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Abstract—Wireless network virtualization has attracted great by an infrastructure provider (InP) can be decoupled froen th
attentions from both academia and industry. Another emergng  services that it provides. At the same time, mobile virtual
technology for next generation wireless networks is in-bamh full - hetyork operators (MVNOSs) provide services to users. Since
duplex (FD) communications. Due to its promising performarce, th hvsical bstracted and sliced intoavirt
FD communication has been considered as an effective way ep y3|ca_ rgsources are abs _race and sliced In O_a inu
to achieve self-backhauls for small cells. In this paper, we resources, it is possible that different MVNOs coexist on
introduce wireless virtualization into small cell networks, and the same InP to share the infrastructure and radio spectrum
pf?fpgsekﬁ Vllrtua\l/:/zedf Sma:' Ce”hHEWV_OFK larchltecture Vl\lllth FD  resources, which enables the reducing of capital expenses
self-backnhauls. e formulate the virtual resource allocabn H
problem in virtualized small cell networks with FD self-badkhauls (C_?EEX) a,:;:d Opiradtrlog_ expensde?h(OpExt) [|2]. d t
as an optimization problem. Since the formulated problem is € authors o _[ ] discusse e_con _ro f”m m_anagemen
a mixed combinatorial and non-convex optimization problem frameworks of wireless network virtualization. Virtual-re
its computational complexity is high. Moreover, the centrdized source sharing mechanisms were investigated in [5], winere t
scheme may suffer from signaling overhead, outdated dyna$ dynamic interactions among MVNOs and InPs are modeled as
information, and scalability issues. To solve it efficieny, we 5 giochastic game. In addition, there are some other works
divide the original problem into two subproblems. For the first f . th rtualizati ’ f tai ii irel
subproblem, we transfer it to a convex optimization problem ocusing on the vir ualz_a lon OF certain Speciic wireless
and then solve it by an efficient alternating direction metha  Networks. For example, in the context of cellular networks,
of multipliers (ADMM)-based distributed algorithm. The second Zaki et al. [6] proposed a virtualization framework for long-
subproblem is a convex problem, which can be solved by eachterm evolution (LTE) systems, in which a supervisor is used
|nfrastructure prowder: Extepswe simulations are copdu:ted with to virtualize the eNB and manage the physical resources.
different system configurations to show the effectivenessf dhe ) - L
proposed scheme. For wireless local area networks (WLANS) virtualization, a

SplitAP architecture was proposed in [7], and a resource
sharing algorithm based on control theory was designed]in [8
Moreover, virtualization techniques for WiMAX networks][9
and wireless-optical heterogeneous networks [10] were als
. INTRODUCTION studied.

By abstracting and sharing resources among different par-Although some excellent researches have been done for
ties, virtualization can significantly reduce the cost of equipwireless virtualization, most existing works do not comsid
ment and management in networks [1]. With the tremendosmall cell networks with self-backhaulRecently, small cell
growth in wireless traffic and service, it is inevitable tmetworks have been regarded as one of the key components
extend virtualization to wireless networks [2], [3]. In wiess of next generation cellular networks to improve spectrum
virtualization, physical wireless network infrastrucuand efficiency and energy efficiency [11], [12]. Traditionaltiere
physical radio resources are abstracted and sliced intioalir are two kinds of backhauls in small cell networks: wired
wireless resources, which can be shared by multiple partiesckhaul (e.g., optical [13] or DSL [14]) and wireless beakh
After virtualization, the wireless network infrastructuswned (e.g., microwave [15] or millimeter waves [16]). Since thes

. . o traditional backhauls are very expensive for infrastreestu
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multaneously in the same frequency band. Due to its progisiairtualized small cell networks architecture and the FIX¥-sel
performance, FD communication has been considered asbatkhaul mechanism are described in Il. The resource al-

effective way to achieve self-backhauls for small cellse THocation problem is formulated in 1ll. Then we divide the
authors of [21] and [20] made fine attempts in this directiomormulated problem into two subproblems and the solution
Nevertheless, no detail has been reported. details are described in IV. Simulation results are disedi$s

Despite the potential vision of small cell networks with FDV/. Finally, we conclude this study in Section VI.
self-backhauls and virtualization, many research chgéen
remain to be addressed. One of the main research challenges Il. SYSTEM MODEL

is resource allocationwhich plays an important role in tradi- |5 this section, we first describe the virtualized small cell

tional wireless networks [22]-{24]. When wireless viri@al network architecture. Then we present the FD self-backigul
tion and FD self-backhauls are jointly considered, the (@b echanism where the SBSs can transmit and receive data on
of resource allocation becomes even more challengingesinge same spectrum simultaneously.

the backhaul and access links are coupled, which depend on
virtual resource allocation and self-interference cdatieh . .
performance. To the best of our knowledge, the problem '8‘f Virtualized Small Cell Network Architecture
virtual resource allocation in small cell networks with F&ifs ~ We present a virtualized small cell network architecture
backhauls and virtualization has not been studied in ptsviowith multiple InPs and multiple MVNOs, as shown in Fig.
works. The distinct features of this paper are summarized hsThere areM InPs offering wireless access services in a
follows. certain geographical area. Each InP deploys and manages a
. . . L cellular network with one MBS and several self-backhauled
o We introduce wireless th_uahzguon into small cell net BSs. There ar&/ MVNOs, which provide various services
WOFKS, and propose a .V|rtuaI|zed small pell NEWOTK, their subscribers through the same substrate networks.
arch|_tecture, where multlpl_e InPs and multiple MVNO‘?:ollowing the general frameworks of wireless network \attu
poems?._ In the pr(_)posed virtualized small cell networ_k?Zation [5], [26], the virtualized small cell network artécture
in addition to radio spectrum, b(_)th macro base sta_t|0 nsists of three layers: thghysical resource laye¢PRL),
(MBSs) and small cell base Stations (SBSs) from dlﬁe[he control and management laydCML), and the MVNO

ent InPs are virtualized as virtual resources, which C"T‘gyer The PRL, including base stations (BSs), spectrum

be dynamically shared by users from different MVNOS ower and backhauls from different InPs, is responsible for

° We fo_rmulate the virtual resource allocation problem i roviding available physical resources. Moreover, the PRL
virtualized small cell networks with FD self-backhaul Iso provides CML with the interfaces needed to control
a?r?n ?pt;?ﬁ?/ﬁl\]og problerg, V.Vh'Ch :naxllmlﬁes the tOt‘Fi‘ sources. The CML virtualizes the physical resources from
u Ilyg ba YOS, conS|b etrlnlg n?h only ¢ € r.edvctemlje ifferent INPs and enables the sharing for MVNOs. Then, the
camed by SEerving users but aiso the cost paid 1o g, manages and allocates the virtual resources to differen

];or c(;)dnfumlng ptovkver{hspectrgm,lanclif l_)a}[cklljaul reso?rlgngo users. The resource management functions in CML
n adaition, we take ne residual sell-interierence o re realized by avirtual network controllerand a virtual

C(_)mmun|cat|ons Into account n the fqrmulated p_roble_np source manage(VRM). The virtual network controller of

» Since the formulatepl proplem IS a m|>§ed combma’gorl VNOs is responsible to collect the resource consumption
and non?convex_optlmlzatlon problem, its c_omputat|on%lrices negotiated with InPs, and the users’ informatiog. (e.
complexity is h'gh' Mc_)reover, the centralized SChe”_" ayment information and QoS requirements) from MVNOs,
may suf_fer from S|gnaI|_n_g Qverhead, outdat_ed d_V'_‘am' en feedback the resource allocation results to MVNOs for
|nforn_15_\t|on, and ;c_alabnw ISSUES. To solve it efficignti the purpose of finishing the settlement between MVNOs and
we d|V|de_ the original problem into tWO. SprrObIemSrnPs. To maximize the total utility of all MVNOs, the VRM
For_ the f|rst subproblem, we transfer It to a convey responsible to dynamically allocate the virtual resesrc
optlmllzatlo_n prqblem, and then sollve. it by an efficiaht from multiple InPs to different MVNO users. Through the
terna‘ung d|_rect|on method OT mult_|pI|e|[§5] (ADMM)'_ virtualization architecture above, each MVNO can have a
based distributed algorithm, in which the InPs and virtu irtual network composed of the substrate networks from

resource manager (VRM) only need to solve their OW|[?1ultiple InPs. Hence each user can get services via differen

problems without exchange of channel state im‘ormatio(,ﬂ:Cess points (either MBSs or SBSs) from different InPs.

with fast convergence rate. The second subproblem is Ape assume that the spectrum bandwidth ofsthén InP is
convex problem, V.Vh'Ch can be solved by eaph InP. B,,,. The transmit power of the MBS and the transmit power
o Extensive simulations are conducted with different SY$F the SBSs. areP. and P* respectively.S,, is used to

tem (Ejonflr?uratlolr;s t% venfi/htr;e effectn;eEeiﬁ of (tjhe ptror'e resent the set of SBSs that belong to théh InP. Let
posed scheme. 11S snown that we can lake In€ advanta msbe thej-th SBS inS,,. For ease of presentation, we use
of both wireless network virtualization and FD self-.

i e
backhauls with the proposed distributed virtual resour € Sm lo representsy, € Sy in this paper. The set of

. . ers of MVNO: is denoted adJ;. Then, letU = Uf\’lei
allocation algorithm. InPs, MVNOs, gnd users can bene E the set of all the users and/| be the total number of
from the proposed resource allocation scheme.

users. For the users, there are two access choices: MBS-or sel
The rest of paper is organized as follows. The proposédckhauled SBS. Those users who are associated ta-ithe
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Fig. 2: A small cell self-backhauling mechanism based oh ful

Fig. 1: A virtualized small cell network architecture. o
duplex communications.

