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Abstract—This paper considers the 3D spatial fading correla-
tion (SFC) resulting from an angle-of-arrival (AoA) distribution
that can be modelled by a mixture of Fisher-Bingham distribu-
tions on the sphere. By deriving a closed-form expression for the
spherical harmonic transform for the component Fisher-Bingham
distributions, with arbitrary parameter values, we obtain a
closed-form expression of the 3D-SFC for the mixture case. The
3D-SFC expression is general and can be used in arbitrary multi-
antenna array geometries and is demonstrated for the cases of
a 2D uniform circular array in the horizontal plane and a 3D
regular dodecahedral array. In computational aspects, we use
recursions to compute the spherical harmonic coefficients and
give pragmatic guidelines on the truncation size in the series
representations to yield machine precision accuracy results. The
results are further corroborated through numerical experiments
to demonstrate that the closed-form expressions yield the same
results as significantly more computationally expensive numerical
integration methods.

Index Terms—Fisher-Bingham distribution, spherical har-
monic expansion, spatial correlation, MIMO, angle of ar-
rival (AoA).

I. INTRODUCTION

The Fisher-Bingham distribution, also known as the Kent
distribution, belongs to the family of spherical distributions
in directional statistics [1]. It has been used in applications
in a wide range of disciplines for modelling and analysing
directional data. These applications include sound source lo-
calization [2], [3], joint set identification [4], modelling protein
structures [5], 3D beamforming [6], classification of remote
sensing data [7], modelling the distribution of AoA in wireless
communication [8], [9], to name a few.

In this work, we focus our attention to the use of Fisher-
Bingham distribution for modelling the distribution of angle
of arrival (AoA) (also referred as the distribution of scatterers)
in wireless communication and computation of spatial fading
correlation (SFC) experienced between elements of multiple-
antenna array systems. Modelling the distribution of scatterers
and characterising the spatial correlation of fading channels
is a key factor in evaluating the performance of wireless
communication systems with multiple antenna elements [10]–
[15]. It has been an active area of research for the past two
decades or so and a number of spatial correlation models and
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closed-form expressions for evaluating the SFC function have
been developed in the existing literature (e.g., [10], [16]–[25]).

The elliptic (directional) nature of the Fisher-Bingham
distribution offers flexibility in modelling the distribution of
normalized power or AoA of the multipath components for
most practical scenarios. Exploiting this fact, a 3D spatial
correlation model has been developed in [9], where the dis-
tribution of AoA of the multipath components is modelled by
a positive linear sum of Fisher-Bingham distributions, each
with different parameters. Such modelling has been shown
to be useful in a sense that it fits well with the multi-input
multi-output (MIMO) field data and allows the evaluation
of the SFC as a function of the angular spread, ovalness
parameter, azimuth, elevation, and prior contribution of each
cluster. Although the SFC function presented in [9] is general
in a sense that it is valid for any arbitrary antenna array
geometry, it has not been expressed in closed-form and has
been only evaluated using numerical integration techniques,
which can be computationally intensive to produce sufficiently
accurate results. If the spherical harmonic expansion of the
Fisher-Bingham distribution is given in a closed-form, the
SFC function can be computed analytically using the spherical
harmonic expansion of the distribution of AoA of the multipath
components [21]. To the best of our knowledge, the spherical
harmonic expansion of Fisher-Bingham distribution has not
been derived in the existing literature.

In the current work, we present the spherical harmonic
expansion of Fisher-Bingham distribution and a closed-form
expression that enables the analytic computation of the spher-
ical harmonic coefficients. We also address the computational
considerations required to be taken into account in the evalua-
tion of the proposed closed-form. Using the proposed spherical
harmonic expansion of the Fisher-Bingham distribution, we
also formulate the SFC function experienced between two
arbitrary points in 3D-space for the case when the distribution
of AoA of the multipath components is modelled by a mixture
(positive linear sum) of Fisher-Bingham distributions. The
SFC presented here is general in a sense that it is expressed as
a function of arbitrary points in 3D-space and therefore can be
used to compute spatial correlation for any 2D and 3D antenna
array geometries. Through numerical analysis, we also validate
the correctness of the proposed spherical harmonic expansion
of Fisher-Bingham distribution and the SFC function. In this
paper, our main objective is to employ the proposed spherical
harmonic expansion of the Fisher-Bingham distribution for
computing the spatial correlation. However, we expect that
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the proposed spherical harmonic expansion can be useful in
various applications where the Fisher-Bingham distribution is
used to model and analyse directional data (e.g., [2]–[7]).

