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Abstract—Determining the geographical area that needs to be
excluded due to incumbent activity is critical to realise high
spectral utilisation in spectrum sharing networks. This can be
achieved by estimating the incumbent location and transmit
power. However keeping the hardware complexity of sensing
nodes to a minimum and scalability are critical for spectrum
sharing applications with a commercial intent. We present a dis-
crete space ℓ1-norm minimisation solution based on geolocation
aware energy detection measurements. In practice the accuracy of
geolocation tagging is limited. We capture the impact as a basis
mismatch and derive the necessary condition that needs to be
satisfied for successful detection of multiple incumbents’ location
and transmit power. We find the upper bound for the probability
of eliminating the impact of limited geolocation tagging accuracy
in a lognormal shadow fading environment, which is applicable
to all generic ℓ1-norm minimisation techniques. We propose an
algorithm based on Orthogonal Matching Pursuit that decreases
the residual in each iteration by allowing a selected set of basis
vectors to rotate in a controlled manner. Numerical evaluation
of the proposed algorithm in a Licensed Shared Access network
shows a significant improvement in the probability of Missed
Detection and False Alarm.

Index Terms—Sparse matrices, Spatial correlation, Cognitive
radio, Orthogonal Matching Pursuit, Licensed Shared Access.

I. INTRODUCTION

The series of wireless and in particular cellular technology
generations manifested over the last few decades have been
a great success providing much improved throughput and
quality of service in each generation. Although the engineered
solutions have well defined limits, the ever growing demand
for traffic is limited only by the users’ imagination. There was
a time that spectrum refarming was an option, however it is
becoming increasingly difficult to refarm the spectrum below
6 GHz.

The Dynamic Spectrum Access concept has been proposed
in literature as a spectrum sharing approach that increases
the efficiency in spectrum usage. In such systems there are
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two levels of users - incumbents that have the privilege to
use the spectrum at their discretion, and secondary users that
can use the spectrum with no interruption to incumbents. The
concept has been backed by a vast number of research work
in spectrum sensing for detecting whether an incumbent is
active [1]–[4]. Different spectrum sensing approaches such as
Energy Detection, Matched Filter Detection and Cyclostation-
ary Detection have been thoroughly investigated in literature,
in frequency-time domain.

Although the spectrum sharing concept emerged over a
decade ago, a commercially viable system is still overdue. To
promote efficient use of spectrum regulatory bodies are now
promoting spectrum sharing. In Europe, European Telecom-
munications Standards Institute Reconfigurable Radio Sys-
tems (ETSI RRS) Technical Standardisation Committee is
developing a two tier spectrum sharing framework named
Licensed Shared Access (LSA) for the 2300-2400 MHz band
[5]. In the initial stage the LSA sharing time scale is in the
order of years/months, which is expected to reduce down
to a minutes/seconds scale only. The development of LSA
is currently at a mature stage, standardisation activities are
expected to be completed in 2015. Also it should be noticed
that in the USA, Federal Communications Commission (FCC)
is beginning to lay out the rules and regulations for a 3 tier
spectrum sharing licensing model in the 3550-3650 MHz band
[6].

A common attribute of recent developments in spectrum
sharing is that incumbents communicate with secondary spec-
trum users. Particularly in the LSA framework, incumbents in-
form the active time of the day, frequency and an approximate
geographical region where the spectrum is already being used.
The incumbent is able to provide highly accurate information
on the active time of the day and frequency. However it can
only predict the active geographical area with limited accuracy.
Even though an incumbent is actively using the spectrum in
a large region, there will be local areas where incumbent
received power is too low. In such areas the secondary users
should be able to utilise the spectrum. Therefore the traditional
frequency-time domain based spectrum sensing approaches
that focus on millisecond scale spectrum sharing do not
augment well with emerging standardisation activities. Hence,
spectrum sensing should rather be focused on finding the area
where the incumbent is active in the spatial domain on a
minutes/seconds time scale.

Literature proposes to use geolocation tagged measurements
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in this regard [7]–[13]. In [7], the authors emphasise the
ability to detect more spectrum opportunities through location
awareness. In [14], the authors find an optimal detection
threshold that minimised a utility function of the hidden
node probability. In [8]–[10], the authors propose a concept
named Radio Environment Map (REM) to enhance contextual
awareness of wireless networks in spatial domain. REM can be
envisioned as a heatmap that shows the propagation pattern of
a RF signal in space. A REM of the incumbent signal clearly
shows spectrum holes in space.

When finding the geographical area where the incumbents
are active, the incumbent location, transmit power and the
radiation pattern of the incumbent antenna are critical pa-
rameters. The use cases of LSA suggest the incumbents tend
to have an omnidirectional antennas [15]. Therefore active
area is a function of the incumbent location and the transmit
power. Following this notion, in [16], [17], the authors present
a framework which can be used to locate an incumbent.
However the feasibility of this framework in the presence
of multiple incumbents has not been reported. A scalable
approach that can jointly detect the transmit power and the
location of multiple incumbents through a reasonable number
of measurements from less complex measurement devices is
preferred for commercial applications.

Therefore, in our previous work [11], [12], we formulated
incumbent transmit power and location detection as a discrete
space ℓ1-norm minimisation problem. We showed that it is
possible to detect the locations and transmit powers of mul-
tiple incumbents by exploiting the sparsity in spatial domain.
However we contemplated that all nodes collecting measure-
ments are located on a subset of predetermined locations (we
refer to this scenario as on-grid). The channel between any
predetermined location to other predetermined locations was
estimated through training.

In applications with a commercial intent (such as LSA), low
cost measurement devices may not be located in predetermined
points in space as such (we refer to this scenario as off-
grid). When measurement devices are off-grid, the channel
from a predetermined location to a device is not known. The
ℓ1-norm minimisation techniques suggested in [11], [12] are
less effective in such an environment, as the basis vectors
become erroneous. In this paper we extend our previous work
by addressing the issue of joint detection of incumbent location
and transmit power through geolocation aware measurements
from a network of off-grid measurement devices.

As we suggested the harmful effect of off-grid measure-
ment devices can be mitigated by infinitely increasing the
resolution of the predetermined reference point layout [11].
Another possible solution is to estimate the channel to each
off-grid measurement device through training. Further, the
literature suggests using the well-known Dictionary Learning
techniques [18]–[20] to estimate the basis vectors. Although
such approaches produce more accurate estimations for basis
vectors in ℓ1-norm minimisation, they result in increased traffic
overhead.

