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Abstract—In this letter, we investigate the problem of dynamic are detected idle[ [5]. In such scenarios, it is desirable to
spectrum access for small cell networks, using a graphicalagne decrease the number of neighboring cells choosing the same
approach. Compared with existing studies, we take the feates  .panne| \We first define a new optimization metric to capture

of different cell loads and local interference relationshp into the interf th Il cells. Th f lat
account. It is proved that the formulated spectrum access gae € Interierence among the smail Cells. en, we tormulate

is an exact potential game with the aggregate interferenceevel the spectrum access problem as a graphical game and propose
as the potential function, and Nash equilibrium (NE) of the a self-organizing distributed spectrum access algoritfim.

game corresponds to the global or local optima of the origine  summarize, the contributions of this letter are:

optimization problem. A lower bound of the achievable aggrgate
interference level is rigorously derived. Finally, we promse 1) We formulate the spectrum access problem for the

an autonomous best response learning algorithm to converge small cells as a graphical game, taking the inherent
towards its NE. It is shown that the proposed game-theoretic features of different cell loads and local interference
solution converges rapidly and its achievable performancés close relationship into account. It is proved that it is an exact
to the optimum solution. potential game with the aggregate interference level as
Index Terms—5G networks, small cell networks, dynamic the potential function; furthermore, the Nash equilibrium
spectrum access, potential game. (NE) of the game corresponds to the global or local

optima of the original problem. Also, a lower bound of
the aggregate interference level is rigorously derived.

2) We propose an autonomous best response (BR) algo-
MALL cell is an enabling technology for 5G networks,  rithm to converge towards NE of the game. Compared
since it has been regarded as the most promising approach  with the standard BR algorithm, the proposed algorithm

for providing a thousand-fold mobile traffic over the next converges rapidly and is scalable when the number of

decadel[1]. Technically, the use of very dense and low-power  small cells becomes large. Simulation results show that
small cells exploits the following two fundamental effef2k its performance is very close to the global optimum.

i) the decreasing distance between the base station and thQqia that game-based spectrum access approaches have

user leads to higher transmission rates, and ii) the spactryqq, extensively used in the literatufeé [6]4[12]. In method

is more efficiently exploited due to the improved spectrulyoqy the differences and new challenges in this work Jre: i

spatial reuse ratio. As the network becomes denser, teMpeyisting work, it is assumed that there is only one serving

spatial variations of mobile traffics can be observed ang,piie yserin each cell and the task is to choose an opeation

Fhe small cells are usually _dleployed ranc_iomly aqd_dyna@ﬁanne|_ When different cell loads are considered, eadh cel

ically [3]. As a result, tradmona_l central!zed optimiza generally needs multiple channels rather than one channel.

appr_oac_hes, €9, the graph coIorln_g algorithin [4], canbeot However, existing game design and analysis with singleton
applied in practice. To overcome this shortage, there aresog (o selection can not be applied. ii) we consider a gaghi
distributed spectrum access approaches using, €.9.N8eNShame model, i.e., the direct interaction only exists betwee
based access approach [5], utility-based leaming approggighhoring users, and hence is significantly differentriro
[6], reinforcement-learning based self-organizing scadj, previous global interactive game models, i.e., the intévac

coalitional game based scheme [8], evolutionary game basgfeqes among all users, iii) we define a new metric to capture
schemel([9] and hierarchical dynamic game approach [10]. i interference relationship among neighboring smalcel
However, there are two limitations in existing distributed The rest of this letter is organized as follows. In Section
approaches: i) the fact that the small cells have differead$ || he system model and problem formulation are presented.
was not addressed, i.e., most existing work assumed the the, section Ill, the graphical game model is formulated and

is only one mobile user in each small cell, and ii) the featu%ayzed' and an autonomous best response learning htgorit

of local interference due to the low transmission power,,e.g proposed to achieve its NE. Finally, simulation resuid a

the transmission of a small cell only directly affects it®r® giscyssion are presented in Section IV and conclusion isrdra
cells, was not considered. In this letter, we consider laadre in Section V.