The remainder of the paper is structured as follows. We
review the mathematical background related to signals defined
on the 2-sphere and spherical harmonics in Section II. In
Section III, we define the Fisher-Bingham distribution and
present its application in modelling 3D spatial correlation.
We present the spherical harmonic expansion of the Fisher-
Bingham distribution and analytical formula for computing
the spherical harmonic coefficients in Section IV, where we
also address computational issues. We derive a closed-form
expression for the 3D SFC between two arbitrary points in 3D-
space when the AoA of an incident signal follows the Fisher-
Bingham probability density function (pdf) in Section V.
In Section VI, we carry out a numerical validation of the
proposed results and provide examples of the SFC for uniform
circular array (2D) and regular dodecahedron array (3D)
antenna elements. Finally, the concluding remarks are made
in Section VII.

II. MATHEMATICAL PRELIMINARIES

A. Signals on the 2-Sphere

We consider complex valued square integrable functions
defined on the 2-sphere, S2. The set of such functions forms
a Hilbert space, denoted by L2(S2), that is is equipped with
the inner product defined for two functions f and g defined
on S2 as [26]

〈f, g〉 ,
∫
S2
f(x̂)g(x̂) ds(x̂), (1)

which induces a norm ‖f‖ , 〈f, f〉1/2. Here, (·)
denotes the complex conjugate operation and x̂ ,
[sin θ cos θ, sin θ sinφ, cos θ]T ∈ S2 ⊂ R3 represents a point
on the 2-sphere, where [·]T represents the vector transpose,
θ ∈ [0, π] and φ ∈ [0, 2π) denote the co-latitude and longitude
respectively and ds(x̂) = sin θ dθ dφ is the surface measure on
the 2-sphere. The functions with finite energy (induced norm)
are referred as signals on the sphere.

B. Spherical Harmonics

Spherical harmonics serve as orthonormal basis functions
for the representation of functions on the sphere and are
defined for integer degree ` ≥ 0 and integer order |m| ≤ ` as

Y m` (x̂) ≡ Y m` (θ, φ) , Nm
` P

m
` (cos θ)eimφ,

with

Nm
` ,

√
2`+ 1

4π

(`−m)!

(`+m)!
, (2)

is the normalization factor such that
〈
Y m` , Y qp

〉
= δ`,pδm,q ,

where δm,q is the Kronecker delta function: δm,q = 1 for
m = q and is zero otherwise. Pm` (·) denotes the associated
Legendre polynomial of degree ` and order m [26]. We also
note the following relation for associated Legendre polynomial

Pm` (cos θ) =

√
(`+m)!

(`−m)!
d`m,0(θ), (3)

where d`m,m′(·) denotes the Wigner-d function of degree ` and
orders m and m′ [26].

By completeness of spherical harmonics, any finite energy
function f(x̂) on the 2-sphere can be expanded as

f(x̂) =

∞∑
`=0

∑̀
m=−`

(f)m` Y
m
` (x̂), (4)

where (f)m` is the spherical harmonic coefficient given by

(f)m` =

∫
S2
f(x̂)Y m` (x̂) ds(x̂). (5)

The signal f is said to be band-limited in the spectral domain
at degree L if (f)m` = 0 for ` > L. For a real-valued function
f(x̂), we also note the relation

(f)−m` = (−1)m(f)m` , (6)

which stems from the conjugate symmetry property of spher-
ical harmonics [26].

C. Rotation on the Sphere

The rotation group SO(3) is characterized by Euler angles
(ϕ, ϑ, ω) ∈ SO(3), where ϕ ∈ [0, 2π), ϑ ∈ [0, π] and
ω ∈ [0, 2π). We define a rotation operator on the sphere
D(ϕ, ϑ, ω) that rotates a function on the sphere, according
to ′zyz′ convention, in the sequence of ω rotation around the
z-axis, ϑ rotation around the y-axis and ϕ rotation around
z-axis. A rotation of a function f(θ, φ) on sphere is given by

(D(ϕ, ϑ, ω)f)(x̂) , f(R−1x̂), (7)

where R is a 3 × 3 real orthogonal unitary matrix, referred
as rotation matrix, that corresponds to the rotation operator
D(ϕ, ϑ, ω) and is given by

R = Rz(ϕ)Ry(ϑ)Rz(ω), (8)

where

Rz(ϕ) =

cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1

 ,
Ry(ϑ) =

 cosϑ 0 sinϑ
0 1 0

− sinϑ 0 cosϑ

 .
Here Rz(ϕ) and Ry(ϑ) characterize individual rotations by
ϕ along z-axis and ϑ along y-axis, respectively.