With a strong emphasis on not increasing the traffic over-
head any further, we consider possible signal processing tech-
niques. We use the channel estimations between predetermined

reference points as the ℓ1-norm basis. However we capture
the off-grid error as an unknown rotation/scale of the known
basis vectors. We propose to allow basis vectors to rotate in a
controlled manner within well defined bounds to mitigate the
off-grid errors. Our approach significantly reduces the off-grid
error while strictly maintaining the same traffic overhead as
our previous work.

Main contributions of this paper are as follows:

• Summarise the incumbent location and transmit power
detection as a discrete space ℓ1-norm minimisation prob-
lem based on our previous work [11], [12]

• When using ℓ1-norm minimisation, the dictionary matrix
should satisfy the Restricted Isometry Property (RIP).
Although the previous numerical results indicated the
dictionary matrix meets the RIP requirement, no analyt-
ical proof was found in literature. This paper proves the
dictionary matrix meets the RIP condition.

• Our main contribution of this paper is extending the
discrete space model by taking into account off-grid
Measurement Capable Devices (MCDs). The impact of
off-grid nodes is captured as a mismatch in the dictio-
nary matrix. Majority of the literature suggests using
Dictionary Learning techniques to discover the dictionary
matrix [18]–[20]. However, in this paper we build on the
recent work in [21], [22]. Our approach falls into the
class of Orthogonal Matching Pursuit (OMP) algorithms,
and it reduces the impact of off-grid nodes without
incurring any additional communication overhead. This
is achieved by allowing the dictionary vectors to rotate
in the direction of the residual at each iteration. Further,
we find the necessary condition that needs to be satisfied
in order to overcome the harmful impact of the off-grid
MCDs.

• We apply the proposed improvement to a cellular network
operating in the 2300-2400 MHz band under a LSA
agreement. The LSA licensee network uses geolocation
tagged measurements from mobile devices and basesta-
tions to determine the incumbent location and transmit
power.

• Numerical results show a substantial improvement in the
ability to determine the location and transmit power of
sparsely distributed incumbents. The approach in [21]
tends to overestimate the number of incumbents while
[22] underestimates. The proposed improvement gets
significantly closer to the actual number of incumbents.
Additionally, a clear improvement is evident in the prob-
ability of False Alarm (FA) and Missed Detection (MD).

In Section II, we describe the system model assumed in our
work. In Section III, we formulate the joint incumbent transmit
power and location detection problem as an ℓ1-norm minimisa-
tion problem. We also prove that Restricted Isometry Property
holds in this scenario. In Section IV, we find the upper bound
of the probability of successful detection that can be achieved
by any ℓ1-norm minimisation technique, when using off-grid
measurements. We also develop a reconstruction algorithm
to mitigate the harmful impact of off-grid measurements by
allowing basis vectors to rotate within well defined bounds.
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Fig. 1: System model. Single incumbent scenario is illus-
trated here, although this work considers the multiplicity of
incumbents. Incumbents are considered to be on any subset
of reference points, Measurement Capable Devices (MCDs)
could be anywhere in space.

In Section V, we summarise the numerical results obtained by
simulating the proposed approach in a LSA network operating
in 2300-2400 MHz band.

II. SYSTEM MODEL

Consider a set of discrete Np points in two dimensional
space covering a region where incumbents could be active.
We allow k incumbents to actively transmit in a subset of
k sparsely distributed discrete reference points. Among all
Measurement Capable Devices (MCDs) in the LSA network
Ns MCDs are collecting geolocation tagged Received Signal
Strength (RSS) measurements of the incumbent signal. A
MCD could be any transceiver in the LSA network (a mobile
device or a basestation) and/or dedicated sensor nodes with
self geolocalisation ability. Geolocation tagged RSS measure-
ments are then processed in a central location to determine at
which reference points the incumbents are active at, and the
transmit power. The system model is shown in Fig. 1.

Let ri(t) be the received signal at any ith reference point
at time t, that can be written as,

ri(t) =

Np∑
j=1

hij(t)sj(t) + ni(t) (1)

where hij is the complex channel gain (i.e. transfer function)
from the jth transmit reference point to the ith receive
reference point. The transmit signal at the jth reference point
is denoted by sj , if no transmission occurs at the jth reference
point sj = 0 condition is held. ni is the Additive White
Gaussian Noise (AWGN). We assume a narrow band and
frequency-flat fading channel.

Hence, the received signal at all grid points can be written
in vector notation as,

r(t) = (r1(t), r2(t), . . . , rNp(t))
T = H(t)s(t) + n(t) (2)

where n(t) is a Np × 1 AWGN vector, s(t) =
(s1(t), s2(t), . . . , sNp(t))

T and (·)T is the transpose of (·).
Further H is a Np ×Np matrix (not Ns ×Np) as follows,

H =


h11 h12 · · · h1Np

h21 h22 · · · h2Np

...
...

. . .
...

hNp1 hNp2 · · · hNpNp

 (3)

The instantaneous Received Signal Strength (RSS) at discrete
time sample t can be calculated as r(t) ◦ r(t)∗, where ◦ is
the Hadamard product. The mean value calculated over M
samples at the MCDs can be written as,

Pr(t) =
1

M

M−1∑
i=0

r(t− i) ◦ r(t− i)∗ (4)

We assume a signal transmitted from any ith point is uncor-
related with a signal transmitted at jth point. Additionally
we also assume that noise is spatio-temporally white and
independent of transmitted signal. Therefore we can rewrite
(4) as follows,

Pr(t) = Ψ(t)Pt(t) + σ2
n1Np (5)

where Ψ(t) is the Np × Np channel gain matrix given by
[Ψ]ij(t) =

1
M

∑M−1
i=0

[
|hij(t− i)|2

]
, Pt is the Np×1 transmit

power vector given by [Pt]i = 1
M

∑M−1
i=0

[
|si|2

]
, σ2

n is the
variance of AWGN and 1Np is a Np × 1 vector of ones. We
consider that Ns MCDs are performing spectrum measure-
ments at any given time. Hence the RSS at Ns reference points
nearest to that subset of MCDs taking measurements can be
written as Ps (⊂ Pr),

Ps(t) = Φ(t)Ψ(t)Pt(t) + σ2
n1Ns (6)

where Φ(t) is the Ns×Np matrix representing the geolocation
of spectrum sensing nodes as follows,

[Φ]kj =

{
1 if kth MCD is at jth reference point
0 otherwise

(7)

The geo-location of the sensing nodes is assumed to have been
provided by an external service such as the Global Positioning
System (GPS). Note that the impact of MCDs being off-grid
is analysed in Section IV.

The incumbent location and transmit power detection prob-
lem can be stated as solving the underdetermined system in
(6) for Pt. The indices of non-zero elements in Pt vector
correspond to incumbent locations, whereas the values at those
indices are the transmit powers of each incumbent.

