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Optimal Power Allocation for Artificial Noise under Imperfect CSI
against Spatially Random Eavesdroppers
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Abstract—In this correspondence, we study the secure multi-
antenna transmission with artificial noise (AN) under imperfect
channel state information in the presence of spatially randomly
distributed eavesdroppers. We derive the optimal solutions of
the power allocation between the information signal and theAN
for minimizing the secrecy outage probability (SOP) under a
target secrecy rate and for maximizing the secrecy rate under a
SOP constraint, respectively. Moreover, we provide an interesting
insight that channel estimation error affects the optimal power
allocation strategy in opposite ways for the above two objectives.
When the estimation error increases, more power should be
allocated to the information signal if we aim to decrease the
rate-constrained SOP, whereas more power should be allocated
to the AN if we aim to increase the SOP-constrained secrecy rate.

Index Terms—Physical layer security, artificial noise, multi-
antenna, secrecy outage, power allocation, imperfect CSI.

I. I NTRODUCTION

Physical layer security (PLS), which achieves secure trans-
missions by exploiting the randomness of wireless channels,
has drawn considerable attention recently [1], [2]. It has
been shown that we are able to greatly improve PLS using
multi-antenna techniques with global channel state information
(CSI). However, to acquire the CSI of an eavesdropper is very
difficult in real wiretap scenarios, since the eavesdropperis
usually passive. Without the eavesdropper’s CSI, Goelet al.
[3] proposed a so-called artificial noise (AN) aided multi-
antenna transmission strategy, in which the transmitter masked
the information-bearing signal by injecting isotropic AN into
the null space of the main channel (from the transmitter to
a legitimate receiver), thus creating non-decodable interfer-
ence to potential eavesdroppers while without impairing the
legitimate receiver. This seminal work has unleashed a wave
of innovation [4]-[9], and the AN scheme has become a
promising approach to safeguarding wireless communications.

In practice, the CSI of the main channel is acquired by
training, channel estimation and feedback, which inevitably

c©2015 IEEE. Personal use of this material is permitted. However, permis-
sion to use this material for any other purposes must be obtained from the
IEEE by sending a request to pubs-permissions@ieee.org.

This work was partially supported by the Foundation for the Author of
National Excellent Doctoral Dissertation of China under Grant 201340, the
National High-Tech Research and Development Program of China under
Grant No. 2015AA011306, the New Century Excellent Talents Support
Fund of China under Grant NCET-13-0458, the Fok Ying Tong Education
Foundation under Grant 141063, the Fundamental Research Funds for the
Central University under Grant No. 2013jdgz11, and the Young Talent Support
Fund of Science and Technology of Shaanxi Province under Grant 2015KJXX-
01. The review of this paper was coordinated by Prof. G. Mao.

The authors are with the School of Electronics and Information Engineering,
and also with the MOE Key Lab for Intelligent Networks and Network
Security, Xian Jiaotong University, Xi’an, 710049, Shaanxi, China (e-mail:
txzheng@stu.xjtu.edu.cn; xjbswhm@gmail.com). H.-M. Wang is the corre-
sponding author.

result in CSI imperfection. Some endeavors have studied the
AN scheme allowing for imperfect CSI. For example, robust
beamforming schemes have been proposed in [5] for MIMO
systems and in [6] for cooperative relay systems. The effects
of channel quantized feedback to the AN scheme are discussed
in [7] and [8], while in [9], training and feedback have been
jointly investigated and optimized.

However, all the aforementioned works ignored the uncer-
tainty of eavesdroppers’ spatial positions. Generally, eaves-
droppers are geographically distributed randomly, especially in
large-scale wireless networks. Analyzing secrecy performance
in such random wiretap scenarios is fundamentally different
from that with deterministic eavesdroppers’s locations.

Recently, stochastic geometry theory has provided a power-
ful tool to analyze network performance by modeling nodes’
positions according to some spatial distributions such as a
Poisson point process (PPP) [10]; it facilitates the study of the
AN scheme against random eavesdroppers [11]-[13]. However,
the impact of imperfect CSI on designing the AN is still an
open problem. Particularly, it is yet unknown what the optimal
power allocation strategy is, and how a channel estimation
error influences power allocation and secrecy performance.
Due to the complicated/implicit forms of the objective func-
tions caursed by location randomness and CSI imperfection,
previous works can only obtain the optimal power allocation
either by exhaustive search or by numerical calculation instead
of providing a tractable expression. This makes it challenging
to reveal an explicit analytical relationship between the optimal
power allocation and the channel estimation error. Our re-
search are motivated by the above observations and challenges.

