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Abstract—Vehicular Sensor Network (VSN) is emerging as
a new solution for monitoring urban environments such as
Intelligent Transportation Systems and air pollution. One of
the crucial factors that determine the service quality of urban
monitoring applications is the delivery delay of sensing data
packets in the VSN. In this paper, we study the problem of routing
data packets with minimum delay in the VSN, by exploiting i)
vehicle traffic statistics, ii) anycast routing and iii) knowledge of
future trajectories of vehicles such as buses. We first introduce
a novel road network graph model that incorporates the three
factors into the routing metric. We then characterize the packet
delay on each edge as a function of the vehicle density, speed and
the length of the edge. Based on the network model and delay
function, we formulate the packet routing problem as a Markov
Decision Process (MDP) and develop an optimal routing policy
by solving the MDP. Evaluations using real vehicle traces in a
city show that our routing policy significantly improves the delay
performance compared to existing routing protocols.

I. INTRODUCTION

Recently, Vehicular Sensor Networks (VSNs) have received
a great amount of attention as a new solution for monitoring
the physical world [10]. In VSNs, vehicles equipped with
sensing devices move around an urban area and sense the urban
environment periodically. The vehicles use vehicle to vehicle
(V2V) or vehicle to infra (V2I) wireless communications to
deliver the sensing data to an urban monitoring center. Hence,
unlike the traditional sensing system with fixed sensors that
experiences limited coverage, the vehicular sensing system can
monitor any area where vehicles can reach. Moreover, the
vehicular sensor network can be deployed and maintained with
relatively low cost since it does not heavily rely on the network
infrastructure for sensing data delivery.

Many of the VSN applications such as Intelligent Trans-
portation System (ITS) require frequent updates of sensing
information from all over the urban area, and hence it is
important to guarantee timely delivery of sensing data from
every area of interest to the urban monitoring center. Such a
coverage guarantee is rather challenging in VSNs where the
links (and thus the routes to destinations) can come and go
depending on the mobility of vehicles. For instance, in such
a network with intermittent connectivity, a vehicle sometimes
has to carry the data while it moves away from the destination.
In fact, Delay-Tolerant Networks (DTNs) similarly experience
intermittent routes to destinations, and there has been a large
body of work that addresses the problem of routing data packets
with minimum delay in DTNs [2], [7], [9], [12], [21]. Due to
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Fig. 1. Important factors on the delay performance in Vehicular Sensor
Networks: APs are destinations in anycast routing

the similarity, the packet routing policies for DTNs could be
used for VSNs as well. However, the VSN is distinguished
from general DTNs in several aspects. First, vehicles in VSNs
only move along the road, whereas mobile nodes in general
DTNs are typically assumed to be able to move arbitrarily. Sec-
ond, VSNs generally adopt anycast with multiple destinations,
whereas most of the works in general DTNs assume unicast.
Third, there are vehicles with predetermined future trajectories,
such as buses, whereas in general DTNs, it is hard to predict
the movement of mobile nodes. Therefore, the packet routing
policies for DTNs may not be directly applicable to VSNs, or
may not be able to fully exploit the characteristics of VSNs.
In this paper, we study the packet routing problem in the VSN
with anycast.

In particular, we focus on minimizing the packet delivery
delay from every area of interest to the urban monitoring center.
It is obvious that a packet routing algorithm with minimum
delay must take into account the aforementioned characteristics
of VSNs. First, since the vehicles can move only along the road,
the vehicle density can be different from road to road. Clearly,
the road with high density can provide more opportunities of
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wireless multi-hop transfers, and thus reduce the delivery delay
on the road. Consider a source vehicle S in Fig. 1(a), which
tries to select a better relay out of vehicles A1 and A2. Even
though A1 is closer to a destination (or AP in Fig. 1(a)),
forwarding to A2 may be more beneficial since the delay of
multi-hop transfer over high density road is much smaller than
carrying delay. Second, in anycast routing, a data packet just
needs to be delivered to any one of the multiple destinations.
Hence, the effect of multiple APs can be exploited to reduce
the packet delay. As shown in Fig. 1(b), forwarding to B1 can
fail to deliver packets to the targeted AP (i.e., AP1) due to the
uncertainty in B1’s movement. However, since there exist many
alternative APs on the direction of B2 (i.e., AP2, AP3 and
AP4), forwarding to B2 may be a better option for reducing
the delay. Third, the vehicles with known trajectories such as
buses can help further reduce the delay. In Fig. 1(c) where
S is far from the destination, such a predictable vehicle C2
guarantees to carry packets to the AP, which can significantly
improve the routing performance compared to the delivery
along a non-guaranteed path. Note that the effect of known
future trajectories is greatly appreciated in the scenario where
the vehicle density is relatively low.