III. PROBLEM FORMULATION

A. Fisher-Bingham Distribution on Sphere

Definition 1 (Fisher-Bingham Five-Parameter (FB5) Distribu-
tion). The Fisher-Bingham five-parameter (FB5) distribution,
also known as the Kent distribution, is a distribution on the
sphere with probability density function (pdf) defined as [1],
[5]

g(x̂;κ, µ̂, β,A) =
1

C(κ, βA)
eκµ̂

T x̂+x̂T βAx̂, (9)

where A is a symmetric matrix of size 3× 3 given by

A = (η̂1η̂
T
1 − η̂2η̂T2 ). (10)
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Here µ̂, η̂1 and η̂2 are the unit vectors (orthonormal set) that
denote the mean direction (centre), major axis and minor axis
of the distribution, respectively, κ ≥ 0 is the concentration
parameter that quantifies the spatial concentration of FB5
distribution around its mean and 0 ≤ β ≤ κ/2 is referred to
as the ovalness parameter that is a measure of ellipticity of the
distribution. In (9), the term C(κ, β) denotes the normalization
constant, which ensures ‖g‖2 = 1 and is given by

C(κ, β) = 2π

∞∑
r=0

Γ(r + 1/2)

Γ(r + 1)
β2r(κ/2)−2r−1/2I2r+1/2(κ),

(11)
where Ir(·) denotes the modified Bessel function of the first
kind of order r.

The FB5 distribution is more concentrated and more elliptic
for larger values of κ and β, respectively. As an example, the
FB5 distribution g(x̂;κ, µ̂, β,A) is plotted on the sphere in
Fig. 1 for different values of parameters.

The FB5 distribution belongs to the family of spherical
distributions in directional statistics and is the analogue of
the Euclidean domain bivariate normal distribution with un-
constrained covariance matrix [1], [5].

B. 3D Spatial Fading Correlation (SFC)

In MIMO systems, the 3D multipath channel impulse re-
sponse for a signal arriving at antenna array is characterized by
the steering vector of the antenna array. For an antenna array
consisting of M antenna elements placed at zp ∈ R3, p =
1, 2, . . . ,M , the steering vector, denoted by α(x̂), is given by

α(x̂) =
[
α1(x̂), α2(x̂), . . . αL(x̂)

]
, αp(x̂) , eikzp·x̂,

(12)
where x̂ ∈ R3 denotes a unit vector pointing in the direction
of wave propagation and k = 2π/λ with λ denoting the
wavelength of the arriving signal. For any h(x̂) representing
the pdf of the angles of arrival (AoA) of the multipath
components or the unit-normalized power of a signal received
from the direction x̂, the 3D SFC function between the p-
th and the q-th antenna elements, located at zp and zq ,
respectively, with an assumption that signals arriving at the
antenna elements are narrowband, is given by [21]

ρ(zp, zq) ,
∫
S2
h(x̂)αp(x̂)αq(x̂) ds(x̂)

=

∫
S2
h(x̂) eik(zp−zq)·x̂ ds(x̂) ≡ ρ(zp − zq), (13)

which indicates that the SFC only depends on zp−zq and is,
therefore, spatially wide-sense stationary.

C. FB5 Distribution Based Spatial Correlation Model and
Problem Under Consideration

The FB5 distribution offers the flexibility, due to its direc-
tional nature, to model the distribution of normalized power or
AoA of the multipath components for most practical scenarios.
Utilizing this capability of FB5 distribution, a 3D spatial
correlation model for the mixture of FB5 distributions defining
the AoA distribution has been developed in [9]. Here the

mixture refers to the positive linear sum of a number of FB5
distributions, each with different parameters. We defer the
formulation of FB5 based correlation model until Section V.
Although the correlation model proposed in [9] is general in a
sense that the SFC function can be computed for any arbitrary
antenna geometry, the formulation of SFC function involves
the computation of integrals that can only be carried out using
numerical integration techniques as we highlighted earlier.
If the spherical harmonic expansion of the FB5 distribution
is given in closed-form, the SFC function can be computed
analytically following the approach used in [21].