In this correspondence, we study an AN-aided multi-input
single-output (MISO) secure transmission against randomly
located eavesdroppers under imperfect channel estimation. We
investigate two important performance metrics, namely, se-
crecy outage probability (SOP) and secrecy rate, respectively.
The SOP reflects the quality difference between the main and
wiretap channels; the secrecy rate measures the rate efficiency
of secure transmission. We provide the optimal power alloca-
tion strategies for the following optimization problems:

1) Minimizing the SOP subject to a secrecy rate constraint;
2) Maximizing the secrecy rate subject to a SOP constraint.

Furthermore, we draw an interesting conclusion that channel
estimation error influences the optimal power allocation in
opposite waysfor the above two objectives.When the estima-
tion error increases, more power should be allocated to the
information signal if we aim to decrease the rate-constrained
SOP, whereas more power should be given to the AN if we
aim to increase the SOP-constrained secrecy rate.

To the best of our knowledge, we are the first to reveal
an explicit analytical relationship between the optimal power
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allocation and channel estimation error through strict math-
ematical proofs. Although existing works have also shown
that AN should be exploited to increase the secrecy rate
under imperfect CSI in point-to-point transmissions, their
conclusions are just extracted from simulations under specific
parameter settings, which may not apply to more general cases.

Notations: (·)†, (·)T, | · |, ‖ · ‖ denote conjugate, transpose,
absolute value, and Euclidean norm, respectively.CN denotes
the circularly symmetric complex Gaussian distribution with
zero mean and unit variance.C

m×n denotes them×n complex
number domain.

II. SYSTEM MODEL AND PROBLEM DESCRIPTION

Consider a secure transmission from a transmitter (Alice)
to a legitimate receiver (Bob) overheard by randomly located
eavesdroppers (Eves)1. Alice hasN antennas, Bob and Eves
each has a single antenna. Without loss of generality, we place
Alice at the origin and Bob at a deterministic position with a
distancerB from Alice. The locations of Eves are modeled as
a homogeneous PPPΦE of densityλE on a 2-D plane with
the k-th Eve a distancerk from Alice.

All wireless channels are assume to undergo flat Rayleigh
fading together with a large-scale path loss governed by the
exponentα > 2. The channel vector of a node with a distance
r from Alice is characterized ashr−

α
2 , whereh ∈ CN×1

denotes the small-scale fading vector, with independent and
identically distributed (i.i.d.) entrieshi ∼ CN .

We focus on afrequency-division duplex(FDD) system in
which the channel reciprocity no longer holds. We assume Bob
estimates the main channel with estimation errors, and sends
the estimated channel to Alice via an ideal feedback link (e.g.,
a high-quality link with negligible quantization error). In this
case, the exact main channelhb can be modeled as

hb =
√

1− τ2ĥb + τ h̃b, (1)

whereĥb andh̃b denote the estimated channel and estimation
error with i.i.d. entrieŝhb,i, h̃b,i ∼ CN (0, 1). This assump-
tion arises from employing the minimum mean square error
(MMSE) estimation2 [5], [14]. Here, τ ∈ [0, 1] denotes the
error coefficient;τ = 0 corresponds to a perfect channel
estimation, andτ = 1 means no CSI is acquired at all. For
each eavesdropper, although its CSI is unknown, we assume its
channel statistics information is available, which is a general
assumption when dealing with PLS [4]-[13].

Recalling the AN scheme in [3], the transmitted signal
vectorx at Alice is designed in the form of

x =
√

ξPws+
√

(1 − ξ)P/(N − 1)Gv, (2)

where s is the information signal withE[|s|2] = 1, v ∈
C(N−1)×1 is an AN vector with i.i.d. entriesvi ∼ CN , andξ is
the power allocation ratio (PAR) of the desired signal powerto
the total powerP . w , ĥ

†
b/‖ĥb‖ is the beamforming vector

1This may correspond to such a scenario that a multi-antenna transmitter
Alice provides specific service to a specified subscriber Bob, while the service
should be kept secret to eavesdroppers (also named unauthorized users).

