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Achievable Rate of Rician Large-Scale MIMO
Channels with Transceiver Hardware Impairments

Jiayi Zhang, Linglong Dai, Xinlin Zhang, Emil Björnson, and Zhaocheng Wang

Abstract—Transceiver hardware impairments (e.g., phase
noise, in-phase/quadrature-phase (I/Q) imbalance, amplifier non-
linearities, and quantization errors) have obvious degradation
effects on the performance of wireless communications. While
prior works have improved our knowledge on the influence of
hardware impairments of single-user multiple-input multiple-
output (MIMO) systems over Rayleigh fading channels, an
analysis encompassing the Rician fading channel is not yet
available. In this paper, we pursue a detailed analysis of regular
and large-scale (LS) MIMO systems over Rician fading channels
by deriving new, closed-form expressions for the achievable rate
to provide several important insights for practical systemdesign.
More specifically, for regular MIMO systems with hardware
impairments, there is always a finite achievable rate ceiling, which
is irrespective of the transmit power and fading conditions. For
LS-MIMO systems, it is interesting to find that the achievable
rate loss depends on the RicianK-factor, which reveals that
the favorable propagation in LS-MIMO systems can remove
the influence of hardware impairments. However, we show that
the non-ideal LS-MIMO system can still achieve high spectral
efficiency due to its huge degrees of freedom.

Index Terms—Achievable rate, hardware impairments, large-
scale MIMO, Rician fading channels.

I. I NTRODUCTION

By employing multiple antennas at the transceiver, wireless
systems can significantly increase the spectral efficiency and
transmission reliability. The capacity of single-user MIMO
systems has been well investigated in the literature [1], [2].
However, most prior works assume that ideal hardware is
available at both the transmitter and receiver, which is unre-
alistic in practice, while the performance of practical MIMO
systems is usually affected by transceiver hardware impair-
ments, such as phase noise, I/Q imbalance, amplifier non-
linearities, and quantization errors [3]. Although the influence
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of these impairments can be mitigated by calibration methods
and compensation schemes at both sides, there still remains
residual hardware impairments due to estimation errors, inac-
curate calibration methods and different types of noise.

Recently, the large-scale (LS)-MIMO communication has
drawn a substantial interest from both academia and industry
as a promising technology for 5G wireless systems, such
as millimeter wave (mmWave) communications. LS-MIMO
systems are likely to operate in the mmWave band to ac-
commodate many antennas within a small physical area. In
LS-MIMO systems, each base station is equipped with a
large number of antennas to improve the spectral and energy
efficiency. Understanding the fundamental theoretical limits
of the LS-MIMO system has been an active research area.
For practical implementation, it is very attractive to deploy
LS antenna elements with cheap, compact and power-efficient
radio and digital-processing hardware. Thus, it is of profound
importance to theoretically investigate how much hardware
impairments can the LS-MIMO system tolerate to achieve a
certain achievable rate performance.

Motivated by these observations, some researchers have
analyzed the impact of transceiver hardware impairments on
MIMO system performance. Specifically, experimental results
to model the statistical behavior of residual hardware im-
pairments on regular1 MIMO systems have been provided in
pioneering works such as [4], [5]. Utilizing this impairment
model, the authors of [6] and [7] analyzed the achievable rate
of regular MIMO systems in detail. With the rapid devel-
opment of LS-MIMO systems, people shift their interests to
hardware impairments of LS-MIMO systems. In this context,
the single type of impairments have been considered in [8]–
[11] in terms of power amplifier nonlinearities, mismatched
joint decoding, and phase noise. Moreover, [3], [7], [12]
examined in detail the achievable rate of LS-MIMO systems
by taking into account the effects of transceiver hardware
impairments.