Our goal in this paper is to develop a delay-optimal packet
routing algorithm in VSNs, by taking into account the above
ideas. We first develop a novel road network graph model that
incorporates the effect of predetermined vehicle trajectories as
well as unpredictable trajectories. This network model is used
to characterize the delay on a road segment as a function of the
average vehicle density and speed, and the length of the road
segment. Based on the network model and delay function, we
formulate the routing problem as a Markov Decision Process
(MDP) that seeks to minimize the expected delay of a packet
from each area to one of the destinations. We develop an
optimal packet routing algorithm by solving the MDP. We
examine our algorithm using Shanghai vehicle traces [1], [15],
and show that the packet delay from each area is significantly
improved compared to existing routing algorithms in [8], [16].

The rest of this paper is organized as follows: In Section II,
we discuss related work. In Section III, we present the road
network graph model of the VSN. In Section IV, we formulate
the packet routing problem as an MDP, and develop an optimal
routing policy that solves the MDP. In Section V, we evaluate
the performance of our routing algorithm using real vehicle
traces.

II. RELATED WORK

There are a number of papers that study packet routing
algorithms in VSNs [6], [10], [11] and Vehicular Networks [5],
[7]–[9], [17]–[19], [21]. Their common goal is to minimize
the packet delivery delay to the destination. The existing
routing algorithms can be classified into multi-copy schemes
and single-copy schemes.

In multi-copy routing schemes [2], [5], [9], [14], packets are
replicated and forwarded to have a better chance of reaching
the destination. However, such a replication can result in heavy

congestion, which in turn hinders the packets from reaching
the destination. In single-copy routing schemes [7], [12], [19],
[21], packets are not replicated, but instead, the characteristics
of vehicular networks are better utilized for reducing the
packet delivery delay. For instance, the Vehicle-Assisted Data
Delivery (VADD) algorithm in [21] makes a routing decision
based on the road layout, vehicle density and speed, and is
shown to outperform the routing algorithms that do not utilize
the characteristics of vehicular networks. The work in [7]
improves upon the VADD algorithm by taking into account
predetermined trajectories of vehicles. However, they do not
fully exploit the knowledge of trajectories in that the entire
trajectories and their impact on the delay performance are not
incorporated into the routing metric. All of these works assume
unicast. In this paper, we investigate the routing problem in
VSNs by formulating a Markov Decision Process (MDP) that
fully takes into account the effect of predetermined future
trajectories and anycast routing as well as the vehicle density
and speed.

III. SYSTEM MODEL

Our vehicular sensor network is modeled as a “vehicular
sensing system” working on an urban area or a “road network”
described in the following.

A. Vehicular Sensing System

We consider a Vehicular Sensor Network (VSN) that consists
of vehicles and WiFi Access Points (APs). Vehicles moving
along the road sense the urban area, generate sensing data
packets periodically, and deliver the packets to one of the APs
by carrying or forwarding to others. The APs are deployed
only at intersections, and connected to the urban monitoring
center via wired backhaul networks. Hence, the sensing data
packets just need to be delivered to one of the APs. There
are two types of vehicles including those with predetermined
trajectories (such as buses and police patrol vehicles) and
those with unpredictable trajectories (such as taxis and cars).
For simplicity of exposition, a vehicle with predetermined
trajectory will be called “bus” throughout the paper. As in a
real city, we assume that a certain fraction of vehicles in the
VSN are buses (i.e., vehicles with predetermined paths).

We assume that vehicles can use the digital roadmap and
their GPS information, and are equipped with the IEEE 802.11
devices to communicate with other vehicles or the APs. We also
assume that once a vehicle forwards a packet to another vehicle,
the packet is immediately deleted from the sender vehicle; so
that there is always at most one copy of each data packet in
the network.

B. Road Network Graph

The urban area or road network to be sensed by vehicles
is modeled as a graph G = (I,R) where I is the set of
intersections and R is the set of road segments connecting the
intersections. The network G is a directed graph, and hence,
road segment eij ∈ R denotes the road from intersection i to
(neighboring) intersection j. Denote by IAP ⊂ I the set of
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Fig. 2. Roadmap and its corresponding road network graph

intersections where APs are placed. In our system, there are N
vehicles in total, and we define V = {0, 1, . . . ,M} as the set
of the types of vehicles. If the type v ∈ V of a vehicle is zero,
its trajectories are unpredictable. Otherwise, if v 6= 0, then it
represents a bus line with a predetermined route. Thus, M is
the number of bus lines in the VSN.