MBS is denoted byU,,,. Similarly, those users who access t
the j-th SBS in them-th InP is denoted byJ,; . To facilitate
the formulation of the virtual resource allocation probjehe
self-backhauling mechanism via in-band FD communicatio
will be introduced in the next subsection.

Macro users orf; and SBSs orfz in UL. At the same time,
SBSs transmit and receive data to their userg0®bviously,
the spectrum indicator vectar = (a1, o, ...,apr), Which
®Rcides the throughput of backhaul and access link, plays an
important role in achieving small cell self-backhauls.

For useru € U;, the VRM will decide its association
B. Small Cell Self-backhauling Mechanism Based on FUS and allocate some resources to it from the BS. We
Duplex Communications denote byz!7 andy!*’ the user’'s association indicator and
(E—x_llocated resources ratio (Note that this resources meas ti

As shown in Fig. 2(a), SBSs are equipped with FD har ¢ ively. Wh . At wi
ware, which enables them to backhaul data for themselves.slﬂ resources), respective Y- €n a useris assoclatet wi
ne BS,z)"’ = 1, otherwisex”’ = 0. Further,j = 0

the downlink (DL), a SBS can receive data from the MBS . . )
while simultaneously transmitting to its users on the sarﬁ&éeans th? useris _atssgcgged g.) ﬂ.TGT MBngjd# 0 tmeatrk\]s
frequency band. In the uplink (UL), a SBS can receive daEge user 'St_asfr?ct'atﬁ m 'T' ?r Y yﬁmeth (:/lnBoSes de
from the users, while simultaneously transmitting dataht® tris?urce ratio that the user gets irom » an
MBS on the same frequency band. In this mechanism, t “J(7 # 0) denotes the resource ratio that the user gets from

SBS can effectively backhaul itself, eliminating the need f n,g,.jopl\lngusly,yglf 'Sf rlelated tow,7. Only whenz™/ =1,
a separate backhaul solution and a separate frequency bé(ﬂgblYVt'he gcrgee;nllgﬁ uWe denote " the achievable link

Therefore, self-backhauling can significantly reduce thstc . . : .
g 9 y rate of one user. Generallg™7 and R;; are logarithmic

and complexity of rolling out small cell networks. In order t]c . t sianal to interf d noi tio (S
distinguish DL from UL in access and backhaul transmissi0n§InC Ions ot signalfo Interierence and noise ratio (SINR)e
gcro users, they do not suffer interference from other BSs

we call the relevant links as access UL, access DL, backhau ¢ the diff ; ‘ band InP dth
UL, and backhaul DL, respectively. Due to the limitation o escsusaettgrn beet Ieirrfr:nasc?ricz;#(;nSBaSns Ssgn;r?ggcﬂ'esa?)rre I'nE
self-interference cancellation technologies, the backimi P W ' 1ev !

and access UL will suffer some self-interference from ascetsate can be expressed as
DL and backhaul UL, respectively. Different from the FD rela mo _
mechanism in [20], the spectrum can be reused by different R = amBmlog ( 1+ (2)

SBSs and the SBSs can allocate resource to their usersylexipl . small cell users, they suffer co-channel interferemoenf

in our self-backhaul scheme. Compared to DL, UL usualiyiher sBss in the same InP, so the achievable link rate can be
has less traffic. If the transmission of DL is satisfied, th@xpressed as

transmission of UL will also be satisfied. As a result, we ®cu

P, b0
o2 '

on the transmission of DL in this paper. Ry =
In this paper, the orthogonal spectrum reuse pattern is ,
adopted, where the spectrum is divided for the MBS and SBS$1 _ , \B, log { 1 + P 40,
to avoid the inter-layer interference [27]. As shown in Fig. > P,;h’u”’k + 02
2(a), we divide the spectrum of InR into two parts:a,, B, k#5,k€Sm
as f; for the MBS and(1 — «,,)B,, asf. for the SBSs. In @)

DL, the MBS transmits data to not only macro usersfpibut In our virtualized small cell networks, each user from any
also SBSs ory,. Similarly, the MBS receives the data fromMVNO can access to either a MBS or a SBS in any InP.



Hence, for a given uset, we defineC), as its overall long-

TABLE [: Notation

term rate, which can be expressed as follows.

Definition

Notation

Cit = a0 g Ry ) + 3 a g R (), U
T s oo s

o cu? «@

‘ (3) M

whereC™% and C™J are the overall long-term rates of user
u getting from them-th MBS andS/,, respectively. For the Z”
backhaul DL, the MBS transmits data to SBSs fon and j

the SBSs buffer these data to transmit to small cell users. {m

S

We define the backhaul link rate ¢/, by R,,. When the g:’;
SBS receives data from the MBS, it transmits data to its users

set of users

set of SBSs

spectrum allocation indicator vector

the number of InPs

the number of MVNOs

index of MBSs

index of MVNOs

index of SBSs

transmit power spectrum density of macro BS of P
transmit power spectrum density of SBSs of InP
the bandwidth of then-th InP’ spectrum

channel gain betweeSf,L to the m-th macro BS

at the same time, which results in the self-interferencg. (SI »7"/
The value of Sl is determined by self-interference cantietia Rgf’]
technologies, and is proportional to the transmission powe £

m,j

of SBS DL, which could be expressed asSl9,,Ps,. ¥., Tu

channel gain between userto the j-th SBS in InPm

achievable link rate between userto BSs of InPm

achievable backhaul link rate of thyeth SBS in InPm
‘ user cell association indicator,

m,J

represents the residual self-interference gain. Diffesif- 3 user resource allocation indicator
. . . . . Zm SBS resource allocation indicator
interference cancellation technologies may result inedéht o rate of usen getting from BSs ofin-th InP
Ym. Any self-interference cancellation technology can be cm sum rate of uset. getting from all BSs ofmn-th InP
applied at the SBSs, and the analysis in this paper is a deneraCii rate of the backhaul link of thg-th SBS in InPm
case. In addition, a SBS also suffers co-channel interéeren
from other SBSs because they use the same spegiruso
the achievable link rate can be expressed as

R =

m

backhauls. Firstly, we present the utility functions foerss
MVNOs, and InPs. Then, the problem of virtual resource
allocation is formulated to maximize the total utility ofl al
P, hi MVNOs in a centralized manner at the VRM.

S Pohit o2
k};é],k?ESm

(1 —a)Blog¢ 1+

U Py, +

4
In each InP, SBSs share the spectriiynbut the spectrum

resource must be divided in time domain or frequency domal\i/ln\llnNgu; V|rtual_|zed sm_aII Ceﬂ netwofrks, users pay tohthe|r
(TDD or FDD) to avoid interference. If FDD is applied,”, . or _gettmg SEIvICes. Hence, for a given userthe
létﬂ“ty function can be defined as the difference between

the SBS will have less spectrum receiving data than thh i _ ‘ d th he/h ‘4 which i
transmitting data, which increases the difficulty to inigeste erinis service rate an € money she/he paid, which 1S
ﬁpressed as

Sl. As a result, TDD model is adopted in this paper, as shoWi
in Fig. 2(b). We use,; to denote the time slot ratio occupied M
by SBSS/, . If we denote byC,; the overall long-term rate of
backhaul DL from then-th MBS to S7 , it can be expressed
asCni = zm Rij.

A. Utility Function Definition

(®)

q 2 g h . | IWhereg means the profit of users for per bit rate. For simplic-
In (1), (2), and (4),0" denotes the noise power leve ity, we assume = 1. MVNOs purchase resources (including

hat! ltljenoltles the cglas?ngl gan b(:]twe?]n onel user ‘;nd magﬁ%ctrum,time slot, power and backhaul) from InPs to pm@vid
(small) cell BS andhy,; denotes the channel gain eWeele yices to their users. The responsibility of the VRM is to

MBS and SBS. In general, the channel gain includes path lo ﬁ‘iciently allocate the virtual resources to maximize toelt

shadowing and antenna gain. The association is assume tmty of all MVNOs. In this paper, we consider a long-term
be carried out in a large time scale compared to the dynam [

f ch | h ¢ A g e-aware utility function for MVNOs, which is defined as
of channeis. .T e SINR for gs_souatlon IS averaged over difference between the total income of all MVNOs earned
association time, and thus it is a constant regardless of

. . o serving the users and the total resource consumption cost
dynamics of channels (i.e., fast fading is averaged out).