The common characteristic of aforementioned works, how-
ever, is that they consider Rayleigh fading channels. Although
the assumption of Rayleigh fading extensively simplifies the
performance analysis, its validity is often violated in practical
wireless propagation scenarios with the line-of-sight (LoS)
path, where the Rician fading model is more general and
accurate [13]. To the best of our knowledge, a detailed
analysis of MIMO systems over Rician fading channels in
the presence of transceiver hardware impairments is missing

1In contrast to the LS-MIMO system, we use the terminology regular
MIMO for systems with small number of antennas at the transmitter and
receiver, e.g., smaller than 8 antennas.

http://arxiv.org/abs/1507.04244v3


2

in the literature. Only recently, the high-SNR capacity limit of
regular MIMO systems over Rician fading channels has been
established in [6]. In this paper, we aim to fill in this gap
by investigating the impact of hardware impairments on the
achievable rate of regular and LS-MIMO systems over Rician
fading channels. Specifically, the contributions of this paper
are summarized as:

• We derive a new analytical achievable rate expression
for regular MIMO systems subject to Rician fading and
hardware impairments. Although the expression is given
in infinite series, the truncation error has been obtained to
demonstrate its fast convergence. Additionally, we present
asymptotic achievable rate expressions in the high-SNR
regime, which coincide with the results of [6]. Moreover,
based on our analysis, there is always a ceiling on the
achievable rates of regular MIMO systems.

• For LS-MIMO systems, asymptotic expressions for the
achievable rate are presented for three typical types of
antenna arrays. Assuming perfect channel state informa-
tion (CSI) at the receiver and no CSI at the transmitter,
it is interesting to find that the achievable rate ceiling
disappears by deploying a huge number of antennas
at the transceiver. Moreover, our results show that the
achievable rate gap between hardware impairments and
perfect hardware increases with the value of the Rician
K-factor.

The remainder of the paper is organized as follows: In Sec-
tion II, the single-user MIMO channel model used throughout
the paper is briefly introduced. Section III provides a detailed
achievable rate analysis of MIMO systems with transceiver
hardware impairments over Rician fading channels. A set of
numerical results is given in Section IV. Finally, Section V
concludes the paper.

II. SYSTEM AND CHANNEL MODEL

We consider a single-user MIMO system withNt transmit
antennas andNr receive antennas, and assume that perfect
CSI is available at the receiver, while no CSI can be obtained
at the transmitter. The system model can be written as

y = Hx+ n, (1)

wherey ∈ CNr×1 denotes the received signal vector,x ∈
CNt×1 is the transmitted signal vector with zero mean and
covariance matrixE

[

xxH
]

= Q with E[·] being the ex-
pectation operator and(·)H being the Hermitian operation,
and n ∈ CNr×1 denotes the vector of zero-mean complex
circularly symmetric additive white Gaussian noise (AWGN).
Moreover,H ∈ CNr×Nt represents the Rician channel matrix
modeling fast fading with a deterministic LoS path, which can
be modelled as [14]

H =

√

K

K + 1
H̄+

√

1

K + 1
Hω, (2)

where H̄ denotes the deterministic component,Hω denotes
the random fast fading component, which is composed of inde-
pendent and identically distributed (i.i.d.) circularly symmetric
complex Gaussian random variables with zero-mean and unit

variance, andK is the Rician factor denoting the power ratio
betweenH̄ andHω. In this paper, we normalize the channel
matrix H asE[tr(HHH)] = NrNt, wheretr(·) denotes the
trace of a matrix.

In practical MIMO systems, the received signals will be
unavoidably distorted by impairments of transceiver hardware
components, such as filters, oscillators, converters, mixers and
amplifiers, in two different ways. First, the actually emitted
signals are different from the desired signals at the transmitter
due to transmitter hardware impairments [15]. Second, the
received signals may suffer from distortion after the signal
processing due to receiver hardware impairments. Although
several signal compensation algorithms have been proposed
and utilized at each antenna, there still remains some residual
transceiver hardware impairments due to inaccurate model-
ing, imperfect CSI, errors in the estimation of impairments’
parameters, and so forth [7]2. Therefore, it is important to
analyze the impact of transceiver hardware impairments on the
performance of MIMO systems to provide useful guidance for
practical systems design.

