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Abstract—The emerging data traffic demand has caused a mas-6
sive deployment of network infrastructure, including macro base7
stations (BSs) and small cells (SCs), leading to increased energy8
consumption and expenditures. However, the network underuti-9
lization during low traffic periods (e.g., night zone) enables the10
mobile network operators (MNOs) to save energy by having their11
traffic served by third-party SCs, thus being able to switch off12
their BSs. In this paper, we propose a novel market approach to13
foster the opportunistic utilization of the unexploited SCs capacity,14
where the MNOs, instead of requesting the maximum capacity15
to meet their highest traffic expectations, offer a set of bids re-16
questing different amounts of resources from the third-party SCs17
at lower costs. Motivated by the conflicting financial interests of18
the MNOs and the third party, the restricted capacity of the SCs19
that is not adequate to carry the whole traffic in multioperator20
scenarios, and the necessity for energy-efficient solutions, we in-21
troduce a combinatorial auction framework, which includes 1) a22
bidding strategy, 2) a resource-allocation scheme, and 3) a pricing23
rule. We propose a multiobjective framework as an energy- and24
cost-efficient solution for the resource-allocation problem, and we25
provide extensive analytical and experimental results to estimate26
the potential energy and cost savings that can be achieved. In27
addition, we investigate the conditions under which the MNOs28
and the third-party companies should take part in the proposed29
auction.30

Index Terms—Auction, energy efficiency, game theory, green31
networking, heterogeneous networks (HetNets), multiobjective op-32
timization, offloading, switching off.33

I. INTRODUCTION34

A. Motivation35

The rapid expansion of mobile services, along with the36

emerging demand for multimedia applications, driven by the37

widespread use of laptops, tablets, and smart devices, has led38
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to an impressive growth of data traffic during the last few 39

years. Global mobile data traffic is expected to increase nearly 40

tenfold, reaching 24.3 EB per month by 2019 [1]. Hence, 41

mobile network operators (MNOs1) seek to extend their in- 42

frastructure by installing more base stations (BSs). In an effort 43

to increase the capacity of their network and meet these press- 44

ing traffic demands, they also lease capacity and bandwidth 45

resources from third parties, who deploy low-powered small- 46

cell (SC) networks to provide enhanced services via traffic 47

offloading from macro BSs to SCs during peak hours [2]. For 48

instance, Nokia Networks [3] has recently built networks of 49

interconnected SCs, enabling operators to extend the coverage 50

and increase the capacity of existing macro networks. The 51

involvement of various entities of corporate nature with differ- 52

ent financial goals generates a new ecosystem with interesting 53

dynamics to be studied. To that end, in [4], the economics 54

of offloading are investigated, whereas auction theory is used 55

to model economic transactions between conflicting parties in 56

several works [5]–[7] through offloading schemes with auction- 57

based resource-allocation problems. 58

The dense heterogeneous networks (HetNets) imply sig- 59

nificant increase in the capital and operational expenditures 60

(CapEx and OpEx) of MNOs [8], and as a result, there is a 61

strong motivation to investigate energy-efficient solutions to 62

bring down the energy consumption and the cost of networks. 63

This goal can be accomplished through the switching off of the 64

underutilized nodes when the traffic is significantly low. Since 65

the BSs are the most power hungry and expensive components 66

of the networks [9], the research community has shifted toward 67

the investigation of BS switching-off schemes [10]–[15]. De- 68

spite their promising results, these works examine only one tier 69

of macro BSs, whereas the presence of multiple MNOs raises 70

new challenges and open issues. 71

The SC deployment in current HetNets can be the key to 72

implementing novel energy and cost-efficient solutions. By 73

encouraging the traffic offloading from BSs to SCs during low 74

traffic periods, when the SC resources are most likely to remain 75

unused, part of the BS infrastructure can be switched off. Given 76

that the energy consumption of the BSs is considerably higher 77

with respect to the SCs, even when the traffic load is low, such 78

solutions can yield high energy gains for the MNOs. Thus, 79

offloading can be exploited to concentrate the users to the SCs 80

1The terms “MNO” and “operator” will be used interchangeably in the
remainder of this paper.
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and allow the BSs with no traffic to be switched off. However,81