. - r thei-th MVNO, its utility can be expressed as:
for resource allocation, we assume that resource allotddio
carried out well during the channel coherence time, and thus M M M
the channel can be regarded as static during each resouree,,;, o = Z Z 5,C" — Z NI — Z Q. (6)
allocation period. This model is applicable for low molyilit m=1 m=1
environment.

The notations used in this paper are presented in Table The first term represents the income of the MVNO from
providing services to users, aig represents the money user

Ill. PROBLEM FORMULATION u has paid to its subscribed MVNO. The second term defines
In this section, we formulate the virtual resource allamati the cost of MVNO for using the spectrum and power resource,
problem in virtualized small cell networks with FD self-and+™ represents the deliberated price betweernithth InP

m=1uecU;



and MVNOs.T" can be expressed as For an InP, it not only leases its spectrum and power
- a0 .0 resource to MVNOs and earn money from them, but also
"= Z {z "y (cm B - Pn) rents or deploys infrastructure to backhaul data. So tHigyuti
ueUm&uel; function of them-th InP can be expressed as

+wpm, Z xTquTJ {(1 - am)Bm : Prfz} ’ (7)
JESm

N N
Grp =" Y T/"+ Q" -0, (12)
i=1 i=1

wherebandwidth-power produds used to quantify the con-, nare » means the cost of renting or deploying backhaul

sumed wireless resources of the access cell [28], coefficietk < cture. For simplicity, we assume that all the Hek
w,, specifies the weight of small cell resources with respegt.-ome from MVNOs is used to pay for the rent or deployment

to the MBS resources. As is well known, the load unbalangg )5 khaul infrastructure in non-self-backhauled small ¢
problem is a serious problem in small cell networks, which N

leads to low utilization of SBSs [29], [22]. As a resultN€Works, which meangzl Q" =
we choosew,, < 1 to attract more users to SBSs. This B

method was also used in [30]. The last term represents tg_e
cost of MVNO for using the backhaul resource of InPs, ]
which depends on the amount of backhaul data of MVNO In each resource allocation cycle, the VRM needs to dynam-

and the type of backhaul technique. It's obvious that t{gally allocate the virtual resources, including MBSs, SBS
amount of backhaul data for theth MVNO in SJ can and spectrum, to MVNOs. The objective of this paper is to

be expressed as amdymi Rmed . We define the develop a slot-by-slot virtual resource allocation altjori
weUitncrt o that maximizes the total utility in (11) under the following

price of different backhaul techniques for backhané bitby constraints to determine, X, Y and Z.

the price functiong(n,,), wheren,, represents the backhaul Firstly, in our proposed small cell self-backhaul mechimis
technique type of then-th InP (e.g., optical, micowave, DSL,the DL data of small cell users are transmitted from MBS to
cell communication backhaul). Thus, the cost of MVNO foSBSs firstly, and then the SBSs store and forward it to their
using backhaul resources can be expressed as users. In this process, the throughput of backhaul DL dscide

m i M T the throughput of access DL. Hence, we have the throughput
Q=D 9lm) 3o @YMR. @) constraint of SBSs

JESm weU &ueU,] i e e
Actually, the FD self-backhaul just utilizes part of MBS Cl: Z Ty B < 2 B 0. (13)
power on SBS access spectrum to achieve backhaul rather u€Ux
than additional spectrum or infrastructure, which is cleeap Secondly, for simplicity, each user can only be served eithe
than traditional backhaul methods. Mathematicajly;,.,) of by one MBS or by one SBS. Therefore, the cell association

Virtual Resource Allocation Problem Formulation

our proposed FD self-backhaul is expressedgés,) = indicator should also satisfy the following constraints.
(1 — ) Pz i
As mentioned earlier, the responsibility of the VRM s O2: g € {0,1}, (14)
to efficiently allocate the virtual resources for the pugpos M .
of maximizing the total utility of all MVNOs. In order to C3: Z Z z, < 1. (15)
guarantee the fairness during the resource allocationepsoc m=1;j=00rj€Sm
we change the utility of MVNO as follows by adopting the Thirdly, one BS schedules its associated users on time
method in [29], dimension andy™ represents the schedule ratio of user

M M M the SBSs in the same InP share the frequeficyon time
Ghvno= . > &) = > ymTm = 3" @,  dimension to access and backhay}, defines the schedule

m—1 m—1 ratio of SBSS/, to backhaul. So, the following condition must
(9) be satisfied.

m=1uecU;

where functionU(C}") is defined as C4:0<y™ <1VYm,j (16)
U(Cyr) = 20 log{y "Ry + > ai log{y ORI}, C5: > apdyrd <1, (17)
JESm uwelU9 o’rUij

(10) C6 : O€<msi <1VYm,j 18

Then the utility function ofVRM will be changed as TS Em = LI (18)
N CT: Y 23 <1VYm. (19)

G/VRM = Z GMVNO J€Sm

i=1 Furthermore, the spectrum allocation indicatgy will take

a value in the interval of0,1]. Mathematically, it can be

M M M
- Z { Z Z 5. U(Cy") = Z VT Z an} : expressed as follows.
m=1 m=1

=1 m=1ueU,;
(11) C8%:0< ay < 1. (20)



Then, based on the above constraints, the problem a#n achieve backhaul data well because the backhaul rate

resource allocation can be formulated as follows is higher than the access rate. However, there must exist a
Ap > 0 such that M3t ymedt RII = (2 — Ap) R

bl k) 7a

el N o
st. C1.02.C3.C4,C5,C6,07.08. According to the definition of@Q;"(X,Y, Z), it's obvious

that Q™ (z7 ™, ymd ™, 2 ) > QU (a3™ ymi™ zui” — Ap).

V. D v R A That's to say, a larger utility for the VRM can be obtained at
- DISTRIBUTED VIRTUAL RESOURCEALLOCATION :cmvj*,y{f-rj*, 23" — Ap, which also satisfies other constraints.

u
ALGORITHMS Therefore, there is a contradiction between this conciusio

It can be observed that the considered problem is combirgd our assumption. In other words, the optimal cell asso-

torial and non-convexity. The combinatorial nature commesif  ciation and resource allocation scheme is not obtained when
the integer constrain®2. The non-convexity is caused by the > :vum’j*yﬁ’j*RumJ < 237 R. As a result, Theorem 1 is

objective function and constraintl. As a result, a brute force ,cu;s
approach can be used to obtain the optimal virtual resou@ved. ‘
allocation policy. However, such a method is computatiynal Based on Theorem 1, we can getn =
infeasible for a large system and does not provide useful sys> > ay/y;"/Ri"/. Namely, we can replaceZ in
tem design insight. To reduce the computational complexity” €U, _ _

firstly, we assume the spectrum allocation indicator veatis gp;gctwe funcUon?l by X andY, which means that.the
fixed, and then we convert the original problem into a convéwg'nal Pmb'em will b? transformed from a th_ree variables
problem by variable transformation and perspective fuaomcti problem into a two variables problem as following:

theory to solveX, Y andZ. Secondly, based on the obtained N M

results, we can prove that the problem is convex problemtabogz'1 .

a, then it's easy to get the optimized by some convex Xy ;mZ:l%ZU UG (X, Y))

optimization algorithms. Furthermore, we come back to first N M

step with the result ofx to get the new values oX, Y, and _ Z Z AMT™(X,Y)

Z. By iterations like this for a number of times, the values Tl el

of X, Y, Z and«a will converge, which can be seen as the M 1

solution of original problem??. In Subsection IV-A, we solve -y (1= ) P (Y a2l lym I Ry )?
X, Y and Z by assumingx is given. Subsection IV-B will m=15€S,, R wess

introduce how to solvex when X, Y and Z are fixed. In (23)

Subsection IV-C, we describe the whole process of solution , C2.03,C4,C5
and the convergence of the proposed algorithms.

1 S .
C6:— > amiymiRyy <1

A. Solving X, Y and Z under Fixed Spectrum Allocation uel,}
. 1 . . .
Indicators o7 Z _ Z ZmA IR <
For any given spectrum allocation indicator vectoy the ESm R Wl

original problem reduces to the following problem:
Although problem#?; is simplified based on Theorem 1, the

N M
P, max 5, U(C™(X,Y)) above problemZ; is still difficult to solve based on the
XY,z ; {mZ_MGZU following observations:

M

M
- ATMXLY) - Y QXY Z)

o The feasible set 0f”; is non-convex as a result of the
(22) binary variables:”.