2 The Gaussian error model is a stochastic uncertainty model.Another
widely used model is the deterministic bounded error model,which is more
convenient for analyzing the quantized CSI [8].

for the information signal,G ∈ CN×(N−1) is a weighting
matrix for the AN. The columns ofW , [w G] constitute an
orthogonal basis. Lets ,

[
s v

T
]
, and the received signals at

Bob and thek-th Eve are given from (2)

yB =
√

1− τ2‖ĥb‖2r−
α
2

B s+ τ h̃bWs
Tr

−α
2

B + nB
︸ ︷︷ ︸

no
B

, (3)

yk = he,kwr
−α

2

k s+ he,kGvr
−α

2

k + nk, ∀k ∈ ΦE , (4)

wherehe,k denotes the channel from Alice to thek-th Eve, and
no
B combines the residual channel estimation error and thermal

noise. Without loss of generality, we assumenB, nk∈ΦE ∼

CN . The exact capacity expression of the main channel under
imperfect receiver CSI is still unavailable. A commonly used
approach is to examine a capacity lower bound by treatingno

B

as the worst-case Gaussian noise3. By doing so, the SINRs of
Bob and thek-th Eve are respectively given by

γB = ξκ(τ), (5)

γk =
ξP |hT

e,kw|2r−α
k

(1 − ξ)P‖hT
e,kG‖2r−α

k /(N − 1) + 1
, (6)

where κ(τ) = (1−τ2)Pγ
τ2P+rαB

with γ , ‖ĥb‖2. Eq. (6) holds
for the pessimistic assumption that thek-th Eve has perfect
knowledge of bothĥb and h̃b. Given thatτ ∈ [0, 1], κ(τ)
is a monotonically decreasing function ofτ ; it reflects the
accuracy of channel estimation. Specifically, a small valueof
κ(τ) corresponds to a low estimation accuracy and vice versa.
Hereafter, we omitτ from κ(τ) for notational brevity.

We consider the wiretap scenario in which each Eve in-
dividually decodes a secret message. This corresponds to a
compoundwiretap channel model [17], and the capacities
of the main channel and the equivalent wiretap channel are
CB = log2(1 + γB) and CE = log2(1 + γE) with γE ,

maxk∈ΦE γk. Note that the capacity of Eves is determined
by the maximum capacity among all links connecting Alice
with Eves. As done in [4] and [13], after encoding secret
information, Alice transmits the codewords and embedded
secret messages at ratesCB andRS , respectively. Ifat least
one Eve decodes the secret messages, i.e., CE exceeds the
rate CB − RS of redundant information(to protect from
eavesdropping), perfect secrecy is compromised and a secrecy
outage occurs; the corresponding SOP is defined as

O , P{CE > CB −RS}, ∀ CB > RS . (7)

In the following, we will optimize the PAR to minimize the
SOP under a target secrecy rate, and to maximize the secrecy
rate under a SOP constraintO ≤ ǫ ∈ (0, 1), respectively.
We emphasize that different from existing research with de-
terministic Eves’ positions, the analysis and design here is
much more complicated due to the extra spatial randomness.

III. SECRECY OUTAGE PROBABILITY M INIMIZATION

In this section, we optimize the PAR that minimizes the SOP
under a target secrecy rate. Recalling (7), Alice transmitsonly

3 The tightness of this capacity lower bound was verified for Gaussian
inputs with MMSE channel estimation in [15], [16].
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Fig. 1. SOPO vs. ξ for different values ofM , with P = 10dBm,RS = 2,
τ = 0.3, andλE = 2. Unless otherwise specified, we setα = 4, rB = 1
(unit distance), and the unit ofRS is bits/s/Hz.

whenCB = log2(1 + ξκ) > RS , i.e., ξ > 2RS−1
κ should hold

to guarantee a reliable connection between Alice and Bob. For
ease of notation, throughout the paper we defineT , 2RS ,
ω , T−1

κ , δ , 2
α , β , πΓ (1 + δ), θ , T−1

T , andϕ ,
ξ−1−1
N−1 .

The problem of minimizingO in (7) is formulated as

min
ξ

O, s.t. ω < ξ ≤ 1. (8)

Before proceeding to this optimization problem, we providea
closed-form expression ofO over the PPP network.