In this paper, we derive an exact expression to compute
the spherical harmonic expansion of the FB5 distribution.
Using the spherical harmonic expansion of FB5 distribution,
we also formulate exact SFC function for the mixture of FB5
distributions, defining the distribution of AoA of the multipath
components. We also analyse the computational considerations
involved in the evaluation of spherical harmonic expansion of
FB5 and distribution and SFC function.

IV. SPHERICAL HARMONIC EXPANSION OF THE FB5
DISTRIBUTION

In this section, we derive an analytic expression for the
computation of spherical harmonic coefficients of the FB5
distribution. For convenience, we determine the spherical har-
monic coefficients of the FB5 distribution with mean (centre)
µ̂0 located on z-axis and major axis η̂0

1 and minor axis η̂0
2

aligned along x-axis and y-axis respectively, that is,

µ̂0 = [0 0 1]T η̂0
1 = [1 0 0]T η̂0

2 = [0 1 0]T . (14)

With the centre, major and minor axes as given in (14),
the FB5 distribution, referred to as the standard Fisher-
Bingham (FB) distribution, has the pdf given by

f(x̂;κ, β) ,
1

C(κ, β)
eκ cos θ+β sin2 θ cos 2φ, (15)

which is related to the FB5 distribution pdf g(x̂;κ, β, µ̂,A)
given in (9) through the rotation operator D(ϕ, ϑ, ω) as

g(x̂;κ, β, µ̂,A) = (D(ϕ, ϑ, ω)f) (x̂;κ, β) = f(R−1x̂;κ, β),
(16)

where the rotation matrix is related to µ̂, η̂1, η̂2 (parameters
of FB5 distribution) as

R = [η̂1, η̂2, µ̂], (17)

and the Euler angles (ϕ, ϑ, ω) are related to the rotation
matrix R through (8). As an example, we rotate each of the
FB5 distribution g(x̂;κ, µ̂, β,A) plotted in Fig. 1 to obtain
the standard Fisher-Bingham distribution f(x̂;κ, β), plotted
in Fig. 2, where we have indicated the Euler angles that
relate the FB5 distribution and the Fisher-Bingham distribution
through (16).

A. Spherical Harmonic Expansion of Standard FB distribution

Here, we derive a closed-form expression to compute the
spherical harmonic coefficients of the standard FB distribution,
given in (15). Later in this section, noting the relation between
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Fig. 1: The Fisher-Bingham five-parameter (FB5) distribution g(x̂;κ, µ̂, β,A), given in (9), is plotted on the sphere for
parameters κ, β, as indicated and: (a) µ̂ = [0 0 1]T , η̂1 = [0 1 0]T , minor axis η̂2 = [1 0 0]T . (b) µ̂ = [1 0 0]T ,
η̂1 = [0 1 0]T , minor axis η̂2 = [0 0 1]T . (c) µ̂ = [0 1 0]T , η̂1 = [1 0 0]T , minor axis η̂2 = [0 0 1]T .

(a) κ = 25, β = 10,
(ϕ, ϑ, ω) = (π/2, 0, 0).

(b) κ = 100, β = 10,
(ϕ, ϑ, ω) = (π/2, π/2, 0).

(c) κ = 100, β = 49,
(ϕ, ϑ, ω) = (π/2, π/2, π/2).
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Fig. 2: The standard Fisher-Bingham (FB) distribution f(x̂;κ, β), given in (15), is plotted on the sphere for the concentration
parameter κ and ovalness parameter β, as indicated. Each subfigure is related to the respective subfigure of Fig. 1 through the
the relation (16), with Euler angles indicated.

standard FB distribution and FB5 distribution given in (16),
and the effect of the rotation operation on the spherical
harmonic coefficients, we determine the coefficients of FB5
distribution.

