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Abstract

This paper studies the performance of overlay device-to-device (D2D) communication links via

carrier sense multiple access (CSMA) protocols. We assume that the D2D links have heterogeneous rate

requirements and different willingness to pay, and each of them acts non-altruistically to achieve its

target rate while maximizing its own payoff. Spatial reuse is allowed if the links are not interfering with

each other. A non-cooperative game model is used to address the resource allocation among the D2D

links, at the same time leveraging on the ideal CSMA network (ICN) model to address the physical

channel access issue. We propose a Stackelberg game in whichthe base station in the cellular network

acts as a Stackelberg leader to regulate the individual payoff by modifying the unit service price so that

the total D2D throughput is maximized. The problem is shown to be quasi-convex and can be solved by

a sequence of equivalent convex optimization problems. Thepricing strategies are designed so that the

network always operates within the feasible throughput region. The results are verified by simulations.

Index Terms

D2D Communications; Spatial CSMA; Heterogeneous Traffic; Game Theory; Transmission Aggres-

siveness

I. INTRODUCTION

The growing popularity of smartphones and tablets has resulted in the increasing demand for

high data rate services, and a huge amount of data traffic normally needs to be transmitted through
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cellular networks, which in turn leads to severe traffic overload problems. Recently, Device-to-

Device (D2D) communication has emerged as a new data-offloading solution by enabling direct

communication between two mobile users without traversingthe base station (BS) [1].

D2D communication can be implemented over the cellular spectrum (i.e. inband) or the

unlicensed spectrum (i.e. outband). Inband D2D can be further classified into spectrum overlay

and spectrum underlay. In the overlay scenario, the cellular and D2D transmitters use orthogonal

time/frequency resources, while in the underlay scenario the D2D transmitters access the same

time/frequency resources occupied by cellular users. The rate performance is evaluated in [2]

for both overlay and underlay scenarios. It is observed thatD2D mobiles in both scenarios

can enjoy much higher data rates than regular cellular mobiles. As for cellular mobiles in the

overlay scenario, their rate performance also improves dueto the offloading capability of D2D

communication. Besides performance improvement over the pure cellular mode, inband overlay

D2D is also more tractable in analysis since it does not interfere with regular cellular mobiles

or suffer from random interference from unlicensed band.

In [2] the authors use a simple spatial Aloha access scheme tosupport D2D scheduling. In this

paper we assume that all D2D links use carrier sense multipleaccess (CSMA) as the multiple

access scheme to share a dedicated inband overlay channel. Spatial reuse is considered, i.e.,

different transmit-receive (Tx-Rx) pairs at a sufficient distance away that do not cause interference

are allowed to transmit simultaneously [3]. Although D2D communication does not route the data

traffic through the cellular network, the available networkinfrastructure can still be an effective

means to exert light control over all the D2D links when performing resource allocation. In our

model, the D2D links have heterogeneous service requirements and different willingness to pay,

and the central entity (e.g., evolved node B (eNB)) [1] controls the transmission behaviors of all

links by modifying the price per unit service rate. A simple example is given in Fig. 1, where

there are three D2D links and a single BS oversees/controls them in the control plane. Each D2D

link consists of a Tx-Rx pair, and hence the D2D links resemble the situation where distributed

pairs are transmitting. Hereafter, the terms “D2D link”, “CSMA Tx-Rx pair” and “CSMA user”

are used synonymously. The involvement of the cellular network in the control plane is the key

difference between our system model with that defined in Mobile Ad-hoc NETworks (MANET)

[4]. Moreover, D2D communication is mainly used for single-hop communications which does

not inherit the multihop routing problem of MANET and wireless sensor networks [5].

When spatial reuse is considered in CSMA methods, the carrier-sense relationships among

the CSMA users becomenon-all-inclusive, i.e., each CSMA user may only sense a subset, but

not all other users. As commented by Liewet al. [3], it is extremely difficult to extend the

analytic methods for all-inclusive carrier-sense networks (e.g., [6]–[8]) to the non-all-inclusive

case because of the inhomogeneity in the state spaces of the CSMA users. In fact, the problem of
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Fig. 1: An Example of Overlay D2D Communications. The solid arrow represents the data communication of a
D2D link; the dashed arrow represents the control information exchange between a D2D transmitter and the BS.

computing user throughputs in a spatial CSMA network is shown to be NP-hard [3]. In order to

perform tractable analysis, existing literature [3], [9]–[11] have adopted anideal CSMA network

(ICN) model to capture the essence of the CSMA mechanism under spatial reuse. In this paper

we also leverage on the ICN model to address the physical channel access issue.

Our contributions in this paper are twofold. First of all, wepropose a Stackelberg game [12]

which maximizes the total throughput of the D2D links, wherethese links have heterogeneous

utility functions. The BS in the cellular networks will act as a Stackelberg leader to regulate

the D2D link transmissions by modifying the service price, so that the payoff of each individual

D2D link can be maximized while maintaining the D2D network to function within the feasible

throughput region determined by the CSMA access mechanism.The problem is shown to be

quasi-convex and can be solved by a sequence of equivalent convex optimization problems. The

pricing strategies are designed so that the network always operates within the feasible throughput

region. Secondly, each D2D link will acquire a rate based on its actual demand and willingness to

pay. We explicitly model the possible selfish behaviors among the D2D links with spatial reuse.

Under a given network price, the transmitter of each D2D linkcompetes for channel usage by

choosing its transmission parameters in order to maximize its own payoff. Such user dynamics

are studied in the setting of non-cooperative games, and theresulting CSMA game model serves

as the follower-subgame in the proposed Stackelberg game. An algorithm is proposed followed

by proofs for the existence and convergence of the equilibrium solution.

The rest of the paper is organized as follows. We introduce related works in Section II and

the network model in Section III, and summarize some important results on ICN. In Section IV,
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the feasible throughput region for a CSMA network is defined,while some important properties

are derived. The Stackelberg game is detailed in Section V. Performance of the proposed game

is evaluated through simulations in Section VI. We concludethe paper in Section VII.

The notations used in this paper are as follows. An arrow overa variable~· represents a vector,

or a system state consisting of the binary status of theN links. The variableθ is used to denote

the throughput from the channel access point of view, where the solution is controlled by the

ICN model. On the other hand,̃θ is used to represent a desired throughput from the link layer

aspect, whose value is derived from the price and link utility function. If the final solution is

within the feasible throughput region, these two values should match. There are two types of

equilibria to be differentiated: the subgame equilibrium is denoted by a superscript ‘*’ whilst for

the Stackelberg game is denoted by a superscript ‘opt’.

II. RELATED WORKS

A. Spectrum Sharing Games for D2D Communication

In the licensed spectrum, a potential D2D pair can communicate through conventional cellular

mode (relay through the BS), dedicated D2D mode (spectrum overlay), or underlay sharing mode

(share with cellular users). Game theoretic approaches have been applied in D2D communications

for mode selection and resource management [13]. In particular, Cai et al. [14] model the

spectrum sharing mode selection as a coalition formation game, and propose a distributed coalition

formation algorithm to improve the total achievable rate. Wu et al. [15] study the underlay

spectrum sharing problem among potential D2D pairs and cellular users with quality-of-service

requirements. A coalition formation game and a distributedcoalition formation algorithm are

proposed to decide for the most energy-efficient spectrum sharing strategy. The focus of these

works is to look for efficient spectrum sharing solutions among the D2D pairs and cellular users,

and spectrum underlay is adopted in the sharing mode under the constraints on the amount of

mutual interference. In this paper, we focus on spectrum overlay mode, in which the number of

orthogonal channels is limited and multiple D2D pairs sharea common channel via distributed

transmission scheduling.

B. CSMA Distributed Transmission Scheduling

A survey on applying game theory to CSMA can be found in [16], where several non-

cooperative contention control games in CSMA methods are presented. For example, Jin and

Kesidis [17] analyze the non-cooperative user behaviors inCSMA wireless networks where users

have the freedom to choose the contention window sizes according to the network congestion

level. The existence and uniqueness of the equilibrium point are investigated, as well as a
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distributed iterative method to approach the equilibrium.However, as commented by [16], most of

the proposed CSMA games assume all-inclusive carrier sensing. The analysis cannot be directly

applied in the presence of spatial reuse.