Fig. 2 shows the roadmap and its corresponding directed
graph G. In Fig. 2(a), two APs are placed at the intersections
i7, i9 and the path of bus A is the sequence of intersections, i1,
i2, i5, i8 and i9. Note that the path of a packet is a sequence of
consecutive road segments and intersections since the packets
are carried and forwarded by vehicles moving along the road.
Unlike the usual communication network where there is a fixed
set of routes all the time, in the VSN, the links on a “data path”
are formed by the mobility of vehicles, and thus, they do not
always exist. Accordingly, the road network graph G represents
a network that can be “potentially” used for delivering data
packets, and the existence of data links in the network is highly
uncertain. Therefore, the data packets are delivered as if they
are routed over a random graph, and this will be accounted for
in our formulation of the packet routing problem in Section IV.

To incorporate the effect of buses into the graph, we note that
a bus can carry its packets not only to the neighbor intersections
but also to every intersection along its future trajectory with
100% probability in a certain time. Hence, it is as if there is an
edge directly connecting an intersection to another intersection
which is multiple blocks away. To define these additional edges,
we introduce a new notation evij representing the edge from i
to j created by type-v vehicle. We denote the set of newly
added edges by L and a new road network graph by G′ =
(I,R′) where R′ = R ∪ L. Note that edge e0ij ∈ R′ is the
same as eij ∈ R of graph G. Let R′s be the set of edges
in R′ corresponding to a “single” road segment in R, i.e.,
R′s = {evij ∈ R′ : ∃eij ∈ R}. Fig. 3 shows the new road
graph G′, which is augmented from G in Fig. 2(b) to take
into account the effect of bus A’s predetermined path. Using
the graph G′, we formulate the delay-optimal packet routing
problem in Section IV.

IV. DELAY-OPTIMAL ROUTING ALGORITHM

In this section, we develop a routing policy that minimizes
the packet delay to any one of the APs. In particular, we
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Fig. 3. Augmented road network graph G′ incorporating bus line A

formulate the packet routing problem as a Markov Decision
Process (MDP) and find an optimal routing policy that solves
the MDP. We also discuss how vehicle traffic statistics can
be used to estimate the parameters in the MDP such as state
transition probability and (link delay) cost.

A. Routing Algorithm Overview

As mentioned in Section III, packets are delivered by ve-
hicles along the intersections and edges in the augmented
road network graph G′. We assume that the routing policy is
computed in advance using the vehicle traffic statistics, and
the vehicles only have a routing table that can be used for
forwarding packets. This would reduce the amount of online
computations and thus enable fast forwarding of packets. Our
routing algorithm specifies the forwarding decision at every
intersection and edge as follows:

1) At intersections: Consider a vehicle arriving at an in-
tersection, and assume that it has data packets. Clearly, the
vehicle can forward its packets to a neighbor intersection if it
meets another vehicle heading to the neighbor intersection or
if it moves to the neighbor intersection. As mentioned above,
a precomputed routing policy is loaded on the vehicles, and
hence, a routing policy that specifies only a single best next
hop does not work in our setting. Note that if the edge selected
as a single best next hop is not available due to no vehicles
moving along the edge, such a routing cannot continue simply
because it does not define what to do in that case. Consequently,
a contingency decision-making framework is necessary.

Our idea is to prioritize the outgoing edges of each intersec-
tion. Thus, if the vehicle does not either meet another vehicle
along the edge with the first priority or move onto the edge,
then it attempts packet forwarding toward the edge with the
second priority, and so on. In Section IV-B, we develop a
prioritization method (i.e., routing policy) that minimizes the
packet delay.

2) On edges: The packet forwarding on an edge, say evij , is
divided into two cases. If j is a neighbor intersection of i in
the original network graph G (i.e., evij ∈ R′s), then a vehicle
on evij forwards its packets to a vehicle closer to j. If j is not
a neighbor intersection of i in G (i.e., evij ∈ R′ \R′s), then evij
is an augmented edge by the bus with type v. On those edges,
the bus with the corresponding type carries packets to j.
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B. MDP Formulation and Optimal Routing Policy