The spherical harmonic coefficient, denoted by (f)m` , of
the standard Fisher-Bingham distribution given in (15) can be
expressed as

(f)m` , 〈f( · ;κ, β), Y m` 〉 =

∫
S2
f(x̂;κ, β)Y m` (x̂)ds(x̂).

(18)
Since f(x̂;κ, β) is a real function, we only need to compute
the spherical harmonic coefficients for positive orders 0 ≤
m ≤ ` for each degree ` ≥ 0. The coefficients for the negative
orders can be readily computed using the conjugate symmetry
relation, noted in (6).

To derive a closed-form expression for computing the spher-

ical harmonic coefficients, we rewrite (18) explicitly as

(f)m` =
Nm
`

C(κ, β)

∫ π

0

eκ cos θPm` (cos θ) sin θdθ

×
∫ 2π

0

e−imφeβ sin2 θ cos 2φdφ

=
Nm
`

C(κ, β)

∫ π

0

eκ cos θ Fm(θ)Pm` (cos θ) sin θdθ,

where

Fm(θ) =

∫ 2π

0

eβ sin2 θ cos 2φ−imφdφ,

which we evaluate as 1

Fm(θ) =

{
2πIm/2(β sin2 θ) m ∈ 0, 2, 4, . . .

0 m ∈ 1, 3, 5, . . ..

1Using Mathematica.
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By expanding the modified Bessel function Im/2(β sin2 θ) as

Im/2(β sin2 θ) =

∞∑
t=0

(
β

2

)2t+m/2
(sin θ)4t+m

t!(t+m/2)!
, (19)

the exponential eκ cos θ as [8]

eκ cos θ =

√
π

2κ

∞∑
n=0

(2n+ 1)In+1/2(κ)P 0
n(cos θ), (20)

and using the relation between associated Legendre poly-
nomial and Wigner-d function given in (3), along with the
following expansion of Wigner-d function in terms of complex
exponentials

d`m,n(θ) = in−m
∑̀
u=−`

d`u,m(π/2) d`u,n(π/2) eiuθ, (21)

we obtain a closed-form expression for the spherical harmonic
coefficient in (18) as

(f)m` =
πi−m

C(κ, β)

√
2`+ 1

2κ

∞∑
n=0

(2n+ 1)In+1/2(κ) ×

n∑
u=−n

(
dnu,0(π/2)

)2 ∞∑
t=0

(β/2)2t+m/2

Γ(t+ 1)Γ(t+m/2 + 1)
×

∑̀
u′=−`

d`u′,0(π/2)d`u′,m(π/2)G(4t+m+ 1, u+ u′),

(22)

where Γ(·) denotes the Gamma function and we have used the
following identity [27, Sec. 3.892]

G(p, q) ,
∫ π

0

(sin θ)peiqθdθ,

=
πeiqπ/2Γ(p+ 2)

2p(p+ 1)Γ(p+q+2
2 )Γ(p−q+2

2 )
. (23)

B. Spherical Harmonic Expansion of FB5 distribution

We use the relation between standard FB distribution and
FB5 distribution given in (16) to determine the spherical
harmonic expansion of FB5 distribution. The Euler angles
(ϕ, ϑ, ω) in (16), which characterize the relation between the
standard FB distribution and the FB5 distribution, can be
obtained from the rotation matrix R formulated in (17) in
terms of the parameters of FB5 distribution. By comparing
(8) and (17), ϑ is given by

ϑ = cos−1(R3,3), (24)

where Ra,b denotes the entry at a-th row and b-th column
of the matrix R given in (17). Similarly ϕ ∈ [0, 2π) and
ω ∈ [0, 2π) can be found by a four-quadrant search satisfying

sinϕ =
R2,3√

1− (R3,3)2
, cosϕ =

R1,3√
1− (R3,3)2

, (25)

sinω =
R3,2√

1− (R3,3)2
, cosω =

−R3,1√
1− (R3,3)2

, (26)

respectively.