_m=l - m=l « The objective function is not convex due to the product

st. Cl: Z Ty R < 28 RSV, relationship between”J and convex function of/™.
uelU,} As a result, we first transfer this problem into a convex
C2,C3,C4,05,C6,C7 problem and solve it via a distributed ADMM-based algorithm

Theorem 1: If the problem &7, is feasible, the objec- 1) Transf.erring. &, into convex problem. :AS -is well
tive function achieves the optimal solution only when th nown, a mixed discrete and non-convex optlmlzatlon p|_1mble
constraintC'1 is tight, which means 3 amiym. gmi — IS expected to be very challenging to find its global optimum.

' s worw T Thus, we have to simplify problen®?;. Following the ap-
zi Ryi,Vj € S, must hold when the objective function getgroach in [29], we relax:7? (j = 0 is included) in&, C2
the maximum value. and C3 to be real value variables such that 277 < 1.

Proof: We will prove Theorem 1 by a simple contradic-The relaxede7 can be interpreted as the time sharing factor
tion statement. Assume that the optimal resource allacatifiat represents the ratio of time when usemssociates to
scheme (e.gg™ 7", y™i™, zyi") for problem .2, is obtained the m-th MBS or SBSS;,. However, even after relaxing the
when Y amd*ymi*Rmi < 2%"Rsi. Now all SBSs Variables, the problem is still non-convex due to the non-

weUss convex objective function. Thus, to make the probler



tractable and solvable, a second step is necessary. Next,puepose of implementation, a distributed algorithm rugnin
give a proposition of the equivalent problem of, . on each InP should be adopted.

Proposition: If we define 77 = y™Jiz™J Vj and 2) ADMM-based solution algorithm of?;: Due to con-
' straint C3’ in &1, the problem is not separable with respect
to different InPs. To apply ADMM to the resource allocation
roblem &7], this coupling must be handled appropriately.
herefore, we introductcal copy X}, of the relatedglobal
Lo , o cell association variabl&X for the m-th InP. Roughly speak-
Due to the loss of definition wherf?? = 0, it is not a one-to- ing, eachlocal variable can be interpreted as the InP’s opinion

. o .
one mapping. Howevemu = 0 certainly holds because Ofabout the correspondingjobal variable. Naturally, variables
the optimality. Obviously, BS does not allocate any reseury; ' is alsolocal variables for InPm, since the InP operates

to any user if the user does npt associate with the BS. Thu%NWhout any limits from other InP. For the sake of brevity,
becomes a one-to-one mapping when the completed MapRfY,s define vectord,,, — (X! Y., to represent théocal

between{z"/, y"’} and {237, 57} is defined as variables of them-th InP. Inspired by [31], to deal with the

X ~m, iRy . . .
xy log yuz;,j = 0 for z;)»/ = 0, there exists an equivalent
formulation ‘'of 22, as shown in (24).

The relaxed problen¥?] can be recovered by substitution OPF

variableg™J = z™Jy™J into problem<?; exceptz™’ = 0.

e am constraints, we introduce an indicator functigfA,,) such
THE { o7 T >.0 . (24) thatg(A,,) = 0 whenA,, € ®; otherwise,g(A,,) = +o0,
0 if otherwise where® represents the feasible set of problesj. With these

notations above, problem®; of maximizingGy gas On setd

Holding thePropositionand well-known perspective func-is equivalent to

tion in convex optimization theory [31], we have the folloi
theory that gives the convexity o;. 2! min {—=GPru(An) +g(An)} (25)
Theorem 2: If problem &7] is feasible, it is jointly convex A
with respect to all optimization variableg™’ and ™.
Proof: Since the constraints2’, C3', C4',C5',C6,C7 are where
linear, they are obviously convex. Due to the fact that aibjec N
function 22| is a linear sum otJ(C™"), T/ andQ™', we just ~ Am _ mxt W
need to prove the convexity & (C'), 7*" andQ7"', based Van(An) =3 3 DO (X, Y)
on the following principlethe linear sum of convex functions N
is still convex[31]. _ vanm/(xgwff) —Q™(XL.Y) (26)
The convexity proof ofU(C™') is similar to [32], which i1
will _be _descrlbed _bnefly as follows. Firstly, we prove thqt can be seen that the objective function is separable scros
continuity of function f(t,z) = wlog(t/x),t > 0,2 > 0 |pg in the virtualized small networks. However, thbal
at the p(glnt of z 5 0. Let s = %g; then f(t,0) = gy association variables involved in the consensus cainss
lim zlog 7 = lim {logs = ¢ lim == = 0. Function .. 56 the problem with respect to the InPs. Therefore, the
f(t,z) = xlog(t/x),t > 0,z > 0 is the well-knownper- basic idea to solve problen#} is that each InP only deter-
spective operatioof logarithmic function, and the perspectivemines itslocal variables based on the local information, and
function of a convex function is also a convex function basegRM is responsible for achieving consensus betweendbal
on [31]. Sincex/ log 1 is th perspective function of variables and thelobal variable according to the consensus
log ™7, and the functionlog g™’ is convex abouty™7, constraint.
2™ log L= is convex. What's more, functiobl(C™) is a ~ We apply ADMM [33] for solving the problem i}’ in a
. Tu , o gm distributed way. The machinery of the ADMM applied £8;’
weighted sum of series of convex functiaf]"’ log =, SO g jnitiated by forming araugmented Lagrangiawith respect
it is also a convex function. Functiofi™’ is linear function to the consensus constraints. The augmented Lagrangian not
of g7, and the convexity of it is obvious. Since the functiomnly includes a set of consensus constraints weighted by
Q7" is a sum of quadratic function abo@f;*7)*, we can | agrange multipliers (conventional Lagrangian), but ical
easily know it is a concave function by solving the secongyolves an additional regularized quadratic term: a segar
derivative of(g;7)*. With the theory that a negative concave(7,||, norm with respect to the consensus constraints.
problem is a convex problem, we can conclude that the formiet ), be the Lagrange multipliers set associated with

of the objective function inZ; is a linear sum of convex consensus constraints 8#/. Thus, the augmented Lagrangian
problems. With the addition that all the constraints arevean fqr 2} can be written as

the convexity of theZ?| is proved. N

Since problem#?; is a convex problem, a lot of methods Lo(Am, X) = =GVry + 9(Am) + A (X5, — X)
(e.g., interior point method) can be used to solve it. Howeve p M )
with the increase of the number of BSs and users, the +3 > IxE - X3 (27)
size of problem will be very large. Practically, even with a m=1
powerful computing center, the overhead of deliver enougbherep € R, is a positive constant parameter for adjusting
local information (e.g., channel status information (§3§ the convergence speed of the ADMM. Note that due to
the global center is extremely inefficient. Therefore, foe t the structured interconnections in the virtualized small c

st. X} —X=0

i=1 uelU;




~m,0 pm,0 ~m,j PmM,J
Yo" Ry Yo 1
m,0

N M
P2 I)I(la}g]( Z Z Z 6y § 20 log H— b 4 Z zy IOgW

’
Ly

i=1 m=1ueU; JESm
uer)
N M
_Z Z’Ym Z % (m B - P) + wi, Z Ju? (1 = ) B - P, (24)
i=1 m=1 ueU,, &ueU; JESm
Ti’VYL/
M 1
- Z Z R (1 — am) Pl Z gl Rp)?
m=1 | jes,, = ™ e’

Q m/
M

st. C2:0<apd <1Vj, C3:> > al=1C4:0<g <apd, C5 Y gl =1,Ym,j

m=1j=0&j€S, welU
1 , 1 .
. ~m,0 , . ~m;,0 )
C6': —e D> GRS OT': 30— 30 G ORI <1
" ueul J€Sm " weuti

networks, the augmented Lagrangian is separable with cespealculates thelobal variable X based on allocal variables,
to the InPs. finally update the Lagrange multipliers. In the followingew

Fundamentally, the augmentation can be seen as a penelily deal with how to update4,,,, X and A\ in each iteration.
term added to the primal objective function [25]. The regulaMoreover, the distributed implementation of each update wi
ization term facilitates the algorithm to drive thezal and the be also discussed.

relatedglobal vgriables into consensus. It_’s worth emphasizing a) A,,-Update: Interestingly, as mentioned earlier, it can be
that the solution of the original optimization problef’ o nd thatA,,-update is separable across each InP. Therefore,
is not affected _by a(_jdmg. the quadrauc regularization Fer -update can be decomposed int6 subproblems, which

to the Lagrangian since it vanishes for any set of primaby pe solved locally at each InP. After dropping off the

feasible variables. The ADMM method consists of sequentighnsiant terms in (28) which do not affect the solution, the

optimization phases over the primal variables followed sy t subproblem to be solved at InR can be given as
method of multipliers update for the dual variables [25]. By

applying the ADMM to the problem i??;’, we first minimize

the augmented Lagrangian in (27) over tloeal variables, min  — M (X! Y.

