arXiv:1601.01183v1 [cs.IT] 6 Jan 2016

Optimal Power Allocation for Artificial Noise under Imperfect CSI
against Spatially Random Eavesdroppers
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Abstract—In this correspondence, we study the secure multi- result in CSI imperfection. Some endeavors have studied the

antenna transmission with artificial noise (AN) under impeifect
channel state information in the presence of spatially randmly
distributed eavesdroppers. We derive the optimal solutios of
the power allocation between the information signal and theAN
for minimizing the secrecy outage probability (SOP) under a
target secrecy rate and for maximizing the secrecy rate undea
SOP constraint, respectively. Moreover, we provide an intesting
insight that channel estimation error affects the optimal pwer
allocation strategy in opposite ways for the above two objdives.
When the estimation error increases, more power should be
allocated to the information signal if we aim to decrease the
rate-constrained SOP, whereas more power should be allocad
to the AN if we aim to increase the SOP-constrained secrecy ta

Index Terms—Physical layer security, artificial noise, multi-
antenna, secrecy outage, power allocation, imperfect CSI.

I. INTRODUCTION

Physical layer security (PLS), which achieves secure ira
missions by exploiting the randomness of wireless channels
has drawn considerable attention recenily [1], [2]. It ha
been shown that we are able to greatly improve PLS usi

multi-antenna techniques with global channel state intdiom

(CSI). However, to acquire the CSI of an eavesdropper is v
difficult in real wiretap scenarios, since the eavesdropper

usually passive. Without the eavesdropper’s CSl, Gaedl.

[3] proposed a so-called artificial noise (AN) aided multi-

antenna transmission strategy, in which the transmitteskedh
the information-bearing signal by injecting isotropic Ahtd

the null space of the main channel (from the transmitter £

a legitimate receiver), thus creating non-decodable feter

ence to potential eavesdroppers while without impairing th_.
legitimate receiver. This seminal work has unleashed a wave
of innovation [4]-[9], and the AN scheme has become
promising approach to safeguarding wireless communigstio

In practice, the CSI of the main channel is acquired b}(
training, channel estimation and feedback, which ineltab
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AN scheme allowing for imperfect CSI. For example, robust
beamforming schemes have been proposedlin [5] for MIMO
systems and in_[6] for cooperative relay systems. The effect
of channel quantized feedback to the AN scheme are discussed
in [7] and [8], while in [9], training and feedback have been
jointly investigated and optimized.

However, all the aforementioned works ignored the uncer-
tainty of eavesdroppers’ spatial positions. Generallyesa
droppers are geographically distributed randomly, esigén
large-scale wireless networks. Analyzing secrecy peréome
in such random wiretap scenarios is fundamentally differen
from that with deterministic eavesdroppers’s locations.

Recently, stochastic geometry theory has provided a power-
ful tool to analyze network performance by modeling nodes’
positions according to some spatial distributions such as a
Poisson point process (PPP) [10]; it facilitates the studyhe

N scheme against random eavesdroppers [11]-[13]. However
r%e impact of imperfect CSl on designing the AN is still an
open problem. Particularly, it is yet unknown what the ogtim
ower allocation strategy is, and how a channel estimation
egror influences power allocation and secrecy performance.
I:r)ue to the complicated/implicit forms of the objective func
t|¥ns caursed by location randomness and CSI imperfection,
previous works can only obtain the optimal power allocation
either by exhaustive search or by numerical calculatiotears
of providing a tractable expression. This makes it chaliegg
to reveal an explicit analytical relationship between théroal
ower allocation and the channel estimation error. Our re-
search are motivated by the above observations and chafieng
In this correspondence, we study an AN-aided multi-input
single-output (MISO) secure transmission against rangoml
é)cated eavesdroppers under imperfect channel estimatien
iNvestigate two important performance metrics, namely, se
crecy outage probability (SOP) and secrecy rate, resphgtiv
he SOP reflects the quality difference between the main and
wiretap channels; the secrecy rate measures the rate mdfjcie
of secure transmission. We provide the optimal power alloca
tion strategies for the following optimization problems:

1) Minimizing the SOP subject to a secrecy rate constraint;

2) Maximizing the secrecy rate subject to a SOP constraint.
Furthermore, we draw an interesting conclusion that chianne
estimation error influences the optimal power allocation in
opposite ways$or the above two objective¥Vhen the estima-
tion error increases, more power should be allocated to the
information signal if we aim to decrease the rate-constedin
SOP, whereas more power should be given to the AN if we
aim to increase the SOP-constrained secrecy rate.