Once the Euler angles (ϕ, ϑ, ω) are extracted from the
parameters µ̂, η̂1, η̂2 using (24)–(26), the spherical harmonic
coefficients of the FB5 distribution g(x̂; µ̂, κ,A) given in (9)
can be computed following the effect of the rotation operation
on the spherical harmonic coefficients as [26]

(g)m` , 〈g( · ; µ̂, κ,A), Y m` 〉 = 〈D(ϕ, ϑ, ω)f, Y m` 〉

=
∑̀

m′=−`

D`
m,m′(ϕ, ϑ, ω)(f)m

′

` , (27)

where (f)m
′

` is the spherical harmonic coefficient of degree
` and order m′ of the standard Fisher-Bingham distribution
f(x̂). In (27), D`

m,m′(ϕ, ϑ, ω) denotes the Wigner-D function
of degree ` and orders |m|, |m′| ≤ ` and is given by [26]

D`
m,m′(ϕ, ϑ, ω) = e−imϕd`m,m′(ϑ)e−im

′ω. (28)

C. Computational Considerations

Here we discuss the computation of Wigner-d functions, at
a fixed argument of π/2, which are essentially required for
the computation of spherical harmonic expansion of standard
FB or FB5 distribution using the proposed formulation (22).
Another computational consideration that is addressed here is
the evaluation of infinite summations over t and n involved in
the computation of (22).

1) Computation of Wigner-d functions: For the computation
of spherical harmonic coefficients of the standard FB distri-
bution using (22), we are required to compute the Wigner-
d functions at a fixed argument of π/2, that is d`u,m(π/2),
for each |u|, |m| ≤ `. Let D` denote the matrix of size
(2` + 1) × (2` + 1) with entries d`u,m(π/2) for |u|, |m| ≤ `.
The matrix D` can be computed for each ` = 1, 2, . . . , using
the relation given in [28] that recursively computes D` from
D`−1.

2) Truncation over n: The infinite sum over n arises
from (20) where an exponential function of the concentration
measure κ and the co-latitude angle θ is expanded as an
infinite sum of the modified Bessel functions and Legendre
polynomials. It is well known that the Legendre polynomials
are oscillating functions with a maximum value of one. The
modified Bessel function In+1/2(κ) that makes up the core
of the expansion given in (20) decays quickly (and monoton-
ically) to zero as n → ∞ for a given κ. We use this feature
of the modified Bessel function In+1/2(κ) to truncate the
summation over n. We plot In+1/2(κ) for different values of n
and 0 ≤ κ ≤ 100 in Fig. 3, where it is evident that the Bessel
function quickly decays to zero. We propose to truncate the
summation over n in (20), or equivalently in (22), at n = N
such that IN+1/2(κ) < 10−16 (double machine precision). We
approximate the linear relationship between such truncation
level and the concentration parameter κ, given by

N =
3

2
κ+ 24, (29)

which is also indicated in Fig. 3. This truncation level is found
to give truncation error less than the machine precision level
for the values of concentration parameter κ in the range 0 ≤
κ ≤ 100 (used in practice [8], [9]). We note that the truncation
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Fig. 3: Surface plot of modified Bessel function In+1/2(κ) for
different values of κ and n. The region In+1/2(κ) < 10−16

is approximated by the region below the straight line, n =
3
2κ+ 24. Only those values In+1/2(κ) > 10−16 plotted above
the straight line account for the sum in (20) to make it accurate
to the machine precision level.

error becomes smaller for large values of κ, indicating that
the truncation at level less than N given in (29) may also
allow sufficiently accurate computation of spherical harmonic
coefficients. Further analysis on establishing the relationship
between the concentration parameter κ and the truncation level
is beyond the scope of current work.

3) Truncation over t: The expansion of modified Bessel
functions of the first kind for a given value of β as given in (19)
introduces the infinite sum over t. Again, the decaying (non-
monotonic in this case) characteristics of the term inside the
summation on right hand side of (19) with the increase in t
makes it possible to truncate the infinite sum given in (19) that
mainly depends on the ovalness parameter β with a minimal
error. We plot the term inside the summation on the right hand
side of (19) for m = 0 and θ = π/2, that is, S(β, t) , β2t

t!t! 22t

for different values of the ovalness parameter β in Fig. 4.
We again propose to truncate the summation over t at the
truncation level T such that the terms after the truncation
level T are less than 10−16 and do not have impact on the
summation. We approximate the linear relationship between
the ovalness parameter β and the truncation level T

T =
36

25
β + 12. (30)

Since we are computing coefficients for positive orders 0 ≤
m ≤ ` for each degree `, the truncation level given by
(30), that is obtained for order m = 0 and θ = π/2, for
the summation in (19), is also valid for all positive orders
0 ≤ m ≤ ` and all θ ∈ [0, π] because the term inside the
summation is maximum for m = 0 and θ = π/2 for a given
summation variable t.