The ICN model captures the essence of spatial reuse CSMA networks. Jiang and Walrand [11]

developed an elegant distributed CSMA algorithm for throughput and total utility maximization

based on the ICN model after making assumptions about concavity and monotonicity of the user

utility functions. Their work removes the need for knowledge of the underlying link topology

and their transmission parameters can be updated distributively. However, the approach implicitly

assumes a best effort transmission to achieve total utilitymaximization and there is no explicit

treatment if users have heterogeneous rate requirements and different willingness to pay. In other

words, while optimizing the sum-rate, there is no mechanismto weigh the individual user utility

so as to differentiate the services. Moreover, the global optimization approach does not reflect the

fact that users are selfish and behave non-altruistically inmaximizing their own payoffs. In fact,

Cagalj et al. have shown that even the presence of a few selfish users may lead such a CSMA

network to collapse [18], while proper pricing or penalty mechanisms lead to overall improvement

[19]. Indeed, when users with heterogeneous rate requirements coexist in the network and the

collective target rates are outside the feasible throughput region, the self-interested actions by the

CSMA users would lead the network into heavily congested status. In this paper we incorporate

a game theoretic framework into the ICN model to harness the selfish behaviors of a group of

non-cooperative spatially distributed CSMA users with heterogeneous rate requirements.

III. SPATIAL REUSE CSMA NETWORK

A. Spatial Reuse and Contention Graph

Assume there areN D2D links in the network sharing a dedicated inband overlay channel

via CSMA-like random access. These D2D links can transmit inthe same frequency band

simultaneously if they do not cause any performance degradation to each other. We assume

that the CSMA network is hidden-node-free, which can be achieved by properly setting the

carrier-sensing power threshold as in [20] [21]. Such a spatial reuse model can be characterized

by a “contention graph” as in [3]. For simplicity, only a connected network is considered, and

if the network is not connected, then it can be divided into several independent connected sub-

networks and dealt with separately. We assume that the contention graph is un-directed and the

transmission queue of each D2D link is continuously backlogged, i.e., the transmitter of every

D2D link always has a packet to transmit to its designated receiver. An example for three D2D

links is shown in Fig. 2, where D2D links 1 and 3 can transmit concurrently without collisions

but neither of them can transmit together with link 2. In suchcases, link 2 is a neighbor of link

1, but link 3 is not.
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Fig. 2: 3 Tx-Rx Pairs and the corresponding Contention Graph[22]. In the upper part of the figure, the solid-thick
arrow represents the transmission link from a transmitter to its designated receiver; the solid-thin and the dash-thin
arrows represent the non-negligible and negligible interference, respectively.

B. Ideal CSMA Network Model

In the CSMA random access method, a link senses the channel before transmitting. Based on

such a carrier-sensing relationship, a link will refrain from transmitting if any of its neighbors

is transmitting. In the ICN model, each link maintains a countdown timer, whose valuetcd is

modelled as a continuous random variable with an arbitrary distribution [3]. The timer valuetcd
counts down if the channel is sensed as idle, and is frozen if the channel is sensed as busy. When

the channel becomes idle again, the countdown oftcd resumes untiltcd = 0, upon which the link

transmits a packet. The transmission timettr is a random variable with an arbitrary distribution.

For simplicity, we have adopted uniform distributions for both tcd and ttr in our simulations.

At any time, a link is either transmitting or idle. Denote thestate of link i as si ∈ {0, 1},

wheresi = 1 if link i is transmitting andsi = 0 otherwise. Whensi = 0, link i is either actively

counting down or frozen, depending on whether a neighboringlink j is transmitting or not. We

shall denote the system state of aN-link ICN by aN-tuple binary vector~s = [s1, s2, · · · , sN ] or

simply by a strings1s2 · · · sN . Notice thatsi = sj = 1 is not allowed if linksi andj are neighbors,

for the reasons that they can sense each other and the probability of them counting down to zero

simultaneously is negligibly small under ICN due to the adopted continuous random variables

[3]. Therefore, each feasible state corresponds to an independent set [3] of the contention graph.

For the example in Fig. 2, the five independent sets areØ, {1}, {2}, {3}, {1, 3}. By default,

we also includeØ, which corresponds to~s = ~0, as an independent set. The collection of these
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Fig. 3: State Transition Diagram for Fig. 2

feasible system states are denoted by the set

S = {[0, 0, 0], [1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 0, 1]}. (1)

If we denote the state~s with sj = 0, ∀j ∈ N = {1, 2, · · · , N} as ~e0, and the state~s with

si = 1, sj = 0, ∀j 6= i as~ei, thenS can be denoted as

S = {~e0, ~e1, ~e2, ~e3, ~e1 + ~e3}. (2)

C. Stationary Distribution

Here we summarize the stationary distribution of the systemstates based on the results in [3].

If the transmission time and countdown time are exponentially distributed, then the system state

~s(t) is a time-reversible Markov process. The state transition diagram of the example in Fig. 2 is

shown in Fig. 3, where there are 5 feasible system states. Each transition from a state in the left

to a state in the right represents the beginning of a link transmission, while the reverse transition

represents the ending of the same link transmission. For example, the transition from 001 to

101 represents the beginning of link 1’s transmission whilelink 3 is transmitting. Similarly, the

transition from 101 to 001 represents the ending of link 1’s transmission while link 3 continues

its transmission.

The transition rate of a link from idle state to transmissionstate isλ = 1/E[tcd], while the

transition rate from transmission state to idle state isµ = 1/E[ttr]. Hence a higher rateλ and a

lower rateµ suggest a higher intensity of the link to access the channel.We define theaccess

intensity (AI) [3] of a link as the ratio of its mean transmission time toits mean countdown

time: ρ = E[ttr]/E[tcd] = λ/µ. Note that a higher value of AI suggests a higher intensity to

access the channel. We further define thetransmission aggressiveness(TA) [11], which is the

natural logarithm of AIρ, i.e., r = loge ρ. Since natural logarithm is a monotonically increasing
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function, a higher value of AI corresponds to a higher value of TA, which suggests the link is

more aggressive to transmit.

Given a profile of AIs~ρ = [ρ1, ρ2, · · · , ρN ], the stationary probability of the state~s ∈ S is

shown in [3] to be given by

p~s = 1/Z ·
∏

i:si=1 ρi, ∀~s ∈ S, (3)

where

Z =
∑

~s∈S

∏

i:si=1 ρi. (4)

and by default,p~e0 = 1/Z. In (4), when evaluatingp~s, the notation
∏

i:si=1 ρi means that for each

state~s, only those transmitting links are involved in the multiplication. Collectively, we can write

the state probability distribution as a vector−→p = [p~s1, p~s2, · · · , p~s|S|
], where|S| is the cardinality

of the setS, i.e., the number of feasible states.

Similarly, if we replace AIs by TAs and define a profile of TAs~r = [r1, r2, · · · , rN ] = loge ~ρ

for all links, the stationary state probabilities are givenby

p~s = 1/Z · exp(
∑N

i=1 siri), ∀~s ∈ S, (5)

where

Z =
∑

~s∈S exp(
∑N

i=1 siri). (6)

As an illustration, consider the state transition diagram in Fig. 3. Since the system state is a

time-reversible Markov process, the stationary probability distribution should satisfy






























p100 = ρ1 · p000,

p010 = ρ2 · p000,

p001 = ρ3 · p000,

p101 = ρ1 · p001 = ρ3 · p100 = ρ1 · ρ3 · p000,

p000 + p100 + p010 + p001 + p101 = 1.

(7)

Solving the equations in (7) yields

p000 = 1/(1 + ρ1 + ρ2 + ρ3 + ρ1ρ3) = 1/Z, (8)

whereZ is given in (4). OnceZ is evaluated, other state probabilities can be easily computed.

Despite the idealized assumption about instantaneous sensing and continuous backoff time, the

ICN model does capture the essence of CSMA under spatial reuse. It is shown in [3] that the

stationary probability distribution in (3) holds even if both the transmission time and countdown

time are not exponentially distributed, given that the ratio of their meanρi = E[ttr,i]/E[tcd,i]

for each link i ∈ N remains unchanged. On the other hand, in the discrete time model, the
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stationary probability distribution will deviate from (3)due to collisions. Fortunately, when

RTS/CTS handshaking is used and under the same TA, the stationary distribution will approach

that given in (3) since the collision period will be comparatively small for a sufficiently large

holding time [23].

Finally, it then follows from (5) and (6) that the throughputor mean service rate of linki is

given by

θi =
∑

~s∈S sip~s =

∑

~s∈S si exp(
∑N

i=1 siri)
∑

~s∈S exp(
∑N

i=1 siri)
, ∀i ∈ N , (9)

which is the sum of the stationary state probabilities defined in (5) in which link i is actively

transmitting (i.e.,si = 1). In vector form, if we define the vector~θ = [θ1, θ2, · · · , θN ], then the

N equations in (9) can be collectively written as

~θ =
∑

~s∈S p~s~s. (10)

where~s is theN-dimensional vector used to represent a system state.