dynamic spectrum access for small cell networks, taking int
account different cell loads and local interference retethip. Il. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a sensing-based autonomous spectrum acceg€onsider a small cell network consisting 6f small cell
mechanism, i.e., a small cell transmits on the channelstwhiaccess points (SAPs) and each SAP serves several mobile
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users (MUs). It is assumed that the small cells and the sonticeta \
macro-cell operate on orthogonal channels, and hence the smalleeld 1 @ O/’
main optimization objective is eliminating mutual inteace ==
among the small cells. Note that this assumption has been PR == PR
extensively used in previous woik [4]][6], [13]=]15]. Alsibis L S S @ N oo
in line with 3GPP[[16] and particularly represents the scesa \@ (/)/r \@ ,/r N /,’

in the LTE-U network[[17], which is an active research topic.
There areM channels available for the SAPs. Denote the

SAP set a_S\/, e, N = {1 , IV}, and the available Channelﬁg 1.  An illustration for the considered interference ralpdn which

set asM, i.e., M = {1,. M} It is shown that as the small different colors represent different channels. To rediesinterference in the

cells become denser in 5G networks, the more spatlal |oagiwork, i) for intra-cell spectrum access, it is mandationallocate different
channels for the users in the same cell, ii) for inter-cebcipum access, the

fluctuation is observed by each SAP [2]. To capture SUChn@mber of overlapping channels should be minimized. Adogrdo (), the
fluctuation, it is assumed that each SAP chodsgschannels interference levels of the cells asg = 1,52 = 3,53 = 2,54 = 0.
for data transmission of the MUs. The numk&r, can be
regarded as the load of each SAP, which is jointly determined
by the number of active MUs and their traffic demdhds The rationale behind the experienced interference level
Similar to previous work[[6], [[11], [[12], we focus on theis briefly explained as follows: in autonomous small cell
spectrum access problem and do not consider the problenhgtworks, a small cell transmits only when the receivedg@ner
optimizing the required number of channels of each SAP. fif the dedicated channel is below a threshold. This is simila
practice, some simple but efficient approaches, e.g., tlee df the carrier sense multiple access and has been regarded as
proposed in[[13], can be applied to estimate the cell load. proposing approach for cognitive small cell networks [5§an

Due to the spatial distribution and lower transmission ppw&TE-U small cells [17]. Therefore, decreasing the number of
of SAPs, the transmission of a small cell only directly affecinterfering cells would increase the achievable throughpu
the neighboring small cell$ [4][ [13][ [14]. [18]. To charac Note thats,, is the number of channels also chosen by the
terize the interference relationship among the small céills neighboring SAPs. For an individual SAR, the interference
following interference graph is introduced. Specificaifythe level s, should be minimized. From a network-centric per-
distanced;; between SAR and; is lower than a threshold,, ~spective, the aggregate interference level of all the SAPs,
then they interfere with each other when transmitting on the,,c - s» should be minimized. The considered interference
same channel. Therefore, the potential interferenceioalat model is illustratively depicted in Figl1. Thus, we formla
ship can be captured by an interference grgpk {V, E}, the problem of load-aware spectrum allocation for cogeitiv
whereV is the vertex set (the SAP set) aftlis the edge set, small cell networks as follows:
e, V={l,...,N}and E = {(i,j)|i € N,j € N,d;j <
do}. For presentation, denote the neighboring SAP set of SAP P1l: min Z Sn. 3
nasg,, e, I, ={j e N :dn; <do}. neN

