(A1,A2, · · · ,An1
) ≡ C(An1−n2+1,An1−n2+2, · · · ,An1

).

Therefore,

dim
(
C
(
A1, A2, · · · , An1

))
≤

n1∑
k=n1−n2+1

dim
(
C
(
Ak

))
≤ n2r.

The equality occurs when n2 subspaces C(Ak), k = n1 −
n2 + 1, n1 − n2 + 2, · · · , n1 are of dimension r and disjoint
and the containing space is large enough, i.e., m1 ≥ n2r.

APPENDIX B

Lemma 2: Given the coefficient matrix C in (5), if Nt ≤
KrMr, then C is almost surely a full rank matrix, i.e.,
rank

(
C
)

= min
(
Kr(Kt − κt)Mr,KtNt

)
, for any Kt ≥ 1.

Proof:
The basic idea of the proof is to show that Pr

(
det(C) =

0
)

= 0, where Pr() and det() denote the probability and
determinant functions, respectively, by iteratively using row
operations and cofactor expansions along columns. The row
operations aim to zero out some entries in the target matrix
in order to produce a resultant matrix to which we can apply
the main argument of the proof, which is based on cofactor
expansions along columns and is specifically used to reach the
conclusion that

Pr
(
det(A1̄) = 0

)
= 0⇒ Pr

(
det(A) = 0

)
= 0,

where A is some given square matrix, and An̄ is the matrix
obtained by stripping both the first n columns and the first n
rows from A.

Before presenting the proof in detail, we give a simple ex-
ample to illustrate the basic idea of the proof. In this example,
we assume that Kr = 2, Kt = 4, κt = 2, and Mr = Nt.
Furthermore, for the sake of a simple representation, we use
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the symbol “×” to represent any scalar number. The matrix
C for this example is then given by

C =


×H11 ×H12 ×H13 ×H14

×H11 ×H12 ×H13 ×H14

×H21 ×H22 ×H23 ×H24

×H21 ×H22 ×H23 ×H24

 .
The first step in the proof is to use row operations to

transform C into C̃, which is given by

C̃ =


×H11 ×H12 ×H13 ×H14

×H21 ×H22 ×H23 ×H24

0 ×H12 ×H13 ×H14

0 ×H22 ×H23 ×H24

 .
By applying cofactor expansion along the first column of C̃,
we have

det(C̃) =
∑

k∈{1,2}

Mr∑
i=1

hi1k1C̃
i1
k1,

where hijkl denotes the (i, j) entry in Hkl, and C̃ijkl is the
cofactor corresponding to the position of hijkl in C̃. Then the
main argument, which will be described later, is used Nt times
to yield

Pr
(
det(C̃Nt

) = 0
)

= 0⇒ Pr
(
det(C̃

(Nt−1)
) = 0

)
= 0⇒

· · · ⇒ Pr
(
det(C̃) = 0

)
= 0.

Because the form of

C̃Nt
=

×H22 ×H23 ×H24

×H12 ×H13 ×H14

×H22 ×H23 ×H24


is similar to that of C, the entire process of applying row
operations and the main argument can be iteratively applied
to C̃Nt

to yield

Pr
(
det(C̃2Nt

) = 0
)

= 0⇒ Pr
(
det(C̃

(2Nt−1)
) = 0

)
= 0⇒

· · · ⇒ Pr
(
det(C̃Nt

) = 0
)

= 0.

Similarly, the entire process can also be applied to C̃2Nt
to

yield

Pr
(
det(C̃3Nt

) = 0
)

= 0⇒ Pr
(
det(C̃

(3Nt−1)
) = 0

)
= 0⇒

· · · ⇒ Pr
(
det(C̃2Nt

) = 0
)

= 0.

As C̃3Nt
= ×H24 is almost surely of full column rank, it is

almost surely that Pr
(
det(C̃3Nt

) = 0
)

= 0, which, according
to the deduction chain, leads to Pr

(
det(C̃) = 0

)
= 0, and

hence Pr
(
det(C) = 0

)
= 0, as C̃ is obtained from C by

using row operations. This concludes the proof for the given
example.

The details of the proof are presented in the following and
are divided into two cases, one when C is a square matrix,
and one when C is not a square matrix.

Case 1) C is a square matrix.
Let us denote C̃ as the matrix resulting from applying row

operations on C, then C is of full rank if and only if C̃ is

of full rank, as the rank of a matrix is not affected by row
operations.