The aggregate transceiver hardware impairments can be
approximated by independent additive distortion noises atboth
transmitter and receiver, which has been used and verified
by experiments in many previous works [3], [7], [12]. Based
on the system model (1), the actually received signal can be
denoted as [12]

y = H(x+ ηt) + ηr + n, (3)

where the additive distortion noise termsηt andηr are ergodic
stochastic processes that describe the hardware impairments
at the transmitter and the receiver, respectively. This model
is both analytically tractable, and matches experimental re-
sults accurately. The experimental results have uncoveredkey
characteristics thatηt and ηr follow Gaussian distribution
with variance proportional to the average signal power [4],
[5]. Moreover,ηt andηr can be analytically approximated by
the central limit theorem asηt ∼ CN (0, δ2t diag(q1, · · · , qNt

))
and ηr ∼ CN (0, δ2r tr(Q)INr

) [12], where q1, q2, · · · , qNt

are the diagonal elements of the signal covariance matrix
Q. Note that the new system model (3) is more general
than the canonical model (1), and captures dominant practical
characteristics of transceiver hardware impairments. Thepro-
portionality parametersδt andδr are related to the error vector
magnitude (EVM) metric, which is widely used to quantify the
mismatch between the expected signal and the actual signal
in RF transceivers [16]. In practical wireless systems, such
as long term evolution (LTE), the EVM requirements are in
the rangeδt ∈ [0.08, 0.175] [16]. Note that larger values
of δt and δr indicate that the MIMO system experiences
higher levels of impairments caused by inaccurate transceiver
hardware components. Moreover, the case ofδt = δr = 0
corresponds to ideal transceiver hardware components.

2Among these residual transceiver hardware impairments, the phase noise
is probably the most severe factor in single-carrier transmission, while it is
still not clear in multi-carrier systems [3], [9], [10].
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III. A CHIEVABLE RATE

In this section, we present a detailed achievable rate analysis
of MIMO systems with transceiver hardware impairments over
Rician fading channels. Recall that neither instantaneousnor
statistical CSI is available at the transmitter but perfectly
known at the receiver, we use equal power allocation on each
transmit antenna asQ = P

Nt
INt

with the total transmit power
P . Moreover, the average SNR per receive antenna is defined
as ρ = E[tr(Q)]/N0, whereN0 denotes the noise variance,
which is normalized asN0 = 1 in the following analysis. The
new system model (3) considering hardware impairments can
be written in the form of the canonical model (1) with noise
variance

Φ ,

{

ρδ2
t

Nt

HHH+
(

ρδ2r + 1
)

INt
, if Nt < Nr,

ρδ2
t

Nt

HHH +
(

ρδ2r + 1
)

INr
, if Nt ≥ Nr.

(4)

We further assume an ergodic channel where each codeword
spans over an infinite number of realizations of the fadingH.
Then, the ergodic achievable rateR can be expressed as [1]

R ,







E

[

log2 det
(

INt
+ ρ

Nt

HHHΦ−1
)]

, if Nt < Nr,

E

[

log2 det
(

INr
+ ρ

Nt
HHHΦ−1

)]

, if Nt ≥ Nr.

(5)

A. Exact Analysis

For notational convenience, we definep , max(Nt, Nr),
q , min(Nt, Nr), and the instantaneous MIMO channel
correlation matrixW as

W ,

{

HHH, if Nt < Nr,

HHH , if Nt ≥ Nr.
(6)

Note thatW is a complex non-central Wishart matrix [17].

Lemma 1. The exact achievable rate of MIMO systems with
residual hardware impairments over Rician fading channels
can be expressed as

R =
G

ln(2)

q
∑

n=1

q
∑

m=1

Dn,m

∞
∑

k=0

Γ (p− q +m+ k)φkn
Γ (k + 1) (p− q + 1)k

×
p−q+m+k
∑

t=1

(

e(K+1)/aEp−q+m+k−t+1

(

K + 1

a

)

− e(K+1)/bEp−q+m+k−t+1

(

K + 1

b

)

)

, (7)

where(x)z , Γ(x+ z)/Γ(x), a ,
ρ(1+δ2

t )
Nt(1+ρδ2

r
) , b ,

ρδ2
t

Nt(1+ρδ2
r
) ,

Ez (x) =
∫∞

1 t−ze−xtdt is the exponential integral function
[18, Eq. (8.211.1)],φ = [φ1, φ2, · · · , φq]T is the squared
singular values of

√
KH̄, and

G ,

∏q
i=1 e

−φi

[(p− q)!]
q ∏

1≤i<j≤q

(φj − φi)
. (8)

Moreover,Dn,m denotes the(n,m)th cofactor of the(q × q)
matrix Ω, whose elements are given by

Ωn,m = Γ (p− q +m) 1F1 (p− q +m, p− q + 1, φn) , (9)

where 1F1 (·) is the confluent hypergeometric function [18,
Eq. (9.21)].