III. DETERMINING THE INCUMBENT LOCATIONS AND
TRANSMIT POWERS

In a typical operating environment of a secondary system,
multiple incumbents that are sparsely distributed in spatial
domain might be present. Therefore, the large fraction of ele-
ments in Pt(t) vector will be zero, while the non-zero elements
will be sparse. Motivated by this characteristic, we investigate
the possibility of using ℓl-norm minimisation techniques to
solve the underdetermined problem in (6). However, when
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using ℓ1-norm minimisation, one must ensure the dictionary
matrix Φ(t)Ψ(t) satisfies the Restricted Isometry Property
(RIP) for the intended application. In Theorem 1 we prove
Φ(t)Ψ(t) follows RIP, the rest of the section formulates a ℓ1-
norm minimisation problem.

Any element in Ψ(t) can be written as [Ψ]ij(t) =
1
M

∑M−1
i=0

[
|hij(t− i)|2

]
. In the most dynamic form, spectrum

sharing related standardisation activities are focusing on shar-
ing in a seconds scale as discussed in Section I. Therefore, the
effect of fast fading can be considered to have been averaged
out over M samples. Hence, any element in Ψ(t) can be
modelled as,

[Ψ]ij(t) =
1

M

M−1∑
i=0

[
|hij(t− i)|2

]
∼ Gij(t)Lij(t) (8)

where Gij is a coefficient capturing large scale shadow fading
and Lij captures the pathloss. In the rest of the paper we omit
the time (t) notation for simplicity in illustration.

Theorem 1: Let the number of incumbents be k. When the
number of MCDs Ns ≥ c1k log(Np/k) where c1 is a constant,
the probability that ΦΨ satisfies

1− δk ≤
∥ΦΨv∥22
∥v∥22

≤ 1 + δk (9)

for some δk ∈ (0, 1) and any k-sparse vector v tends to 1. In
other words, the ΦΨ matrix satisfies the Restricted Isometry
Property (RIP).

Proof: The proof is provided in Appendix A
In any incumbent wireless network, it is reasonable to

assume the transmitters are sparsely distributed. Hence, we
assume that Pt is a sparse vector. Computing ℓ0-norm essen-
tially counts the number of non-zero elements in Pt. Since
ΦΨ satisfies RIP, we formulate the ℓ0 minimisation problem
as follows,

argmin
P∗

t

∥P ∗
t ∥0

subject to: ∥Ps − σ2
n1Ns − ΦΨP ∗

t ∥2 ≤ ϑ̂ (10)

where ∥(·)∥p is the ℓp norm and ϑ̂ is a constraint relaxation pa-
rameter. However this problem is numerically unstable due to
non-convexity [23]. Therefore we convert the ℓ0 minimisation
to a ℓ1 minimisation problem as follows,

argmin
P∗

t

∥P ∗
t ∥1

subject to: ∥Ps − σ2
n1Ns − ΦΨP ∗

t ∥2 ≤ ϑ (11)

Please note that constraint relaxation parameter changes when
converting (10) into the ℓ1-norm minimisation form in (11).
The ℓ1 minimisation problem in (11) can be solved in
polynomial time using a log barrier algorithm [24]. Since
Ψ is however a large and dense matrix, literature suggests
using greedy algorithms such as Orthogonal Matching Pursuit
(OMP) for lower computational complexity [21]. The primary
advantage of the ℓ1 minimisation technique is the robustness
even in the presence of multiple incumbents. However, the
accuracy of Pt estimation is dependant on the ΦΨ estimation.

IV. IMPACT OF OFF-GRID MEASUREMENT CAPABLE
DEVICES

A common drawback in any discrete system is the quantiza-
tion error. In a typical operating environment, any transceiver
with self-geolocalisation capability in the secondary system
could be considered as a MCD. Since the MCDs may not be
located exactly on the set of Np reference points, the channel
from the jth reference point to ith MCD will be different from
[Ψ]ij . One approach would be to increase the resolution of the
reference point layout until all Ns nodes are on-grid. This will
increase the size of Φ and Ψ matrices resulting in too many
possible solutions for the underdetermined problem in (11).

Therefore, we propose an alternative approach to capture
the off-grid error (spatial domain quantisation error). The Ns

MCDs taking measurements in continuous two dimensional
space are related to the nearest Ns reference points. The
spectrum measurements taken by the MCDs can be written
similar to (6), where [Ψ̃]ij(t) = 1

M

∑M−1
i=0

[
|h̃ij(t− i)|2

]
is the channel from jth grid point to ith MCD. Hence the
measurement process becomes,

P̃s = ΦΨ̃Pt + σ2
n1Ns (12)

Reconstruction process should have been,

argmin
P∗

t

∥P ∗
t ∥1

subject to: ∥Ps − σ2
n1Ns

− ΦΨ̃P ∗
t ∥2 ≤ ϑ (13)

Please note that (13) uses Ψ̃, whereas (10) and (11) use
Ψ as the channel matrix. However, the channel from any
selected reference point to the ith MCD is not known, unless
the ith MCD is exactly at the ith grid point. Therefore the
reconstruction has to be done with (11) which introduces an
error in the reconstruction process. In this section we find
the necessary condition that needs to be satisfied to overcome
this mismatch and propose an algorithm to minimise the error
caused.

A. Necessary condition for recovery

Proposition 1: In a quasi dynamic spectrum access scenario
(i.e. time samples average out the small scale fading effect),
the shadow fading coefficient from the jth grid point to ith
MCD G̃ij is given by,

[G̃ij ]dB = ρ[Gij ]dB +
√

1− ρ2Rij (14)

where Rij ∼ N (0, σ2
g) and,

ρ = R(∆x) = exp

(
−|∆x|
dc

)
(15)

is the autocorrelation of shadowing when MCD is |∆x| away
from the nearest grid point [25, Eq. (6)]. The decorrelation
distance of shadowing dc is dependent on the environment.

Proof: Large scale shadow fading is known to follow a
log-normal distribution with exponentially decaying autocorre-
lation given by ρ [25], [26]. Therefore the correlation between
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shadow fading coefficient from the jth grid point to the ith
grid point and nearest MCD can be written as,

R =

(
1 exp(−|∆x|/dc)

exp(−|∆x|/dc) 1

)
(16)

We find a lower triangular matrix RL using Cholesky decom-
position such that R = RLR

T
L holds.