To the best of our knowledge, we are the first to reveal
an explicit analytical relationship between the optimaivpo
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allocation and channel estimation error through stricttmatfor the information signalG € CN*(N-1) js a weighting

ematical proofs. Although existing works have also showmatrix for the AN. The columns oW £ [w G| constitute an

that AN should be exploited to increase the secrecy ratethogonal basis. Let £ [s vT}, and the received signals at

under imperfect CSI in point-to-point transmissions, theBob and thek-th Eve are given from{2)

conclusions are just extracted from simulations underifipec . _a - _a

parameter settings, which may not apply to more generascase Y8 = V1~ T ho|*rp s+ TheWs'rg? +np,  (3)
Notations ()T, ()T, | -], || - || denote conjugate, transpose, ne,

absolute value, and Euclidean norm, respectived. denotes

the circularly symmetric complex Gaussian distributiorthwi

zero mean and unit variandg™ <" denotes then xn complex whereh, , denotes the channel from Alice to theh Eve, and

Y = he,kwT;%S —+ hngG'UT;% + ng, Vk S (bEv (4)

number domain. n% combines the residual channel estimation error and thermal
noise. Without loss of generality, we assumg, nyco, ~
Il. SYSTEM MODEL AND PROBLEM DESCRIPTION CN. The exact capacity expression of the main channel under

Consider a secure transmission from a transmitter (AlickpPerfect receiver CSl is still unavailable. A commonly dse
to a legitimate receiver (Bob) overheard by randomly lodatéPProach is to examine a capacity lower bound by treatijg
eavesdroppers (Evls)Alice has N antennas, Bob and Eves2S the worst-case Gaussian an.B.y doing so, the SINRs of
each has a single antenna. Without loss of generality, weepl&0P and thek-th Eve are respectively given by

Alice at the origin and Bob at a deterministic position with a Vg = ER(T), (5)
distancerp from Alice. The locations of Eves are modeled as ¢P|RT, w|2r°
a homogeneous PPPy of density Az on a 2-D plane with - ek _ k , (6)
the k-th Eve a distance;, from Alice. (1=&P|hL, G|>r*/(N—1)+1

All wireless channels are assume to undergo flat Rayleigh (1=r2)Py A ui o
fading together with a large-scale path loss governed by tH8€r€ x(7) = “p=" with v = ||hs|[*. Eq. (6) holds

exponenty > 2. The channel vector of a node with a distancir the pessimistic assumption that theth Eve has perfect
r from Alice is characterized ahr—%, whereh € CNx1 knowledge of bothh;, and h;. Given thatr € [0,1], x(7)

denotes the small-scale fading vector, with independedt ai§ & monotonically decreasing function of it reflects the
identically distributed (i.i.d.) entried; ~ CA. accuracy of channel estimation. S_pecmcally, a smaII_ valie

We focus on arequency-division duplegeDD) system in #(7) corresponds to a low estimation accuracy and vice versa.
which the channel reciprocity no longer holds. We assume Bbigreafter, we omit- from () for notational brevity.
estimates the main channel with estimation errors, andssendWe consider the wiretap scenario in which each Eve in-
the estimated channel to Alice via an ideal feedback ling. (e. dividually decodes a secret message. This corresponds to a
a high-quality link with negligible quantization errory this compoundwiretap channel model [17], and the capacities

case, the exact main chanrig) can be modeled as of the main channel and the equivalent wiretap channel are
. - Cp = 10g2(1 —|—’}/B) and Cp = 1Og2(1 +’YE) with YE =
hy = V1~ 712hy, + Thy, (1) maxgeo, 71 Note that the capacity of Eves is determined

whereh, andh, denote the estimated channel and estimatidy the maximum capacity among all links connecting Alice
error with i.i.d. entrieshy i, iy ; ~ CN(0,1). This assump- with Eves. As done in[]4] and _[13], after encoding secret