then over theglobal variables, and finally, perform the dualx: v.. VRMA=mo Sm

variable update. Thus, the ADMM method consists of the m,j i i 4T
’ D SR DN (C ) RSP

following steps:
u€Up, j=0&jES:,

At =arg min { =G (An) + 9(An) o
xi v, st A, c®

DX - (X)) + S X - (X3 (@8)

Obviously, problem (31) is a convex problem because of the

M convexity of problemZ?;. For the purpose of fast convergence,
X' =arg min Z AP (XE] - X) steepest descent method [31] will be adopted at each InP to
m=1 realize A,,,-update.
M
P AN 2 Recall that we have relaxed the cell association indicator t
= X - X 29 .
* mz::l X |2} (29) be a real value between zero and one instead of a Boolean at

the beginning of this subsection, hence we have to recover it

to a Boolean after we get the optimal solution of subproblem
t+1 t Tt+1 t+1 . el X e
Am]™ = [Am]" + p([X3] X7 (30) (31). Assumez™i", y™J" (including j = 0 ) and z

wheret stands for the iteration index of the ADMM algo-are the optimal solution of (31) obtained directly from the
rithm. The basic idea behind the ADMM iterations is thagteepest descent method. Inspired by [34], we first compete t

o(Am)

we first minimize the augmented Lagrangian with respect faarginal benefit for each}’ as follows. D}/ = ===,

local variables(X},,Y,,) in .A-update, and then the VRM where dL,(X,,) is the objective function of problem (31).



Then, the indicator:”/" can be recovered to zero or one byB. Solvinga under Fixed Resource Allocation ScheAieY’,

and Z
JERTI if vy =max Dyt and D) = 0 For any fixed feasible resource allocation scheXig Y,
u 0 otherwise and Z, the original problem?? will be reduced to a simplified

(32) optimized problem with variablea as follows:
After recovering the indicatar™7", we resolve the problem N (M
(31) to get the optlngal S(_)Iutpn of;7 according to the P, max Z Z Z 5, U(C™ ()
known recoveredr; ", which is easy due to the fact that et
the problem (31) will be concave respectgft’. Note that M M
this is a common method to deal with the indicator variahtes i _ Z AT () — Z Q™ () (34)
resource allocation, which is widely adopted in the literat — —

m=1uecU;

(e.g., [34)). st 1 Mg M Mg 5 T8 . .
LC1: Aym I R (o) < 251 R () Vg & 0
b) X-Update Due to the added quadratic regularization Z Ty B (o) < 2 (m) Vi & #

term in the augmented Lagrangian (27), the objective in i29)
strictly convex inz”7. Therefore, the unique optimal solution
is found by setting the derivative to zero that results in

uEU;j

C8

Then we have the following property.
Property : If problem &2, is feasible, it's jointly convex
X - 1 & Xt 1 = PWRL 33 with respect to the optimization variabl¢s.,,, vm}.
N MWX_:I[ ml Fp;[ m] (33) Proof: Since the constraint§’l and C8 are linear, they
are obviously convex. Nextly, we prove the convexity of the
M objective function. For convenience, we uBgx) to represent
By using > [An] = 0, it will result that X = the objective function in, it is easy to know2-L, < 0. So,
M m=1 the objective function o, is convex and then ‘the convexity
L > [X}]H! at each iteration [25]. Namely, thglobal of problem .27, is proved.

variables are obtained at each iteratioy averaging out the ~ Since problemz?; is a convex problem, many solutions can
corresponding updatedcal copies. This introduces a philos-P€ used to solve this problem. In this paper, considering the
ophy of interpreting the currerlbcal copies as InP’s opin- fast convergence, we still adopt the _steepest descent thetho
ions about the optimaglobal variables. Since the Lagrangel® Solve this problem. What's more, it can be observed that
multipliers are not involved in (33), the local communicati there are no coupled relationship among different, so the
overhead is reduced in this step. solution of 2%, can be divided inton subproblems and these
¢) A-Update : Compared to.A,,-update andX -update, subproblems can be solved in each InP.
the process of\-update is quite simple. After receiving the

updatedglobal variables X “*!, A-update can be performedc. Overall Algorithm: The Distributed Virtual Resource @l
directly via (30) at each InP in each iteration. cation Algorithm

The iteration process of ADMM-based solution algorithm g .4 on the analysis of Subsections IV-A and IV-B,

is concluded irAlgorithm 1. the distributed virtual resource allocation algorithm dam
summarized ag\lgorithm 2. In this algorithm,« is along

Algorithm 1 ADMM-based solution algorithm time-scaleoptimization variable, whileX, Y and Z areshort

1: Initialization time-scaleoptimization variables. In a relatively long period,
a) At each InPm, collect channel state information of allthe InPs do not change the valuescf and they solve their
users within its coverage; corresponding subproblems in parallel in each iteration to
b) Initialize X° € @, A° > 0 and a stop criterion Optimize their local variables by using local CSI infornuati
thresholdg, at the VRM and transmit their local results to the VRM. Actually, each

2: while | X+ — Xt > & local variable can be interpreted as InP’s opinion about the
a) BroadcastX! and A! to each InP; corresponding global variable. Then the VRM collects ad th
b) At each InPm, calculateA,,"*!; local results and coordinates all the InPs to achieve thieagjlo
c) At the VRM, updateX‘+! by combing the results of consensus based on the consensus constraint and the regular
Xﬁf“ from each InP: ization function. Upon the convergence of the cell assariat
d) UpdateX**+! via (33); and resource sc_heme, 'Fhe InPs attempt to change_ the value of
e) Updatext*! via (30) at VRM; « to get the optimal gain, and then the network will start the
End next round cell association and resource allocation auijgist.

3 RecoverY and Z By this way, there is no need to exchange CSI information

4: Output the optimal resource allocation scheié, Y* between InPs and VRM, which will reduce the signaling
and Z« overhead significantly. Furthermore, since the combirator

nature and non-convexity of considered problem have been
removed through the problem transformation in Subsections
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IV-A and IV-B, the computational complexity to solve the ey

—*— Proposed scheme with FD self-backhaul and virtualization ;/6
—#— Existing scheme without FD self-backhaul but with virtualization
351 — A — Existing scheme with FD self-backhaul but without virtualization
— A — Existing scheme without FD self-backhaul and virtualization

original problem has been reduced to a reasonable level.

Algorithm 2 Distributed virtual resource allocation algorithm
of small cell networks with FD self-backhauls and virtuatiz
tion
1: Initialization
a) At each InPm, collect channel state information of all
users within its coverage;
b) Initialize a® = 0.5, 0 = 0 and a stop criterion threshold
& at the VRM;
2 while |Gy pa ™" = Gy pas Il > &0 S S N SO U W
Push the value of¢, to them-th InP 0B mberonsers %
Run Algorithm 2
Updateao — a°t! based on the result oX*, Y™ Flg 3: The total Uti"ty of MVNOs Wlthéu =109 and% = 5.
End
3: Output the optimal resource allocation scheXié, Y*,

The total utility of MVNOs

Z* and o set to5 * 107, and the small cell discounting priae is set to
1073,
In Figs. 3-6, we compare the utility of MVNOs, users, and
V. SIMULATION RESULTS ANDDISCUSSIONS InPs, as well as the resource utilization ratio of networks w

. . . . . different schemes. As shown in these four figures, the scheme
In this section, the effectiveness of our proposed viragali

. o ith FD self-backhaul always outperforms the schemes with-
Sma" cell networks W'th FD self_—backh_auls and dIStrIbUte\gut FD self-backhaul. This is because the proposed scheme
virtual resource allocation algorithm will be demonstdate

. . . . . _with FD self-backhaul is able to reduce the cost of backhaul
by computer simulations. In the simulations, we consider

I Km x 1Km square area covered by two InPs and tv\%\jd improve the SBS utility ratio, which means that MVNOs

an get more available resources at a lower price. As a result
MVNOs. In each InP, there are one macro BS and four SB 9 P '

. lity values of MVNOSs and users are improved. For InPs, the
Each MVNO owns some subscribed users. The number tre users access to SBSs, the more backhaul revenue they

subscribed users in each MVNO will be varied in differeny;, getin the small cell network with self-backhaul. Hovesy

simulation scenarios, and they are randomly located in the, = .. .
' } in“traditional small cell networks, the backhaul revenuased
whole area. The available bandwidth of both of the tw

. 0 pay for the backhaul infrastructure rent or construgtion
InPs arel0 MHz The transmit power of the macro BS an .
. nd then InPs can only get the resource consumption revenue
the transmit power of the SBS amtdBm and 20dBm, y9 P

respectively. The channel propagation model refers to.[3@ access links. This is the reason why the utility of InP