RL =

(
1 0

exp(−|∆x|/dc)
√
1− exp(−2|∆x|/dc)

)
(17)

Hence the correlated shadowing coefficients [Gij ]dB and
[G̃ij ]dB can be written as,(

[Gij ]dB

[G̃ij ]dB

)
= RL

(
[Gij ]dB
Rij

)
(18)

By substituting ρ = exp(−|∆x|/dc), we can deduce (14).
Proposition 2: Let the channel from the jth reference point

to the ith MCD be Ψ̃ij . Let the channel from the same point
to the nearest reference point that corresponds to the ith MCD
be Ψij . Off-grid perturbations can be modelled as,

Ψ̃ij = Ψijψ̃ij (19)

where ψ̃ij = 10.1(
√

1−ρ2Rij−(1−ρ)[Gij ]dB)

Proof: The measurement channel from the jth grid point
to the ith node can be written as Ψ̃ij = L̃ijG̃ij . Since the
ith node is taking measurements in the near neighbourhood of
the ith reference point we can assume the pathloss variation
is minor.

Ψ̃ij = L̃ijG̃ij ≈ LijG̃ij (20)

Variation of shadow fading due to off-grid nodes can be
modelled as shown in Proposition 1. Clearly it can be shown
that,

Ψ̃ij = LijGijψ̃ij = Ψijψ̃ij (21)

Proposition 3: The angle φ between any two vectors Ψj

and Ψk is an acute angle.
Proof: Consider the inner product,

Ψj ·Ψk =

Np∑
i=1

ΨijΨik =

√√√√ Np∑
i=1

Ψij

√√√√ Np∑
i=1

Ψik cos(φ) (22)

Since Ψij ,Ψik > 0 (∀1 ≤ j, k ≤ Np), clearly cos(φ) > 0.
Therefore φ < π/2 is an acute angle.

Theorem 2: Consider any column vector Ψj . The error
caused by off-grid measurement process could be corrected
only if,

Np∑
i=1

Ψij − cos(φ/2)

√√√√ Np∑
i=1

Ψ2
ij

Ψijψ̃ij > 0 (23)

condition is met.
Proof: The error caused by the measurement process

using Ψ̃ij channel and estimation using Ψij can be modeled
as an unknown rotation of the column vector Ψj by an angle
ϑ and a stretch factor. Possible realisations of Ψ̃j can be

ϕ≤90
o

ϑ

Ψj

Ψj could be anywhere in 

this region

~Ψk

Fig. 2: The error caused by the measurement process can be
captured as an unknown rotation and stretch. To recover the
signal the unknown rotation should be upper bounded as ϑ <
φ/2.

visualised as a Np-dimensional cone around the vector Ψj ,
shown in Fig. 2. Similarly any other vector Ψk (where k ̸= j)
will also have a Np-dimensional cone around it, within which
Ψk is subject to rotation and scaling. Any overlap between
those two spaces will result in a non-unique projection which
makes the recovery not possible. Therefore, to avoid any
overlap it is necessary to satisfy,

ϑ < φ/2 (24)

where φ is the angle between Ψj and any column vector
Ψk (k ̸= j).
From Proposition 3, φ is an acute angle. Therefore,

⇔ cos(ϑ) =

∑Np

i=1 ΨijΨ̃ij√∑Np

i=1 Ψ
2
ij

√∑Np

i=1 Ψ̃
2
ij

> cos(φ/2) (25)

From Proposition 2, and omitting 1 to Np indexing in the
summations we write,

⇔
∑

Ψ2
ijψ̃ij√∑

Ψ2
ij

√∑
Ψ2

ijψ̃
2
ij

> cos(φ/2) (26)

Since Ψijψ̃ij > 0 we can write
∑

Ψijψ̃ij >
√∑

Ψ2
ijψ̃

2
ij .

Therefore,

⇐
∑

Ψ2
ijψ̃ij∑

Ψijψ̃ij

> cos(φ/2)
√∑

Ψ2
ij (27)

⇔
∑(

Ψij − cos(φ/2)
√∑

Ψ2
ij

)
Ψijψ̃ij > 0 (28)

Proposition 4: In each vector Ψj , there exists at most one
element Ψij which satisfies Ψij > cos(φ/2)

√∑
Ψ2

ij .
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Proof: A proof by contradiction is provided for this
proposition. Consider a 3× 1 vector Ψj = (Ψ1j ,Ψ2j ,Ψ3j)

T .
Let,

Ψ1j ,Ψ2j > cos(φ/2)
√
Ψ2

1j +Ψ2
2j +Ψ2

3j (29)

Since Ψij > 0 and φ is an acute angle we write,

⇒ Ψ1j > cos(φ/2)
√
Ψ2

1j +Ψ2
2j +Ψ2

3j (30)

⇔ Ψ2
1j > cos2(φ/2)(Ψ2

1j +Ψ2
2j +Ψ2

3j) (31)

⇔ Ψ2
1j >

1

tan2(φ/2)
(Ψ2

2j +Ψ2
3j) (32)

For an acute angle φ, we can write tan2(φ/2) ≤ 1. Therefore,

⇒ Ψ2
1j > Ψ2

2j +Ψ2
3j (33)

⇒ Ψ2
1j > Ψ2

2j (34)

Similarly, considering Ψ2j we get,

Ψ2
2j > Ψ2

1j (35)

which is a contradiction. Hence, there exists at most one
element such that Ψij > cos(φ/2)

√∑
Ψ2

ij .
Theorem 3: The probability of successful recovery of Pt

using measurements from off-grid MCDs is upper bounded
by,

1−
Np\{k}∏

i=1

Q

(
(1− ρ)[Gij ]dB + [fij ]dB

σ2
g

√
1− ρ2

)
(36)

where,

fij =
Ωk

Np − 1

1(
cos(φ/2)

√∑
Ψ2

ij −Ψij

)
Ψij

(37)

Proof: Let Ωk =
(
Ψkj − cos(φ/2)

√∑
Ψ2

ij

)
Ψkjψ̃kj .

The kth element of Ψj is Ψkj . From Proposition 4, consider
the scenario where Ωk > 0 exists for exactly one value of
1 ≤ k ≤ Np. From Theorem 2, the error caused by off-grid
nodes can be eliminated only if,

Ωk −
Np\{k}∑

i=1

(
cos(φ/2)

√∑
Ψ2

ij −Ψij

)
Ψijψ̃ij > 0 (38)

Clearly this condition will not be satisfied when,(
cos(φ/2)

√∑
Ψ2

ij −Ψij

)
Ψijψ̃ij >

Ωk

Np − 1
(39)

for each i ∈ {1, . . . , Np}\{k}.
Since

(
cos(φ/2)

√∑
Ψ2

ij −Ψij

)
> 0 we write,

ψ̃ij >
Ωk

Np − 1

1(
cos(φ/2)

√∑
Ψ2

ij −Ψij

)
Ψij

= fij (40)

Since ψ̃ij > 0 this condition will be always met when fij ≤ 0.
However a stronger condition needs to be found as fij > 0.