Lemma 1: Ifξ > ω, the SOP defined in(7) is given by

O = 1− exp
(

−βλE
(
Pθ−1

)δ J (ξ)
)

, (9)

whereJ (ξ) =
(
ω−1 − ξ−1

)−δ (
1 +

(
ξω−1 − 1

)
θϕ

)1−N
.

Proof: SubstituteCB and CE along with (5) and (6)
into (7), and after some algebraic manipulations, we obtain
O = 1 − FγE (x) with x ,

1+κξ
T − 1, whereFγE (x) is the

cumulative distribution function (CDF) ofγE , which is

FγE (x) = P

{

max
k∈ΦE

γk < x

}

= EΦE

[
∏

k∈ΦE

P{γk < x}
]

(a)
= EΦE

[
∏

k∈ΦE

(

1− e−
rαk x

Pξ (1 + ϕx)1−N

)]

(b)
= exp

(

−2πλE(1 + ϕx)1−N

∫ ∞

0

e−
rαx
Pξ rdr

)

= exp
(
−βλE(Pξ)δx−δ(1 + ϕx)1−N

)
, (10)

where (a) holds for the CDF ofγk [4], and (b) holds for
the probability generating functional (PGFL) over a PPP [19].
Substituting (10) intoO completes the proof.

The theoretical values ofO are well verified by Monte-Carlo
simulations, as shown in Fig. 1. We see that adding transmit
antennas is beneficial for decreasing the SOP. We also observe
that asξ increases,O first decreases and then increases; there
exists a uniqueξ that minimizesO. In the following we are
going to calculate the value of this uniqueξ. From (9), it is
apparent that minimizingO is equivalent to minimizingJ (ξ).

The first-order derivative ofJ (ξ) on ξ is given by

dJ (ξ)

dξ
=

θJ (ξ)(ξ3 + aξ2 + bξ + c)

ξ2 (ξ − ω) (ω + (ξ − ω)θϕ)
, (11)

wherea , −l1ω, b , − δ
θω

2 − l0ω
2 − l2ω, and c , l2ω

2,
with l0 , δ

N−1 , l1 , 1 − l0, and l2 , 1 + l0. Let K(ξ) =

ξ3+aξ2+ bξ+ c. Sinceξ > ω, the sign ofdJ (ξ)
dξ follows that

of K(ξ). In other words, to investigate the monotonicity of
J (ξ) on ξ, we need to just examine the sign ofK(ξ). In the
following theorem, we provide the solution to problem (8).

Theorem 1: The optimal PAR that minimizesO in (8) is

ξ∗ =







∅, 0 < κ ≤ T − 1

1, T − 1 < κ ≤ (T − 1)
(

1 +
√

δ/θ
)

ξo, otherwise

(12)

whereξo = 3
√
q + p+ 3

√
q − p− a

3 with p ,
√
(
b
3 − a2

9

)3
+ q2

and q , ab
6 − c

2 − 2a3

54 , anda, b, c have been defined in(11).
ξ∗ = ∅ means that transmission is suspended.

Proof: We know that Alice transmits only whenξ > ω. 1)
If ω ≥ 1, i.e.,κ ≤ T −1, no feasibleξ ∈ [0, 1] satisfiesξ > ω,
and transmission is suspended. 2) Ifω < 1, Alice transmits in
the range ofξ ∈ (ω, 1]. Next, we derive the optimal value of
ξ that minimizesJ (ξ).

We first prove the convexity ofK(ξ) on ξ ∈ (ω, 1]. From
the expression ofK(ξ), we haved2K(ξ)

dξ2 = 6ξ − 2l1ω > 0,
i.e., K(ξ) is a convexfunction of ξ. Then we determine the
sign of K(ξ). The values ofK(ξ) at boundariesξ = ω and
ξ = 1 are K(ω) = − δ

θω
3 and K(1) = (1 − ω)2 − δ

θω
2,

respectively. Obviously,K(ω) < 0 always holds. Next, we
discuss the optimal value ofξ for the following two cases.

Case 1: K(1) ≤ 0. SinceK(ξ) is convex onξ ∈ (ω, 1],
K(ξ) or dJ (ξ)

dξ is always negative. HenceJ (ξ) monotonically
decreases withξ, and the minimumJ (ξ) is achieved atξ = 1,
with the corresponding condition obtained fromK(1) ≤ 0,
which is 1

1+
√

δ/θ
≤ ω < 1.