We finally note that the truncation levels proposed here
allow accurate computation of spherical harmonic coefficients
to the level of double machine precision. Later in the paper,
we validate the correctness of the derived expression for the
computation of spherical harmonic coefficients of the standard
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Fig. 4: Surface plot of the term inside the summation on the
right hand side of (19) for m = 0 and θ = π/2, that is,
S(β, t) , β2t

t!t! 22t for different values of the ovalness parameter
β and t. The region R(β, t) < 10−16 is approximated by the
region below the straight line, t = 36

25β + 12.

FB distribution.

V. 3D SPATIAL FADING CORRELATION FOR MIXTURE OF
FISHER-BINGHAM DISTRIBUTIONS

In this section, we derive a closed form expression to com-
pute the SFC function for the spatial correlation model based
on a mixture of FB5 distributions defining the distribution of
AoA of multipath components [8], [9]. Let h(x̂) denotes the
pdf of the distribution defined as a positive linear sum of W
FB5 distributions, each with different parameters, and is given
by

h(x̂) =

W∑
w=1

Kwg(x̂;κw, µ̂w, βw,Aw), (31)

where Kw denotes the weight of w-th FB5 distribution with
parameters κw, µ̂w, βw and Aw. We assume that each Kw

is normalized such that ‖h‖2 = 1. For the distribution with
pdf defined in (31), the SFC function, given in (13) has been
formulated in [9] and analysed for a uniform circular antenna
array but the integrals involved in the SFC function were
numerically computed.

We follow the approach introduced in [21] to derive a
closed-form 3D SFC function using the proposed closed-form
spherical harmonic expansion of the FB5 distribution. Using
spherical harmonic expansion of plane waves [29]:

eikzp·x̂ = 4π

∞∑
`=0

i`j`
(
k‖zp‖

)∑̀
m=−`

Y m`
(
zp/‖zp‖

)
Y m` (x̂),

and expanding the mixture distribution h(x̂) in (31), following
(4), and employing the orthonormality of spherical harmonics,
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we write the SFC function in (13) as [21]

ρ(zp − zq) = 4π

∞∑
`=0

i`j`
(
k‖zp − zq‖

)
×

∑̀
m=−`

(h)m` Y
m
`

( zp − zq
‖zp − zq‖

)
, (32)

where

(h)m` = 〈h, Y m` 〉

=

W∑
w=1

∑̀
m′=−`

KwD
`
m,m′ (ϕw, ϑw, ωw)(f)m

′

` , (33)

which is obtained by combining (27) and (31). Here, (f)m
′

`

denotes the spherical harmonic coefficient of the standard
FB distribution and the Euler angles (ϕw, ϑw, ωw) relate the
w-th FB5 distribution g(x̂;κw, µ̂w, βw,Aw) of the mixture
and the standard FB distribution f(x̂) through (16). In the
computation of the SFC using the proposed formulation, given
in (32), we note that the summation for ` over first few terms
yields sufficient accuracy as higher order Bessel functions
decay rapidly to zero for points near each other in space,
as indicated in [21], [30]. We conclude this section with
a note that the SFC function can be analytically computed
using the proposed formulation for an arbitrary antenna array
geometry and the distribution of AoA modelled by a mixture
of FB5 distributions, each with different parameters. In the
next section, we evaluate the proposed SFC function for
uniform circular array and a 3D regular dodecahedron array
of antenna elements.

VI. EXPERIMENTAL ANALYSIS

We conduct numerical experiments to validate the cor-
rectness of the proposed analytic expressions, formulated in
(22)–(23) and (32)–(33), for the computation of the spherical
harmonic coefficients of standard FB distribution and the
SFC function for a mixture of FB5 distributions defining the
distribution of AoA, respectively. For computing the spherical
harmonic transform and discretization on the sphere, we em-
ploy the recently developed optimal-dimensionality sampling
scheme on the sphere [31]. Our MATLAB based code to
compute the spherical harmonic coefficients of the standard
FB (or FB5) distribution and the SFC function using the results
and/or formulations presented in this paper, is made publicly
available.