Since log is monotonically increasing, and by substituting ψ̃ij

expression, √
1− ρ2Rij − (1− ρ)[Gij ]dB > [fij ]dB (41)

Rij >
1√

1− ρ2
((1− ρ)[Gij ]dB + [fij ]dB) (42)

Therefore, when (42) is satisfied the off-grid error cannot be
corrected. The probability of failure to recover is,

Q

(
(1− ρ)[Gij ]dB + [fij ]dB

σ2
g

√
1− ρ2

)
(43)

Also it should be noted that algebraically there is the possibil-
ity that Ωk < 0 for all k. However in the problem of interest,
unless all reference points are closely packed in space, some
Ψij values are substantially larger than others. Therefore the
probability of Ωk < 0 for all k is zero. Hence,

1−
Np\{k}∏

i=1

Q

(
(1− ρ)[Gij ]dB + [fij ]dB

σ2
g

√
1− ρ2

)
(44)

is the upper bound for the probability of successful recovery.

B. Illustration of the basis vector rotation concept

The fundamental principle behind the reconstruction algo-
rithm is illustrated in Fig. 3 for a 3-dimensional scenario. In
Fig. 3a we show a vector that has been projected onto two
basis vectors. The residue in the third dimension is shown
as a vector in red colour. This residue could be due to basis
mismatch or due to the presence of an actual vector component
in that dimension.

Consider the basis vector 1 and residue. Consider the
intersection between the cone within which perturbed basis
vector 1 sits and the plane that contains the residue and basis
vector 1. Any perturbation that produces a vector component
in this plane contributes to the residue. Note that in the worst
case scenario the basis vector could have been on the axis of
intersection between the lateral cone surface and the plane that
contains the residue and basis vector 1.

Therefore, by allowing the basis vector 1 to move in the
direction of the residue, we increase the length of vector
projection onto the rotated basis vector while decreasing the
length of the residue. This is shown in Fig. 3b. Note that the
length of blue vector (basis vector 1) has grown while the
length of red vector (residue) has shrunk.

This step has been repeated for the basis vector 2 and the
residue in Fig. 3c. Therefore, the result is the smallest possible
residue vector after providing for basis mismatch.

C. Reconstruction algorithm

When the condition in Theorem 2 is met, it is possible
to reconstruct the P ∗

t vector that contains the locations and
transmit powers of k incumbents. We build on the well known
OMP algorithm and the improvement to OMP proposed in
[22].

Consider the scenario of attempting to solve (13) for P ∗
t

using OMP. In each iteration of the algorithm, it discovers
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Fig. 3: Perturbation reduction by controlled rotation of basis vectors. (a) vector decomposition (b) rotation of basis vector 1
and residue (c) rotation of basis vector 2 and residue

one non-zero element in P ∗
t . If the number of incumbents

present is k, the vector P ∗
t should have k non-zero elements

(hence the algorithm will run for k iterations). Consider the
nth (≤ k) iteration of OMP. At this point the algorithm has
decided there are n−1 non-zero elements in P ∗

t i.e. pick n−1
columns of ΦΨ as the signal support. The residue vector is
calculated in the begining of nth iteration as follows,

γn = Ps −
∑

j∈λn−1

[ΦΨ]j [P
∗
t ]j (45)

where λn−1 is a set of column numbers of ΦΨ that corre-
sponds to non-zero elements in P ∗

t in (n − 1)th iteration. If
the residue is below a predetermined threshold (i.e. γn ≤ ε)
the algorithm will not proceed to another iteration. In the ideal
scenario where the measurement process uses ΦΨ as shown in
(6), this residue is a result of not having selected all k basis
vectors at nth (≤ k) iteration and additive noise. Although
OMP has been proved to be effective in the ideal scenario [21],
the measurement process using ΦΨ̃ affects the performance
significantly.

In the non-ideal scenario where the MCDs are off-grid and
measurement process is given by (12), the residue in each
iteration is also a result of basis mismatch in addition to the
causes mentioned previously. Our objective is to reduce the
impact of basis mismatch by allowing [ΦΨ]j (where j ∈ λn−1)
vectors to rotate in the direction of γn within predetermined
boundaries. By making this provision we reduce the portion
of the residue resulted by off-grid nodes being carried forward
to the next iteration. Let the adjusted set of basis vectors be
{[ψ]j |j ∈ λn−1}. The residual when the adjusted basis is used
can be written as,

γ̃n = Ps −
∑

j∈λn−1

[ψ]j [P
∗
t ]j (46)

In [22, Th. 1], the authors show that the residual error γ̃n is
bounded as,

∥γ̃n∥2 ≤ ∥γn∥2

1− 1

∥γn∥2

n−1∑
j=1

|[P ∗
t ]j | tan(ϑj)

 (47)

when vector j is rotated by ϑj . We use this bound to develop
a reconstruction algorithm that provides for the error caused
by off-grid MCDs.

Theorem 4: The magnitude of the residual ∥γ̃n∥2 is upper
bounded by ε when each basis vector [ΦΨ]j is rotated in the
direction of γ, by an angle

ϑj = arctan

(
∥γn∥2 − ε

(n− 1) |[P ∗
t ]j |

)
(48)

Proof: By substituting (48) into (47) we obtain,

∥γ̃n∥2 ≤ ∥γn∥2

1− 1

∥γn∥2

n−1∑
j=1

|[P ∗
t ]j |

∥γn∥2 − ε
(n− 1) |[P ∗

t ]j |


(49)

≤ ∥γn∥2
(
1− 1

∥γn∥2
(∥γn∥2 − ε)

)
(50)

≤ ε (51)

Therefore, by allowing each basis vector [ΦΨ]j to rotate by
an angle of ϑj in the direction of γn as proposed in Theorem 4
guarantees that residual ∥γ̃n∥2 ≤ ε. Simple geometry proves
that rotated vector ψj can be found as [22, Eq. (8)],

[ψ]j = [ΦΨ]j cos(ϑj) +
γ

∥γ∥2
sgn(P ∗

t (j)) sin(ϑj) (52)

where sgn is the Sign function. Hence Algorithm 1 is proposed
to solve (13) while minimising the impact of off-grid MCDs.