Case 2: K(1) > 0. It meansK(ξ) or dJ (ξ)
dξ becomes first

negative and then positive asξ increases fromω to 1, i.e.,
J (ξ) first decreases and then increases withξ, and the optimal
value ofξ is the unique root of the cubic equationK(ξ) = 0.
Solving this equation using Cardano’s formula yieldsξo.

CombiningCase 1andCase 2completes the proof.
Theorem 1 indicates that when the value ofκ is small which

corresponds to a poor link quality or a large channel estimation
error, Alice either suspends the transmission or transmitswith
full power. When the value ofκ becomes large enough, it is
wise to create AN to decrease the SOP. The resulting minimum
SOP, denoted asO∗, is obtained by substitutingξ∗ into (9).

Next, we investigate the influence of channel estimation
error on the optimal PAR. Although we obtain a closed-form
expression ofξo in (12), it is complicated to reveal the explicit
connection betweenξo and κ. Nevertheless, by leveraging
the equationK(ξo) = 0, we develop some insights into the
behavior ofξo with respect toκ in the following proposition.

Proposition 1: ξo monotonically decreases withκ.
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Transmission Suspended

Fig. 2. Optimal PARξ∗ vs. error coefficientτ for different values ofRS ,
with P = 0dBm, N = γ = 20, andλE = 2.

Proof: Sinceω = T−1
κ , to complete the proof, we need to

just prove the monotonicity ofξo onω. Utilizing the derivative
rule for implicit functions [18] withK(ξo) = 0, we obtain

dξo
dω

=
−∂K/∂ω
∂K/∂ξo

=
l1ξ

2
o + 2 δ

θωξo + 2l0ωξo + l2ξo − 2l2ω

3ξ2o − 2l1ωξo − δ
θω

2 − l2ω − l0ω2
.

(13)
Substitutinga, b andc defined in (11) intoK(ξo) = 0 yields

δ

θ
=

(ξ2o + l0ωξo − l2ω)(ξo − ω)

ω2ξo
. (14)

Sinceξo > ω and δ
θ > 0, the termξ2o + l0ωξo − l2ω in (14)

satisfies the following inequality

0 < ξ2o+l0ωξo−l2ω < ξ2o+l0ξ
2
o−l2ω < l2(ξ

2
0−ω) ⇒ ξo >

√
ω.

Substitutingδ
θ in (14) into (13) yields the numerator−∂K

∂ω =
ξo
ω [l1ξo(ξo − ω) + l2(ξ

2
o − ω)] > 0 and denominator∂K∂ξo

=

l1ξo(ξo − ω) + l2
ξo
(ξ3o − ω2) > 0, hence we havedξodω > 0.

Combined withω = T−1
κ , we directly obtaindξo

dκ = dξo
dω

dω
dκ <

0, which completes the proof.
Proposition 1 shows that,when the channel estimation error

gets larger, if we aim to decrease the SOP under a target
secrecy rate, we should increase the information signal power,
which is validated in Fig. 2. It is because that, in order to
minimize the SOP, we should first guarantee the link quality
of the main channel to support the target secrecy rate. Hence,
we should increase the information signal power to balance the
deterioration caused by the channel estimation error. Whenτ
exceeds a certain value, transmission is suspended, which is
just as analyzed previously. We also find from Fig. 2 that the
value of ξ∗ increases asRS increases, which can be easily
confirmed by the factdξodT = dξo

dω
dω
dT > 0.

Fig. 3 shows that the minimum SOPO∗ increases withτ .
For a givenP , O∗ increases withRS . For a givenRS , the two
curves with different values ofP cross asτ increases (see the
intersectionP). Specifically, beforeτ exceedsP , increasing
P decreasesO∗, and after that the opposite happens. This
transition occurs because for too large an estimation error,
increasing transmit power does not significantly improve Bob’s
capacity, whereas it is of great benefit to Eves. This result
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Fig. 3. Minimum SOPO∗ vs. τ for different values ofP andRS , with
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Fig. 4. Secrecy rateRS versusξ for different values ofM , with ǫ = 0.01,
τ = 0.2, andλE = 5.

implies that using full power is not always advantageous,
particularly when the estimation error is large.