The row operations on C are chosen so that they will pro-
duce C̃ given by (15) at the top of the next page, where δkij =
γk
11

γk
i1

γkij−γk1j . Specifically, the row operations are performed as
follows. First, row-exchange operations are used to move the
row blocks containing γk11Hk1, ∀k = 1, 2, · · · ,Kr into the top
row-block positions. Second, row-addition operations are used
to zero out all the entries of γki1Hk1, ∀i = 2, 3, · · · ,Kt− κt,
which are located in the first Nt-column. It can be readily
seen that this second step can always be done. Third, row-
multiplication operations are used to normalize γk11Hk1 into
Hk1, ∀k = 1, 2, · · · ,Kr.

The main argument of the proof can be applied on C̃ as
follows. Without loss of generality, we perform the cofactor
expansion along the first column of C̃ to yield that

det(C̃) =

Kr∑
k=1

Mr∑
i=1

hi1k1C̃
i1
k1,

Thus, det
(
C̃
)

can be considered as a function of the vari-
ables hi1k1, k = 1, 2, · · · ,Kr, i = 1, 2, · · · ,Mr, and hence
det
(
C̃
)

= 0 only if one of the following events occurs:
1) hi1k1, k = 1, 2, · · · ,Kr, i = 1, 2, · · · ,Mr are the roots

of the equation det
(
C̃
)

= 0.
2) C̃i1k1, k = 1, 2, · · · ,Kr, i = 1, 2, · · · ,Mr are all zeros.

As hi1k1, ∀k, i are drawn from a continuous distribution and are
all independent of C̃i1k1, ∀k, i, the probability that hi1k1, ∀k, i
are the roots of det

(
C̃
)

= 0 is equal to zero [6]. In other
words, it is almost surely that the first event cannot occur.
Thus, the event of det

(
C̃
)

= 0 is solely dependent on the
second event, and hence we have

Pr(the second event) = 0⇒ Pr
(
det(C̃) = 0

)
= 0. (16)

Owing to the requirement of the second event, we can deduce
that

Pr(C̃11
11 = 0) = 0⇒ Pr(the second event) = 0. (17)

From (16) and (17) and as C̃11
11 is the cofactor of the (1, 1)

entry in C̃, we conclude that

Pr
(
det(C̃1̄) = 0

)
= 0⇒ Pr

(
det(C̃) = 0

)
= 0.

As the first column in C̃1̄ and that in C̃ have similar
form, i.e., the non-zero entries in each column are i.i.d. and
independent of all of the other entries in the matrix, we can
also apply the main argument on C̃1̄ and consequently arrive
at the following conclusion:

Pr
(

det
(
C̃2̄

)
= 0
)

= 0⇒ Pr
(

det
(
C̃1̄

)
= 0
)

= 0.

Similarly, the argument can further be used on C̃2̄, C̃3̄, · · · ,
C̃Nt

to yield that

Pr
(

det
(
C̃Nt

)
= 0
)

= 0⇒ Pr
(

det
(
C̃

(Nt−1)

)
= 0
)

= 0⇒

· · · ⇒ Pr
(

det
(
C̃
)

= 0
)

= 0. (18)
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C̃ =



H11
γ1
12

γ1
11

H12 · · · γ1Kt

γ1
11

H1Kt

H21
γ2
12

γ2
11

H22 · · · γ2
1Kt

γ2
11

H2Kt

...
...

. . .
...

HKr1
γKr
12

γKr
11

HKr2 · · · γKr
1Kt

γKr
11

HKrKt

0 δ1
22H12 · · · δ1

2Kt
H1Kt

...
...

. . .
...

0 δ1
(Kt−κt)2

H12 · · · δ1
(Kt−κt)Kt

H1Kt

0 δ2
22H22 · · · δ2

2Kt
H2Kt

...
...

. . .
...

0 δ2
(Kt−κt)2

H22 · · · δ2
(Kt−κt)Kt

H2Kt

...
...

. . .
...

0 δKr
22 HKr2 · · · δKr

2Kt
HKrKt

...
...

. . .
...

0 δKr

(Kt−κt)2
HKr2 · · · δKr

(Kt−κt)Kt
HKrKt



. (15)

It is noted that the argument can be applied Nt times only if
Nt ≤ KrMr, as otherwise the first column in C̃KrMr

is a
zero vector, and the argument cannot be used.