Algorithm 1 starts by initialising the residual vector γ and
incumbent locations/transmit power vector P ∗

t . In steps 3-6
traditional OMP steps are performed. The actual channel to
the MCDs ΦΨ̃ is not known to the algorithm, but the channels
to the nearest reference points ΦΨ are known. In the ith
iteration Line 2 checks if the residue ∥γ∥2 > ε, if so it runs
the algorithm for another iteration. As mentioned previously,
∥γ∥2 > ε could be due to i < k or ΦΨ̃ being unknown to the
algorithm. Steps 8-10 prevent the algorithm proceeding into
another iteration if the residue is due to a basis mismatch. This
is accomplished by allowing each basis vector to move in the
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Algorithm 1 Proposed incumbent location and transmit power
detection algorithm

Input: ΦΨ̃, Ps, σ
2
n, ε

1: Initialise procedure variables
Λ← ∅ ◃ active incumbent grid points set
P ∗
t ← ⟨0, . . . , 0⟩ ◃ Np × 1 zero vector
γ ← Ps − σ2

n1Ns ◃ Ns × 1 residual vector
2: while ∥γ∥2 > ε do
3: Find λc, the column number of ΦΨ̃ with highest

correlation to the residual vector γ.
λc ← argmax

i=1,...,N
|⟨γ, [ΦΨ̃]i⟩|/∥[ΦΨ̃]i∥2

4: Add λcth vector to basis set. Λ = Λ ∪ λc
5: Estimate incumbent locations and transmit powers.

P ∗
t = [ΦΨ̃(Λ)]†[Ps − σ2

n1Ns ]
6: Calculate residual. γ = Ps − σ2

n1Ns − ΦΨ̃(Λ)P ∗
t

7: if ∥γ∥2 > ε then
8: Calculate each angle from (48)

ϑj = arctan

(
∥γ∥2 − ε

(n− 1) |[P ∗
t ]j |

)
9: Find the adjusted basis vectors as [22, Eq. (8)],

[ψ(Λ)]j = [ΦΨ̃(Λ)] cos(ϑj)

+ γ/∥γ∥2sgn(P ∗
t (j)) sin(ϑj)

10: Recalculate residue. γ = (I− ψψ†)(Ps − σ2
n1Ns)

11: end if
12: end while
Output: P ∗

t

direction of γ by an angle of ϑj . A rotated basis vector [ψ]j
would in fact be a linear combination of vectors [ΦΨ]j and γ.
Since [ψ] the set of basis vectors have absorbed a portion of γ
into themselves, the resulting residue is of a smaller magnitude
(i.e. γi+1 < γi). Therefore, the convergence of the algorithm
is assured.

V. NUMERICAL EVALUATION

In this section we evaluate the performance of the proposed
algorithm in the context of a LSA network operating in 2300-
2400 MHz band (3GPP band 40 [27]). We consider a scenario
in which LSA licensee is a mobile network operator and the
incumbent is a network of Electronic News Gathering (ENG)
devices (a detailed list of LSA use cases can be found in [15]).
ENG refers to the rapid deployment of wireless links to cover
breaking news in an unplanned manner for a short period of
time [28]. Especially we consider a ENG application in which
mobile wireless video cameras with omnidirectional antennas
broadcast a video link to a Cam-CCU as illustrated in [28,
Fig. 2].

Our proposed approach can be used on any layout of
reference points. However due to simplicity in geometry and
more suitability for an urban environment, we consider a
15 × 15 square grid. The separation between grid points is
10 m, covering 150 × 150 m area. This area covers the size
of a sports stadium, hence it aligns with the use case in [28,

Fig. 2, Table 15]. On this square grid layout, the jth reference
point can be mapped to (row, column) coordinates as: j →
(⌈j/

√
Np⌉, j −

√
Np(⌈j/

√
Np⌉ − 1), where Np = 15× 15.

In our system model, the LSA repository flags a large
geographical region where potentially active incumbents are
present. A mobile network operator with a LSA license to
access incumbent spectrum in this region uses MCDs (UEs
and/or dedicated measurement devices) to collect measure-
ments of the incumbent signals. Particularly, the MCDs inform
the Received Signal Strength (RSS) of the incumbent signal
(combined signal from all incumbent transmitters) and the
geolocation where the measurement was taken. A central entity
in the mobile network processes these measurements to find
the geolocation and power level of the incumbent transmitters.

In practice the incumbent RSS can be measured using the
quiet period concept. In a TD-LTE system this can be achieved
by blanking out a downlink subframe in each TDD frame.
LSA licensee MCDs can collect the RSS of the incumbent
signal during the blanked subframe. Mean of the RSS can
be calculated over multiple radio frames and sent to the base
station.

In this analysis we consider an urban environment. To
simulate the incumbent signal propagation we utilise the
WINNER II model used in International Telecommunications
Union (ITU) model [25]. The hexagonal layout Non-line of
sight (NLos) Urban Microcells (UMi) pathloss model was used
to calculate Lij as [25],

1/Lij = 36.7 log10(dij) + 22.7 + 26 log10(fc) (53)

where fc is the centre frequency. The shadow fading follows a
log-normal distribution i.e. Gij ∼ N (0, σ2

g = 4). Additionally,
an exponentially decaying correlation is assumed in space. The
ITU model used to capture correlation is (15) [25, Eq. (6)],
when line of sight is not available the decorrelation distance
dc = 13 m [25]. The transmission parameters of the incumbent
follow [28, Table 15].

Simulations were run for 10,000 iterations. We compare our
proposed approach against the OMP algorithm [21], POMP
algorithm [22] and convex optimisation solution obtained
through Matlab. All algorithms were run until the residue
became small i.e. ∥γ∥2 ≤ ε = 10−9.

A. Detected number of incumbents

In Fig. 4 we show the number of incumbents detected by
OMP, POMP and the proposed algorithm. We vary the number
of incumbents k in the system from 2 to 12, having fixed all
other parameters. This experiment was repeated for different
off grid errors ∆d. If the algorithm detects all incumbents
accurately, we expect to have detected k incumbents each time.
Ideally a straight line with a gradient of 1 is expected in Fig.4.

When the actual number of incumbents is in the order of 2-
4, both POMP and the proposed algorithm return the accurate
number of incumbents for all ∆d. OMP is close to the ideally
expected result when ∆d = 0.5 m and k = 2. However in
practice, ∆d is expected to be in the order of few meters.
OMP detects over twice as the actual number of incumbents
present. This is due to the mismatch of the basis used in the ℓ1
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Fig. 4: Detected and the actual number of incumbents for
different off-grid errors ∆d = 0.5, 1, 2, 3, 4, 5 m. The markers
are (⃝ : ∆d = 0.5), (� : ∆d = 1), (+ : ∆d = 2), (∗: ∆d =
3), (▽ : ∆d = 4), (△: ∆d = 5).

norm minimisation process. Having too many non-zero entries
in Pt results in a higher False Alarm.