tion arises from employing the minimum mean square errg}formation, Alice transmits the codeworo_ls and embedded
(MMSE) estimatiofl [5], [14]. Here,~ € [0,1] denotes the secret messages at ra€s and Rg, re_spectlvely. Ifat least
error coefficient;r — 0 corresponds to a perfect channeP€ Eve decodes the secret messages C; exceeds the
estimation, and- — 1 means no CSl is acquired at all. Fordt® Cs — Rs of redundant information(to protect from

each eavesdropper, although its CSI is unknown, we asssm&RVeSdropping), perfect secrecy is compromised and acgecre

channel statistics information is available, which is aggah °utage occurs; the corresponding SOP is defined as

assumpt?on when dealing With_PLS [4]-]13]. . _ O 2 P{Cp > Cp — Rs}, ¥V Cs > Rg. (7
Recalling the AN scheme in_[3], the transmitted signal
vectorz at Alice is designed in the form of In the fOIIOWing, we will Optimize the PAR to minimize the
SOP under a target secrecy rate, and to maximize the secrecy
x = \/EPws + /(1 - €)P/(N - 1)Gw, (2)  rate under a SOP constrai® < ¢ € (0,1), respectively.
where s is the information signal withE[[s|?] = 1, v € We emphasize that different from existing research with de-

C(N-1x1 s an AN vector with i.i.d. entries; ~ CA/, and¢ is terministic Eves’ positions, the analysis and design here i

the power allocation ratio (PAR) of the desired signal poteer much more complicated due to the extra spatial randomness.

the total powerP. w £ EZ/HﬁbH is the beamforming vector
I1l. SECRECY OUTAGE PROBABILITY MINIMIZATION
1This may correspond to such a scenario that a multi-antermmesrhitter

Alice provides specific service to a specified subscriber, Bdtile the service In this section, we optimize the PAR that minimizes the SOP

should be kept secret to eavesdroppers (also named uriaathaisers). under a target secrecy rate. Recalling (7), Alice transonitg
2 The Gaussian error model is a stochastic uncertainty mdstabther

widely used model is the deterministic bounded error mode&ich is more 3 The tightness of this capacity lower bound was verified fousian

convenient for analyzing the quantized CSl [8]. inputs with MMSE channel estimation in_[15], [16].
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Fig. 1. SOPO vs.¢ for different values of\/, with P = 10dBm, Rg = 2,
7 = 0.3, and A\g = 2. Unless otherwise specified, we set= 4, rg = 1
(unit distance), and the unit dRs is bits/s/Hz.

whenCp = log, (14 ¢k) > R, i.e., & > 22°=1 should hold
to guarantee a reliable connection between Alice and Bab.
ease of notation, throughout the paper we defn’hé gRS,
N AT A T -1
L g2 2 327 (1+46), 02 L2, andp £ 5=,
The problem of minimizing? in (@) is formulated as

st w<€<1. (8)

min O,
13

Before proceeding to this optimization problem, we provadethe expression ofC(¢), we have ¢

closed-form expression a@® over the PPP network.
Lemma 1: If¢ > w, the SOP defined ifi/) is given by

O =1-exp (=prs (POY)’ 7()) . 9)

where.7(€) = (w ! =€) " (1+ (6wt~ 1) i) .

Proof: SubstituteCz and C along with [3) and[{6) K(§) or

The first-order derivative of7 (£) on £ is given by

di é&) _ 0T +ag +bE+0) (1)

EE-w) (w+(E—wyp)’

wherea £ —ljw, b £ —gw2 — low? — lw, and ¢ £ lyw?,
with lo £ 25, 110 £ 1 — 1o, andly £ 1+ 1. Let K(§) =

&3+ ak? 4 b¢ +c. Since¢ > w, the sign ofdg—éf) follows that

of K£(£). In other words, to investigate the monotonicity of
J (&) on¢&, we need to just examine the sign 6f¢). In the
following theorem, we provide the solution to problen (8).

Theorem 1: The optimal PAR that minimiz8sin (8) is

g, 0<k<T-1
=41 T-1<r</( (1+\/_9) (12)
£,, otherwise
where§O \/q—i— +\/T——Wlthp— (——_) +¢2
andg £ % — £ — 22 anda, b, ¢ have been defined ii1).