IV. FEASIBLE THROUGHPUT REGION IN SPATIAL CSMA NETWORKS

In this section, we state and derive the key results on ICN which are important to our proposed

game theoretic framework to be presented in Section V.

A. Feasible and Strictly Feasible Throughput Region

Each feasible system state~s ∈ S corresponds to a feasible scheduling vector of link transmis-

sions. The feasible throughput region is therefore the convex hull [24, pp. 24] ofS, namely,

C̄ = {~θ|(~θ =
∑

~s∈S

p~s~s) ∧ (p~s ≥ 0, ∀~s) ∧ (
∑

~s∈S

p~s = 1)}. (11)

Eq.(11) shows that the feasible solutions are given by the convex combinations of the throughputs

at these feasible states while fulfilling the probability and probability distribution constraints. The

solutions are fully defined by a polytope whose vertices are the feasible system states~s ∈ S.

The interior ofC̄ is thestrictly feasible regionC:

C = {~θ|(~θ =
∑

~s∈S

p~s~s) ∧ (p~s > 0, ∀~s) ∧ (
∑

~s∈S

p~s = 1)}. (12)

Using the contention graph in Fig. 2 as an example. The set of feasible system statesS has

been given in (1). The feasible throughput region isC̄ shown in Fig. 4, which is a polyhedron

vertexed by the maximum throughput of these states (the region enclosed by the mesh surface

and its intersections withθ1−θ2, θ1−θ3 andθ2−θ3 planes). The strictly feasible regionC refers

to the inner region of the polyhedron only.
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Fig. 4: Feasible Throughput Region for Contention Graph in Fig. 2

B. Transmission Aggressiveness

CSMA is a distributed and randomized way to schedule the transmissions among the feasible

system states. It is shown in [11] using the ICN model that anythroughput in the strictly feasible

region can be achieved through a properly chosen TA~r, which is stated in the following lemma.

Lemma 1 (Lemma 8 in [25]). In the ICN model, for any desired throughput for all theN

links ~̃θ = [θ̃1, θ̃2, · · · , θ̃N ] ∈ C (strictly feasible region), there exists a unique finite-valued ~r =

[r1, r2, · · · , rN ] ∈ RN such thatθi(~r) = θ̃i, ∀i ∈ N .

A detailed proof can be found in [11] and [25]. Here we only present a sketch of the proof.

Proof: Given a~̃θ ∈ C, we use the maximum log-likelihood method to estimate the parameters

~r∗ which result in~θ(~r∗) = ~̃
θ, or equivalently, result in the desired state probability distribution

−→p θ̃ such that~θ(~r∗) =
∑

~s∈S p
θ̃
~s~s. The log-likelihood function [26] is defined as:

F (~r;
~̃
θ) =

∑

~s∈S

pθ̃~s loge(p~s). (13)

By applying ~̃θ =
∑

~s∈S p
θ̃
~s~s and substituting the expression forp~s given in (5), and after some

manipulations, we have

F (~r;
~̃
θ) =

∑N
i=1 θ̃iri − loge[

∑

~s∈S exp(
∑N

i=1 siri)]. (14)

Since
∑N

i=1 θ̃iri is affine in~r and loge[
∑

~s∈S exp(
∑N

i=1 siri)] is a log-sum-exp function and thus

is convex in~r, the functionF (~r; ~̃θ) is concave in~r [24, pp. 72]. Therefore, the max-log-likelihood

problem below is a convex optimization problem with~r as the variables to be solved and~̃θ as
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the parameters:

max
~r

F (~r;
~̃
θ) (Maximize log-likelihood). (15)

It is then shown in [11] that the max-log-likelihood problemin (15) is the dual problem of the

max-entropy problem in (16), where−
∑

~s∈S p~s loge p~s is the entropy of the distribution vector
−→p , whose elementp~s is the state probability for the state~s, ∀~s ∈ S. The max-entropy problem

is also a convex optimization problem, with−→p as the variables and~̃θ as the parameters.

max
−→p

−
∑

~s∈S p~s loge p~s (Maximize entropy)

s.t.











∑

~s∈S sip~s = θ̃i, ∀i ∈ N ,

p~s ≥ 0, ∀~s ∈ S,
∑

~s∈S p~s = 1.

(16)

We are now ready to prove Lemma 1. We need to verify that the Slater’s condition [24, pp.

226] is satisfied, so that the optimal solutions to the two convex optimization problems (15) (16)

exist with zero duality gap, given that~̃θ ∈ C (strictly feasible region).

Since all the constraints in (16) are linear equalities and inequalities, we only need to verify

that there exists a feasible−→p in the relative interior [24, pp. 23] of the domainD of the objective

function −
∑

~s∈S p~s loge p~s, which isD = {−→p |p~s ≥ 0, ∀~s ∈ S}. The relative interior ofD is

relintD = {−→p |p~s > 0, ∀~s ∈ S}. Since ~̃θ ∈ C, from (12) we can write~̃θ =
∑

~s∈S p
θ̃
~s~s where

pθ̃~s > 0, ∀~s ∈ S and
∑

~s∈S p
θ̃
~s = 1. By letting−→p = −→p θ̃ ∈ relintD, we find a feasible−→p which

satisfies all the constraints in (16). Therefore, the Slater’s condition is satisfied.

As a result, the optimal solutions to the two convex optimization problems (15) (16) exist

with zero duality gap. Moreover, the dual optimal value is attainable, i.e., there exists a finite

~r∗ such thatF (~r∗; ~̃θ) = max~r F (~r;
~̃
θ). Therefore, the first order condition [24, pp. 457] of the

unconstrainted differentiable convex optimization problem in (15) is satisfied at~r∗, i.e.,

∇F (~r; ~̃θ) |~r=~r∗= ~0, (17)

which yields

∂F (~r; ~̃θ)

∂ri
|~r=~r∗= θ̃i −

∑

~s∈S si exp(
∑N

i=1 sir
∗
i )

∑

~s∈S exp(
∑N

i=1 sir
∗
i )

= θ̃i −
∑

~s∈S sip~s = θ̃i − θ∗i = 0, ∀i ∈ N . (18)

Therefore, for any~̃θ ∈ C (strictly feasible region), the log-likelihood functionF (~r; ~̃θ) attains

its maximum value at a finite-valued~r = ~r∗ ∈ RN . At the optimal solution~r∗, the first-order

optimality condition (17) is satisfied, which corresponds to θ∗i (~r
∗) = θ̃i, ∀i ∈ N . It is further
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shown in [25] thatF (~r; ~̃θ) is strictly concave in~r. Therefore, the optimal solution~r∗ is unique.

�

Lemma 1 suggests that, if~̃θ ∈ C, then a unique solution~r∗ exists such thatθ∗i (~r
∗) = θ̃i, ∀i ∈ N .

The above proof also suggests that we can solve for~r∗ by maximizing the concave function

F (~r; ~̃θ). This is useful for the design of our game iteration algorithm presented in Section V-B.

C. Feasible Throughput Region Under ICN

Previously we have defined the feasible throughput region for any given set of feasible system

states. The shape of the polytopes derived from the ICN modelowns a property which will be

discussed here.

We first introduce a binary relation “�” between two real-valued vectors~̃ϑ and ~̃θ, which is

defined as component-wise less than or equal to, i.e.,

~̃
ϑ � ~̃

θ ⇔ ϑ̃i ≤ θ̃i, ∀i ∈ N . (19)

We now establish the following theorem which will be useful when presenting our proposed

games.

Theorem 1. In the ICN model, given that~̃θ ∈ C̄ (θ̃ is in the feasible region), then any desired

throughput~̃ϑ, where~0 � ~̃
ϑ � ~̃

θ, is also in C̄.

Proof: A first glance at Fig. 4 may lead to the thought that the theorem is trivial, but this is

not true. Fig. 5a shows a convex setA1 in the two-dimensional space. For a~̃θ ∈ A1 as shown

in Fig. 5a, it is easy to find a point~̃ϑ such that~̃ϑ � ~̃θ and yet~̃ϑ is not within the convex region

A1. On the other hand, it is not difficult to figure out that the convex setA2 in Fig. 5b owns the

property stated in Theorem 1.

In the ICN model, for a target throughput vector~̃θ where ~̃θ ∈ C̄, there exists a probability

distribution−→p θ̃ = {pθ̃~s, ∀~s ∈ S} where~̃θ =
∑

~s∈S p
θ̃
~s~s according to (11). To prove that~̃ϑ � ~̃θ ∈ C̄,

we need to similarly show that there exists another probability distribution−→p ϑ̃ = {pϑ̃~s , ∀~s ∈ S}

that fulfills (11). However, it is difficult to obtain the distribution−→p ϑ̃ directly from−→p θ̃ since it

depends on the underlying link topology.