Proof: The marginal probability density function (PDF)
of an unordered squared singular value ofW is given by [19]

f (λ) =
Ge−λ(K+1)

qλ

q
∑

n=1

q
∑

m=1

Dn,m((K + 1)λ)
p−q+m

× 0F1 (p− q + 1; (K + 1)φnλ) , (10)

where 0F1(·) denotes the hypergeometric functions [18, Eq.

(9.14)] and can be expressed as0F1 (x, y) =
∞
∑

m=0

ym

m!(x)
m

[20].

We can rewrite (5) as

R =
q

ln 2
E

[

ln

(

1 +
ρλ/Nt

ρδ2t λ/Nt + ρδ2r + 1

)]

=
q

ln 2
(E [ln (1 + aλ)]− E [ln (1 + bλ)]) . (11)

By substituting (10) into (11), the first expectation of (11)can
be derived as

E [ln (1 + aλ)] =

∫ ∞

0

ln (1 + aλ)
Ge−λ(K+1)

qλ

q
∑

n=1

q
∑

m=1

Dn,m

× 0F1 (p− q + 1; (K + 1)φnλ) ((K + 1) λ)p−q+mdλ

=
G

q

q
∑

n=1

q
∑

m=1

Dn,m

∞
∑

k=0

Γ (p− q +m+ k)φkn
Γ (k + 1) (p− q + 1)k

×
p−q+m+k
∑

t=1

e(K+1)/aEp−q+m+k−t+1

(

K + 1

α

)

, (12)

where we have used the following integral identity [19]
∫ ∞

0

ln (1+αx)
xz−1

eβx
dx =

Γ (z)eβ/α

βz

z
∑

l=1

Ez−l+1

(

β

α

)

. (13)

The second expectation of (11) can be derived in a similar way.
Then, the proof is ended by substituting the corresponding
results (e.g., (12)) into (11).

To show the fast convergence of the infinite series in
(7), we assume that only theT0 − 1 first terms are used.
Note that if x < y, the function exEn(x) − eyEn(y) is
monotonically decreasing inn according to the derivative
property ofEn(x) [20, Eq. (5.1.26)]. Then the truncation error
R0 is upper bounded as (14) at the bottom of next page, where

2F2 (α1, α2;β1, β2; z) =
∞
∑

k=0

(α1)k(α2)k
(β1)k(β2)k

zk

k! is the generalized

hypergeometric function [18, Eq. (9.14.1)]. Moreover, the
required terms of seriesT0 has been investigated in Table I for
different parameters. To achieve a satisfactory accuracy,e.g.,
10−6, more terms are needed for larger values ofK, Nt and
Nr. On the contrary,T0 decreases with the larger values of
SNR ρ. Finally, for all cases considered in Table I, only less
than15 terms need to be calculated.

B. High-SNR Analysis

Although (7) is the exact achievable rate, it provides little
insight on how hardware impairments affect the achievable rate
of MIMO systems over Rician fading channels. For high-SNR
values, we can takeρ → ∞ in (5), and follow a similar line
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TABLE I
REQUIRED TERMS OF SERIEST0 TO ACHIEVE A SATISFACTORY

ACCURACY (≤ 10
−6 )

ρ Nt Nr δt δr K T0

0 2 2 0.15 0.15 1 11
0 2 2 0.15 0.15 5 15
10 2 2 0.15 0.15 1 10
0 4 4 0.15 0.15 1 12
0 2 2 0.1 0.1 1 12

of reasoning as in Lemma 1. Then, the asymptotic achievable
rate approaches the finite limit

R∞ =
G

ln 2

q
∑

n=1

q
∑

m=1

Dn,m

∞
∑

k=0

Γ (p− q +m+ k)φkn
Γ (k + 1) (p− q + 1)k

×
p−q+m+k
∑

t=1

(

e(K+1)/a
′

Ep−q+m+k−t+1

(

K + 1

a′

)

− e(K+1)/b
′

Ep−q+m+k−t+1

(

K + 1

b′

)

)

, (15)

wherea
′

,
(1+δ2

t )
Ntδ2r

andb
′

,
δ2
t

Ntδ2r
, respectively.