. ith FD self-backhaul is higher than that without FD self-
One macro BS is located at the center of the left half of the . . .
area, while the other macro BS is located at the center of :Eackhaul. Furthermore, there is appreciable performaate g

: . F our proposed scheme compared to traditional schemes
right half. The SBSs are randomly deployed in the area. Tmﬁthout virtualization. The reason is that, with infrastture

d]?ployment O_f BSs 'ﬁ basledlon :jhﬁ consenskuslthat.theblocagﬂﬂjalization' a user is able to connect to a better accesd p
E)Cr;]?g;oo?ssssufgz yf(;?nigczztﬁ) m;yngtev;%rn dpoann?rllre])gusuetr;%i.th better ghannel conditions and lower resource consiompt
o ‘price. That is to say, access point selection gain and spactr
selection gain can be obtained from our proposed virtudlize
A. Performance Evaluation of the Proposed Virtualized $majma|| cell networks. Therefore, our proposed virtualizetl
Cell Networks with FD Self-backhauls cell networks with FD self-backhauls can take the advantdge
In this subsection, we evaluate the performance of tiheth wireless networks virtualization and FD self-backbau
proposed virtualized small cell networks with self-baakisa  In addition, as shown in Figs. 3-6, with the growth of
by comparing the following schemes: (a) A traditional smathe number of users, the total utility of MVNOSs increases
cell network without FD self-backhaul and virtualizationlinearly, the average utility of users decreases slowlyd an
which is similar to that in [36]; (b) a small cell network withthe total utility of InPs and the resource utilization ratb
virtualization but without FD self-backhaul, which is slaxi networks will increase, but the increase rate becomes more
to that in [37]; (c) a small cell network with FD self-backthauand more slow. Because MVNOs have to pay money to InPs
but without virtualization, which is similar to that in [19ach for using resources, the VRM only allocates optimal reseurc
scheme has the similar system configurations as descriladount to users rather than all resources. As a result, the
above. For the schemes with virtualization, we optimize thetal utility of MVNOs will grow since more users will bring
total utility function defined in (11). For the schemes witho more income, and the total utility of InPs and the resource
virtualization, MVNOs demote to general network operasiorutilization ratio will also go up due to the fact that more
with one InP, and the utility function is optimized sepahlate resources are consumed. Meanwhile, the average utility of
In this subsection, the augmented Lagrangian parameier users will descend because some users with bad channel



11

x10° x 10
2.4 25— ! , -
- —&— The number of users is 60
—& —— The number of users is 40
221 - ~ Th .
~ —#— The number of users is 20
. oL : RN . ]
2| —*— Proposed scheme with FD self-backhaul and virtualization i ~ -
—=&4— Existing scheme without FD self-backhaul but with virtualization G\\
" — * — Existing scheme with FD self-backhaul but without virtualization 8 T N
3 18| -2 - Existing scheme without FD self-backhaul and virtualization N § T \\
g S 15f TV N A
o A—A A A ~— N
5 ——bh—— A 4 i 5 ~_ ~
2z 18] 1 z ~ )
° il
]
£ lag b s 1r q
Tosk— @ ¥
B T S
12r e e il e
T 05t
SR U G S ]
T A - - A A LA _ _A e
08 I I I I I I I I
10 20 30 40 50 60 70 80 90 100 0 i i i ¥
The number of users -50 -40 -30 -20 -10

The residual self-interference gain(dB)

L - PR o
Fig. 4: The average utllity of users with, = 10° and-; = 5. Fig. 7: The total MVNO utility of different residual self-

interference gain with, = 10° and~; = 5.

x 10
9 T T T T T T T T
0.9
—— The number of users is 60
o0sl- T~ —— The number of users is 40
w T~ —#— The number of users is 20
a e
g = o7
= T O N 1
s A .
] — .
g £ 06 —— b
S =}
5 > N
2 £ 0.5% . \ b
@ m
= @
£ 8 AN
& 0.4 \ 1
- o
24 Lo _ @
_} —#— Proposed scheme with FD self-backhaul and virtualization 2 03r 1
1= Z 7| —#— Existing scheme without FD self-backhaul but with virtualization g
£ — P — Existing scheme with FD self-backhaul but without virtualization B 02l 4
o | — P — Existing scheme without FD self-backhaul and virtualization 2
=
1 2 3 4 5 6 7 8 9 10 o1k J
The number of users ’
0 i i i
. . T .  1n6 o -50 -40 -30 -20 -10
Fig. 5: The total utility of InPs withy,, = 10° and~; = 5. The residual self-interference gain(dB)

Fig. 8: The ratio of users accessing to SBSs of different

09 residual self-interference gain with, = 10 and~; = 5.
0.8
0.7 - ) ) . )
e utility of MVNOs will keep increasing because of the multi-
5 o0 user diversity gain. This is also the reason why the average
%’05 utility of users does not decline sharply.
¢ 04
g 02 B. The Effect of Self-interference on Our System Performanc
0'2* P —*— Proposed scheme with FD self-backhaul and virtualization B |n F|g7 and Flg 81 We evaluate the eﬁeCt Of Self—
7 - —%— Existi h ithout FD self-backhaul but with virtualizati H il 1
2 e o interference on the total utility of MVNOs and the ratio of
0 | - & — Existing scheme without FD self-backhaul and virtualization users accessing to SBSs, respective|y_ As shown in Fi@7, th
A mberotusers total MVNO utility will decrease and the rate of decrease

speeds up with the increase of the residual self-interteren
Fig. 6: The resource utilization ratio with, = 10° andy; = 5. gain. This is because that it will consume more resources

for users to access to SBSs because of the terrible backhaul

link leading by high residual self-interference gain, ahdrnt
condition access to the network. However, when the numhkiée users have to access to the relatively expensive MBS,
of users is large enough, the ratio of users with bad chanmélich can be find in Fig. 8. What's more, due to the limit
condition will increase and the average link rate of usels wof MBSs' resource, the users’ service rate getting from MBSs
decrease accordingly. Considering the resource consomptivill become lower and lower with the users who access to
price, the VRM will not allocate more resources to usefdBSs increasing. This also is why the total MVNO utility is
because the service rate gain will be lower than the cost mbre sensitive to the residual self-interference gain where
consuming resources. So, the resource utilization ratiotlh@ are more users. As shown in Fig. 8, there no users accessing
total utility of InPs will grow no more. Nevertheless, thaalb to SBSs when the residual self-backhaul gain—-i$0 dB,
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w = [1,1]).
I the value ofp affects the rate of convergence.= 5 x 107
3y . el e,70.9, WL gives higher convergence rate than= 8 x 10”7 especially
08 N S before thel0-th iteration. Furthermore, a significant decrease
. S e iale 01, weto® of utility gap between centralized algorithm and proposed
S ADMM-based algorithm can be found from tHest iteration

% TR i to the10-th iteration. After thel0-th iteration, the gain of more

2 osl et iterations is still increasing but with less rate. Thus,aml&off

> —* . o . .

2 ¥ exits between acceptable utility value and iteration steps
4 - G | What's more, after multiple experiments, we find the order
0l - . ] of magnitudes ofp must approach that af{},,; otherwise,

: the proposed ADMM-based algorithm will not converge.
0.2 T . .
Fig. 10 and Fig. 11 show the convergence of the overall
0.1

algorithm in Algorithm 2 and the influence factors of con-
vergence. As shown in Fig. 10, the final value @f almost
converges to one constant, although they begin from diftere
initial values. Similarly, the total utility of MVNOs with
different initial (a1, a2) are very close in Fig. 11. This shows
the robustness of our proposed overall algorithm with cffe
| values of a. InPs can derive new cell association
resource allocation policies when the network sitmatio
&hanges (e.g., new users arrive), rather than waiting fer th
related message from VRM, which presents the improvement
of self-adaption ability of the network. What's more, it can
. be found in Fig. 10 that the value af has an influence on
C. The Convergence of the Algorithms the final value ofa. Whenw = 1, it means no discount for
To demonstrate the performance of our proposed scheM&NO to consume small cell resources, and then the MBS
further, we show the good convergence performance of duas some superiority to associate more users compared to
proposed distributed virtual resource allocation aldpnitin - SBSs because the difference of transmission parametegrs (e.
virtualized small cell networks. The convergence perfaraga transmission power, antenna gain, the height of BS towel), et
includes not only the ADMM-based algorithm #gorithm  However, whenw = 1073, this superiority of the MBS will
1 but also the overall algorithm iAlgorithm 2. be counteracted by the price discount of SBSs, and then some
Fig. 9 shows the convergence of the proposed ADMM-baseathcro users will tend to access to SBSs. This is the reason
Algorithm 1 and the effect of parametgr in ADMM. As why the final convergence value of, whenw, = 1072 is
shown in this figure, the gap between the ADMM-based atigher than that whenv; = 1. Corresponding to Fig. 10,
gorithm and the centralized algorithm is narrow, which nsearhe total utility of MVNOs whenw = 1072 is higher than
the effectiveness of ADMM-based algorithm is equivalent tthat whenw = 1. One reason is that the cost of MVNOs
the centralized algorithm in terms of the overall utility.cn for consuming resources decreases as we described in Fig.
be found that the results with differeptfinally converge to 10. Another reason is that the load of the network becomes
almost the same utility value with only a small gap. Howevemore balanced by adjusting, and then the utilization ratio

I I I I I I I I I
2 4 6 8 10 12 14 16 18
Iteration Steps

Fig. 10: The convergence process ofand the effect of
parameteny (2 * 4 SBSs,40 users, anth = 5 x 107).

which waste the resource of SBSs and decrease the spectm%)a
reuse ratio. Therefore, a good self-interference cartamila an
technology is critical to our FD self-backhaul scheme f
SBSs.
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of SBSs improves, which results in the average throughpgut] H. zZhang, C. Jiang, N. Beaulieu, X. Chu, X. Wang, and T.eRQu

improvement of users.