despite the potential gains of the opportunistic exploitation of82

the capacity of SCs and the deactivation of the redundant BSs83

during low traffic conditions, very few research works exist in84

the literature so far.85

An overview of the existing techniques in energy-efficient86

network planning is presented in [16], highlighting the advan-87

tages and the shortcomings of the algorithms and revealing88

the open issues that should be further studied in the field of89

HetNets and operators’ collaboration. In the same context, in90

[17], an auction-based offloading scheme is proposed for the BS91

switching off, where the operators submit a bidding value, and a92

third party’s income optimization approach is followed to solve93

the resource-allocation problem. However, only a particular94

network configuration is considered, where it is assumed that95

the SC capacity is sufficient to serve the traffic of the network,96

allowing the switching off of all the BSs.97

Despite the clear benefits of the BSs switching off via of-98

floading, the presence of multiple MNOs in the same area [18]99

would complicate the application of this scheme since the SCs100

may not be able to fully support the network traffic. Another101

limitation of the auction-based state-of-the-art works [5], [6],102

[17] consists in the fact that the MNOs propose a single103

bidding value for the requested capacity, based on the maximum104

predictions about the traffic that they are willing to offload.105

However, these predictions do not always correspond to the106

real traffic values, which can be significantly lower than the107

maximum values, leading to increased costs for the operators108

and inefficient use of the SC capacity resources.109

B. Contribution110

In this paper, motivated by the aforementioned issues, we111

propose a novel energy-efficient solution for dense HetNets,112

which considers the interests of the involved parties (MNOs and113

third party) and the time-varying traffic characteristics. More114

specifically, we introduce an offloading mechanism, where the115

operators lease the capacity of an SC network owned by a third116

party, to be able to switch off their BSs and maximize their117

energy efficiency, when the traffic demand is low. The MNOs118

request capacity from several SCs and can only switch off their119

BSs if all their requests are satisfied, enabling them to offload120

all their traffic to the SC network.121

To that end, the allocation of the SC resources among a122

set of competing MNOs is mathematically formulated as an123

auction. Since the exact resource requirements of the network124

are unknown beforehand, the MNOs employ past reports to125

predict the maximum expected traffic load. Then, exploiting126

the fact that, with a high probability, the actual traffic will127

be lower than the predicted maximum (especially during low128

traffic periods), the MNOs submit a set of bids to the SCs,129

requesting for lower capacity resources (with respect to the130

maximum estimated requirements). With this approach, the SC131

resources can be more efficiently utilized, and the MNOs are132

likely to pay a lower price for the leased capacity, taking a133

small risk of not being able to serve all users under some134

circumstances (i.e., when the traffic approaches the maximum135

predictions and the leased capacity is not sufficient). Our key136

contribution is to study this very interesting trade-off between 137

the potential energy and financial gains of this solution and 138

the risk of not fully satisfying all the users, thus providing the 139

MNOs with the necessary insights to decide whether it is prof- 140

itable to participate in the auction, depending on their tolerance 141

to the potential loss of some users. 142

In addition, the conflicting interests of the involved parties 143

are also taken into consideration. On the one hand, the MNOs 144

aim to reduce their energy consumption and expenditures by 145

offloading their traffic and switching off their BS infrastructure. 146

However, to deactivate a BS, all its traffic should be offloaded 147

to the SC network (i.e., the MNO should win in all the auctions 148

involving the particular BS). On the other hand, the third 149

party wants to maximize its income by leasing the maximum 150

possible amount for resources to the MNOs. However, the 151

resource allocation policy that maximizes the third party’s 152

income may not enable the operators to switch off their BSs. 153

Our proposed auction-based strategy takes into account these 154

conflicting interests to achieve a feasible, efficient, and energy- 155

saving resource-allocation scheme. 156

In summary, the contribution of this paper is described as 157

follows. 158

159

1) Bidding Strategy: We propose a novel bidding strategy, 160

where MNOs submit a set of bids (and not only one bid) 161

to the third party, requesting different capacity resources, 162

based on the predictions about their maximum traffic. The 163

diversity of bids allows more offloading opportunities, 164

which is profitable for both the MNOs and the third party. 165

2) Auction Design and Switching Off Decision: We design 166

an auction scheme that enables the efficient usage of SCs 167

resources under low traffic conditions. Our framework 168

motivates the MNOs to quantify their tolerance about 169

requesting fewer resources and form the different levels 170

of bids. We show that the proposed auction-based scheme 171

has two desirable properties: 1) truthfulness; and 2) indi- 172

vidual rationality. The mechanism is designed based on a 173