When ∆d changes, OMP produces substantially different
results. The proposed approach is more robust against off-
grid errors. However, when the number of incumbents was
increased the performance of all three algorithms degrade.
As discussed in [29], the minimum number of measurements
required for exact recovery of Pt is a linear function of
the number of incumbents i.e. Ns > f(k). Therefore when
the number of incumbents increases, the required number
of sensors also increases. The number of sensors taking
measurements in this simulation was fixed, which explains the
degradation of performance. However, the proposed algorithm
clearly outperforms others under consideration.

B. False Alarm and Missed Detection vs number of MCDs

The Missed Detection (MD) and False Alarm (FA) prob-
abilities are shown in Fig. 5 and Fig. 6 respectively. The
incumbents could be at any reference point on the 15 × 15
grid. We estimate the RSS of the incumbent signal based on
P ∗
t and compare against a threshold Pth to determine if the
ith point is encountering MD or FA as follows,

MD(i) =

Np∑
j=1

ΨijP
∗
t (j) < Pth

∣∣∣ Np∑
j=1

ΨijPt(j) > Pth (54)

FA(i) =

Np∑
j=1

ΨijP
∗
t (j) > Pth

∣∣∣ Np∑
j=1

ΨijPt(j) < Pth (55)

The IEEE 802.22 standard states the decision threshold should
fall within the range −120 ≤ Pth ≤ −10 dBm [30]. The
threshold is said to be subjective, but it should fall within
the above range. Therefore, in this simulation we choose
Pth = −70 dBm. We simulate the challenging situation of

 

 

OMP

POMP

Proposed

CVX

.1Np .2Np .3Np .4Np .5Np .6Np
0

0.05

0.10

0.15

0.20

Number of sensors

P
M

D

 

 

Fig. 5: Probability of Missed Detection vs the number of
measurements. We compare the proposed algorithm, OMP
[21], POMP [22] and the ℓ1-minimisation solution (CVX)
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Fig. 6: Probability of False Alarm vs the number of measure-
ments.

having 16 incumbents (the largest number of incumbents in
the simulations) sparsely distributed in space.

To accurately determine the mean MD and FA probabilities
we pad the grid. An incumbent located on the border of
15×15 grid clearly affects an area outside the grid. Therefore
calculating the MD and FA probabilities only in the area
covered by 15 × 15 grid is not sufficient. Therefore the grid
layout was padded to extend the area to a 21× 21 grid. From
(54) and (55) MD and FA were determined for each reference
point. Probability was calculated as the number of MD/FA
occurrences divided by the total number of points. Mean of
the probability was calculated over all iterations.

The Fig. 5 and Fig. 6 show the mean probability of MD
(PMD) and mean probability of FA (PFA), for different
MCD densities. Clearly the proposed approach performs better
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TABLE I: Feasible regions of operation for both PMD and
PFA < 0.05. k: number of incumbents and Ns: number of
measurements. This table summarises the results in Fig. 7 and
8.

Approach Number of in- Number of
cumbents (k) MCDs (Ns)

CVX < 4 .25Np − .35Np

OMP < 3 .35Np − .60Np

POMP < 3 > .35Np

Proposed < 3 .09Np − .15Np

4− 12 .15Np − .35Np

Tested up to 16 > .35Np

than others under consideration when the number of MCDs
Ns ≥ .2Np. In practice MCD density is expected to fall within
the range .3Np to .4Np. In this range the proposed approach
improves the PMD by at least 40% and the PFA by at least
30%.

Further, it should be noted when the number of sensors
Ns < .2Np the PFA in the CVX approach is lower than
all other approaches. Also we notice that the PMD of CVX
approach is substantially high within this region. Therefore
Fig. 5 and Fig. 6 suggest that CVX terminates prematurely
without discovering all incumbents when Ns < .2Np, which
results in low FA and high MD.

C. False Alarm and Missed Detection vs number of incum-
bents and MCDs

Fig. 7 and Fig. 8 show the impact of the number of
incumbents and measurements. A darker colour implies low
PMD/PFA, hence preferable. Clearly the proposed algorithm
produces a lower PMD/PFA over a wide range of k and Ns.
To quantify the results, consider the region in Fig. 7, 8 where
both PMD and PFA < 0.05. Table I shows how CVX, OMP
and POMP have a limited feasible region in comparison to the
proposed approach. Generally, the accuracy of ℓ1 minimisation
techniques increases with Ns. However the accuracy decreases
in the high Ns region since both CVX and OMP make no
provision for off-grid error. This is illustrated in Table I.

Consider the region where both PMD and PFA < 0.05
and the number of MCDs taking measurements is at least
.35Np which is a more practical region of operation. Fig. 7
and 8 suggest that the proposed algorithm can accommodate
up to 16 incumbents. In contrast, under identical conditions
POMP, CVX and OMP can accommodate only up to 4
incumbents. Therefore the number of incumbents that can be
accommodated has been improved by 4 times under typical
operating conditions of the LSA network.

D. Distance between signal supports

To compare the overall performance we use the distance
between the expected and estimated signal supports. The
distance is determined as,

1− |{P
∗
t 7→ ΦΨ̃} ∩ {Pt 7→ ΦΨ}|

max{|P ∗
t 7→ ΦΨ̃|, |Pt 7→ ΦΨ|}

(56)

where {P ∗
t 7→ ΦΨ̃} is the set of column vectors in ΦΨ̃ that

map to non-zero elements in P ∗
t . The | · | operator refers to the

cardinality of a set. Therefore, the distance in (56) measures
the number of column vectors of ΦΨ incorrectly included or
incorrectly excluded in the chosen support as a ratio to the
total number of column vectors. A large distance between
signal supports intuitively lead to limited accuracy of the ℓ1
minimisation process.

As shown in Fig. 9 both CVX and OMP result in highly
distant supports as they make no provision for off-grid nodes.
The proposed approach can accommodate on average 50%
more incumbents or 33% less measurements in comparison to
POMP.