Eo =9 means that transmission is suspended.

Proof: We know that Alice transmits only wheh> w. 1)
If w>1,i.e.,x <T—1,no feasible € [0, 1] satisfiest > w,
and transmission is suspended. 2plk 1, Alice transmits in
the range of € (w, 1]. Next, we derive the optimal value of
¢ that minimizesJ (¢).
We first prove the convexity oIC( &) oné € (w,1]. From
K& = 66 — 2w > 0,
i.e., K(¢) is aconvexfunction ofg Then we determine the
sign of K£(¢). The values offC(£) at boundarieg = w and
¢ =1larekK(w) = -5 and K(1) = (1 — w)? — Juw?,
respectively. ObviouslylC(w) < 0 always holds. Next, we
discuss the optimal value df for the following two cases.
Case 1 K(1) < 0. Since £(¢) is convex on¢ € (w,1],
di—éf) is always negative. Henc&(£) monotonically

into (7), and after some algebraic manipulations, we obtaiiecreases witi, and the minimuny/ (§) is achieved af = 1,

O =1-F, (r) with z £ 25 1 whereF,, (z) is the

cumulative distribution function (CDF) ofg, which is

[T Pl < x}]

kedg

(1 +s0:v)1‘N)]

Fre(z) =P {z?é%’f; Ve < I} =Eq,
(1-%

@ Ry, l 11
27T/\E(1+<px)1_N/ e%rdr)

keEd R
(b) (
=exp| —
0

= exp (—ﬁ/\E(Pﬁ)‘;x_‘;(l + so:v)l_N) ,

(10)

with the corresponding condition obtained frog(1) < 0,
which is — L_<w<l.

5/6
Case 2 (1) > 0. It meansK (&) or %ég) becomes first
negative and then positive gsincreases fromw to 1, i.e.,
J (&) first decreases and then increases wijtand the optimal
value of¢ is the unique root of the cubic equatidi(&) = 0.
Solving this equation using Cardano’s formula yiefds
CombiningCase land Case 2completes the proof. W
Theorent L indicates that when the value:a$ small which
corresponds to a poor link quality or a large channel estomat
error, Alice either suspends the transmission or transmitts
full power. When the value of becomes large enough, it is

where (a) holds for the CDF of;, [4], and (b) holds for wise to create AN to decrease the SOP. The resulting minimum
the probability generating functional (PGFL) over a PPF.[19SOP, denoted a®*, is obtained by substituting* into (9).

Substituting [(ID) inta® completes the proof. [ |

Next, we investigate the influence of channel estimation

The theoretical values @ are well verified by Monte-Carlo error on the optimal PAR. Although we obtain a closed-form
simulations, as shown in Fifl 1. We see that adding transraipression of, in (I12), it is complicated to reveal the explicit
antennas is beneficial for decreasing the SOP. We also @bserennection betweerf, and x. Nevertheless, by leveraging
that as¢ increases() first decreases and then increases; thetlee equation’C(¢,) = 0, we develop some insights into the
exists a unique that minimizesO. In the following we are behavior of¢, with respect tox in the following proposition.
going to calculate the value of this unigge From [9), it is

apparent that minimizin@ is equivalent to minimizing7 (). Proposition 1. &£, monotonically decreases with
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Fig. 2. Optimal PARE* vs. error coefficientr for different values ofRg, Fig. 3. Minimum SOPO* vs.  for different values ofP and Rg, with
with P = 0dBm, N = v = 20, and \g = 2. N =~ =20, and\g = 2.

Proof: Sincew = % to complete the proof, we need to
just prove the monotonicity af, onw. Utilizing the derivative
rule for implicit functions [18] with/KC(¢,) = 0, we obtain
dé,  —0K/0w L&+ 25wés + 2owé, + 1, — 2aw

dw — OK[OE  3€2 — 2w, — Sw? — low — low?