multiobjective framework, where the conflicting interests 174

of the involved parties are considered, to provide the 175

optimal solution that maximizes the economic profit of 176

both the third party and the MNOs and minimizes the 177

network energy consumption at the same time. 178

3) Performance Evaluation: We validate the theoretical 179

analysis of the multiobjective problem by computing 180

the Pareto front (i.e., the set of optimal) solutions and 181

assess the effectiveness of the proposed auction-based 182

switching-off algorithm. The analytical and simula- 183

tion results indicate the potential energy efficiency and 184

economic gains in the network and give the necessary 185

insights to the MNOs to decide whether it is beneficial 186

to enter in a resource allocation negotiation with the 187

third party. 188

The remainder of this paper is organized as follows. The 189

system model is described in Section II. In Section III, we in- 190

troduce the auction-based optimization approach that is used for 191

the BSs’ switching-off decision. The performance evaluation is 192

provided in Sections IV and V concludes this paper. 193



IEE
E P

ro
of

BOUSIA et al.: MULTIOBJECTIVE AUCTION-BASED SWITCHING-OFF SCHEME IN HETEROGENEOUS NETWORKS 3

Fig. 1. Network configuration with one macro cell served by N MNOs and
covered by M third-party SCs.

II. SYSTEM MODEL AND OPERATION194

A. Network Configuration195

We consider an urban scenario, focusing on an area of a196

macro cell. In the macro cell, we assume that N MNOs provide197

coverage through their BSs, which are denoted by BSn, where198

n ∈ N = {1, . . . , N} characterizes the MNOn. Let us high-199

light that, in dense networks, due to legal regulations, MNOs200

are obligated to install their antennas and BSs on the same201

buildings; thus, we examine networks with collocated BSs [18].202

Moreover, in the macro cell, SCs, owned by a third party, are203

randomly distributed. Each SC is represented as SCm, where204

m ∈ M = {1, . . . ,M}. We assume that the number of SCs is205

adequate to cover the area of the macro cell [19]. As it will be206

explained in the following, the MNOs are motivated to offload207

their traffic to the third-party SCs by paying the corresponding208

price, thus enabling part of BS infrastructure to be switched209

off during low traffic conditions. The network configuration is210

shown in Fig. 1.211

B. Traffic Load Model212

In this paper, we adopt a realistic traffic pattern [20], [21]213

that corresponds to the maximum traffic per operator in a given214

cell. Fig. 2(a) plots the maximum traffic per hour, which is215

denoted by Loadmax(h), throughout the day.2 Without loss of216

generality, we focus on the time zone between 01:00 A.M. and217

09:00 A.M., when the traffic per BS is relatively low (i.e., less218

than 40 Mb/s, which corresponds to 35% of the cell’s capacity).219

The selection of the night zone may vary according to the traffic220

variations, and our algorithm can be adapted to different traffic221

conditions. In addition, we assume that the traffic volumes of222

different MNOs may be different, although they follow the223

same pattern. Hence, we define ρn ∈ [0, 1] as the percentage of224

each operator’s traffic load with respect to the maximum traffic225

for the respective hour. In this paper, we have used traffic data226

sets that include information of one operator for ten BSs during227

the period of one year, thus including weekends, weekdays,228

and day and night hours. To that end, the reports consists of229

various values for both low and high traffic. Provided that the230

2The parameter h can be dropped for the sake of simplicity.

Fig. 2. Traffic pattern scenario and real data traffic values. (a) Traffic load
during the 24-hour day. (b) Real data for traffic load patterns.

data sets had huge information, we classified the days of the 231

year into different periods of time (e.g., seasons, weekdays, 232

and weekends). Based on these real traffic reports and by 233

using simple statistical analysis, we have obtained the necessary 234

insights about the minimum, maximum, and average values of 235

the traffic load, and we have plotted some indicative numbers in 236

Fig. 2(b). Each one of the six values corresponds to the average 237

traffic that was observed in different days during the year. In 238

addition, we express the BS utilization as a percentage of the 239

total BS’s capacity resources for the extreme cases of minimum 240

and maximum traffic loads. The two values, i.e., Loadmin and 241

Loadmax, are very critical, and it is very important for the 242

MNOs to be able to predict them. 243

Unlike the existing works in the literature, where each MNO 244

places only one bid corresponding to the maximum capacity 245

requirements, in this paper, we propose that the MNOs place 246

multiple bids corresponding to different levels of the predicted 247

traffic load, as shown in Fig. 2(b). Thus, given the estimated 248

minimum and maximum traffic load levels and assuming that 249

the actual traffic values will, most probably, lie between these 250

extreme values, we are able to calculate different levels of 251

traffic. In this paper, we consider L+ 1 different traffic load 252

levels. The number of levels depends on the MNOs’ strategy 253
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Fig. 3. Traffic during the night zone and different levels of traffic estimation.

that will be further explained in the following. Each level l ∈254

L = {0, . . . , L} corresponds to traffic that is equal to255

Loadl = Loadmin +
Loadmax − Loadmin

L
· l

=

(
1 − l

L

)
· Loadmin +

l

L
· Loadmax. (1)