VI. CONCLUSION AND FUTURE WORK
In this paper, we investigated the virtual resource aliocat

[12]

issues in small cell networks with FD self-backhauls and3l

virtualization. We first introduced the idea of wirelesswatk
virtualization into small cell networks, and proposed auat

resource management architecture, where radio spectmm, t[14]
slots, MBSs, and SBSs are virtualized as virtual resources.
After virtualization, users can access to different InPs {5
get performance gain. In addition, we proposed to use FD
communications for small cell backhauls. Furthermore, we

formulated the virtual resource allocation problem as atit op
mization problem by maximizing the total utility of MVNOSs.
In order to solve it efficiently, the virtual resource alltioa

16]

problem is decomposed into two subproblems. In this procelslsj]

we transferred the first subproblem into a convex proble

m

and solved it by our proposed ADMM-based distributed all8]
gorithm, which can reduce the computation complexity and
overhead. The second subproblem can be solved by each InP 202-208, Jan. 2015.

easily because of its convexity and incoherence among InRS] A. Sabharwal, P. Schniter, D. Guo, D. W. Bliss, S. Raagar, and

Simulation results showed that the proposed virtualizedllsm

cell networks with FD self-backhauls are able to take the

advantages of both wireless network virtualization and F

20]

self-backhauls. MVNOs, InPs, and users could benefit from
it, and the average throughput of the small cell networks can,

be improved significantly. In addition, simulation resudiso

demonstrated the effectiveness and good convergence-perfo

mance of our proposed distributed virtual resource allonat
algorithm. Future work is in progress to consider informati
centric networking [38] in our proposed framework.

REFERENCES

[1] N. M. K. Chowdhury and R. Boutaba, “A survey of network tuializa-
tion,” Computer Net.vol. 54, no. 5, pp. 862-876, Apr. 2010.

[2] C. Liang and F. R. Yu, “Wireless network virtualizatio®s survey,

some research issues and challengE2E Commun. Surveys Tutorials

vol. 17, no. 1, pp. 358-380, Firstquarter 2015.

C. Liang, F. R. Yu, and X. Zhang, “Information-centric tm@rk func-

tion virtualization over 5G mobile wireless network$EEE Network

vol. 29, no. 3, pp. 68-74, May 2015.

M. Hoffmann and M. Staufer, “Network virtualization féuture mobile

networks: General architecture and applications,’Piroc. IEEE ICC

Workshops2011, pp. 1-5.

F. Fu and U. C. Kozat, “Stochastic game for wireless nekwartual-

ization,” IEEE/ACM Trans. Netwwvol. 21, no. 1, pp. 84-97, Feb. 2013.

Y. Zaki, L. Zhao, C. Goerg, and A. Timm-Giel, “LTE mobileetwork

virtualization,” Mobile Networks and Applicatiopssol. 16, no. 4, pp.

424-432, Aug. 2011.

G. Bhanage, D. Vete, I. Seskar, and D. Raychaudhuri,it/Spl Lever-

aging wireless network virtualization for flexible sharioff WLANS,”

in Proc. IEEE GlobecomDec. 2010, pp. 1-6.

[8] A.Banchs, P. Serrano, P. Patras, and M. Natkaniec, ‘firay through-
put and fairness guarantees in virtualized WLANs througmtrcd

(31

(4]

(5]
(6]

(7]

theory,” Mobile Networks and Applicationsol. 17, no. 4, pp. 435-446, [
1

Aug. 2012.

R. Kokku, R. Mahindra, H. Zhang, and S. Rangarajan, “NVs:
substrate for virtualizing wireless resources in celluleetworks,”
IEEE/ACM Trans. Netw.vol. 20, no. 5, pp. 1333-1346, Oct. 2012.
A. Tzanakaki, M. P. Anastasopoulos, G. S. Zervas, an@RBRofoee,
“Virtualization of heterogeneous wireless-optical netvand IT infras-
tructures to support cloud and mobile cloud servicdEEE Comm.
Mag. vol. 51, no. 8, pp. 155-161, Aug. 2013.

El

[10]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(32]

(33]

] S. Boyd and L. VandenberghéZonvex Optimization

“Resource allocation for cognitive small cell networks: Aoperative
bargaining game theoretic approachtZEE Trans. Wireless Commun.
vol. 14, no. 6, pp. 3481-3493, June 2015.

S. Bu and F. R. Yu, “Green cognitive mobile networks wstall cells
for multimedia communications in the smart grid environtietEEE
Trans. Veh. Techvol. 63, no. 5, pp. 2115-2126, June 2014.

C. Ranaweera, P. lannone, K. Oikonomou, and K. ReiclmnméDesign
of cost-optimal passive optical networks for small cell K&l using
installed fibers,”IEEE/OSA J. Opt. Commun. & Netwol. 5, no. 10,
pp. A230-A239, Oct. 2013.

J. G. Andrews, H. Claussen, M. Dohler, S. Rangan, and MR€&ed,
“Femtocells: Past, present, and futurédEEE J. Sel. Areas Commun.
vol. 30, no. 3, pp. 497-508, Apr. 2012.

W. Ni, I. Collings, X. Wang, and R. P. Liu, “Multi-hop pot-to-point
FDD wireless backhaul for mobile small celldEEE Wireless Comm.
vol. 21, no. 4, pp. 88-96, Aug. 2014.

S. Hur, T. Kim, D. J. Love, R. J. V. Krogmeier, T. A. Thomeaand
A. Ghosh, “Millimeter wave beamforming for wireless backhand
access in small cell networkslEEE Trans. Communvol. 61, no. 10,
pp. 4391-4403, Oct. 2013.

M. Shariat, E. Pateromichelakis, A. Quddus, and R. Za@lfa “Joint
TDD backhaul and access optimization in dense small celars,”
IEEE Trans. Veh. Techvol. 61, no. 10, pp. 4391-4403, Dec. 2014.
R. Baldemair, T. Irnich, K. Balachandran, E. Dahiman, Kildh,
Y. Selen, S. Parkvall, M. Meyer, and A. Osseiran, “Ultra-slemetworks
in millimeter-wave frequenciesJEEE Comm. Mag.vol. 53, no. 1, pp.

R. Wichman, “In-band full-duplex wireless: Challenges amportuni-
ties,” IEEE J. Sel. Areas Commurvol. 32, no. 9, pp. 1637-1652, Jun.
2014.

G. Liu, F. R. Yu, H. Ji, V. C. Leung, and X. Li, “In-band fediuplex re-
laying: A survey, some research issues and challeng€EE Commun.
Surveys & Tutorialsvol. 17, no. 2, pp. 500-524, Secondquarter 2015.
S. Hong, J. Brand, J. Choi, and M. Jain, “Applications sélIf-
interference cancellation in 5G and beyon&EE Comm. Mag.vol. 52,
no. 2, pp. 114-121, Feb. 2014.

D. Fooladivanda and C. Rosenberg, “Joint resourcecation and user
association for heterogeneous wireless cellular netwotk€E Trans.
Wireless Communvol. 12, no. 1, pp. 248-257, Dec. 2012.

Y. Dai, J. Wu, and A. Daniels, “Effective channel assiggnt based
on dynamic source routing in cognitive radio network&d Hoc and
Sensor Wireless Networksgol. 24, no. 3-4, pp. 219-247, 2015.

R. Xie, F. R. Yu, H. Ji, and Y. Li, “Energy-efficient resme allocation
for heterogeneous cognitive radio networks with femtasgellEEE
Trans. Wireless Commuynvol. 11, no. 11, pp. 3910 —3920, Nov. 2012.
S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Ecksteisttibuted
optimization and statistical learning via the alternatdigection method
of multipliers,” Foundations and Trends in Machine Learnjngpl. 3,
no. 1, pp. 1-122, Jan. 2011.