If two or more neighboring small cells choose the same |t is noted that the definition of the interference model
channel, mutual interference may occur. Thus, in order { different from that of traditional PHY-layer interferes
mitigate interference among the small cells, it is des&abHere, the interference level is used to characterize theiahut
to allocate non-overlapping channels for them as soon j@fluence among neighboring SAPs from a higher-level view.
possible. Denote the choice of channels by SARBsa, = Such an interference model has also been applied for single
{er,eo,. ek, )6 € MV < i < K,,. Note thata,, is @ channel selection in opportunistic spectrum access n&svor
K Comblnatlon ofM and the number of all pOSSIble Choserﬂ]_g] l21] In Companson this work extends prev|0u5 mg|
channel profiles of playen is C5 = 2 1( (M) Kol channel selection to load-aware multiple channel acceits. W
Motivated by the graph CO|0“n9 for spectrum allocatiofhe allocated channels, the small cell can perform power con
problems[[4], we define the experienced interference lesel gol to further reduce the mutual interference among dififer
following: cells. However, this problem is beyond the scope of thigtett

Small cell 1 Small cell 2 Small cell 3

_ Z Z Z Se, f), (1) I11. GRAPHICAL GAME MODEL AND DISTRIBUTED

J€7, c€an feay LEARNING ALGORITHM

To implement self-organizing and distributed spectrum ac-
cess, we formulate a graphical game model to address thie loca
Se, f) = { L e=f @) interference relationship among the cells. The game isqutov

’ 0, e#f. to be an exact potential game, and then a distributed legrnin

That is, if two selected channetsand f are the same, thenalgorithm is proposed to achieve its Nash equilibria.
the indication function takes one; otherwise, it takes zero

whered(e, f) is the following indicator function:

A. Graphical Game for Dynamic Spectrum Access

1Furthermore, since the users in the small cells are alwaydora and Formally the spectrum access game is denotedFas:
dynamic, it is not reasonable to allocate spectrum reseubzesed on the '

instantaneous network state; instead, it is preferablellozage spectrum W, G, {An}nen, {Un}nej\/]v where N/ = {1; ..., N}is aset
resources according to their loads in a relatively longaisiten period. of players (small cells)g is the potential interference graph



among the players4,, = {1,..., M} is a set of the available as the experienced interference level on chanpekhere|A|
actions (channels) for each player and w, is the utility is the cardinality of set4, i.e., the number of elements jd|.
function of playern. Due to the limited interference rangeAccordingly, the aggregate experienced interferencel lefre
the utility function can be expressed as(a,,a,), where playern is also given by:

ay,, is the action of player anda, is the action profile of B

the neighboring players af. Thus, the formulated spectrum sn(an, a,) = Z sn(€;as,)

access game belongsgoaphical gameAs discussed before, cean .
each small cell prefers a lower interference level, which Now, suppose that an arbitrary playeunilaterally changes

(11)

motivates us to define the utility function as follows: its channel selection from,, = {ci,¢s,... ¢k, } 10 aj, =
{ci,¢35,...,ck, }. For presentation, we classify the channels
Un(an,az,) = —8n, (4) into the following three sets:

e Cp =a,Nal. Thatis, the channels in s€ are chosen

by playern both before and after its unilateral action

change. Note thaf, may be a null set.

e C1 = ap\{anNal}, whereA\ B means thaB is excluded

(F) : max un(an,az,),¥n € N. (5) from A. That is, the channels i6; are only chosen by
an€A, " playern before its unilateral action change.

wheres,, is the experienced interference level of playeras
characterized by{{1). The players in the game are selfish and
rational to maximize their individual utilities, i.e.,

To analyze the properties of the formulated spectrum acces$ Co = az\{an Nag}. That_ IS, th_e channels i6, are only
game, we first present the following definitions. chosen by playen after its unilateral action change.

Definition 1 (Nash equilibrium [22]). An action profile ~ From the above classification, the change in utility functio

a* = (a¥,...,a%) is a pure strategy Nash equilibrium (NE)OT player n caused by its action unilateral action change is

if and only if no player can improve its utility by deviating9iven by:

unilaterally, i.e., un(a, ay,)—tn(an, ay,) = Z sn(e,ay,)— Z sn(e,ay,)
un(ay,a’ ) > upan,a’ ),¥n € N,Va, € A, a, # ay, et e€C2 (12)