Evidently, the two extreme values are Load0 = Loadmin and256

LoadL = Loadmax. Fig. 3 shows an example, depicting various257

traffic levels for a specific hour (h = 02 :00 A.M.). Based258

on the above, Appendix A of the supplemental file provides259

a theoretical estimation of the traffic that can be offloaded,260

explaining the process of mapping the users of the MNOs to261

the capacity of the SCs.262

III. AUCTION-BASED SWITCHING-OFF ALGORITHM263

Here, we present the combinatorial auction employed to264

select the MNOs that can offload their traffic to the SCs, thus265

being able to switch off their BSs. We provide the bidding strat-266

egy, and we formulate the integer linear programming model,267

which ensures the optimal allocation and the switching-off268

strategy for the auction. In addition, to ensure truthful bidding,269

the Vickrey—Clarke—Grooves (VCG) payment mechanism270

[22] is employed.271

A. Big Picture272

By considering the limited capacity of the SCs and the273

MNOs’ incentive to switch off their BSs, we use an auction-274

based mechanism to motivate the operators to offload the traffic275

to the third-party SC network. Fig. 4 illustrates the main idea of276

the scheme. In our proposal, both the MNOs and the third party277

take part in the decision process, each one having a separate278

role in the framework. On one hand, the MNOs act as buyers,279

who are willing to lease the SCs resources and opportunistically280

offload their traffic. On the other hand, the third party, acting as281

a seller, collects the bids, and through an auction, the subset of282

MNOs that can offload their traffic, is selected. The proposed283

auction-based switching-off scheme consists of three main284

Fig. 4. Auction illustration and proposed algorithm flowchart.

steps: bidding, allocation, and pricing, whose process and the 285

respective decision-makers (in parenthesis) are presented as fol- 286

lows. First, in the bidding phase (MNOs), the MNOs place their 287

bids to the third party according to the different values of the 288

requested bandwidth. Each bid includes the information of the 289

requested capacity and the corresponding price that the MNO is 290

willing to offer. Second, in the allocation step (third party and 291

MNOs), the third party collects the MNOs’ bids. The selection 292

of the optimal resource allocation can be derived through the so- 293

lution of the resource-allocation problem. Third, in the pricing 294

step (third party), the third party decides each winner’s payment 295

price, based on the resource allocation of the previous step. The 296

winning MNOs offload their whole traffic to the SCs and switch 297

off their BSs, whereas the losing bidders keep their BSs active. 298

B. Bidding Strategy 299

Each SCm of the third party (seller) has unexploited capacity 300

resources that is willing to lease to the MNOs. The MNOs 301

(buyers) want to offload their traffic to the SCs by requesting 302

specific capacity resources to lease, based on the predictions 303

of the traffic load. The number of the physical resource blocks 304

(PRBs) is calculated in Appendix A of the supplementary AQ1305

file. The MNOs valuate the requested resource N l
PRBn,m

at a 306

given price ul
n,m, unknown to the third party and the other 307

bidders, where l is the level of resources, n ∈ N refers to 308

the corresponding operator, and m ∈ M corresponds to the 309

specific SC that the MNO wants to lease the resources from. In 310

the proposed auction-based scheme, each operator submits a set 311

of bid pairs Bl
n,m = (bln,m, N l

PRBn,m
), representing the price 312

bln,m ≤ ul
n,m, which the nth MNO pays for leasing the capacity 313

N l
PRBn,m

from the mth SC. In general, these two values (i.e., 314

bln,m, ul
n,m) may not necessarily be the same. However, in a 315

truthful auction such as the one that we have (the truthfulness 316

property of the auction will be explained in Section III-D), it 317

is proved that the private valuation and the bidding price are 318

equal; thus, bln,m = ul
n,m [5], [6]. After the reception bid pairs, 319

the selection of the subset of the MNOs, whose traffic can be 320

offloaded to the corresponding SCs, follows. 321
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Fig. 5. Bidding strategy versus tolerance function.AQ2