The term
(

e(K+1)/a
′

E1

(

K+1
a′

)

−e(K+1)/b
′

E1

(

K+1
b′

))

in
(15) becomes zero whenk is large [18]. Therefore, the
achievable rate of MIMO systems over Rician fading channels
with residual hardware impairments approaches a finite ceiling
in the high-SNR regime, which is also found in the case
of Rayleigh fading channels in [7] and the case of any
fading channels with only transmitter impairments in [6]. This
effect can be explained as that the transceiver distortion will
increase with the transmit power. Accordingly, the equivalent
SNR, ρ

Nt

HHHΦ−1, in (5) will not increase. However, the
achievable rateR will increase to infinity with SNR if adopting
the ideal hardware. Moreover, (15) reveals that the residual
hardware impairments dominate on the achievable rate perfor-
mance of MIMO systems in the high-SNR regime.

Moreover, assuming that the firstT
′

0 − 1 terms are used in

the infinite series, the truncation errorR
′

0 is upper bounded as

R
′

0 ≤
Γ
(

p− q +m+ T
′

0 + 1
)

φ
T

′

0

n

Γ
(

T
′

0 + 1
)

(p− q + 1)T ′

0

× 2F2

(

p−q+m+T
′

0+1, 1;T
′

0+1, p−q+T ′

0+1;φn

)

×
(

e(K+1)/a
′

E1

(

K+1

a′

)

−e(K+1)/b
′

E1

(

K+1

b′

))

. (16)

C. Asymptotic LS-MIMO Analysis

In the following, we consider the achievable rate of three
asymptotic antenna deployment in LS-MIMO systems. Note
that our analysis holds for any LoS model that satisfy the limit
of 1

pHHH a.s.−−→ Iq. If a uniform linear array (ULA) is adopted
at the transmitter, the(m,n)th entryH̄mn is given by

H̄mn = e−j(m−1)(2πd/λ) sin θn , (17)

whered is the transmit antenna spacing,λ is the wavelength,
andθn is the arrival angle of thenth receive antenna. More-
over, we setd = λ/2, which means that there is no correlation
between receive antennas.

First, the number of transmit antennasNt tends to in-
finity while the number of receiver antennasNr is fixed.
According to the law of large numbers, the correlation matrix
1
Nt

HHH − INr

a.s.−−→ 0 [14, Lemma 2] asNt → ∞, where
a.s. denotes almost sure convergence. To take the limit inside
the expectation in (5) by the dominated convergence theorem
[21], the achievable rate reduces to

RNt→∞ = Nrlog2

(

1 +
ρ

ρδ2t + ρδ2r + 1

)

, (18)

which indicates that the achievable rate of LS-MIMO systems
with infinite Nt depends on the transceiver distortions, trans-
mit SNR and the number of receiver antennasNr. Moreover,
as we increaseNr, the achievable rate grows linearly. How-
ever, ifNr is fixed but SNR is increased, the achievable rate
asymptotically approaches the limit as we discuss in Section
III-B. This fact suggests that the achievable rate will saturate
in the high-SNR regime for Rician fading channels.