IV. SECRECYRATE MAXIMIZATION

In this section, we optimize the PAR that maximizes the
secrecy rate subject to a SOP constraint. We first transform
the SOP constraintO ≤ ǫ into the following equivalent form

1−FγE

(
1 + κξ

2RS
− 1

)
(c)

≤ ǫ⇒ 1 + κξ

2RS
− 1 ≥ F−1

γE
(1− ǫ)

⇒ RS ≤ log2
1 + κξ

1 + ̺(ξ)ξ
, (15)

where (c) holds due to the monotonically increasing feature

of the CDFFγE (x) on x. ̺(ξ) ,
F−1

γE
(1−ǫ)

ξ with F−1
γE

(·) the
inverse function ofFγE (·). Clearly, a positive value ofRS that
satisfies the SOP constraint (15) exits only when̺(ξ) < κ.
The problem of maximizingRS can be formulated as

max
ξ
RS = log2

1 + κξ

1 + ̺(ξ)ξ
s.t. ̺(ξ) < κ, 0 ≤ ξ ≤ 1. (16)

An illustration on the relationship between the secrecy rate
and the PAR is shown in Fig. 4. It is intuitive that increasing
the number of antennas helps to improve the secrecy rate. We
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observe that,RS first increases withξ, then decreases with
it, and even reduces to zero for too large aξ. This implies
we should carefully choose the PAR to achieve a high secrecy
rate.

From (16), we see that the value ofRS is bottlenecked by
̺(ξ), which implicitly reflects the influence of the density of
PPP EvesλE and the SOP thresholdǫ. For example, a larger
λE or a smallerǫ increases̺ (ξ) (see (9) and the definition of
̺(ξ)), and then decreasesRS (see (16)). Therefore,̺(ξ) plays
a critical role in maximizingRS . Although it is intractable to
obtain an analytical expression of̺(ξ) due to the transcen-
dental equation1 − FγE(ξ̺(ξ)) = ǫ (see (10)), we provide
an explicit connection between̺(ξ) and ξ in the following
lemma, which is very critical for the subsequent optimization.

Lemma 2:̺(ξ) is a monotonically increasing and convex
function ofξ ∈ [0, 1].

Proof: For notational brevity, we omitξ from ̺(ξ).
Pluggingx = ξ̺ into 1−FγE (x) = ǫ yields

Z(ξ, ̺)− L = 0, (17)

whereZ(ξ, ̺) = ̺δ
(

1 + ̺ 1−ξ
N−1

)N−1

, and L ,
βλEP δ

− ln(1−ǫ) .
Using the derivative rule for implicit functions with (17),the
first- and second-order derivatives of̺ on ξ are given by

d̺

dξ
= −∂Z/∂ξ

∂Z/∂̺ =
̺2

δ + l2(1− ξ)̺
, (18)

d2̺

dξ2
=

2

̺

(
d̺

dξ

)2

+
l2̺

2
(

̺− (1 − ξ)d̺dξ

)

(δ + l2(1− ξ)̺)2
. (19)

Clearly, d̺
dξ > 0 always holds. With (18), we have̺− (1 −

ξ)d̺dξ = δ̺+l0(1−ξ)̺2

δ+l2(1−ξ)̺ > 0 in (19). Removing the second term

from the right-hand side of (19) yieldsd
2̺

dξ2 >
2
̺

(
d̺
dξ

)2

> 0.

With d̺
dξ > 0 and d2̺

dξ2 > 0, we complete the proof.
Lemma 2 indicates the maximum value of̺(ξ) is achieved

at ξ = 1, which is ̺max = ̺(1) = L1/δ from (17). Besides,
it is clearly thatZ(ξ, ̺) − L monotonically increases with̺
for a givenξ. Generally, we can calculate the unique value of
̺(ξ) that satisfies (17) using the bisection method in the range
[0, ̺max]. For the special case of large antennas, i.e.,N → ∞,
we provide an approximate value of̺(ξ), denoted as̺ o(ξ).
Simulation results show that, whenN ≥ 20, the maximum
value ofRS calculated based on̺o(ξ) is quite close to that
based on the exact̺(ξ), i.e., ̺o(ξ) can be a computationally
convenient alternative to̺(ξ) whenN is large.