Markov Decision Process (MDP) provides a mathematical
framework for modeling the decision-making system where the
transition from a state to another state is probabilistic, and the
transition probability depends on the decision taken at the state.
Hence, MDP can effectively capture the essence of the routing
problem in VSNs where the delivery of a packet from an
intersection to another is subject to uncertainty as there may not
always exist a vehicle moving in the desired direction. The set
of states in our MDP represents the set of intersections I, and
the transitions from one state to others occur probabilistically
over the edges evij in R′. Then, the control decision at each
state in the MDP corresponds to a routing decision at each
intersection. Note that the state transition probability from state
i to j depends on the vehicle traffic statistics and the routing
decision at intersection i. Denote by ui a routing decision at
intersection i. To account for the prioritization discussed above,
ui is defined as a row vector, ui = [u1i u2i . . . uKi

i ],
where u1i , u

2
i , . . . , u

Ki
i ∈ R′ are all the outgoing edges from

intersection i and Ki is the total number of outgoing edges
from i. The order of elements in ui represents the priority,
that is, uki indicates the k-th most preferred next hop from
intersection i for minimum packet delay. Let U(i) be the set
of all possible decisions ui at intersection i, then the size of
U(i) is given by |U(i)| = Ki!.

As mentioned above, the routing decision ui affects the data
forwarding probability from intersection i to other intersec-
tions. Let P vij(ui) be the probability that a packet is forwarded
from intersection i to j by a type-v vehicle under a routing
decision ui. Denote by dvij the expected data delay on an edge
evij ∈ L which is the time it takes to carry and forward a
packet along the edge evij . The delay dvij can be estimated using
the average vehicle speed, density and the total length of road
segments from intersection i to j. We discuss the details of the
estimation of dvij in Section IV-D.

Under a routing policy u = [ui,∀i ∈ I], let Di(u) be the
expected data delivery delay from intersection i to any AP.
Thus, for an intersection i where an AP is placed (i.e., i ∈
IAP ), Di(u) = 0 for any routing policy u and no action is
taken at i. On the other hand, at an intersection i where there
is no AP, Di(u) depends on dvij , Dj(u) and P vij(ui) for every

outgoing edge evij from i. For better understanding, in Fig. 4,
we illustrate an example of the routing decision ui and related
parameters. Assume that there exist four possible forwarding
candidates which are prioritized by ui as in Fig. 4(a). Based
on the routing scenario, the MDP model in Fig. 4(b) has four
outgoing edges which correspond to the forwarding candidates,
and specifies the forwarding probability P vij(ui) and the edge
delay dvij . Clearly, Di(u) can be computed as

Di(u) =P
0
ij1 ×

(
d0ij1 +Dj1(u)

)
+ P 0

ij2 ×
(
d0ij2 +Dj2(u)

)
+ P vij1 ×

(
dvij1 +Dj1(u)

)
+ P vij2 ×

(
dvij2 +Dj2(u)

)
(1)

In general, Di(u) can be expressed as follows:

Di(u) =
∑
v∈V

∑
j∈I

P vij(ui) ·
(
dvij +Dj(u)

)
, i ∈ I \ IAP . (2)

Hence, our routing problem can be formulated as

min
u
Di(u),∀i. (3)

The optimal solution u∗ to the above problem gives a routing
policy that minimizes the expected delay from i to any one of
the APs. The routing problem can be solved using the value
iteration method [4] (see Algorithm 1). For a given initial delay
vector D0, the expected delay from intersection i is updated as
in (5). The iteration is terminated if the two consecutive delay
vectors Dk and Dk−1 are close enough, i.e.,

max
i∈I
|Dk

i −Dk−1
i | < ε (4)

where ε is a predetermined threshold value. It is known that
for each i the sequence {Dk

i } generated by the iteration in (5)
converges close to its optimal value D∗i = Di(u

∗) after a
sufficient number of iterations [3]. The optimal routing policy
u∗ = [u∗i ,∀i ∈ I] is then computed using the estimated
optimal delay vector Dk = [Dk

i ,∀i ∈ I], as in (6).

Algorithm 1 Routing Policy Computation
1) Procedure ComputingOptimalPolicy(D0)
2) Input: initial value D0 = [D0

i ,∀i ∈ I]
3) Output: optimal routing policy u∗ = [u∗i ,∀i ∈ I]
4) Local variable: k = 0
5) repeat

6) Dk+1
i = min

ui∈U(i)

∑
v∈V

∑
j∈I

P vij(ui)·(dvij+Dk
j ) (5)

7) k = k + 1

8) until max
i∈I
|Dk

i −D
k−1
i | < ε

9) u∗i = arg min
ui∈U(i)

∑
v∈V

∑
j∈I

P vij(ui) ·
(
dvij +Dk

j

)
, ∀i ∈ I

(6)
10) return u∗

Remark: In our anycast setting, multiple APs are deployed
at intersections, and each intersection i with an AP will have
Di(u) = 0. Thus, the optimal routing policy solving the MDP
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would try to forward the packets toward one of the intersections
with APs. Therefore, our routing policy can take advantage of
multiple destinations in anycast routing.