Our approach is to define an orthotopeB whose “vertices” are obtained by projecting~̃θ on

all the coordinate planes. An example for the 3-dimensionalillustration is shown in Fig. 4. The

problem is now becoming equivalent to showing that all the “vertices” ofB are in C̄. Finally,

because~̃ϑ � ~̃
θ, ~̃ϑ is within the cuboid and hence within̄C.

We first perform a projection parallel to thei-th axis. Consider a throughput vector~̃ψ, with

the setting ofψ̃i = 0, ψ̃j = θ̃j , ∀j 6= i, i.e., thei-th link has zero throughput. It is intuitive that
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~̃
ψ is one of the “vertices” ofB. In order to show that~̃ψ is in C̄, we need to show that we are

able to obtain its state probability distribution{−→p ψ̃} from {−→p θ̃}, and ~̃ψ can be expressed in the

form as in (11). This can be done in the following way.

For ~̃θ ∈ C̄, its state distribution−→p θ̃ satisfies~̃θ =
∑

~s∈S p
θ̃
~s~s, p

θ̃
~s ≥ 0, ∀~s ∈ S and

∑

~s∈S p
θ̃
~s = 1.

We next describe how to construct the state distribution−→p ψ̃ for ~̃ψ. For those states inS with

si = 1, choosepψ̃~s = 0 andpψ̃~s−~ei = pθ̃~s−~ei + p
θ̃
~s. For the remaining states, choosepψ̃~s = pθ̃~s. In other

words, those states~s with si = 1 should now have state probabilitypψ̃~s = 0. The “removed” state

probability pψ̃~s should now be attributed to the state~s − ~ei. It is not difficult to verify that, by

doing so, the total probability remains one and the throughputs of all unaffected links remain the

same as before. This state probability distributionpψ̃~s clearly satisfies (11), hence we conclude

that the vertex~̃ψ is within C̄ and so are other vertexes ofB.

For the example shown in Fig. 3, assume that we have a throughput ~̃θ = [θ̃1, θ̃2, θ̃3] ∈ C̄. We

now show that~̃ψ = [ψ̃1, ψ̃2, ψ̃3] = [0, θ̃2, θ̃3] is also inC̄. Note that the throughput~̃ψ is equivalent

to the case in which link 1 powers off and stops transmitting.In such a case, there are only three

feasible system states left: 000, 010, 001. In other words, the states 100 and 101 disappear and

are merged into the states 000 and 001 respectively, since link 1 is no longer transmitting. State

010 remains unchanged. Merging the state probabilityp101 with p001 will ensure the throughput

for link 3 remains the same, sincẽθ3 = p001 + p101. Merging the state probabilityp100 with p000

will not affect the throughput of any remaining links. Sincethe total probability still sum up to

be one, link 1 will not be transmitting and both link 2 and link3 transmit as before. Therefore,

the throughput~̃ψ resulting from the above state merging operations is still in C̄.

Other vertices ofB can also be similarly shown to be in̄C. SinceC̄ is a convex set and the

convex combination of these “vertices” are all in̄C, we haveB ⊂ C̄. Since ~̃ϑ � ~̃θ is enclosed in

the hyperrectangle (N-orthotope),~̃ϑ should also be in̄C. �

Remark: Theorem 1 is not generally true for any convex set. It is truesince the values of

si are chosen from 0 and 1 only; and the subset of feasible statesinduced by a maximal

independent set is a complete partially ordered set [22] based on how ICN is modelled. For

the example in Fig. 3, the maximal independent set{1, 3} induces the subset of feasible states

Q = {[0, 0, 0], [1, 0, 0], [0, 0, 1], [1, 0, 1]}, which is a complete partially ordered set, with the least

element[0, 0, 0] and the largest element[1, 0, 1] under the partial order “�”. Hence the use of

the theorem needs to be carefully dealt with.

Theorem 1 will be used in Section V-C to show that the pricing problem is a valid quasi-convex

optimization problem.
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Fig. 5: Examples of 2-Dimensional Convex “Polytopes”

D. D2D Network Model

This subsection discusses how to efficiently model the resulting D2D network if CSMA is

adopted by all D2D links. If the objective of the network is tomaximize the sum-rate of all

transmitting links, and the BS gives no control on the admission and transmission of links, then

[11] has successfully solved this problem. The solution is computed in a completely distributed

manner. However, as pointed out earlier, such a fully cooperative model is too idealistic and

there is no consideration on the utility heterogeneity and selfish behaviors of the links. It may

be better to build a pricing framework so that each link triesto maximize its payoff function

when competing for resources, rather than someone tries to take advantage when the network

is in operation and drive the network to unstable states. Furthermore, maximizing the sum-rate

may not distribute the resources according to demand because links with low demand may be

assigned to transmit at higher rates due to its spatial location.

In this paper, we feel that the BS can take a more proactive role to assist in D2D transmission.

In fact, the problem can be formulated separately in terms ofthe objectives of the D2D links

and the BS. The objective of the BS is to maximize the sum-ratewhile satisfying the physical

layer constraints:
max

∑N
i=1 θ̃i

s.t. ~̃θ ∈ C,
(20)

where θ̃i is the target rate the network has to support linki, and the solution must fulfill the

CSMA channel access constraint, i.e., the final rates to support all D2D links must be in the

strictly feasible throughput regionC defined in (12).
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Each link is a player of a non-cooperative game. Each player tries to maximize its payoff

vi(θi, θ−i) while satisfying the physical layer constraints.

max vi(θi, θ−i), ∀i

s.t. ~θ ∈ C.
(21)

In (20), θ̃i is used to represent the rate demand from the utility point ofview and should

be differentiated fromθi in (21) or (9) used in the ICN model as a result of competing for

channel access. At the equilibrium state, these two quantities have to be the same and the pricing

mechanism aims to achieve this objective.

There are two challenges in the formulation. The above two optimization problems both involve

the constraint defined by the strictly feasible throughput regionC. From Lemma 1 we know that,

for any desired throughput~̃θ in the strictly feasible regionC, there exists an operating point~r

such that~θ(~r) = ~̃
θ. However, in order to obtainC as in (12), we need to know all the feasible

system states, which correspond to all the independent sets[3] in the contention graph. As is

shown in [3], to compute all the independent sets (include the maximal independent sets) is a

NP-hard problem. Hence it is practically difficult to obtainC. The second challenge is how to

align the solution of (20) with the involvement of (21).

Our approach is to develop a simple mechanism which does not require a-prior knowledge of

C and yet the radio resource can be allocated to the heterogeneous D2D links efficiently while

satisfying the objectives of both the BS and D2D links. A pricing mechanism is introduced to

achieve this purpose. The payoff function of each link is made to be dependent on the resource

price. The BS broadcasts the resource price and uses it to control the transmission behavior of

each link. Mathematically, the BS solves the following optimization problem:

max
M≥0

g(M) :=
∑N

i=1 θ̃i(M) (22)

whereθ̃i(M) is the target rate of D2D linki under the service priceM , which will be presented

in (23). The D2D links are the followers in the overall Stackelberg game, each of which chooses

its transmission strategy so that its individual payoff is maximized under the service price chosen

by the BS, i.e., the Stackelberg leader.

In the next section, we describe how our proposed Stackelberg game model can achieve the

above purposes.

V. STACKELBERG GAMES FOR NON-COOPERATIVE D2D LINKS

Stackelberg games [12] are a class of non-cooperative gamesin which a leader, who makes

the first move in the game, anticipates the actions of the followers based on a model of how

the followers would respond to its actions. We propose a Stackelberg game, in which the BS in
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the cellular network acts as a Stackelberg leader to regulate the transmission behaviors of all the

D2D links by broadcasting a proper service priceM . The D2D links are the followers, each of

which responds to the priceM by choosing its transmission strategy in an attempt to maximize

its individual payoff.

In Section V-A, we first define the utility functions for the D2D links, each of which charac-

terizes the individual service requirements and willingness to pay. In Section V-B, we study the

non-cooperative behaviors of the D2D links under a given network priceM , which defines the

follower-subgame in the Stackelberg game. The Stackelberggame is analyzed in Section V-C.

Based on the analysis, the pricing strategies of the Stackelberg leader are proposed in Section

V-D. A brief complexity analysis is given in Section V-E.