Theory, M =8
= = = Theory, A 6

=+ = Theory, A

W Simulation, A
®  Simulation, ]
4 Simulation, M =4

15F

Secrecy Rate, Rg (bits/s/Hz)

(13) A
Substitutinga, b and ¢ defined in [(I1L) intokC(&,) = 0 yields ‘
§ _ (62 + lowfo - le)(go - CU) . (14) g
0 w?&o
SinCE§O > w and% > O’ the termgg + lowgo - le In @) 00 012 Powe?'.“f/\llocationOl—iiltio-,5 | 8 !

satisfies the following inequality

Fig. 4. Secrecy ratd®g versus¢ for different values ofM, with e = 0.01,
0 < &Howéo—low < E+0&5—low < 1a(§5—w) = & > vaw. 79 ) TR [8FS S¢ e

Substituting? in (I4) into [I3) yields the numerator 2~ =
Lo l1€,(6 — w) + 12(€2 — w)] > 0 and denominatoigl =
hé(o —w) + £(& — w?) > 0, hence we havéée > 0.
Combined withw = =1, we directly obtain%e = 9. dw

implies that using full power is not always advantageous,
particularly when the estimation error is large.

e = Tede <

0, which completes the proof. ]
Propositior ]l shows thatvhen the channel estimation error ) ) o .

gets larger, if we aim to decrease the SOP under a target'" this section, we optimize the PAR that maximizes the

secrecy rate, we should increase the information signalgepw SECTECY rate subject to a SOP constraint. We first transform

which is validated in Figl2. It is because that, in order t§'€ SOP constrain® < ¢ into the following equivalent form

minimize the SOP, we should first guarantee the link quality (1 + K€ ) (c) 1+ K
— < €
YE

IV. SECRECYRATE MAXIMIZATION

—1>F(1—¢)

of the main channel to support the target secrecy rate. Hence ™ 9Rs 9Rs
we should increase the information signal power to balanee t 1+ K€
deterioration caused by the channel estimation error. When = Rs <log, TQ(S)E (15)

exceeds a certain value, transmission is suspended, which i _ _ _
just as analyzed previously. We also find from . 2 that thehere (c) holds due to the monotonically increasing feature

value of £* increases adis increases, which can be easilyof the CDF 7, (z) onz. o(¢) 2 (=9 with ]:;El(.) the
confirmed by the factz = 92 92 > 0. inverse function of~., . (-). Clearly, a positive value aRg that

Fig.[3 shows that the minimum SOP* increases withr.  satisfies the SOP constraifit [15) exits only whe#) < .
For a givenP, O* increases withi2s. For a givenRs, the two  The problem of maximizing?s can be formulated as
curves with different values aP cross as increases (see the
. . o . . 1+ kE
intersection®). Specifically, beforer exceedsP, increasing max Rgs = logy ————
P decrease®*, and after that the opposite happens. This ¢ 1+ 0(6)¢
transition occurs because for too large an estimation ,errorAn illustration on the relationship between the secrecg rat
increasing transmit power does not significantly improve’Bo and the PAR is shown in Fil] 4. It is intuitive that increasing
capacity, whereas it is of great benefit to Eves. This restite number of antennas helps to improve the secrecy rate. We

s.t. 0(€) <k, 0< €< 1. (16)



1-8)e? A 1-¢ o

_ (1-9e° . Let p £ =550°, and we obtain

- B

E)
; _ = pet = SFELE _ one” e further lety £ e and
we should carefully choose the PAR to achieve a high secrecy, 1-¢,1 5 Int .
rate. t=e3 , such that” =t = v = Wing " The solution
From [I6), we see that the value Bf is bottlenecked by ¢° can be given by® = 155 = =5 Inv, with yields the
0(¢), which implicitly reflects the influence of the density ofinal expression in[(20) by substituting inalong witht. m
PPP Eves\y; and the SOP threshotd For example, a larger Due to the implicit function ofo(§) on ¢, we can hardly
Az or a smallere increases(¢) (seel[®) and the definition of derive an explicit expression aRs. Nevertheless, we still
0(€)), and then decreasé®s (see[(IB)). Thereforey(¢) plays reveal the concavity ofRg on &, and provide the solution
a critical role in maximizingRg. Although it is intractable to t0 problem [IB) in the following theorem.