Corollary 1: AsN → ∞, ̺(ξ) in (17) approximates to

̺o(ξ) =







L1/δ, ξ = 1

δ
1−ξ ln

(

δ−1(1−ξ)L1/δ

W(δ−1(1−ξ)L1/δ)

)

, otherwise
(20)

whereW(·) is the Lambert-W function.
Proof: Since limN→∞

(
1 + x

N

)−N
= e−x, we have

Z(ξ, ̺o) = (̺o)δe(1−ξ)̺o

where̺o , limN→∞ ̺, and (17)
transforms toL = (̺o)δe(1−ξ)̺o

. 1) When ξ = 1, we
easily obtain̺o = L

1
δ . 2) When ξ 6= 1, we find that

1−ξ
δ L

1
δ = (1−ξ)̺o

δ e
(1−ξ)̺o

δ . Let µ ,
1−ξ
δ ̺o, and we obtain

1−ξ
δ L

1
δ = µeµ ⇒ e

1−ξ
δ L

1
δ = eµe

µ

. We further letν , eµ and

t , e
1−ξ
δ L

1
δ , such thatνν = t ⇒ ν = ln t

W(ln t) . The solution

̺o can be given by̺ o = 1−ξ
δ µ = 1−ξ

δ ln ν, with yields the
final expression in (20) by substituting inν along with t.

Due to the implicit function of̺ (ξ) on ξ, we can hardly
derive an explicit expression ofRS . Nevertheless, we still
reveal the concavity ofRS on ξ, and provide the solution
to problem (16) in the following theorem.

Theorem 2:RS in (16) is a concave function ofξ. The
optimal ξ that maximizesRS is given by

ξ∗ =







∅, κ ≤ ̺min

1, κ > δLα/2+Lα

δ−Lα andL < α
√
δ

ξr, otherwise

(21)

where̺min , ̺(0) denotes the minimum value of̺(ξ). ξr is
the unique root ofdRS

dξ = 0, where

dRS

dξ
=

1

ln 2

[

κ

1 + κξ
−
̺(ξ) + ξd̺(ξ)

dξ

1 + ξ̺(ξ)

]

. (22)

Proof: Alice transmits only when̺ < κ. Obviously, if
κ ≤ ̺min, then ̺ < κ never holds for an arbitrary̺ since
̺min ≤ ̺, such that transmission is suspended. Ifκ > ̺min,
Alice transmits for aξ that satisfies̺ < κ. To maximizeRS ,
we first give the second-order derivative ofRS on ξ from (16)

d2RS

dξ2
=

1

ln 2






−κ2
(1 + κξ)2

−
2 d̺
dξ + ξ d2̺

dξ2

(1 + ̺ξ)
+

(

̺+ ξ d̺
dξ

)2

(1 + ̺ξ)2




 ,

with d̺
dξ and d2̺

dξ2 given in Lemma 2. Substitutingd
2̺

dξ2 >

2
̺

(
d̺
dξ

)2

> 0 (see Lemma 2) into the above equation yields

d2RS

dξ2
< − 1

ln 2

(
κ2

(1 + κξ)2
− ̺2

(1 + ̺ξ)2

)

. (23)

Since̺ < κ, we have κ2

(1+κξ)2 − ̺2

(1+̺ξ)2 > 0 ⇒ d2RS

dξ2 < 0,
i.e.,RS is a concavefunction of ξ.

Due to the concavity ofRS on ξ, the maximum value of
RS is achieved either at boundaries or at stationary points.
From (22), the boundary values aredRS

dξ |ξ=0 = κ−̺min

ln 2 and
dRS

dξ |ξ=1 = 1
ln 2

(
κ

1+κ − Lα/2+α
2 Lα

1+Lα/2

)

. Obviously, dRS

dξ |ξ=0 >

0. 1) If dRS

dξ |ξ=1 > 0, RS monotonically increases withξ, and
the optimal value ofξ is 1, with the corresponding condition
directly obtained fromdRS

dξ |ξ=1 > 0. 2) If dRS

dξ |ξ=1 ≤ 0, RS

first increases and then decreases withξ, and the optimal value
of ξ is the unique root ofdRs

dξ = 0.
Theorem 2 shows only for a largeκ (small estimation error)

and a smallL (a sparse-eavesdropper scenario or a moderate
SOP constraint), allocating full power to the information signal
provides a higher secrecy rate than the AN scheme does,
otherwise generating AN is advantageous. SinceRS is a
concave function ofξ, we can efficiently calculate the unique
root ξr of dRS

dξr
= 0 in (22) using the bisection method.

Substitutingξ∗ and̺(ξ∗) into (16) yieldsR∗
S .
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Although ξr can only be calculated numerically, we show
how ξr is affected byκ in the following.