A. D2D Link Utility Function

We modify the traffic model used in [27] to our system. SupposeD2D link i has a target rate

θ̃i in the range of[γi, πi], whereγi ≤ θ̃i ≤ πi. If θ̃i < γi, link i achieves zero utility, and each

link has no intention to go beyond̃θi > πi. The exact target rate valuẽθi is controlled by the

service priceM through the following relationship

θ̃i(M) =

{

0, M > mi,

min{γi − bi(M −mi), πi}, 0 ≤M ≤ mi,
(23)

where γi, πi and mi together decide how linki is willing to pay for the transmission. For

simplicity, we have adopted a monotonically decreasing linear function forθ̃i(M) in the range

γi ≤ θ̃i ≤ πi, wherebi is a positive coefficient and−bi is the slope.

Eq. (23) is interpreted as follows. The parametermi is the highest price that linki is willing

to pay for its transmission. WhenM = mi, link i will only desire a minimum throughput ofγi.

When the price is too high (i.e.,M > mi), link i chooses not to transmit, and thus its target

rate drops to zero, i.e.,̃θi(M) = 0. Over the range0 ≤ M ≤ mi, link i is willing to pay for its

transmission, and the lower the priceM , the higher throughput it desires, unless it has already

reached its maximum desired throughputπi. In this range, we have used a linear function to

simplify the above monotonic relationship. Other functionforms such as hyperbolic, parabolic,

cubic · · · can also be used, as long as the monotonic relationship is preserved. As a result,

the relationship in (23) is a piecewise linear function. In the special case where the minimum

desired throughput isγi = 0 and the maximum desired throughputπi ≥ bimi, the piecewise

linear relationship in (23) simply reduces to a smooth linear relationship. A smooth monotonic

curve can be similarly obtained when other function forms are adopted. Note that our algorithm

works if only the monotonic function property holds.

The utility function is designed to provide differentiatedtreatment for the links based on their
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Fig. 6: Target Rates and Utility Functions of the CSMA Users

actual demand and willingness to pay for the desired transmission rate. For the example given

in Fig. 6a, D2D link 1 and link 3 have the same range in their target rates, i.e.,π1 = π3 and

γ1 = γ3, and link 3 has a higher willingness to pay, i.e.,m3 > m1. When the priceM continually

decreases from a large value until zero, link 3 will be admitted into the system first.

From the game theoretic perspective, linki will try to choose its target ratẽθi in order to

maximize its own payoffvi(θi) = Ui(θi)−Mθi (utility minus cost). To be compatible with such

an incentive, we can reversely derive the utility function of D2D link i as follows. If the utility

function Ui(θi) is concave, then theθi value that maximizesvi(θi) is given by the first-order

condition v′i(θi) = 0, i.e., θ̃i = (U ′
i)

−1(M). Equating with the example of (23) and we can

reversely derive the utility function for D2D linki:

Ui(θi) =











miθi, 0 ≤ θi < γi,

miθi −
(θi−γi)

2

2bi
, γi ≤ θi < πi,

miπi −
(πi−γi)2

2bi
, πi ≤ θi ≤ 1.

(24)

The utility functions for the three links’ example in Fig. 6aare plotted in Fig. 6b. If we take the

derivative ofUi(θi) on θi in (24), it can be seen that a highermi value corresponds to a steeper

slope, which suggests a higher willingness to pay. This can be seen from Fig. 6b, in which the

utility function of link 3 has a steeper slope than that of link 1.

B. A Subgame of Noncooperative CSMA Users

The Stackelberg game at thel-th stage begins with the BS broadcasting a priceM (l). Each D2D

link i (i ∈ N ) aims to maximize its payoffvi(θi) = U(θi)−M
(l)θi. According to the analysis in
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Section V-A, link i’s objective is equivalent to attaining a target rateθ̃(l)i under the service price

M (l), as given in (23). Whether these target rates are achievablestill depends on whether the

underlying CSMA mechanism can support these transmissions. The D2D links therefore play a

CSMA game among themselves to determine their individual TAs to make the throughputθi as

close toθ̃(l)i as possible. This CSMA game is therefore the follower-subgame in the Stackelberg

game. To avoid the links from transmitting too aggressivelyand driving the network to unstable

states as a result of congestion, a simple approach is to letM begin with a large value and then

gradually decrease.

We formally state the CSMA subgame as follows:

Players: Distributed Tx-Rx pairs (D2D links),i ∈ N , who compete to transmit in the ideal

CSMA network.

Strategies: Each playeri chooses its TAri ∈ R, ∀i ∈ N .

Objectives: Each playeri (i ∈ N ) aims to achieve its target ratẽθ(l)i set by maximizing its

payoff

vi(θi) = U(θi)−M
(l)θi (25)

under the given service priceM (l).

Note that the throughputθi that playeri can achieve is determined by its own TAri and

the TAs of all the other playersr−i based on the relationships in (9). The equilibrium solution

of the CSMA subgame is aNash Equilibrium (NE)[12], which is defined as a strategy profile

~r∗ = [r∗1, · · · , r
∗
N ] in which playeri’s strategyr∗i is a best response to the strategiesr∗−i of all

the other players, i.e.,

r∗i = arg min
ri∈(−∞,+∞)

|θ̃(l)i − θi(ri, r
∗
−i)|, ∀i ∈ N , (26)

whereθi(~r) is the achieved throughput of D2D linki in the ICN model, as given in (9).

It is clear that the objective of the subgame is to find the equilibrium TAs for all D2D links

so that every link achieves throughputs that are as close to what are desired. According to

Lemma 1, if the target rate~̃θ is in C, i.e., it is achievable, then there exists a unique TA~r∗

such thatθ∗i (~r
∗) = θ̃

(l)
i , ∀i ∈ N . On the other hand, if the target rate~̃θ is beyondC, during the

myopic best response updates, all players will keep increasing their TAs if their throughputs are

lower than their respective target rates, i.e., all links transmit aggressively and result in undesired

network congestion. The existence and uniqueness of the NE in the CSMA subgame can then

be established in the following proposition.

Proposition 1. For the target rate~̃θ ∈ C (strictly feasible region), there exists a unique finite-

valued NE~r∗ ∈ RN in the CSMA subgame. Moreover, the target rate~̃
θ is achieved at the NE,
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i.e., ~θ∗(~r∗) = ~̃
θ.

Proof: From Lemma 1, if the target rate~̃θ ∈ C (strictly feasible region), then there exists a

unique finite-valued~r∗ ∈ RN such that~θ∗(~r∗) = ~̃θ. As can be seen from (26), there exists a

unique NE~r∗, since the payoff of each player is maximized when~θ∗(~r∗) =
~̃
θ and no player has

the incentive to deviate from this NE unilaterally.�

In practice, the strategies of all the other playersr−i are usually not known by playeri if we

assume that there is no explicit information exchange amongthe players. We therefore design

some distributed updating method for the players to arrive at the NE. Let each player update

its strategy by measuring its own local statistics, e.g., measured throughput̂θi. For the k-th

measurement periodτ(k), player i keeps a record of the accumulated transmission time,Ti(k),

and obtains the empirical average throughput as

θ̂i(k) = Ti(k)/τ(k), ∀i ∈ N . (27)

A distributed way for playeri to update its strategy can be

ri(k + 1) = ri(k) + α · (θ̃(l)i − θ̂i(k)), ∀i ∈ N , (28)

whereα is a small positive step size. The conditions for the convergence of the NE in the CSMA

subgame are summarized in the following proposition.

Proposition 2. For the target rate~̃θ ∈ C (strictly feasible region), the iteration dynamics in (28)

with a small enough step sizeα and a long enough measurement periodτ will always converge

to the NE~r∗ ∈ RN in the CSMA subgame.

Proof: We apply the same idea used when proving Lemma 1. Given a~̃θ ∈ C, we use the

maximum log-likelihood method to estimate the parameters~r∗ which result in~θ(~r∗) =
~̃
θ, or

equivalently, result in the desired state probability distribution−→p θ̃ such that~θ(~r∗) =
∑

~s∈S p
θ̃
~s~s.