Then, we consider the second case, where the receiver
employs large number of receiver antennasNr but the number

R0 =

∞
∑

k=T0

Γ (p− q +m+ k)φkn
Γ (k + 1) (p− q + 1)k

p−q+m+k
∑

t=1

(

e(K+1)/aEp−q+m+k−t+1

(

K + 1

a

)

− e(K+1)/bEp−q+m+k−t+1

(

K + 1

b

))

<
∞
∑

k=T0

Γ (p− q +m+ k + 1)φkn
Γ (k + 1) (p− q + 1)k

(

e(K+1)/aE1

(

K + 1

a

)

− e(K+1)/bE1

(

K + 1

b

))

s=k−T0=======
Γ (p−q+m+T0+1)φT0

n

Γ (T0+1)Γ (p−q+T0+1)

∞
∑

s=0

(p−q+m+T0+1)s(1)s
(T0+1)s(p−q+T0+1)s

φsn
s!

(

e(K+1)/aE1

(

K+1

a

)

−e(K+1)/bE1

(

K+1

b

))

=
Γ (p− q +m+ T0 + 1)φT0

n

Γ (T0 + 1) (p− q + 1)T0

2F2 (p− q +m+ T0 + 1, 1;T0 + 1, p− q + T0 + 1;φn)

×
(

e(K+1)/aE1

(

K + 1

a

)

− e(K+1)/bE1

(

K + 1

b

))

, (14)
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of transmit antennasNt is fixed. Recall that the ULA model is
assumed and multiplying the term of

(

INt
+ ρ

Nt

HHHΦ−1
)

in (5) by 1/Nr, the achievable rate (5) can be written as

R = E

{

log2 det

(

INt
+

ρ
NtNr

HHH

ρδ2
t

NtNr
HHH+

(ρδ2
r
+1)

Nr
INt

)}

.

(19)

As Nr → ∞, we utilize the dominated convergence theorem
and the fact that the noise term and receiver distortion term
go to zero. Then, (19) can approach to

RNr→∞ = Ntlog2

(

1 +
1

δ2t

)

. (20)

It is clear that the achievable rate grows linearly with
the number of transmit antennasNt. Moreover, the receiver
distortion (denoted byδ2r ) and the SNR have no impact on the
achievable rate performance. This shows the key difference
from the first case of largeNt but fixed Nr, where both
transceiver distortions (denoted byδ2t and δ2r ) characterize
the system achievable rate performance. Such result suggests
that employing low-cost hardware at the receiver is suitable if
hardware impairments are unavoidable.

Finally, the third case of largeNt and Nr, and general
Rician fading model are considered, where the achievable rate
R can be reexpressed as

R = E

[

log2 det

(

ρ
(

1 + δ2t
)

Nt
HHH +

(

ρδ2r + 1
)

INr

)

− log2 det

(

ρδ2t
Nt

HHH +
(

ρδ2r + 1
)

INr

)

]

= E

[

log2 det
(

aHHH + INr

)

+Nrlog2
(

ρδ2r + 1
)

− log2 det
(

bHHH + INr

)

−Nrlog2
(

ρδ2r + 1
)

]

= E

[

log2 det
(

aHHH + INr

)

− log2 det
(

bHHH + INr

)]

= J(1/a, INr
)− J(1/b, INr

), (21)

where J(1/a, INr
) , E

[

log2 det
(

aHHH + INr

)]

and
J(1/b, INr

) , E
[

log2 det
(

bHHH + INr

)]

, respectively.
From [21, Theorem 6.14], we have a large-system approxima-
tion of the achievable rateJ(1/a, INr

) for a large number of
antennas at both transmitter and receiver sides (Nt, Nr → ∞)
and uniform transmit power allocation as [21, Eq. (13.10)]

J(1/a, INr
)−

[

log2 det
(

aΨ−1 + H̄Ψ̄H̄T
)

+ log2 det
(

aΨ−1
)

− log2 (e)

aNt

∑

i,j

viv̄j
K + 1

]

a.s.−−→ 0, (22)

where Ψ denotes the diagonal matrix with theith entry
ψi, and Ψ̄ is the diagonal matrix with thejth entry ψ̄j ,
respectively. Moreover, we definevi andv̄j as theith diagonal
entry of

(

Ψ̄−1 + 1
aH̄

TΨH̄
)−1

and thejth diagonal entry of
(

Ψ−1 + 1
aH̄Ψ̄H̄T

)−1
, respectively. AsNt → ∞, the error

SNR [dB]
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Fig. 1. Achievable rate of regular MIMO systems with hardware impairments
against SNR and RicianK-factor, whereδt = δr = 0.15 andNt = Nr = 2.