VI. CONCLUSION

Based on our previous work [11], [12], we presented a
discrete space ℓ1-norm minimisation solution for detecting
the location and transmit power of multiple incumbents. We
exploited the sparsity of incumbents in spatial domain through
geolocation tagged energy detection measurements. When
using a discrete space model in practice, the impact of off-
grid measurement devices should be considered. This effect
can be contemplated as a limitation of the accuracy in self-
geolocalisation. We capture the off-grid error as a basis mis-
match in the ℓ1-norm minimisation problem. We analytically
proved the channel matrix meets the RIP criterion under this
system model, when the number of measurement nodes is
sufficiently large. We found the necessary condition and the
upper bound for the probability of eliminating the impact of
limited geolocation tagging accuracy, that must be satisfied
by any generic algorithm to recover from the basis mismatch
error. When this criterion was met, we proposed an extension
to the well known OMP algorithm. In any ith iteration the
residue of OMP is due to i being less than the number
of incumbents and basis mismatch. We reduce the latter by
allowing a selected set of basis vectors to rotate by a controlled
angle. This algorithm was evaluated in a LSA cellular network
operating in 2300-2400 MHz band. Numerical results showed
a substantial improvement in incumbent detection, false alarm
probability and missed detection probability.

APPENDIX A
PROOF OF THEOREM 1

The shadowing process typically follows a log-normal dis-
tribution i.e. Gij ∼ exp

(
N (0, σ2

g)
)
. Hence the non-zero

elements,

ηGijLijvj
∥v∥

= Gij exp

(
log

ηLijvj
∥v∥

)
(57)

∼ exp

(
N
(
log

ηLijvj
∥v∥

, σ2
g

))
(58)

where η is the normalisation constant defined later in this
section. The reference points are far apart in space, therefore
Gij can be considered independent for each reference point.
Hence each element in ΦΨv vector is a sum of independent
log normal distributions. The resulting distribution can be
approximated by another log-normal distribution using the
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Fig. 7: Probability of missed detection vs number of incumbents and number of sensors. Probability has been calculated as
Nmd/Np where Nmd is the number of discrete grid points where incumbent was left undetected and Np is the total number
of grid points (a) ℓ1-norm convex optimisation (b) OMP (c) POMP (d) proposed approach
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Fig. 8: Probability of false alarm vs number of incumbents and number of sensors. Probability has been calculated as Nfa/Np

where Nfa is the number of discrete grid points where incumbent was left undetected and Np is the total number of grid
points (a) ℓ1-norm convex optimisation (b) OMP (c) POMP (d) proposed approach
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Fig. 9: Distance between signal supports (defined in (56)) vs number of incumbents and number of sensors. Distance between
supports is calculated as 1− |{P ∗

t 7→ ΦΨ̃} ∩ {Pt 7→ ΦΨ}|/max{|P ∗
t 7→ ΦΨ̃|, |Pt 7→ ΦΨ|}, where P ∗

t 7→ ΦΨ̃ are the column
vectors of ΦΨ̃ that are being mapped to non-zero elements of P ∗

t and | · | is the cardinality of a set. (a) ℓ1-norm convex
optimisation (b) OMP (c) POMP (d) proposed approach

Fenton-Wilkinson method [31], [32, Ch. 3]. As v is essentially
picking some of the random values in ΦΨ, the mean and
variance of ith element in ΦΨv vector are,

µi =
1

2
(σ2

g − σ2
i ) + log

 Np∑
j=1

ηLijvj
∥v∥

 (59)

σ2
i = log

(
(expσ2

g − 1)ci + 1
)

(60)

where,

ci =

Np∑
j=1

(
ηLijvj
∥v∥

)2

(
Np∑
j=1

ηLijvj
∥v∥

)2

=

Np∑
j=1

(Lijvj)
2

(
Np∑
j=1

Lijvj

)2 (61)
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Since σ2
g ≫ 1 is a large number, we make the following

approximation.

σ2
i ≈ log(1 + ci expσ

2
g) (62)

Therefore [ΦΨv]2i terms are log-normally distributed as fol-
lows,

µí = (σ2
g − σ2

i ) + 2 log

 Np∑
j=1

ηLijvj
∥v∥

 (63)

σ2
í
= 4 log(1 + ci expσ

2
g) (64)

Similarly as before we find an approximate ∥ΦΨv∥22 with a
log-normal distribution having the following parameters,

µ =
1

2
(σ2

í
− σ2) + log

(
Ns∑
i=1

µí

)
(65)

σ2 = log
(
1 + c(1 + ci expσ

2
g)

4
)

(66)

where

c =

Ns∑
i=1

exp(2µí)(
Ns∑
i=1

exp(µí)

)2 (67)

Pick η = η∗ such that µ = 1. We consider the specific form of
the Chernoff-Hoeffding bound used in [33, Eq. (23)]. When
µ = 1, we write the following inequality

Pr
{∣∣∣∣∥ηΦΨv∥22∥v∥22

− 1

∣∣∣∣ > δ

}
≤ 2 exp

(
−δ2

4σ2

)
(68)

⇒Pr
{∣∣∣∣∥ηΦΨv∥22∥v∥22

− 1

∣∣∣∣ > δ

}
≤ 2 exp

(
−δ2

4 log
(
1 + c(1 + ci expσ2

g)
4
)) (69)

Since log x ≤ x− 1,

≤ 2 exp

(
−δ2

4c(1 + ci expσ2
g)

4

)
(70)

Consider the scenario of having a large set of reference
points (Np ≫ Ns). As the pathloss coefficient exponentially
decreases with distance (i.e. Lij ∝ 1/dα), a large subset of el-
ements in any column vector of ΦΨ take similar small values.
Although the variance of η∗Lijvj/∥v∥ terms are dependent
on v, the means µi vary less with i. Therefore we write,

0 <
1

Ns

Ns∑
j=1

(exp(µí))
2 −

 1

Ns

Ns∑
j=1

exp(µí)

2

< ϵ (71)

⇒ 0 < c− 1

Ns
< ϵ́ (72)

for some small ϵ, ϵ́ ∈ (0, 1). Since the number of k-
dimensional subspaces of ΦΨ is

(
Np

k

)
,

Pr
{∣∣∣∣∥ηΦΨv∥22∥v∥22

− 1

∣∣∣∣ > δ

}(
Np

k

)
(73)

≤ 2 exp

(
−δ2Ns

4(1 + ci expσ2
g)

4

)(
Np exp 1

k

)k

(74)

≤ 2 exp

(
−δ2Ns

4(1 + ci expσ2
g)

4
+ k log

Np

k
+ k

)
(75)

Inequality in (75) implies the value of the random variable
is strongly concentrated about its expected values [34]. For a
sufficiently large Ns (> k log(Np/k)),

Pr
{∣∣∣∣∥ηΦΨv∥22∥v∥22

− 1

∣∣∣∣ > δ

}(
Np

k

)
→ 0 (76)

Therefore, we prove that there exist constants a1, a2 > 0
such that the matrix ΦΨ holds RIP condition for any Ns ≥
a1k log(Np/k) with probability ≥ 1 − exp(−a2Ns) which
tends to 1 [34, Th. 5.2].
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