The log-likelihood functionF (~r; ~̃θ) is given in (14). It has been shown in Section IV-B that

F (~r;
~̃
θ) is a strictly concave function in~r and attains its maximum when~θ(~r∗) = ~̃

θ. Therefore,

we can use the subgradient method [28] to obtain the optimal solution~r∗, whereθ̃(l)i − θ̂i(k) is an

estimation of the gradient∂F (~r;
~̃
θ)

∂ri
(see (18)) in thek-th measurement period. Since the objective

function F (~r; ~̃θ) is differentiable and concave in~r, the subgradient method with constant step

sizeα yields convergence to the optimal value, provided the step size α is small enough and the

measurement period is long enough [28]. In summary, the above proposition follows.�

As mentioned above, under the myopic best response update approach, if the target rate~̃θ is

beyondC, all players will keep increasing their TAs if their throughputs are lower than their

respective target rates, and the network will be pushed intoan undesired congested situation.
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To overcome this problem, we impose a upper limitrmax on ri, ∀i ∈ N as an implementation

constraint. The iteration dynamics in (28) then become:

ri(k + 1) = min{ri(k) + α · (θ̃(l)i − θ̂i(k)), rmax}, ∀i ∈ N . (29)

The physical meaning of imposing thermax constraint is to refrain the D2D links from transmitting

too aggressively, so that the local congestion at some linkswill not affect the whole network.

The outcome of introducing such a restriction is that the feasible throughput region will shrink

into a subset of the original one. Hence the solution obtained with this constraint imposed is

always ensured to be withinC. During the myopic play, if any link arrives atrmax, the BS will

be informed. Then the priceM is frozen and the whole D2D network functions at the boundary

of the “shrunken” feasible throughput region. If this happens, not all users are able to achieve

their desired rates or even admitted, as the network is in “congestion”.

C. Analysis of the Stackelberg Game

In this subsection we analyze the game structure of the Stackelberg game. From Proposition 1

and Proposition 2, to satisfy~̃θ ∈ C, it is equivalent to checking that the CSMA subgame converges

to the unique subgame NE~r∗ defined in (26) under the given service priceM . Therefore, the

leader problem in (22) is equivalent to the following optimization problem:

max
M≥0

g(M)

s.t.











equality constraint (23), ∀i ∈ N ,

equality constraint (26),

r∗i < rmax, ∀i ∈ N ,

(30)

where r∗i is the TA of D2D link i at the NE of the CSMA subgame, as given in (26). The

constraintr∗i < rmax, ∀i ∈ N implies that the target rate~̃θ as given in (23) is strictly feasible at

the subgame NE, i.e., the throughput will converge to~θ∗(~r∗) =
~̃
θ in the CSMA subgame.

To distinguish from the NE~r∗ in the CSMA subgame, we call the equilibrium solution

(Mopt, ~ropt) of the Stackelberg game as the Stackelberg Equilibrium (SE)[29], whereMopt

is the optimal solution to (30) and~ropt is the subgame NE under the priceMopt.

The problem in (30) is non-convex [24, pp. 136] since the objective functiong(M) =
∑N

i=1 θ̃i(M)

is non-concave inM and the equality constraints (23) and (26) are nonlinear. Fortunately, the

problem can be converted into a quasi-convex optimization problem [24, pp. 144] and the

solution can be iteratively evaluated by solving a sequenceof convex optimization problems.

It can be interpreted in the following way. Since the target rate θ̃i(M) of each D2D linki is

non-increasing with the priceM , the chain of pricesM (0) > M (1) > · · · > M (l) > M (l+1)

induces a chain of target rates~̃θ(0) � ~̃θ(1) � · · · � ~̃θ(l) � ~̃θ(l+1). Therefore, the objective
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function g(M) =
∑N

i=1 θ̃i(M) is also non-increasing withM , and hence is quasi-concave inM .

Regarding the constraints in (30), from Lemma 1, if the target rate ~̃θ(l) ∈ C (strictly feasible

throughput region, which is the interior of the feasible throughput region̄C), then it is achievable

with finite-valued TAs~r∗. On the other hand, from Theorem 1, if the target rate~̃θ(l) 6∈ C̄, then

any target rate~̃θ(l+1) � ~̃
θ(l) is not in C̄, i.e., it is not achievable and the constraints in (30)

are not satisfied. The crossing from within̄C to beyond can be detected by the use ofrmax.

Therefore, the superlevel set{M |g(M) ≥ G} is convex, which is equivalent to the line segment

{M |g−1(sup g) ≤ M ≤ g−1(G)}, whereG is a constant,g−1 is the inverse function ofg(M),

and sup g is the optimal value of (30).

In summary, the problem in (30) is quasi-convex [24, pp. 137,pp.144], since the objective

function g(M) to be maximized is quasi-concave, and the superlevel set{M |g(M) ≥ G} is

convex. As a result, the problem in (30) can be reduced into a sequence of feasibility problems:

find M

s.t.























g(M) ≥ G,

equality constraint (23), ∀i ∈ N ,

equality constraint (26),

r∗i < rmax, ∀i ∈ N .

(31)

If the problem (31) is feasible, then the maximum total throughput sup g is not less thanG.

Conversely, if the problem (31) is infeasible, then we can concludesup g < G. In order to find

the optimal valuesup g to the problem (30), we can test different superlevelsG in the feasibility

problem (31).

For each superlevelG, from the proof of Proposition 2, the feasibility problem in(31) is

equivalent to the following max-log-likelihood problem:

max
~r

F (~r;
~̃
θ)

s.t.











equality constraint (23), ∀i ∈ N ,

M = g−1(G),

ri < rmax, ∀i ∈ N ,

(32)

whereF (~r; ~̃θ) is the log-likelihood function defined in (14). In other words, if the problem (31) is

feasible, then there exists a priceM = g−1(G), such that the target rate~̃θ(M) is achievable with

finite TA ri < rmax, ∀i ∈ N . Therefore, we can use the max-log-likelihood method to estimate

the parameters~r which achieve the target rate~̃θ(M)|M=g−1(G), as given in (23). Notice that given

the constantG, the priceM and the target rate~̃θ become constant values as well. Moreover, as

shown in the proof of Proposition 2, the log-likelihood function is concave in~r. As a result, the
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max-log-likelihood problem in (32) is a convex optimization problem, and can be solved by the

subgradient updating method in (29).

If the iteration dynamics converge to a subgame NE withr∗i < rmax, ∀i ∈ N , then the optimal

solution to (32) exists, i.e., the problem (31) is feasible.Otherwise, if the iteration dynamics in

(29) converge to a subgame NE withr∗i = rmax and θ∗i < θ̃i for some D2D linki, then the

optimal solution to (32) does not exist and the problem (31) is infeasible, i.e., not all D2D links’

target rates are being achieved.

In summary, the problem in (30) can be reduced into a sequenceof convex optimization

problems. A simple bisection method can be used to choose thesuperlevelsG (or equivalently,

the priceM = g−1(G)) and test the feasibility problem (31). Alternatively, we can borrow ideas

from the feasible direction method [30, Chap. 10] which avoids testing in the infeasible region,

and design the pricing strategies so as to keep the network operating in the feasible region while

tuning the priceM .

D. Pricing Strategies of the Stackelberg Leader

We call each round of CSMA subgame under a certain priceM as astagein the Stackelberg

game. In each stage, the leader needs the feedback from each D2D link i about its target rate

θ̃i, and the converged TAr∗i and throughputθ∗i . Notice that the leader only has knowledge about

the monotonicity of the D2D link’s target rate with the priceM and no information about (23)

of all links is required.

Under some low load situations, all links achieve their maximum desired throughputπi, ∀i ∈ N ,

if for all links i ∈ N , the target ratẽθi > 0 and remains unchanged between two consecutive

pricesM (l) andM (l+1). Under heavy load situations, the pricing strategies of theStackelberg

leader need to be carefully designed to converge to the optimal priceMopt.

To detect convergence, we define∆i = rmax−r
∗
i as the “margin” of transmission aggressiveness

for each D2D linki ∈ N . When the achieved target rates are close to the capacity boundary,

the leader can make use of∆min = min{∆i, ∀i ∈ N} as an indication of how close the current

throughput~θ∗ is to the boundary ofC. Since the total throughputg(M) is non-increasing with the

priceM , the leader can gradually decreaseM to increaseg(M) until the constraintr∗i < rmax

is “critically” satisfied for some D2D link saysi, i.e., ∆min ≤ ǫ, whereǫ is a small positive

threshold.

The algorithm at the BS works as follows. In the 0-th stage, the leader can start with a large

priceM (0) so that the network starts with low load. Similar to the Newton method [24, pp. 488]

which applies line search to narrow down the searching region before using Newtonian steps to

refine the optimal solution, the adjustment of our price strategies consist of two phases as well.

In the first phase the leader uses a relatively large decrement stepφ to decrease priceM until
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∆min ≤ η, whereη > ǫ is a threshold before entering the second phase. In the second phase,

the decrement steps are refined using∆min since∆min is getting smaller as the target rates are

approaching the boundary of the feasible throughput region.