To gain further insights on the bidding strategy, let us322

consider the following example. Given the predicted expecta-323

tions about the traffic, each MNO m submits multiple bids,324

b0n,m, b1n,m, . . . , bln,m, . . . , bLn,m, indicating the offered price for325

the requested number of PRBs. Through the different bid pairs,326

the MNOs actually reveal their outage probability tolerance.327

In particular, by leasing the maximum calculated number of328

PRBs (NL
PRBn,m

) for the highest bid bLn,m, the MNOs guarantee329

service to all their users. Controversially, by obtaining a smaller330

number of PRBs (e.g., N l
PRBn,m

with l < L), the MNO pays331

a smaller price at a risk of leaving some users in outage.332

The minimum number of requested PRBs N0
PRBn,m

constitutes333

an upper bound of the operator’s outage tolerance. Another334

parameter determined by each MNO is the number of levels.335

A higher number of levels results in more bid pairs, thus336

increasing the performance of the auction while inducing more337

communication overhead and higher computational complexity.338

To flexibly model the MNOs’ outage tolerance, we introduce339

a satisfaction function that represents the bidding value (which340

is equal to the valuation price) that the MNO is willing to341

pay for leasing a specific bandwidth. To that end, we define342

the number of lacking PRBs as the difference between the343

maximum number of PRBs minus the actually obtained PRBs344

allocated the MNO, given by345

N l
PRBn,m,lack = NL

PRBn,m
−N l

PRBn,m
. (2)

The satisfaction function is determined by the requested ca-346

pacity of each MNO and is monotonically decreasing with the347

number of lacking PRBs. We also consider that, for each MNO,348

there is a lower bound for the minimum number of requested349

PRBs, which minimizes the MNO’s satisfaction. This bound350

indicates that for fewer PRBs the MNO will not participate in351

the auction. Fig. 5 shows three examples of the outage tolerance352

function. Three bidding values are emphasized in the plot: The353

highest bid bLn,m, corresponding to the maximum requested354

capacity NL
PRBn,m

(with N l
PRBn,m,lack = 0), the lowest bid355

b0n,m, and an intermediate value bln,m. As the number of lacking356

PRBs increases (depicted by the arrow direction in Fig. 5), the357

bid values decrease, and as a consequence, losses in terms of the358

served users may be observed. If the number of lacking PRBs359

exceeds N0
PRBn,m,lack, the MNO will not participate in the auc-360

tion; thus, no bid lower than b0n,m will be submitted. The three 361

points (A, B, and C) marked in Fig. 5 correspond to the different 362

tolerance functions of three operators. An outage-tolerant MNO 363

(point C) requests for less bandwidth for the same bidding value 364

bln,m compared with a nontolerant MNO (point A) that still 365

requests high capacity from the third party. Hence, the nontol- 366

erant MNO places higher priority on guaranteeing user service, 367

whereas the outage-tolerant MNO is willing to sacrifice some 368

resources to increase its probability of winning the auction and 369

switching off its BS, thus enhancing energy efficiency. Finally, 370

point B corresponds to an intermediate bidding strategy defined 371

by a linear function between the two examined parameters. 372

The user outage tolerance function (keeping in mind that 373

bln,m = ul
n,m) is modeled as3 374

bln,m = bLn,m −
bLn,m − b0n,m

NL
PRBn,m

−N0
PRBn,m

·
(
N l

PRBn,m

)δ

. (3)

The distinctive cases for the satisfaction curves are as 375

follows. 376
377

• Nontolerant MNO (Point A): For the nontolerant MNO, 378

the outage tolerance function is convex, with δ < 1. 379

• Average-tolerant MNO (Point B). There is a linear re- 380

lation between the bidding strategies and the outage 381

tolerance of the MNOs, by substituting δ = 1 in (3). 382

• Tolerant MNO (Point C). For the tolerant MNO, the 383

satisfaction function is concave, with δ > 1. 384

The parameter δ may obtain a wide range of values. The selec- 385

tion of a value equal to δ � 1 corresponds to a strictly nontoler- 386

ant MNO, who decreases its bid requests very fast. In contrast, a 387

very high value of this indicative parameter (i.e., δ � 1) would 388

lead to very slowly decreasing bidding values and, thus, to a 389

very tolerant operator. 390

C. Auction Formulation 391

By employing the properties of combinatorial auction theory, 392

we formulate the problem of the opportunistic offloading as 393

an auction. Each MNO n ∈ N places the corresponding bid 394

pairs Bl
n,m. Having received the bids, the third party selects 395

the subset of MNOs that maximizes the desired goals of all the 396

involved participants. We define xl
n,m as a binary decision vari- 397

able that indicates whether the corresponding bidder (MNO n) 398

is winner (xl
n,m = 1) or not (xl

n,m = 0) in the corresponding 399

SCm and for the lth bidding value. 400

The cost of using the SC infrastructure and the increased 401

consumed energy are the main objectives: the maximization 402

of the profits (the economic objectives of the third party and 403

the MNOs) and the minimization of the energy consumption 404

(the energy objective). In continuation, a detailed analysis of 405

the objectives of each party is presented. 406

1) Third Party’s Objective: The third party aims at maximiz- 407

ing its profit by leasing high volumes of the capacity of SCs at 408

3The values of b0n,m and bLn,m will be calculated in details in the succeeding
section, where the constraints and requirements posed by the MNOs and the
third party are given within the optimization framework.
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increased prices. The profit is defined as the difference of the409