Proposition 2: ξr in (21) monotonically increases withκ.
Proof: From (22),dRS

dξr
= 0 transforms toA(ξr) = 0, and

A(ξr) = (κξ2r−l0ξr+l2)̺2r+(l2κξr − l2κ+ δ) ̺r−δκ, (24)

with ̺r , ̺(ξr). Using the derivative rule for implicit
functions with the equationA(ξr) = 0 yields

dξr
dκ

= − ∂A/∂κ
∂A/∂ξr

= −̺
2
rξ

2
r − (δ + l2(1− ξr)̺r)

ψ1(ξr) + ψ2(ξr)
d̺r

dξr

, (25)

whereψ1(ξr) = (1 + 2κξr)̺
2
r + l2(κ − ̺r)̺r andψ2(ξr) =

2
(
κξ2r + l2

)
̺r + (l2κξr + δ) − 2l0ξr̺r − l2κ. Obviously,

κ > ̺r ⇒ ψ1(ξr) > 0 andd̺r

dξr
> 0 (see Lemma 2).A(ξr) = 0

can be further reformed as
(
κξ2r + l2)̺r + (l2κξr + δ

)
=

l0ξr̺r + l2κ + δκ
̺r

, substituting which intoψ2(ξr) directly
yieldsψ2(ξr) > 0. Hence we have∂A∂ξr

> 0. Leveraging (22),
dRS

dξr
= 0 can be reformed byξ2r

d̺r

dξr
= 1 − 1+̺rξr

1+κξr
< 1.

Substituting d̺r

dξr
in (18) into this inequality yields̺ 2

rξ
2
r <

(δ + l2(1− ξr)̺r), i.e., ∂A
∂κ < 0. With ∂A

∂ξr
> 0 and ∂A

∂κ < 0,

we see from (25) thatdξrdκ > 0, which completes the proof.
Proposition 2 indicates that,when channel estimation error

becomes larger, if we aim to increase the secrecy rate under
a SOP constraint, we should increase the AN power, just
as shown in Fig. 5. The reason is: channel estimation error
heavily degrades the main channel while has no effect on
the wiretap channels. For a large estimation error, although
increasing the information signal power improves Bob’s ca-
pacity, the improvement is not significant. On the contrary,
increasing AN power always greatly deteriorates the wiretap
channels regardless of CSI imperfection. Therefore, when
estimation error becomes larger, increasing AN power is more
beneficial to the secrecy rate than increasing signal power.
Nevertheless, transmission is suspended ifτ exceeds a certain
value, which corresponds to the caseκ ≤ ̺min as indicated
in Theorem 2. We can also provedξrdλE

< 0 and dξr
dǫ > 0 in a

similar way as the proof of Proposition 2. Due to space limit,
we omit the relevant proofs, and the results are verified in
Fig. 5. We see that the optimal PARξ∗ decreases for a larger
λE or a smallerǫ. It means that, when transmission is more
vulnerable to wiretapping, we should increase AN power.

Fig. 6 depicts the maximum secrecy rateR∗
S versusτ . The

approximated value ofR∗
S is quite close to the exact one. We

observe thatR∗
S monotonically decreases withτ . Interestingly,

R∗
S increases withP at the smallτ region, whereas decreases

with it at the largeτ region. The underlying reason is just
similar to the explanation for the intersection in Fig. 3.

V. CONCLUSIONS

In this correspondence, we investigate the AN-aided multi-
antenna transmission under imperfect CSI against PPP Eves.
We provide explicit solutions of the optimal PARs with
channel estimation errors for minimizing the SOP under a
secrecy rate constraint and for maximizing the secrecy rate
subject to a SOP constraint, respectively. We strictly prove
that, when the channel estimation error becomes larger, we
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Fig. 5. Optimal PARξ∗ versusτ for different values ofλE and ǫ, with
P = 0dBm, andN = γ = 20.
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Fig. 6. Maximum secrecy rateR∗

S
versusτ for different values ofP , with

N = γ = 20, λE = 2, andǫ = 0.01. “Approx” corresponds to the value of
̺o(ξ) in (20) as opposed to the exact value of̺(ξ) obtained from (17).

should increase the information signal power if we aim to
decrease the SOP, whereas we should increase the AN power
if we aim to increase the secrecy rate.
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