between the right hand side of (22) goes almost sure to zero.
It is clear from (22) that the approximation error decreases
asymptotically by increasing the number of transmit antennas
Nt. The entriesψi and ψ̄j can be obtained by solving the
following equations as


























ψ = a

[

1 +
1

Nt(K + 1)
tr

{

(

1

ψ̄
INt

+
ψ

a
H̄T H̄

)−1
}]−1

,

ψ̄ = a

[

1 +
1

Nt(K + 1)
tr

{

(

1

ψ
INr

+
ψ̄

a
H̄H̄T

)−1
}]−1

.

(23)
Note that equations in (23) are fixed point iterations. The

unknown variablesψ andψ̄ can be easily obtained by solving
the formulas in (23). Substitutingψ and ψ̄ into (22) and
using the similar method to calculateJ(1/b, INr

), the desired
achievable rate in (21) can be derived.

IV. N UMERICAL RESULTS

In this section, we illustrate the key analytical insights
presented in Section III by various Monte-Carlo simulations.
For the ideal and non-ideal system, the achievable rate results
have been obtained by means of Monte-Carlo simulations
using106 trails, respectively. Furthermore, the LoS model in
(17) has been used in our simulations.

In Fig. 1, the simulated achievable rate, the analytical result
(7) and the high-SNR approximation (15) of regular MIMO
systems with hardware impairments are plotted against the
SNR and RicianK-factor, whereδt = δr = 0.15 and
Nt = Nr = 2 are considered. Figure 1 validates the accuracy
of our derived analytical expressions in (7) and (15). For the
case of hardware impairments, it is clear that there is a finite
rate ceiling, which cannot be crossed by increasing the SNR
value. Furthermore, we observe that an increase in SNR tends
to increase the achievable rate of both ideal and non-ideal
system, albeit the relative difference between the curves gets
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steadily larger. In addition, a higherK value yields lower
achievable rate, although the gap between the corresponding
curves decreases asK increases, which implies that its effect
becomes less pronounced.

The achievable rate of single-user LS-MIMO systems with
ideal and non-ideal hardware is shown in Fig. 2, which reveals
that the finite achievable rate ceiling disappears for large
numbers of transmit and receive antennas. This phenomenon
is consistent with the results with Rayleigh fading channels
in [7]. This is because the reduction in effective SNR,ρ/Nt,
can be compensated by the large array gain at the receiver.
As expected, the increased LoS component (larger values of
K) will decrease the rank of the correlation matrix and the
system’s achievable rate.

To further investigate the effect of the RicianK-factor on
the achievable rate of LS-MIMO systems, we introduce a
new metric asRloss = (Rideal −Rnon−ideal)/Rideal, which
denotes the achievable rate loss between ideal and non-ideal
system with hardware impairments. Moreover, we assume that
the number of transmit and receive antennas grows together.
It is important to observe from Fig. 3 that the achievable
rate lossRloss increases with the value of the RicianK-
factor. However, with a relatively large number of antennas
at both transmitter and receiver sides, the achievable rate
loss approaches a finite value. For example, the relative
achievable rate lossRloss for K = 0 is around 15%, while
Rloss → 30.5% for the case ofK = 100. Therefore, it is more
important to utilize ideal hardware at LS-MIMO systems when
operating over strong LoS environment.

V. CONCLUSIONS

In this paper, we present a detail achievable rate analysis
of regular and LS-MIMO systems under transceiver hardware
impairments and Rician fading conditions. New analytical
achievable rate results are derived for finite and infinite number
of transceiver antennas. We obtain an asymptotic high-SNR
achievable rate expression to reveal a finite ceiling in regular
MIMO systems. Moreover, the impact of the RicianK-factor
and hardware impairments on the achievable rate performance
are investigated. Our findings reveal that the achievable rate
ceiling vanishes by increasing both the number of transmit and
receive antennas in LS-MIMO systems. Finally, we conclude
that the achievable rate loss due to hardware impairments
increases with the value of the RicianK-factor.
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