A. Accuracy Analysis - Spherical Harmonic Expansion of
standard FB distribution

In order to analyse the accuracy of the proposed analytical
expression, for the computation of spherical harmonic coeffi-
cients of the standard FB distribution, given in (22), we define
the spatial error as

ε(L) =
1

L2

∑
x̂p

∣∣f(x̂p)−
L−1∑
`=0

∑̀
m=−`

(f)m` Y
m
` (x̂p)

∣∣2, (34)
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Fig. 5: Spatial error ε(L), given in (34), between the standard
FB distribution given in (15) and the reconstructed standard
FB distribution from its coefficients up to the degree L−1. The
convergence of the spatial error to zero (machine precision),
as L increases, corroborates the correctness of the derived
spherical harmonic expansion of standard FB distribution.

which quantifies the error between the standard FB distribution
given in (15) and the reconstructed standard FB distribution
from its coefficients, computed using the proposed analytic
expression (22), up to the degree L − 1. The summation in
(34) is averaged over L2 number of samples of the sampling
scheme [31]. We plot the spatial error ε(L) against band-limit
L for different parameters of the standard FB distribution in
Fig. 5, where it is evident that the spatial error converges to
zero (machine precision) as L increases. Consequently, the
standard FB distribution reconstructed from its coefficients
converges to the formulation of standard FB distribution in
spatial domain and thus validates the correctness of proposed
analytic expression.

B. Illustration - SFC Function

Here, we validate the proposed closed-form expression for
the SFC function through numerical experiments. In our anal-
ysis, we consider both 2D and 3D antenna array geometries in
the form of uniform circular array (UCA) and regular dodec-
ahedron array (RDA), respectively. The antenna elements of
M -element UCA are placed at the following spatial positions

zp =
[
R cos

2πp

M
,R sin

2πp

M
, 0
]T ∈ R3, (35)

where R denotes the circular radius of the array. For the RDA,
20 antenna array elements are positioned at the vertices of a
regular dodecahedron inscribed in a sphere of radius R, as
shown in Fig. 6 for R = 1. We assume that the AoA follows
a standard Fisher-Bingham distribution.

Using the proposed closed-form expression in (32), we
determine the SFC between the second and third UCA an-
tenna elements and plot the magnitude of the SFC function
ρ(z2 − z3) in Fig. 7 against the normalized radius R/λ. In
the same figure, we also plot the numerically evaluated SFC
function, formulated in (13) and originally proposed in [9],
which matches with the proposed closed-form expression for
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Fig. 6: Regular dodecahedron array (RDA) – 20 antenna
elements positioned at the vertices of a regular dodecahedron
inscribed in a sphere of radius R = 1.
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Fig. 7: Magnitude of the SFC function ρ(z2 − z3) for 16-
element UCA of radius R.

the SFC function. We emphasise that numerical evaluation
of the integrals employs computationally intensive techniques
to obtain sufficiently accurate results and is therefore time
consuming. Similarly, we compute the SFC between two
antenna elements positioned at zp and zq on RDA, which are
indicated in Fig. 6, and plot the magnitude ρ(zp − zq) Fig. 6,
which again matches with the numerically evaluated SFC
function given in (13) and thus corroborates the correctness
of proposed SFC function.

VII. CONCLUSIONS

In this paper, the spherical harmonic expansion of the
Fisher-Bingham distribution and a closed-form expression that
allows the analytic computation of the spherical harmonic
coefficients have been presented. Using the expansion of
plane waves in spherical harmonics and the proposed closed-
form expression for the spherical harmonic coefficients of
the FB5 distribution, we derived an analytic formula for the
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Fig. 8: Magnitude of the SFC function ρ(zp − zq) between
antenna elements, placed at vertices shaded in black in Fig. 6,
of 20-element RDA of radius R.

3D SFC function between two arbitrary points in 3D-space
when the AoA of an incident signal has the Fisher-Bingham
distribution. Furthermore, we have validated the correctness of
proposed closed-form expressions for the spherical harmonic
coefficients of the Fisher-Bingham distribution and the 3D
SFC using numerical experiments. We have focussed on the
use of Fisher-Bingham distribution for the computation of SFC
function. However, we believe that the proposed spherical
harmonic expansion of the Fisher-Bingham distribution has
a great potential of applicability in various applications for
directional statistics and data analysis on the sphere.
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