In summary, the leader can update its priceM based on∆min at the end of thel-th stage as

follows:

M (l+1) =

{

M (l) − φ, ∆min > η,

max{M (l) − β ·∆min,Mlower}, ∆min ≤ η,
(33)

whereφ is a positive constant,β is a positive parameter.Mlower is initially set at 0 and is updated

to take the value of currentM (l) once it is detected that the solution for the target rate~̃θ is outside

the feasible region. Its purpose is to ensure that subsequent M (l+1), · · · should not go below this

value. The parameterβ can be chosen to be small enough so that the price gradually decreases

until ∆min ≤ ǫ. However, for faster convergence, it might happen that the initially chosenβ

is too large such that the new priceM (l+1) pushes the target rate~̃θ to be outside the feasible

region, i.e.,r∗i = rmax but θ∗i < θ̃i for some D2D linki. In such cases, the leader stores the

current unachievable price as the new lower boundMlower, resets the price to the previously

found achievable priceMprev, and reducesβ by a discount factorσ, e.g.,σ = 0.9.

The pricing strategies of the leader and the CSMA subgame aresummarized in Algorithm 1.

Through Algorithm 1, the Stackelberg game is guaranteed to gradually converge to the optimal

price Mopt under which the total throughput of the CSMA users are maximized while their

heterogeneous target rates can all be satisfied.

An important side-information which can be provided by the proposed algorithm is the iden-

tification of the bottleneck link in the heterogeneous D2D networks. Upon convergence of the

Stackelberg game, the D2D linkL = argmin{∆i, ∀i ∈ N} = argmin{rmax − r
opt
i , ∀i ∈ N} is

the bottleneck link to the network since any further decrease on the priceMopt would drive the

target rate~̃θ to be outside the capacity region and linkL can no longer achieve its target rate.

The identification of such bottleneck links can be of valuable information, for example, in data

offloading, to re-assign these links back to the cellular network when necessary. How to achieve

optimal trade-off remains as interesting future work.

E. Complexity of Algorithm 1

Algorithm 1 consists of two loops. In the outer loop, the BS chooses a service priceM (l) at

the l-th stage according to the pricing strategies in Section V-D. In the inner loop, for each given

service priceM (l), the D2D links play the CSMA subgame distributively and iteratively until

converging to their respective target rates. We analyze thecomplexity in terms of the number of

iterations required, first for the CSMA subgame, then for thepricing strategies.
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Algorithm 1 Iteration Process of the Stackelberg Game
1: Initialize:
2: The BS chooses the initial priceM = M (0) and informs the D2D links in the control plane;
3: Each D2D linki ∈ N chooses the initial TAri(0);

4: repeat:
5: In the l-th stage:
6: for i = 1, · · · , N D2D links do:
7: Set target ratẽθ(l)i based on priceM (l), as in (23);
8: end for
9:

10: repeat:
11: In the k-th measurement period:
12: for i = 1, · · · , N usersdo:
13: Estimate the empirical throughputθ̂i(k), as in (27);
14: Update the TAri(k + 1), as in (29);
15: end for
16: k ← k + 1;
17: until ~r converges to the subgame NE~r∗.
18: Each useri ∈ N informs the BS about̃θ(l)i , r∗i andθ∗i ;
19:
20: At the BS:
21: ∆min = min

i∈N
∆i = min

i∈N
(rmax − r∗i );

22: if ∆min > ǫ then:
23: setM (l+1) as in (33);Mprev = M (l); ∆prev = ∆min.

24: else if 0 < ∆min ≤ ǫ or (~̃θ(l) ≻ ~0 and ~̃θ(l) = ~̃
θ(l−1)) then:

25: The Stackelberg game converges withMopt = M (l); go to END.
26: else if r∗i = rmax but θ∗i < θ̃i for some useri then:
27: Mlower = M (l); β ← σ · β; M (l+1) = max{Mprev − β ·∆prev,Mlower}.
28: end if
29: l← l + 1;
30: until The Stackelberg game converges.END.

For the CSMA subgame, assume that the target rate~̃θ under the given service priceM (l) is

in the strictly feasible regionC. According to Proposition 1 and Proposition 2, the distributed

strategy updates of the CSMA users in (28) are equivalent to the gradient method in maximizing

the log-likelihood functionF (~r; ~̃θ) which is differentiable and strictly concave in~r. In particular,

the gradient ofF (~r; ~̃θ) is ∇F (~r; ~̃θ) = ~̃θ − ~θ(~r), as shown in (18). Since the maximum value

of F (~r; ~̃θ) is finite and attained at~r∗, this means that~θ∗(~r∗) = ~̃θ can be solved by setting the

gradient∇F (~r∗; ~̃θ) = ~0.

Since the norms of the throughput~θ(~r) and its gradient∇~θ(~r) are both bounded, it can

be shown that∇F (~r; ~̃θ) is Lipschitz continuous [31] in~r, i.e., ‖∇F (~ra;
~̃
θ) − ∇F (~rb;

~̃
θ)‖ =

‖~θ(~ra) − ~θ(~rb)‖ ≤ H‖~ra − ~rb‖, ∀~ra, ~rb ∈ RN , whereH is a positive constant. According to

Theorem 1 in [31, Section 1.4] and Theorem 2.1.14 in [32, Section 2.1.5], for a small enough
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step sizeα (0 < α ≤ 1/H), the number of iterations to reach‖∇F (~r; ~̃θ)‖ = ‖~̃θ − ~θ(~r)‖ < ξ is

O(1/ξ) (i.e., no more than a fixed multiple of1/ξ).

It is worth to mention that although this complexityO(1/ξ) on the number of required iterations

is independent on the number of users, we have inherently assumed that the measurement period

τ is long enough to provide an accurate estimation of throughputs. In fact, the choice ofτ depends

on the number of users and the underlying topology. The purpose of choosing a largeτ is to

ensure that the Markov chain corresponding to the updated~r reaches its stationary distribution

to allow for an accurate estimation of throughputs. In general, a larger number of users requires

a larger value ofτ . More comparisons and discussions on how to chooseτ for a given number

of users and different topologies can be found in [25].

We now briefly discuss how to estimate the number of pricing stages required in the outer

loop. This analysis is complicated by the fact that the step sizes for M are changing each

time. Assume that the maximum value of the price isMmax. In phase 1 of the price setting,

since the price is decreasing at a large constant stepφ, the number of pricing stages in phase

1 is capped by⌈Mmax/φ⌉, or ⌈Mmax/φ⌉/2 on average. In phase 2, the TA margin∆min ≤

η, and the price is already close to the optimal. In the algorithm, we refine the price change

δM (l+1) =M (l+1) −M (l) at stagel according toδM (l+1) = −β∆(l)
min progressively until the TA

margin gradually approaches the required precisionǫ, i.e., ∆min ≤ ǫ. Assume that the interval

ǫ < ∆min ≤ η is small, through simulations we find that the relationship between the TA margin

∆
(l+1)
min and the price changeδM (l+1) can be approximated by∆(l+1)

min = ∆
(l)
min+B ·δM

(l+1), where

B is a positive constant. Since we setδM (l+1) = −β∆(l)
min, hence∆(l+1)

min = ∆
(l)
min+B·(−β∆

(l)
min) =

(1 − βB)∆
(l)
min. The TA margin then follows a geometric progression and we can estimate the

value of h, so thatδM (l+h) ≤ ǫ. Hence it can be easily shown that the number of stages for

∆min to decrease fromη to ǫ is approximately log10 η/ǫ
log10 1/(1−βB)

, orO(d log10(η/ǫ)) for some suitable

choices ofβ andB (0 < βB < 1), whered = 1
log10 1/(1−βB)

. Note thatβ can be chosen according

to the value ofB, butB is topology and utility dependent. As a result, the total number of stages

required for convergence isO(1/φ) +O(d log10(η/ǫ)).

In summary, the number of iterations required for convergence in the proposed game is given

by the number of iterations per stage multiplied by the required number of stages, i.e.,O(1/ξ) ·

(O(1/φ) +O(d log10(η/ǫ))).

VI. SIMULATION STUDY

In this section we demonstrate the Stackelberg game via an example. Consider the 8 D2D links’

contention graph in Fig. 7a. Assume that the relationships between the links’ target rates and the

priceM are given as in Fig. 7b. In the ICN model, we assume that the links’ transmission time

is uniformly distributed with mean of 1 ms in the range[0.5, 1.5] ms. Further assume that link
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Fig. 7: Topology and Target Rates of 8 D2D Links

i’s backoff time is uniformly distributed with mean of1/ exp(ri) ms in the range[0, 2/ exp(ri)]

ms.