MNOs’ winning bids minus its expenses (CapEx and OpEx).410

We define the financial gain of the SC network CGSC as411

f1(x) = CGSC =
∑
n∈N

∑
m∈M

∑
l∈L

xl
n,m · bln,m −M · CSC (4)

where CSC is the cost of a SC, corresponding to the sum of its412

CapEx and the traffic-dependent OpEx. For the calculation of413

the SCs cost, the cost model presented in [23] is employed.414

To ensure its objective, the third party introduces a minimum415

profit, which is described as a function of its total cost, i.e.,416

CGmin
SC = y ·M · CSC, y > 0. (5)

Given the minimum profit, which is calculated by (5), we417

estimate the reservation price as follows.418

Proposition 1: The reservation price is defined as the mini-419

mum price that a seller would be willing to accept for leasing420

the corresponding bandwidth, i.e.,421

blres,n,m =
N l

PRBn,m

Nmax
PRB

· y ·M · CSC. (6)

Proof: The third party is willing to share its resources422

among the MNOs based on proportional fairness by ensuring423

that a minimum profit gain will be achieved, at the same time.424

To that end, it calculates a reservation price, which is the425

minimum price that the third party will accept from an MNO426

to lease a specific bandwidth. The maximum number of PRBs427

that the nth MNO can offload to the mth SC is given by428

N l
PRBn,m

=
blres,n,m · xl

n,m∑
n∈N

∑
l∈L

blres,n,m · xl
n,m

·Nmax
PRB. (7)

Finally, by using (5) and (7) in (4), the reservation price for429

offloading traffic is calculated. �430

The reservation price in (6) is not the price that the MNOs431

will propose to lease their requested capacity, although it is432

a threshold price that the third party uses to eliminate all the433

offers that are less than the accepted. The reservation price can434

be either announced or unknown to the MNOs. The reservation435

price means that the seller would rather withhold the capacity436

if the proposed bids are too low (i.e., lower than the reservation437

price), and given this price, the auction process can be acceler-438

ated since the set of prices that are lower than the reservation439

price can be discarded.440

2) MNOs’ Objective: The objective of each MNO is the441

maximization of its financial profits. The maximization of the442

profits of the nth MNO is defined as the revenue from switching443

off its BS minus the winning bids for leasing the requested444

capacity from the third party. Therefore, the profit (cost gain)445

can be written as446

f2(x) = CGn = CBS · xn −
∑
m∈M

∑
l∈L

xl
n,m · bln,m (8)

with 447

xn =
∏

m∈M

∑
l∈L

xl
n,m ∀n ∈ N (9)

and CBS being the cost of a BS, whose model is also presented 448

in [23], provided that 449

∑
l∈L

xl
n,m ∈ {0, 1} ∀n ∈ N ∀ l ∈ L. (10)

At this point, let us recall that an operator is able to switch 450

off its BS if it wins in an auction in all the SCs, a condition that 451

is represented by the product in (9). The product is equal to 1 452

only when the nth MNO wins in M auctions in respective SCs; 453

otherwise, it is 0. 454

The MNOs are willing to participate in the auction and lease 455

bandwidth resources from a third party if they guarantee a mini- 456

mum profit gain. Consequently, they introduce a minimum pro- 457

fit, which is described as a percentage of their total costs, i.e., 458

CGmin
n = z · CBS, 0 < z < 1. (11)

The bidding strategy of the MNOs, along with the proposed 459

bids, depend on the minimum profit gain and the operation costs 460

of the BSs. However, the cost gain can be attained if and only 461

if the nth MNO wins in M auctions and is able to lease the 462

requested capacity. In addition, since we consider uniform traf- 463

fic in the macro cell, we conclude that the bids in the different 464

SCs must be equal and proportional to the corresponding traffic. 465

Thus, the maximum bid price for offloading the traffic in the 466

mth cell is calculated as 467

bLn,m =
(1 − z) · CBS

M
. (12)