C. Data Forwarding Probability P vij(ui)
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Fig. 5. Conditions for the forwarding of a packet from i to j.

Next, we discuss how to calculate the data forwarding
probability P vij(ui). Let O(i) be the set of outgoing edges
from intersection i. At an intersection i where there is no AP,
a vehicle forwards or carries packets to a neighbor intersection
along one of the edges in O(i). Thus, P vij(ui) is a function of
the probabilities Qvij and Cvij defined as

– Qvij : probability that a vehicle at i moves onto edge evij
– Cvij : probability of contacting a vehicle moving onto evij .

First, we find an expression for P vij(ui) in terms of Qvij
and Cvij , and then describe how to estimate Qvij and Cvij
using vehicular traffic statistics. This will provide a complete
description of the computation of P vij(ui).

1) Computation of P vij(ui): Consider an event that packets
at intersection i are forwarded to j through an edge evij under
a routing decision ui. Clearly, this forwarding event can occur
if a vehicle with the packets at i meets another vehicle moving
onto evij or it moves onto evij . The additional condition for
the forwarding event to occur is that a vehicle at i does not
encounter vehicles moving onto the edges with higher priority
than evij in ui and it does not move onto those edges. Those
conditions are illustrated by three events in Fig. 5 that are
defined as

– A: the event that a vehicle at i does not meet a vehicle
moving onto the edges with higher priority than edge evij

– B: the event that a vehicle at i meets another vehicle
moving onto evij and it does not move onto the edges
with higher priority than evij

– C: the event that a vehicle moves onto evij .

Then P vij(ui) can be expressed as

P vij(ui) = Pr
[
A ∩ (B ∪C)

]
= Pr(A)× Pr(B ∪C) (7)
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Fig. 6. Qv
ij and Cv

ij for buses.

where Pr(E) is the probability of event E. The equality
follows from the fact that the moving direction of a vehicle
is independent of that of others. Using Qvij and Cvij , (7) can
be rewritten as follows:

P vij(ui) = Pr(A)× [Pr(B) + Pr(C)− Pr(B ∩C)]

= Pr(A)× [Pr(B) + Pr(C)− Pr(B|C)Pr(C)]

=

 ∏
ewik∈H(ui,e

v
ij)

(1− Cwik)


×

Cvij(1− ∑
ewik∈H(ui,e

v
ij)

Qwik) +Qvij − CvijQvij


(8)

where H(ui, evij) is the set of the edges which have higher
priority than evij in a routing decision ui. The first product term
in (8) corresponds to Pr(A), i.e., the probability that a vehicle
at i does not meet a vehicle moving onto higher priority edges
than the edge evij in routing decision ui. The second product
term is equal to Pr(B∪C), i.e., the probability that a vehicle
at i carries or forwards its packets onto edge evij .

2) Estimation of Qvij and Cvij: Recall that Qvij is the
probability that a vehicle at intersection i moves onto edge evij ,
and Cvij is the probability of contacting a vehicle moving onto
evij . Obviously, Qvij and Cvij are determined by the parameters
such as the vehicle density and moving tendency. In particular,
the following parameters are used to express Qvij and Cvij :

– q0ij : the fraction of type-0 vehicles moving to a neighbor
intersection j among all vehicles which arrive to i.

– p0ij : the probability of meeting a type-0 vehicle at i that
moves to j.

– qvi : the fraction of type-v vehicles among all vehicles
which arrive to i,

– pvi : the probability of meeting a type-v vehicle at i.
Note that these parameters can be extracted from vehicle traffic
statistics [21].

To compute Qvij and Cvij , we consider two cases of the
vehicle type v. First, for unpredictable vehicles (i.e., v = 0),
Q0
ij and C0

ij are estimated as q0ij and p0ij , respectively. However,
in the case of buses (i.e., v > 0), estimating Qvij and Cvij
is more complicated because at intersection i, the outgoing
edges created by type-v bus become either all available or all
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unavailable. Fig. 6 shows an example of such scenarios. If a
type-v bus arrives at i, then all the corresponding outgoing
edges become available, in which case only the edge with the
highest priority (under a decision ui) is used. For instance,
if the edge from i to l has the highest priority among all the
edges of type-v bus, the bus carries packets to l, and hence, Qvij
and Cvij for other edges (i.e., edges to j, k,m) become zero.
This shows that for v > 0, Qvij and Cvij depend on the routing
decision ui. Thus, if evij is the best edge among all augmented
edges from type-v vehicles, Qvij and Cvij for v > 0 are equal
to qvi and pvi , respectively. Otherwise, Qvij and Cvij are zero.
To describe this as an equation, we introduce a new notation
>ui

such that evij >ui
ewik if evij has higher priority than ewik

under a routing decision ui. The following summarizes the
computation of Qvij and Cvij for all types of vehicles:

Qvij(ui) =


qvij if v = 0
qvi if v > 0 and evij >ui

ewik,
∀ewik ∈ O(i) s.t. w = v

0 otherwise

Cvij(ui) =


pvij if v = 0
pvi if v > 0 and evij >ui

ewik,
∀ewik ∈ O(i) s.t. w = v

0 otherwise

(9)

D. Expected Delay on Edges

Recall that dvij is the expected data delay on an edge evij ∈
L. The delay dvij can be estimated using the average vehicle
density and speed on evij and the length of evij , which can be
easily obtained from the vehicle traffic statistics. Note that if
evij corresponds to a set of multiple road segments in R (i.e.,
evij ∈ R′ \ R′s), then on evij the corresponding bus “carries”
the packets all the way to intersection j. On the other hand, if
evij corresponds to a single road segment in R (i.e., evij ∈ R′s),
then V2V packet forwarding is allowed on eij as discussed
in Section IV-A. Hence, the delay on the edge is estimated
differently depending on the number of hops in the edge.

1) dvij on evij ∈ R′s: Again, on this type of edges, a data
packet is forwarded to another vehicle ahead. Clearly, this V2V
forwarding can significantly reduce the delay. The delay dvij
depends on the vehicle density ρij on evij since if the density
is high, then there is a high chance of V2V forwarding. Note
that if the WiFi transmission range R is long, then there is
also a high chance of V2V forwarding. However, if a vehicle
on evij does not meet another vehicle in the transmission range,
then it has to carry its packets all the way to intersection j.
These factors can be integrated in several ways. In this paper,
we adopt the delay model in [21] as follows:

dvij = (1− e−R·ρij ) · lij · c
R

+ e−R·ρij · lij
sij

, for v = 0 (10)

where lij , sij and c are the length of road segment eij , the
average vehicle speed on eij and the wireless transmission
delay, respectively. The first term in (10) is the expected delay
contributed by V2V forwarding, and the second term is the
expected carrying delay. The expression in (10) shows that the

delay decreased as the transmission range R, vehicle density
or vehicle speed sij increases.

2) dvij on evij in R′ \ R′s: In this case, packets are carried
by the bus all the way. Let B(evij) be the set of road segments
between intersection i and j along the route of type-v bus.
The packet delay on evij depends only on the average speed
of the bus with type v, denoted by svij , and the length of road
segments in B(evij). Hence, the expected delay on edge evij can
be estimated by the following equation:

dvij =
∑

eij∈B(evij)

lij
svij

, for v > 0 (11)

Remark: The delay function clearly shows that our routing
algorithm would prefer to forward packets along the edges with
high density and high average vehicle speed.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our routing
algorithms based on real traces: Shanghai taxi [15] and bus [1]
trace. The results show that our routing algorithms improve the
delay performance by up to 105% against the existing algorithm
[8] in terms of the ratio of packets delivered to destinations in
reasonable time.

A. Simulation Setup

To verify our optimal routing algorithms, we use GPS traces
of 4800 taxis [15] and 2300 buses [1] in Shanghai, where the
location information of each vehicle is recorded at every 30
seconds in 30km×30km Shanghai for 28 days. To focus on
the sensing scenario of downtown area, we select 4.5km×4km
Shanghai downtown, which consists of 84 intersections and
112 road segments, as shown in Fig. 7. The selected area is
modeled as a road network graph as discussed in Section III.
Fig. 7 also shows 5 candidate intersections where APs can be
placed (see the intersections with dotted circle). The algorithms
will be evaluated for various numbers of APs. We choose 120
taxis and 80 buses (6 types of buses) which have relatively
low GPS errors and move within the area of our interest for
more than 20 minutes during one hour period from 10AM to
11AM. Since vehicles in Shanghai traces usually move outside
the selected area, we define “effective number of vehicles”
as the average number of vehicles which stay in the selected
area during simulation, and use it instead of the number of
all vehicles when describing our simulation setup. We denote
by N ′ the effective number of vehicles. Note that N ′ can be
viewed as the vehicle density.