After the main argument is applied Nt times, the entire
process, including performing row operations and applying the
main argument, is then re-applied on C̃Nt

in order to arrive
at a conclusion similar to (18). This is possible because C̃Nt

and the original matrix C have the same form as can be seen
from (15) and (5). Therefore, we can further conclude that the
entire process can be repeated until we reach the last matrix
with only one entry.

Without loss of generality, we assume that the row-exchange
operations do not move the last row of its target matrix, and
hence the entry in the last matrix must be a product between
hMrNt

KrKt
and a function of some scalars among {γkij , i =

1, 2, · · · ,Kt − κt, j = 1, 2, · · · ,Kt, k = 1, 2, · · · ,Kr}. As
hMrNt

KrKt
and all scalars γkij are independent of each other and are

drawn from continuous distributions, Pr(the entry in the last
matrix = 0) = 0, thereby leading to that Pr(the determinant of
the last matrix = 0) = 0.

By following the deduction chain whose beginning point
is that Pr(the entry in the last matrix = 0) = 0, we arrive at
Pr
(

det
(
C̃
)

= 0
)

= 0, which leads to Pr
(

det
(
C
)

= 0
)

= 0.
Therefore, it can be concluded that C is almost surely of full
rank.

Case 2) C is not a square matrix.

By using the proof given for Case 1, we can show that the
θ × θ leading principal matrix of C is almost surely of full
rank, where θ = min

(
Kr(Kt − κt)Mr,KtNt

)
; thus, C is

almost surely of full rank. Therefore, the proof is concluded.

APPENDIX C
PROOF THAT THE PRECODERS FOUND BY SOLVING (5) ARE

OF FULL COLUMN RANK

Let us assume that V1 is not a full column rank matrix,
then there exist d scalars {λi, i = 1, 2, · · · , d : ∃λi 6= 0}
satisfying

λ1v1,1 + λ2v1,2 + · · ·+ λdv1,d = 0, (19)

where vi,j is the j-th column in Vi.
The proof consists of two basic steps. First, we show that the

assumption of (19) leads to one of two consequences: either
N
(
C2

)
has non-zero vectors, where C2 consists of the last

(KtNt − Nt) columns in C, or Ṽ has linearly dependent
vectors, where Ṽ =

[
VT

1 ,V
T
2 , · · · ,VT

Kt

]T
is a solution to (5).

Then, we show that these two consequences are impossible;
thus, (19) cannot occur, and hence V1 must be a full column
rank matrix.

The details of the proof are given as follows. As Ṽ is the
solution to (5), we have

Cṽi = 0, i = 1, 2, · · · , d,

where ṽi is the i-th column in Ṽ. These equations lead to

Cλiṽi = 0, i = 1, 2, · · · , d,

and hence,

C

d∑
i=1

λiṽi = 0. (20)

As V1 consists of the first Nt rows in Ṽ, (19) is equivalent
to ( d∑

i=1

λiṽi
)

1:Nt
= 0, (21)
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where
(∑d

i=1 λiṽi
)

1:Nt
consists of the first Nt elements in∑d

i=1 λiṽi. Therefore, (20) can be rewritten as

[
C1 C2

] [ 0(∑d
i=1 λiṽi

)
(Nt+1):KtNt

]
= 0, (22)

where C1 and
(∑d

i=1 λiṽi
)

(Nt+1):KtNt
denote the matrix

consisting of the first Nt columns in C and the vector
consisting of the last (KtNt − Nt) elements in the vector∑d
i=1 λiṽi, respectively. From (22), we can deduce that

C2

( d∑
i=1

λiṽi
)

(Nt+1):KtNt
= 0. (23)

As C2 is a full column rank matrix according to Lemma 2
and (4), N

(
C2

)
cannot have non-zero vectors, i.e., the first

consequence cannot be the case; thus, (23) is possible only if

( d∑
i=1

λiṽi
)

(Nt+1):KtNt
= 0. (24)

By combining (24) and (21), we have

d∑
i=1

λiṽi = 0,

which means that Ṽ has linearly dependent vectors. However,
as dim

(
N (C)

)
≥ d, Ṽ can always be chosen to have linearly

independent vectors, i.e., Ṽ can always be chosen so that
the second consequence cannot be the case. Therefore, both
consequences are impossible, and hence V1 is of full column
rank.

The same argument can also be used to show that Vi, i =
2, 3, · · · ,Kt are of full column rank.
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