A. CSMA Subgame

Assume that the current priceM = 30, then from Fig. 7b we know that the D2D links’ target

rates are~̃θ = [0.270, 0.297, 0.347, 0.315, 0.242, 0.176, 0.132, 0.220]. Assume that the initial TAs

ri = −2, ∀i ∈ N . The CSMA subgame is then played according to Lines 10 to 17 inAlgorithm

1. In thek-th measurement period, we apply a simple averaging filter tosmooth the measured

throughput as:

θ̂i(k) = (1− δ) · θ̂i(k − 1) + δ · Ti(k)/τ, ∀i ∈ N , (34)

where δ is the weight of the new measurement. In our simulations, we chooseδ = 0.05 and

the measurement timeτ = 200 ms. A smaller value ofδ makes the measured throughput more

smooth, but also increases the convergence time. To update TAs as in (29), we choose the step

sizeα = 0.4 and the maximum allowable TArmax = 3. Note that a smaller value ofα guarantees

the convergence of the CSMA subgame, but also increases the convergence time. The iteration

process of the CSMA subgame is then plotted in Fig. 8. The CSMAsubgame converges to 99%

of the target rates (ξ = 1%) in around 150 iterations. According to the complexity analysis in

Section V-E, the number of required iterations isO(1/ξ), i.e., in the order of a fixed multiple of

1/ξ = 100. Thus our simulation result is in the same order as the above prediction.
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Fig. 8: CSMA Subgame of the 8 D2D links underM = 30

B. Stackelberg Game

Assume that the initial priceM (0) = 55, φ = 5, β = 5, η = 1, ǫ = 0.1, σ = 0.9, and the rest of

the parameters are the same as in Section VI-A. The iterationprocess of the Stackelberg game

is shown in Fig. 9. The game converges after 11 stages, in which ∆min = rmax − r3 = 3 − r3

and gradually approaches 0. The first 6 stages undergo a constant price decrement (φ = 5),

i.e., M = 55, 50, 45, 40, 35, 30 until ∆min ≤ η = 1 is detected. After the CSMA subgame

converges under the priceM = 30, we have∆min = rmax − r∗3 = 3 − 2.4 = 0.6 and hence

0.1 = ǫ < ∆min < η. Therefore, the Stackelberg game enters the second pricingphase, which

consists of 5 stages (M = 27.10, 25.00, 23.68, 22.73, 22.12), according to (33). We consider

the game converged when∆min ≈ 0.08 < ǫ and the optimal price isMopt = 22.12. After

convergence, the average error of the measured throughputsas compared to the target rates is

aroundξ = 1%. Notice that we cannot decreaseM any further since the network is already close

to the capacity boundary (r∗3 = 2.92 ≈ rmax = 3). In other words, any further decrease onM

would drive the target rate~̃θ to be outside the capacity region and some D2D links (e.g., link

3) can no longer achieve their target rates. In summary, the proposed Stackelberg game is able

to maximize the total throughput of the CSMA users while the target rates of the heterogeneous

users can all be satisfied.

The number of required stages before convergence is consistent with the analysis in Section

V-E. In the above simulations, the maximum value of the priceis Mmax = 60, and the constant
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Fig. 9: Stackelberg Games of the 8 D2D Links

stepφ = 5. Therefore, the maximum number of stages in phase 1 is⌈Mmax/φ⌉ = 12, or 6 on

average. In the simulations, phase 1 actually consists of 6 stages before entering phase 2. In phase

2, the required precisionǫ = 0.1, η = 1 and the required number of stages isO(d log10(η/ǫ)),

whered = 1
log10 1/(1−βB)

. The value ofB can be estimated by using(∆(l+1)
min −∆

(l)
min)/(M

(l+1) −

M (l)), which is approximately 0.07 in the small intervalǫ < ∆min ≤ η. Since we have chosen

β = 5, hence0 < βB = 0.35 < 1 andd = 1
log10 1/(1−βB)

= 5.3, and the required stages in phase

2 is in the order of a fixed multiple ofd log10(η/ǫ) = 5.3. In the simulations, phase 1 actually

consists of 5 stages before convergence. Note that a smallerβ could be used to guaranteeβB < 1,

however, it also increasesd and hence requires more stages for convergence. Finally, the total

number of iterations required in the Stackelberg game isO(1/ξ) · (O(1/φ) + O(d log10(η/ǫ))),

which is in the order of100 · (6+5.3) = 1130. In the simulations, the Stackelberg game actually

converges in around 1000 iterations, which is in the same order as the above prediction.

C. Effect of Parameterrmax

In the above simulations, we have used the parameterrmax = 3, and obtained the optimal price

Mopt that maximizes the total throughputg(M) for the 8 users in Fig. 7 with heterogeneous rate

requirements. As is discussed at the end of Section V-B, by introducing thermax constraint, the

feasible throughput region will shrink into a subset of the original one. In this subsection, we

apply different values ofrmax to the network and obtain the optimal priceMopt that maximizes
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the total throughputg(M) for the 8 users in Fig. 7a. To see the effect of parameterrmax only,

we assume that the 8 users are homogeneous in their rate requirements, i.e.,γi = 0.05, πi =

0.55, bi = 0.0125, mi = 50, ∀i ∈ N .

The optimal priceMopt and the corresponding total throughputg(Mopt) under each value of

the parameterrmax are plotted in Fig. 10. From Fig. 10 we can see that, as the value of rmax
increases, the achievable total throughputg(Mopt) also increases, moreover, the rate of increase

gradually slows down. Recall thatrmax is used to refrain the D2D links from transmitting too

aggressively. The outcome of introducing such a restriction is that the feasible throughput region

will shrink into a subset of the original one. In particular,when rmax = 3, the achievable total

throughput is 2.39. Forrmax > 3, the total throughput curve becomes almost flat and approaches

the upper bound 2.65 whenrmax tends to infinity (each user achieves a throughput of 0.33), under

which the shrunken capacity region stretches back to the original feasible throughput region̄C.

The corresponding bound on the optimal price isMopt = 27.5. In other words, we cannot further

reduce the priceM below 27.5 to increase the target rate~̃θ, as it is already on the boundary of

the feasible throughput region̄C.

It is observed from Fig. 10 that a largerrmax value leads to a larger capacity region, but this

also allows for longer transmission durations. However, the transmission duration should not be

too long in practice, otherwise it would lead to large accessdelay (where the access delay refers

to the time between the onset of two consecutive successful transmissions of a link) and large
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Fig. 11: Unstable Network Behavior without Price Control from BS

variations of the delay. The readers are referred to [23, Sec. IV] for more discussions. As a result

of the above observations, we have adoptedrmax = 3 in the above two subsections.

D. Unstable Network Behavior without Price Control from BS

Finally, we illustrate the outcome of the CSMA game when there is no price control from the

BS and when the collective target rates are outside the feasible throughput region̄C (corresponding

to rmax = +∞). Suppose the 8 users in Fig. 7a all desire a target rate of 0.5(which is larger

than the upper bound 0.33 achieved by the Stackelberg game inSection VI-C), and they choose

their TAs as in (28) in order to achieve their own target rates. The behaviors of the D2D links

are plotted in Fig. 11. Since the target rates are not achievable even whenrmax = +∞, each

selfish user chooses an ever-increasing TA when its throughput is below its own target rate. When

the TAs are high enough, the users intermittently capture the whole channel and prevent their

neighbors from transmitting for a long time, which results in unstable network behavoirs and

large access delay. On the other hand, with the pricing mechanism, the network is stable and

the maximum total throughputg(Mopt) is achieved as in Fig. 10, according to thermax value

chosen. Therefore, the BS plays an important role in tuning the service price so that the network

always operates within the feasible throughput region.
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VII. CONCLUSIONS AND FUTURE WORK

We study a group of D2D links which shares a dedicated inband overlay channel via CSMA.

The ICN model is leveraged on to analyze their behaviors and interactions under spatial reuse. We

further assume that the D2D links have heterogeneous rate requirements and different willingness

to pay, and they act non-altruistically to achieve their target rates and maximize their own payoffs.

To manage such non-cooperative user dynamics, we propose a Stackelberg game in which the

BS in the cellular network acts as a Stackelberg leader to regulate the D2D link transmissions by

modifying the service price, so that the total throughput ismaximized while the heterogeneous

target rates of the D2D links can all be satisfied. The problemis shown to be quasi-convex and can

be solved by a sequence of equivalent convex optimization problems. The pricing strategies are

designed so that the network always operates within the capacity region. The results are verified

by simulations. The joint optimization of D2D link scheduling and cellular data off-loading is

our future work.
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