o ) . _ (6) Also, the change in the potential function caused by the
Definition 2 (Exact potential game [22]) A game is an ypjateral change of player is as follows:
exact potential game (EPG) if there exists an ordinal pakent B(a? ) — @ )
Ay, G—pn) — PLAp, G_n

functiong : A; x --- x Ay — R such that for allh € N, all

an € A,, anda/, € A, the following holds: = %{un(ai‘l,wn) — un(an,ay,)
+ uk(ak, a’y, ) — ur(ak, ay,)
i, 07,) — unlayy a3,) = Blansa5,) — Dlalya,) 25, Luwlowai) = k(o as)) .
(7) + > {ur(ar, ay,) —urlar, az,)}
In other words, the change in the utility function causedhsy t k€D
unilateral action change of an arbitrary player is exadtly t + > {Uk(ak,af;k) - Uk(akank)}}v
same with that in the potential function. It is known that EPG k€Ds,kn
admits the following two promising features: (i) every EPGvhere D; = éJC Zn(e,ay,), D2 = eUc T.(e,ay;,), D3 =
.. . . e 1 (& 2
has at Igagt one pure strgtegy NE, gnd (i) an action profy@\{plupg}, anduy (ax, a%;, ) is the utility function of player
that maximizes the potential function is also a NE. k aftern’s unilateral action change. Note that playebelongs

Theorem 1. The formulated spectrum access gafids an O the neighboring player set of playgr i.e.,n € J. Since
EPG, which has at least one pure strategy Nash equilibriuffi€ action of player. only affects its neighboring players, the
In addition, the global optima of problef1 are pure strategy following equations hold:

Nash equilibria ofF. Un(ag,a’,) — unlag,az,) =1,Yk € Dy (14)

Proof: To prove this theorem, we first construct the un(ag, a’y,) — un(ag,az,) = =1,k € Dy (15)

following potential function:
gp un(ak,ay ) — un(ag,az,) =0,k € D3,k #n (16)

1
D(an,a_n) = —3 Z sn(at,...,an), (8) Based on[{14) and_(15), we have
neN
ug(ak, ay,) —uk(ak,az) = D1l = ) snle,ay,)
wheres,, is characterized by{1). ,%; { i ) eezc:l

Recalling that the chosen channels of playeis denoted 17)
asa, = {c1,cs,...,cx,}, defineZ,(ci,as,) as the set of Y {ur(ak,al,)—ur(ar,as,)} =—|Do| == sule,ay,)

neighboring players choosing a channgll <i < K,,, i.e., k€D2 e€Cy (18)
Tu(ciyaz,) ={j € Tn:ci € a;}, (9) Now, combining[(IR),[(16)[(17) and(118) yields the follogin

equation:

where 7, is the neighbor set of playet. Then, we denote
®(ap,a—n) — P(an,a—n) = un(ay,, a—n) — un(an, a_n),

sn(ciyay,) = |Tn(ciyay,) (10) (19)



which satisfies the definition of EPG, as characterized by
(@). Thus, the formulated spectrum access games an
EPG, which has at least one pure strategy Nash equilibrium.
Furthermore, according to the relationship between therpot
tial function and the network-centric optimization objeet
Theorentl is proved. [ |

Theorem 2. For any network topology, the aggregate inter-
ference level of all the players at any NE point is bounded by

Ko K;
U(ang) > —

neN J€EIn

M

UAM

Proof: For any pure strategy Nene = (af, ..., aYy), the

following inequality holds for each player, Vn € \: Fig. 2. The illustrative diagram of the proposed autonomioest response
9 q y play learning algorithm. Using the autonomous contention meisha, users 1 and
5 can update channel selections simultaneously.

un(ay, a}n) > Up (G, a}n),V&n e A,,a, #a, (20)

which is obtained according to the definition given [d (6)B
Based on[(20), it follows that:

C’ﬁ" X up(ay,,a’ ) > Z Un(an, a7, ),
a’n,eA'Vl

. Autonomous best response learning

As the distributed spectrum access problem now formulated
(21) as an exact potential game, the best response (BR) algorithm
[22] can be applied to achieve Nash equilibria of the game.
However, there is a limitation of standard BR algorithm:yonl
where O3 is the number of K,-combinations of the one player is randomly selected to update its action in each
channel setA,, (Note that |A,]| M). It is seen that iteration. However, the convergence speed is very slow when
Ya.ca, Unlan,a’; ) represents the aggregate experiencede network becomes dense. To overcome this problem, we
interference level of playet as if it would access all possibleexploit the local interference of small cell networks, and
channel profiles simultaneously while the neighboring sisgsropose an autonomous best response learning algorithm,
still only transmit on their chosen channels. As a resultait  which converges to the NE rapidly.
be calculated as follows: The key idea that multiple users are autonomously selected
to update their selections simultaneously. Specificallye d
Z un(@n,a’,) = —Cﬁ"il Z K, to the local interference among the users, multiple non-
an€An IE€Tn neighboring can using the BR rule to update their channel
selections [[23]. To achieve this, we assume that there is
a common control channel (CCC) available and a 802.11
DCF-like contention mechanism can be applied at each CR

(22)

where|.7,,| is the number of neighboring users of usefhus,
equation[(2ll) can be re-written as:

OKn—1 1 user. Specifically, each SAP has three stdieg active and
un(ay,a’ ) > —MTT Z Kj=—; Z K, Kj, inactive as shown in Fig[]2, and only the active users have
Cu JE€ETn JETn the opportunities to update their channel selections. A&fbri
Einallv. it foll hat: (23) description of the state transition is as follows:
nally. it follows that: « A free SAP generates a backoff timer according to
> Y K.K; uniform distribution on an interval, sd9, 7,,,..] for some
_ I _ neNjeTn fixed parameterr,, .. If the backoff timer expires, it
Ulane) = gu"(a"’ a7.) 2 M (24) becomes active. Then, it broadcasts an updating request
message (URM).
which proves Theorer 2. n o If a free SAP hears a URM before its backoff timer

Theoren{® characterizes the achievable interference bound
of the formulated spectrum access game. Some further discus
sions are given below:

« If all the players choose only one channel for trans- ®
mission, i.e., K, = 1,¥n € N, we haveU(anyg) >

_ZneN | T

. WhenA{he number of available channels increases, the
bounded aggregate interference level decreases. In{partic
ular, if the number of channels becomes sufficiently large,
i.e.,, M — oo, we haveU(ang) — 0. In this case, the

expires, it freezes the timer immediately, enters into the
inactive state, and responds with an updating announce
message (UAM).

If a free SAP hears a UAM before its backoff timer
expires, it also freezes the timer immediately, enters into
inactive state, and keep silent until the next period.
When an active SAP receives a UAM from its neighbors,
it updates their channel selection using the BR rule. After
the updating, it broadcasts a channel updating message
(CUM) to announce its new channel selection, and they
becomes free again.

spectrum resources are abundant and mutual interference hearing a CUM message, the inactive users turn to

among the players are completely eliminated. Also, when
the network becomes sparse, i.e., decreasind, the
bounded aggregate interference level also decreases.

be free again.



Algorithm 1: Autonomous best response algorithm

o
©

o
3

1). Initialization: All the users exchange information (the

channel selection) with its neighbors.

2). All SAPs repeatedly perform the following procedure
Based on the information of its neighbors, each SAP

finds the best action selectionas follows:

I3
o

IS
IS

o
w

Cumulative distribution function (CDF)
o
»

o
N

N=30, Standard BR

/
N=30; Aufonomous BR
/7

i i
10 15 20 25

wherea s, (¢ — 1) is the action profiles of its neighboring herations needed for converging
SAPs in the(i — 1)th iteration. That is, SAPh finds the
; ®): P ; or ; ; Fig. 3. The convergence speed comparison between the sfaB&aand
actionay, (i _1) that maximizes its utility function given . = = s BR. (The number of channelg/s= 5)
the action profiles of the neighboring SAPs.