Similarly, the minimum bidding price is a proportional value 468

of the maximum one, which is given by 469

b0n,m = v · (1 − z) · CBS

M
(13)

where v ∈ (0, 1). The bidding values of the remaining L− 1 470

levels can be calculated based on (3), depending on the maxi- 471

mum bid value and the relation between the outage tolerance of 472

the MNOs and the discount they can be offered for the lower 473

requested bandwidth. 474

3) Overall Objective: The overall objective of the network 475

is the minimization of the energy consumption. This can be 476

attained by reducing the number of active BSs, given that the 477

BSs are responsible for the major part of energy consumption 478

in the network. The network energy consumption E[E] is 479

f3(x)=E[E]=
∑
n∈N

E [EBSn
] · (1−xn)+M · E[ESC] (14)

where E[EBSn
] and E[ESC] represent the energy consumption 480

of BS and SC, respectively. 481
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The combinatorial auction formulation should include all the482

objectives of the participating entities. To capture the trade-off483

between the objectives, the multiobjective optimization [24] is484

employed. The target is to find a subset of acceptable solutions485

according to a set of objectives. In general terms, the objectives486

may be conflicting, and consequently, a single global optimum487

may not exist. Hence, the notion of an optimum set x∗ becomes488

very important. Some relevant definitions are given in the489

following.490

Definition 1: Given the three objectives, f1(x), f2(x), and491

f3(x), and provided that x1 and x2 are two decision variables,492

then x1 is said to be the Pareto dominant, and is denoted x1 �493

x2 if and only if fi(x1) ≥ fi(x2) ∀ i ∈ {1, 2, 3}, and fj(x1) >494

fj(x2), for at least one index j ∈ {1, 2, 3}.495

Definition 2: x∗ is said to be Pareto optimal (or nondom-496

inated), if there is no other x, so that x dominates x∗. The497

set of all Pareto solutions in the decision space is called the498

Pareto optimal set and the image of the Pareto optimal set in499

the objective space is called the Pareto optimal front.500

Based on the aforementioned definitions, the ILP multiobjec-AQ3 501

tive optimization problem can be formulated as follows.502

Definition 3: The allocation problem is to determine the503

optimal solution {xl
n,m} ∀n ∈ N ∀m ∈ M, and ∀ l ∈ L that504

maximizes the distinctive objectives of the involved parties in505

the auction, subject to capacity and offloading targets506

P1 : max [CGSC, CGn, −E[E]] (15)

s.t.∑
n∈N

∑
l∈L

xl
n,m ·N l

PRBn,m
≤ Nmax

PRB ∀m ∈ M (16)

∑
l∈L

xl
n,m ∈ {0, 1} ∀n ∈ N ∀m ∈ M (17)

bln,m ≥ blres,n,m ∀n ∈ N ∀m ∈ M ∀ l ∈ L (18)

xl
n,m ∈ {0, 1} ∀n ∈ N ∀m ∈ M ∀ l ∈ L. (19)

The constraint in (16) ensures that the total number of507

allocated resources does not exceed their availability, constraint508

(17) ensures that only one bid of the nth MNO in the mth SC509

can be the winning bid among the l different ones, constraint510

(18) ensures that the bids are higher than the reservation price,511

and constraint (19) ensures the integrality of the binary variable.512

The objectives of the proposed optimization formulation are513

contradictory. The maximization of the third party income does514

not imply the BSs switching off, whereas the energy objective515

does not ensure the third party’s interests. The maximization516

of the financial gains of the third party may lead to additional517

economic losses from the MNOs’ perspective since the maxi-518

mization of this objective may lead to a resource allocation that519

does not imply the deactivation of BSs.520

Exploiting the fact that the BSs are responsible for the major521

part of the energy consumption, the third objective of the prob-522

lem f3(x) can be transformed into a constraint. Energy con-523

sumption is minimized when the maximum number of MNOs524

switches off their BSs after winning in M auctions, a condition525

represented by the product in (9). Thus, the problem P1 is526

transformed into a simpler formulation in (20), and at the same 527

time, the energy consumption objective is not neglected, in 528

contrast to former works [17], where only the maximization of 529

the third party’s income is considered. The equivalent problem 530

is as follows: 531

P2 : max [CGSC, CGn] (20)

s.t. ∏
m∈M

∑
l∈L

xl
n,m ∈ {0, 1} ∀n ∈ N (21)

∑
n∈N

∑
l∈L

xl
n,m ·N l

PRBn,m
≤ Nmax

PRB ∀m ∈ M (22)

∑
l∈L

xl
n,m ∈ {0, 1} ∀n ∈ N ∀m ∈ M (23)

bln,m ≥ blres,n,m ∀n ∈ N ∀m ∈ M ∀ l ∈ L (24)

xl
n,m ∈ {0, 1} ∀n ∈ N ∀m ∈ M ∀ l ∈ L. (25)