We implement the vehicular sensor network on a well-known
wireless network simulator, GloMoSim [20], using 802.11a
MAC layer protocol1. In the VSN, every vehicle moves along
the road and senses the urban area. The vehicles are assumed
to generate sensing data packets when they satisfy at least
one of the following conditions: 1) a vehicle moves 100m

1Although the last update year of GloMoSim was 2001, the IEEE 802.11a
MAC protocol stack of GloMoSim is still consistent to the current standards
and many of physical layer models are included [13].
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Fig. 7. Road network topology and AP deployment in Shanghai urban area

without any data generation. 2) a vehicle moves without any
data generation during 30 seconds. 3) a vehicle reaches at one
of 84 intersections. Thus, vehicles generate packets based on
their moving distance, time and geographic position. All the
vehicles and APs periodically send beacon packets to detect
each other every second. If they detect each other, they try to
send their packets based on their routing algorithms. Table I
presents parameters and scenarios.

TABLE I
SIMULATION SETTINGS

Parameter Name Definition
Effective number of 95(30), 80(27), 65(22),

vehicles (buses) 55(18), 45(14)
Number of bus lines 6

Number of APs 1, 3, 5
Simulation time 1 hour
Wireless device 802.11a
Data packet size 512 Bytes

Communication range 150m

B. Tested Algorithms

We test two VSN routing algorithms in the literature: 1)
Epidemic routing protocol [16] which floods packets over
the network and 2) GPSR [8] which forwards packets to a
node located closer to a destination. In anycast version of
GPSR, the forwarding decision at an intersection is made
by comparing each neighbor intersection’s distance from its
cloest AP. Further, our version of GPSR adopts buffer in each
vehicle, so that when vehicles fail to transmit packets, they
store the packets in the buffer and keep moving around. We
consider two versions of our optimal routing algorithm: (i)
Optimal VSN Data Forwarding that regards all the vehicles
as those with unpredictable trajectories (denoted by OVDF-
U), and (ii) Optimal VSN Data Forwarding that takes into
account, the vehicles with known future trajectories (denoted by

OVDF-P). The forwarding decision in OVDF-U is computed
assuming that the vehicle type set V = {0}, even if there
are buses moving in the network. On the other hand, the
algorithm OVDF-P fully exploits the known trajectories by
incorporating them into the formulation through the augmented
network graph. We will study the effect of utilizing the vehicles
with known trajectories. Note that other routing algorithms for
unicast cannot be directly applied to the anycast setting.

C. Simulation Results

1) Sensing Coverage: We first evaluate the sensing coverage
of the four algorithms mentioned above. One of the most
important performance metrics in VSN routings is the delivery
ratio within a certain deadline. In our simulation, the deadline
of a packet is fixed to 10 minutes since its creation. To show
the spatial coverage performance, we divide 4.5km × 4km of
Shanghai downtown into a grid of 72 0.5km × 0.5km squares
and measure the delivery ratios of the algorithms for each
square. Those are 80 vehicles (including 27 buses) and 3 APs.

Fig. 8 plots the delivery ratio within 10 minutes where the
x-y plane represents the grid and z-axis represents the delivery
of sensing data packets generated in the corresponding squares.
Out of all the total packets generated, more than 90% of
them are from 28 squares (this is due to the road structure
of Shanghai downtown imbalance among squares). Note that
the areas that generated too few packets do not give meaningful
results. Thus, we only consider those squares in the results and
call them the “valid squares.”

Compared to GPSR and Epidemic routing, OVDF-U and
OVDF-P show higher packet delivery ratios in most of the
regions. Especially, as shown in Fig. 8(a) and Fig. 8(c), 11
squares (out of 28 valid squares) in OVDF-P achieve at least
20% higher delivery ratio (up to 105% higher) than those in
GPSR, and on average, the delivery ratio gain over GPSR
is 22% for all of the valid squares. Compared to OVDF-U,
OVDF-P shows 9% higher average delivery ratio, and thus,
OVDF-P guarantees the best sensing coverage in this scenario.
In Fig. 8(d), Epidemic routing shows the lowest packet delivery
ratios in most of the squares, due to heavy congestion caused
by packet replications.

An important observation in Fig. 8 is that, for any routing
algorithm, most of the packets generated in the regions close to
APs are delivered to an AP within 10 minutes. This is because
those data are close enough to be forwarded to the AP in one
or a small number of hops, and thus, the impact of optimal
routing decisions on the delivery ratio is relatively small. On
the other hand, the intelligence of routing algorithms have a
huge impact on the delivery ratio for data packets created
in the edge areas that are far from APs. Note that there are
abundant routes from an edge area to the APs, however only a
few of them are those with low delay. Consequently, in the edge
areas, the delay performance can vary substantially depending
on the routing algorithms. Hence to verify the performance of
the routing algorithms, it is necessary to evaluate the delivery
ratio from distant areas. In following, we study the routing
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(b) OVDF-U
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(c) OVDF-P
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Fig. 8. Vehicular sensing coverage of four tested algorithms : (a) GPSR, (b) OVDF-U, (c) OVDF-P, (d) Epidemic. In all cases, the number of AP is 3 and
the number of effective vehicles is 80 (including taxis and 6 different types of buses).
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Fig. 9. Delivery ratio with 10 minutes deadline versus distance to AP for the various number of APs: (a) 1 AP, (b) 3 AP, (c) 5 AP. In all cases, the number
of effective vehicles is 55 (including taxis and 6 different types of buses).