if o' (1 —1) is better than the current selectiop(i — 1),

SAPn contends for an updatibng opportunity and updates if§formation exchange is not intentionally needed anymore.
channel selection as; (i) = a,(c )(z‘ — 1) if the contention is
successful; otherwise, it keeps silent. IV. SIMULATION RESULTS AND DISCUSSION

We consider a small cell network deployed in a square
region. When there are 20 small cells, the square region is
200m x 200m. When the number of small cells increases,
Theorem 3. The proposed autonomous best response learnititf square region increases proportionally to keep the same
algorithm converges to a pure strategy NE point of théensity. The coverage distance of each small cell is 20m, and
formulated spectrum access gatAen finite steps. Therefore, the interference distance is 60m. For presentation, the dba
the aggregate interference level in the small cell netwdsks €ach cell is randomly chosen from a load get {1,2, 3}.
globally or locally minimized. To begin with, we compare the convergence speed of the

) o autonomous BR and the standard BR. In the standard BR,

Proof: From the learning procedure, it is seen that eagfh|y one active user is scheduled to update its action in each
updating user always makes its utility function increasifg jteration, which can be achieved by token or a gateway. There
the updating users are non-neighboring, the potentialtimc gre five channels available in the network and the companion
of the game, as specified byl (8), is increasing. Since tRgsyits of the cumulative distribution function (CDF) ogth-
potential function is up bounded (the maximum value is zerQ) ations needed for converging are shown in [Fig. 3. Thetsesul
the learning algorithm will finally converge to a global oc&d 5 gptained by simulating five different network topolagie
maximum point of the potential function in finite steps. Thusnd 1000 independent trials for each network topology. It is
TheoreniB is proved. B noted from the figure that for the same size network, e.g.,

Surely, we can achieve the global optimal solutions ag —= 20 or N = 30, the iterations needed for converging of the
the potential function coincides with the objective funeti autonomous BR learning algorithm is significantly decrdase
of the centralized problenP1, using the spatial adaptive Furthermore, when the network scales up fradfn= 20 to
play [20] or B-logit learning[[211]. However, the convergenc N = 30, the convergence speed of the autonomous BR is
speed of the optional algorithms is slow. Therefore, to makfightly decreased while that of the standard BR is largely
it more practically, it should balance the tradeoff betweefecreased. The reason is that multiple non-neighboringsuse
convergence speed and performance, which is the motivatgin update simultaneously. Thus, the proposed autonomous
of the proposed autonomous learning algorithm. BR algorithm is especially suitable for large-scale neksor

Remark. Some discussions on the practical implementa- Secondly, the aggregate interference level when varyiag th
tions of the autonomous best response learning algorittmamber of small cells is shown in Figl 4. The best and worst
are listed below: i) Note that it is assumed that the useRfE are obtained in a quasi-centralized manner. Specifijcally
are truthful in exchanging information and are obedient iassume there is an omnipotent genie, which knows the cell
executing the contention mechanism as well as the BR Upads and the interference relation between the SAPs. We
date rule. In essence, the presented game-theoreticaolutun the standard BR learning algorithm 1000 times and then
follows the so-called "engineering agenda” of game theorghoose the best (worst) result respectively. Accordingtie-T
i.e., using games as a tool for distributed contioll [24]. iiprem 1, the best NE also serves as global minimum for the
only at the initialization phase, each SAP needs to know tifi@rmulated dynamic spectrum access game. It is noted frem th
current channel selection profiles of neighboring SAPs. figure that as the network scale increases, the aggregate lev
practice, information exchange among neighboring SAPs cimereases, as can be expected. More importantly, it is ribsed
be achieved via the backhaul network or the X2 interferendde performance of the proposed autonomous best response
iii) as the algorithm begins to iterate, the users broadcadgorithm is close to the optimum solution. Also, the game-
their new selections in the CUM message, which means thetsed solution significantly outperforms the random siglect

aﬁf’) (i —1) = arg maj( Un(an,az, (i — 1)), (25) o1l

n n
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Fig. 5. The aggregate interference level when varying theber of channels
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