C. Liang and F. R. Yu, “Wireless virtualization for negeneration
mobile cellular networks,TEEE Wireless Commuyol. 22, no. 1, pp.
61-69, Feb 2015.

X. Lin, J. Andrews, and A. Ghosh, “Modeling, analysisdagesign for
carrier aggregation in heterogeneous cellular networksSZE Trans.
Wireless Communvol. 61, no. 9, pp. 4002-4015, July 2013.

Y. Tachwali, B. Lo, I. Akyildiz, and R. Agusti, “Multiusr resource
allocation optimization using bandwidth-power product dognitive
radio networks,"IEEE J. Sel. Areas Commurvol. 31, no. 3, pp. 451—
463, Mar. 2013.

Q. Ye, B. Rong, Y. Chen, and M. Al-Shalash, “User assimmafor load
balancing in heterogeneous cellular network&EE Trans. Wireless
Commun. vol. 52, no. 6, pp. 2706—2716, Jun. 2013.

S. Singh, H. Dhillon, and J. Andrew, “Offloading in heigeneous
networks: Modeling, analysis, and design insightEREE Trans. Wireless
Commun,.vol. 12, no. 5, pp. 2484-2497, Apr. 2013.

Cambridge
University Press, 2009.

S. Gortzen and A. Schmeink, “Optimality of dual methdds discrete
multiuser multicarrier resource allocation problem&EE Trans. Wire-
less Commun.yol. 11, no. 10, pp. 3810-3817, Oct. 2012.

J. Eckstein, “Augmented lagrangian and alternatingaion methods
for convex optimization: A tutorial and some illustrativersputational
results,”"RUTCOR Research Reparigl. 32, 2012.



[34] C. Y. Wong, R. S. Cheng, K. B. Letaief, and R. D. Murch, “NMuser
OFDM with adaptive subcarrier, bit, and power allocatiofsEE J. Sel.
Areas Communwyol. 17, no. 10, pp. 1747-1758, Otc. 1999.

[35]

[36]

[37]

(38]

3GPP, “Evolved
Physical

Q. Ye, B. Rong,

Andrews, “User association for load balancing in heteregess cellular
networks,” IEEE Trans. Wireless Commuynol. 12, no. 6, pp. 2706—

2716, Jun. 2013.
Y. Zaki, Z. Liang,

ization and spectrum management,”"Rroc. 3rd Joint IFIP Wireless &
Mobile Net. Conf. (WMNQG)Oct. 2010.
C. Fang, F. R. Yu, T. Huang, J. Liu, and J. Liu, “A survey green

channels and modulation,”
Project (3GPP), TS 23.211 V12.2.0, Jul. 2014. [Online]. ilame:
http://www.3gpp.org/DynaReport/36211.htm

14

Hong Ji received the B.S. degree in communications
engineering and the M.S. and Ph. D degrees in
information and communications engineering from
the Beijing university of Posts and Telecommunica-
tions (BUPT), Beijing, China, in 1989, 1992, and
2002, respectively. From June to December 2006,
she was a Visiting Scholar with the University of
British Columbia, Vancouver, BC, Canada. She is
currently a Professor with BUPT. She also works on
national science research projects, including the Hi-
Tech Research and Development Program of China
(863 program), The National Natural Science Foundation lih& etc. Her
research interests include heterogeneous networks, t@@eer protocols,
cognitive radio networks, relay networks, Long-Term Eviol/fifth gener-
ation, and cooperative communications.

Universal Terrestrial Radio Access WERA);

3rd Generation Patier

Y. Chen, M. Al-Shalash, C. Caramanis, adndG.

C. Goerg, and A. Timm-Giel, “LTE wire$s virtual-

information-centric networking: Research issues andlehgés,”|IEEE
Commun. Surveys Tutorial®015, dOI: 10.1109/COMST.2015.2394307.

Lei Chen received the B.S. degree in Communica-
tion Engineering from Beijing University of Posts
and Telecommunications (BUPT), Beijing, China,
in 2011. He is currently working toward the Ph.D.
degree with the School of Information and Com-
munication Engineering, BUPT, Beijing, China. He
is also with the University of British Columbia
as a visiting scholar since Nov. 2014. His current
research interests include 5G cellular network, full-
duplex wireless, resource management, cross-laye
design, and small cell networks.

Gang Liu received the B.S. degree in Electronics
and Information Engineering from Sichuan Uni-
versity, Sichuan, China, in 2010. He is currently
working toward the Ph.D. degree with the School of
Information and Communication Engineering, Bei-
jing University of Posts and Telecommunications,
Beijing, China. He is also with the University of
British Columbia as a visiting scholar since Nov.
2013. His current research interests include 5G cel-
lular network, full-duplex wireless, resource man-
agement, cross-layer design, and TCP/IP protocol
in satellite communication systems. He won the second prizéhe 2009
) , , , . National Undergraduate Electronic Design Contest and Begter Award
F. Richard Yu (S'00-M'04-SM'08) received the i |EEE |CC'2014. He has served as reviewer for Internaficfeurnal of

PhD degree in electrical engineering from the Uni-communication system, China Communications, ICC2012b&tom’2013
versity of British Columbia (UBC) in 2003. From 444 so on.

2002 to 2004, he was with Ericsson (in Lund,
Sweden), where he worked on the research and
development of wireless mobile systems. From 2005
to 2006, he was with a start-up in California, USA,
where he worked on the research and development
in the areas of advanced wireless communication
technologies and new standards. He joined Car-
leton School of Information Technology and the

Department of Systems and Computer Engineering at Carletuimersity
in 2007, where he is currently an Associate Professor. Heived the
IEEE Outstanding Leadership Award in 2013, Carleton ReseAchievement
Award in 2012, the Ontario Early Researcher Award (formeplsemiers
Research Excellence Award) in 2011, the Excellent CorticthuAward at
IEEE/IFIP TrustCom 2010, the Leadership Opportunity Fundaal from
Canada Foundation of Innovation in 2009 and the Best Paperdsat IEEE
ICC 2014, Globecom 2012, IEEE/IFIP TrustCom 2009 and Inthference
on Networking 2005. His research interests include cragstlcross-system
design, security, green IT and QoS provisioning in wireleased systems.
He serves on the editorial boards of several journals, dctu Co-
Editor-in-Chief for Ad Hoc & Sensor Wireless Networks, Le&kries
Editor for IEEE Transactions on Vehicular Technology, IEE®mMmuni-
cations Surveys & Tutorials, EURASIP Journal on WirelessnB8wnica-
tions Networking, Wiley Journal on Security and CommundaatNetworks,
and International Journal of Wireless Communications armtwdrking, a
Guest Editor for IEEE Transactions on Emerging Topics in @otimg
special issue on Advances in Mobile Cloud Computing, and asGEditor
for IEEE Systems Journal for the special issue on Smart Godi@u-
nications Systems. He has served on the Technical Programm@tee
(TPC) of numerous conferences, as the TPC Co-Chair of IEEEeitGr
Com15, INFOCOM-MCV15, Globecom14, WiIVEC14, INFOCOM-MCE1
Globecom13, GreenCom13, CCNC13, INFOCOM-CCSES12, ICC{GC
VTC12S, Globecoml1l, INFOCOM-GCN11, INFOCOM-CWCN10, IEE

Victor C.M. Leung (S75-M89-SM97-F03) received
the B.A.Sc. (Hons.) degree in electrical engineering
from the University of British Columbia (U.B.C.)

in 1977, and was awarded the APEBC Gold Medal
as the head of the graduating class in the Faculty
of Applied Science. He attended graduate school
at U.B.C. on a Natural Sciences and Engineer-
ing Research Council Postgraduate Scholarship and
completed the Ph.D. degree in electrical engineering

in 1981.

From 1981 to 1987, Dr. Leung was a Senior
Member of Technical Staffin the satellite systems group aRMltech Ltd.
He started his academic career in the Department of Elécta the Chinese
University of Hong Kong in 1988. He returned to U.B.C. as aifgcmember
in 1989, where he currently holds the positions of Professwt TELUS
Mobility Research Chair in Advanced TelecommunicationgiBeering in the
Department of Electrical and Computer Engineering. He iseaniver of the
Institute for Computing, Information and Cognitive Systeat U.B.C. He also
holds adjunct/guest faculty appointments at Jilin Uniigr8eijing Jiaotong
University, South China University of Technology, the Hdfang Polytechnic
University and Beijing University of Posts and Telecomnuations in China.
Dr. Leung has co-authored more than 500 technical papensténnational
journals and conference proceedings, and several of theserp had been

elected for best paper awards. His research interests bovad areas of

IWCMCO09, VTCO8F and WIN-ITS07, as the Publication Chair @ST  yireless networks and mobile systems.

QShinel0, and the Co-Chair of ICUMT-CWCNO9. Dr. Yu is a réegied
Professional Engineer in the province of Ontario, Canada.