obtain an analytical expression ef¢) due to the transcen- Theorem 2:Rg in (I6) is a concave function of. The
dental equation — ., (¢0(¢)) = e (see [ID)), we provide optimal¢ that maximizedis is given by

an explicit connection between(¢) and ¢ in the following
lemma, which is very critical for the subsequent optimizati

observe thatRs first increases with¢, then decreases with =51
it, and even reduces to zero for too large.aThis implies 1-¢1
(&

1
5
1
5
1

@7 R S Omin

& =11, n>%andL<% (21)

Lemma 2:p(§) is a monotonically increasing and convex &, otherwise
function of¢ € [0, 1].
Proof: For notational brevity, we omit from p(&).
Pluggingz = £p into 1 — F,,, (z) = € yields

where g,,in 2 0(0) denotes the minimum value of¢). &, is
the unique root ofdd% =0, where

K Q(f) + —dﬁéa
1 d€ " In2

) LN s o T+kE 1+&0(f)

where Z(&,0) = 1+ o0 ,and L = B, . . . .
Usin thgdé;)rivatise rule lf)oj;[i_é licit functions wit_ﬂ::n((]ﬁ]ew)e Proof: Alice transmits only whery < . Obviously, if
9 P ’ k < omin, thenp < k never holds for an arbitrary since

first- and second-order derivatives @fon £ are given by omin < 0 such that transmission is suspendeds t g,in,

do  0Z/0¢ 0° 18 Alice transmits for & that satisfiep < k. To maximizeRg,
A~ 0Z/do0  +1(1—8&)o’ (18) we first give the second-order derivative ®f on & from (18)

Z(§0)—L=0, (17) dRs _ 1

(22)

d ) 9
@:2(@)2 12Q2(9_(1_§)d_2§) (19) d/zRS:L K2 _23_5_’_5% (Q‘i‘fg—g)

Clearly, Z—é’ > 0 always holds. With[{18), we have — (1 —

_ . . ith de Lo i i itutingh2
5)3—2’ = 7‘5;’15;’8_252 > 0 in (I9). Removing the second termWith g€ and 7% given in LemmalR. Substituting-2 >

2 2 2 (d . . .
from the right-hand side of 719) yiel 55 > % (@) >0, 3 (d—g) > 0 (see Lemmal2) into the above equation yields

d¢
With % >0 and % > 0, we complete the proof. [} d®’Rg 1 K2 0?
£ o . . . — < - — . (23)
Lemmal2 indicates the maximum value @) is achieved de? In2 \ (1+x€)2 (14 0€)2

at¢ = 1, which is gy, = o(1) = L'/? from (I7). Besides, ) , )

it is clearly thatZ(¢, o) — L monotonically increases wita Sinceo < x, we have ey — g > 0 = G5 <0,

for a given¢. Generally, we can calculate the unique value déf., Is is aconcavefunction of¢.

o(¢) that satisfies[{17) using the bisection method in the rangeDue to the concavity of?s on ¢, the maximum value of

[0, 0maz]. FOr the special case of large antennas, Ne-» oo, s is achieved either at boundaries or at stationary points.
we provide an approximate value of¢), denoted ag®(¢). From [22), the boundary values afg[c_o = “525: and
Simulation results show that, wheN > 20, the maximum %k:l =L (ﬁ B Lc;/zzra%/fa). Obviously,%kzo S
value of Rg calculated based op°(£) is quite close to that 0.1) If 48s " OHR + tonicallv | . d
based on the exaet(¢), i.e., 0°(¢) can be a computationally ) If 4% =1 > 0, Rs monotonically increases with) anc
convenient alternative to(¢) when N is large. the optimal value of is 1, with the corresponding condition

: ; dRs| dRs |«
Corollary 1: AsN — oo, o(€) in (I7) approximates to directly obtained from#ge[e—1 > 0. 2) If “G=[¢=1 < 0, Rs

> . d .
first increases and then decreases jtand the optimal value

L3, £=1 of ¢ is the unique root oft = 0. [ ]
0°(&) = 5 PRV AT ) 0 Theoreni2 shows only for a large(small estimation error)
T¢In <W> , otherwise and a smallL (a sparse-eavesdropper scenario or a moderate
SOP constraint), allocating full power to the informatiagrel
whereW(-) is the Lambert-W function. provides a higher secrecy rate than the AN scheme does,
Proof: Since limy_, (1+%)7N = e %, we have otherwise generating AN is advantageous. Siite is a

Z(£,0°) = (0°)%e(1=9¢" where ¢° £ limy_.o, 0, and [I¥) concave function of, we can efficiently calculate the unique
transforms toL = (g°)%e(!=9¢", 1) When¢ = 1, we root &, of ‘fl’gf = 0 in 22) using the bisection method.
easily obtaing® = L3. 2) When¢ # 1, we find that Substitutinge* and o(¢*) into (I8) yieldsRj.