performance against the distance to APs.
2) Performance against Distance to APs: The packet deliv-

ery ratio against the distance is estimated as follows: Consider
a packet generated at a position X in the plane, and let Y be
the position of the nearest AP from X . If the distance between
X and Y is the range of a ∼ b km, then the delivery of the
packet contributes to the delivery ratio from the areas whose
nearest APs are a ∼ b km away. There are 55 effective vehicles
including 18 buses.

Fig 9 shows that for the regions within the wireless com-
munication range of APs, the delivery ratio is 100%. As the
distance between grids and APs increase, the delivery ratio
decreases. Note that OVDF-P outperforms GPSR by up to
40%, 43% and 37% for the scenario of 1 AP, 3AP and 5
APs, respectively. For the entire range of the distance, the

performance gap between GPSR and OVDF-U is larger in
anycast scenarios (i.e., 3 or 5 APs) than in the unicast scenario
(i.e., 1 AP). This is because GPSR is not designed for anycast
routing and thus cannot fully exploit the advantage of multiple
destinations. Moreover, OVDF-U shows higher delivery ratio
than GPSR even in the unicast scenario since we estimate the
expected delay on a road segment based on not only its length
but also the vehicle density and speed on the road. Clearly,
OVDF-P shows the best delivery ratio performance among all
the algorithms, especially for the packets generated far from
APs.

As shown in Fig. 9(a), in the unicast scenario, Epidemic
routing shows poor delivery performance 60% lower than that
of OVDF-P at the distance of 1.2km. In anycast scenarios,
spreading the packets all over the network can significantly
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Fig. 10. Data delivery ratio within 10 minutes versus the effective number
of vehicles when the number of AP is 5.

improve the delay performance since there are multiple APs
throughout the network. On the other hand, such an effect
becomes marginal in the unicast scenario where there is only
one AP. Moreover, it incurs severe packet collisions as many
heavily-loaded vehicles would attempt to transmit to the single
AP. This is why Epidemic routing shows poor performance in
the unicast scenario.

3) Performance against the Number of Vehicles: Next, we
compare the performance by changing the number of effective
vehicles. The number of APs is 5, and only the packets
generated at least 400m away from all the APs are considered.
Fig. 10 shows the delivery ratio of each algorithm. The observa-
tion from these results are threefold. First, when the density of
vehicles in the road network is high, the algorithms achieve
comparable performance because, in the densely connected
vehicular network, packets are delivered to the destination
mostly by V2V forwarding. Second, the performance gap
between OVDF-P and other algorithms increases as the density
of vehicles decreases. Fig. 10 shows that OVDF-P achieves
11% higher delivery ratio than OVDF-U, when the effective
number of vehicles is 45. In sparse vehicular networks, the
packet delivery depends heavily on carrying, and thus the effect
of vehicles with known trajectories is much more appreciated.
Third, in the case of low vehicle density, the delivery ratio
of Epidemic routing is relatively high as opposed to the high
density scenario because when there are not many routes to
destinations due to a small number of vehicles, replicating
the packets would greatly improve the chance of reaching a
destination.

VI. CONCLUDING REMARKS

Many of emerging VSN applications require timely delivery
of sensing data and wide sensing coverage. However, this is
a challenging problem in the VSN where the data links are
intermittently connected. To address the issues, we develop
a delay-optimal VSN routing algorithm, capturing three key
features in urban VSNs: (i) vehicle traffic statistics, (ii) anycast
routing and (iii) known future trajectories of vehicles such as
bus. Using real traces of 120 taxis and 80 buses in Shanghai
we conduct extensive simulations on GloMoSim simulator, and

show that our optimal algorithm outperforms other existing
algorithms. Our results demonstrate that carefully designed
packet routing algorithms can greatly improve the delay perfor-
mance in the VSN, and thus are the key to the success of VSN
applications that require stringent delay performance guarantee.
In this paper, we focused single-copy routing algorithms. Al-
though multi-copy routings can incur serious congestion, there
are scenarios where multi-copy routings outperform single-
copy routing. Therefore, it would be interesting to extend our
framework to account for multi-copy routing, and we leave this
as future study.
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