Although &, can only be calculated numerically, we show
how &, is affected byk in the following.
Proposition 2: &, in (21) monotonically increases with.
Proof: From [22),22= — ( transforms taA(¢,) = 0, and

T
A(&) = (KE —1o&r+12) 02+ (laké,

with o, 0(&). Using the derivative rule for implicit
functions with the equationd(¢,) = 0 yields

dr 0A/ 0, %(&«) + 12 (ﬁr)dg’ ’

Wherewl(&“) = (1 + 2H€T)Qr +l2(k — or)or anda(&,) =
(IifQ + 12) or + (lak&. +0) — 2lp&r0r — lak. Obviously,
K> op = 1(&) > 0andg dQT > 0 (see LemmBA2)A(¢,) =0
can be further reformed a$n§2+lg)gT (k& +8) =
loéror + lak + 2%, substituting which intoy,(¢,) directly
yields o (&) > O Hence we hav%— > 0. Leveraging[(2P),
4 — 0 can be reformed by?%e- i =1- 1119&5: < 1.
Substituting g2 der jn (I8) into this mequality yieldso?¢? <
(6 +12(1 —gr)gr) i.e., 24 < 0. With g—g‘: >0 and 24 <0,
we see from[(25) thai‘.jf > 0, which completes the proo
Propositio 2 indicates thatvhen channel estimation error

—lak +90) 0r—0k, (24)

becomes larger, if we aim to increase the secrecy rate under

a SOP constraint, we should increase the AN powest

as shown in Fig[]5. The reason is: channel estimation error

heavily degrades the main channel while has no effect on
the wiretap channels. For a large estimation error, althoug
increasing the information signal power improves Bob’s ca-
pacity, the improvement is not significant. On the contrary,
increasing AN power always greatly deteriorates the wreta

channels regardless of CSI imperfection. Therefore, whéﬁ

Fig. 5.
P = 0dBm, andN = v = 20.
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6. Maximum secrecy rat®¢ versusr for different values ofP, with

v =20, A\g = 2, ande = 0. 01 “Approx” corresponds to the value of

estimation error becomes Iarger mcreasmg AN power ISG'nOJO( €) in (20) as opposed to the exact valuegtt) obtained from[(I}7).

beneficial to the secrecy rate than increasing signal power.

Nevertheless, transmission is suspendedékceeds a certain
value, which corresponds to the case< o,,;, as indicated
in Theoren{®. We can also provg= < 0 and %= > 0 in a
similar way as the proof of Proposmdﬂh 2. Due to space limi
we omit the relevant proofs, and the results are verified in
Fig.[H. We see that the optimal PAR decreases for a larger
Mg or a smallere. It means that, when transmission is more
vulnerable to wiretapping, we should increase AN power.
Fig.[8 depicts the maximum secrecy rdt¢ versusr. The

approximated value oRY is quite close to the exact one. We
observe thaf? monotonically decreases with Interestingly,
R% increases withP at the smallr region, whereas decreases

with it at the larger region. The underlying reason is just [3]

similar to the explanation for the intersection in Hig. 3.

V. CONCLUSIONS
In this correspondence, we investigate the AN-aided multi-

[5] A. Mukherjee, and A. L. Swindlehurst,

antenna transmission under imperfect CSI against PPP Ev:ﬁ.

We provide explicit solutions of the optimal PARs with
channel estimation errors for minimizing the SOP under a

secrecy rate constraint and for maximizing the secrecy raté

subject to a SOP constraint, respectively. We strictly prov

should increase the information signal power if we aim to
decrease the SOP, whereas we should increase the AN power
F we aim to increase the secrecy rate.
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