The objective function (20) aims at maximizing the financial 532

gain of both the third party and the MNOs. Constraint (21) 533

ensures that an operator either wins in one auction in the M 534

SCs (and switches off its BS) or loses in all the auctions (keeps 535

its BS active). Thus, this constraint ensures the minimization 536

of the energy consumption given by (14) since the selected 537

resource allocation leads to the highest number of switched-off 538

BSs, while at the same time achieving the increase in MNOs 539

and third party’s income. Constraints (22)–(25) are the same as 540

(16)–(19), respectively. 541

The multiobjective problem P2 belongs to the class 542

NP-Complete since it is equivalent to the 0–1 knapsack prob- 543

lem, which is a well-known problem in combinatorial optimiza- 544

tion. For the NP-hard problems, an optimal solution is difficult 545

to be found due to the large number of variables [24]. However, 546

there are different solutions that represent the best feasible state 547

of the investigated system, e.g., the best resource allocation 548

for the deactivation of the highest number of BSs. To find the 549

best possible representation or a good approximation of these 550

optimal solutions that are widely known as the Pareto optimal 551

set or as the optimal Pareto front and to overcome the high 552

complexity of multiobjective problems, metaheuristic methods 553

(also sometimes called genetics) have become a very active 554

research area, and several algorithms have been proposed [25], 555

[26]. Although, the metaheuristic algorithms do not guarantee 556

that this approximation is the optimal, the solutions are still 557

good and near optimal.4 558

The metaheuristic algorithm that finds the Pareto solution 559

for our multiobjective optimization problem works on a set 560

of possible combinations of the decision variables [24]. The 561

basic definition of the Pareto front is that it consists of exactly 562

those point solutions that are not dominated by any other point. 563

The different objectives cannot be optimized simultaneously. 564

Thus, first, the solutions that maximize the MNOs’s income 565

and the third party’s economic gains are calculated separately. 566

4For the sake of simplicity, we use the term “Pareto front” throughout this
paper to refer to the obtained solutions through metaheuristics.
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Obviously, these solutions that maximize the cost gains of the567

MNOs and the third-party always belong to the Pareto front568

and, in fact, they are its endpoints. A simple algorithm to569

find the other solutions (if any) on the Pareto front begins by570

sorting the solutions according to one of the objectives, e.g.,571

third party’s income. The algorithm then starts with the point572

with the maximum gain for the third party and continues to573

the successive solutions in order of increasing third party’s cost574

until the solutions with higher cost gain value for the operators575

is found. This solution is then added to the Pareto front, and the576

search is restarted from it.577

Through the use of metaheuristics, the problem can be solved578

efficiently and quickly for a relatively small number of MNOs579

and SCs [25], [27], [28]. This assertion cannot be concluded580

and generalized for large networks. In the investigated network581

configuration with 5 MNOs, 15 SCs, and 9 bidding levels, the582

runtime of the solution is very short. At this point, let us clarify583

that the numbers selected for the MNOs and the SCs are based584

on the most typical and realistic scenarios in recent studies [18],585

[19] since the most common scenarios in European countries586

involve three to four MNOs, and 15 SCs can cover the service587

are of one macro BS.588

D. Pricing Strategy589

Having defined the ILP model, we now illustrate the payment590

rule, which is of crucial importance for the realization of the591

auction for the third party. The VCG payment induces all592

the users to reveal their actual valuations for the requested593

bandwidth. In the VCG mechanism, the third party charges the594

bidders (MNOs) with a price for the requested capacity. For595

example, an MNO who requires large bandwidth will have to596

pay a high price since its request results in dissatisfying other597

MNOs who lose in the auction because of the limited capacity598

resources and will not be able to offload their traffic.599

Let us denote by pln,m the price paid by the MNO n to the600

third party for the allocated capacity of the mth SC. The payoff601

function for bidder n that represents the difference between the602

gain of the MNO attained through the BS switching off and603

the true valuation minus the paid price (let us recall that in the604

truthful auction ul
n,m = bln,m) is605

Ui =

⎧⎨
⎩

CGi +
∑

m∈M

∑
l∈L

ul
i,m −

∑
m∈M

∑
l∈L

pli,m, if i is selected

−CBS, otherwise.
(26)

The payment rule for each MNO can be defined as follows:606

pli,m =
∑

n∈N\{i}

∑
m∈M

∑
l∈L

(
xl
i,m

){−i} · bli,m

−

⎛
⎝ ∑

n∈N\{i}

∑
m∈M

∑
l∈L

xl
i,m · bli,m

−
∑

n∈N\{i}

∑
m∈M

∑
l∈L

xl
i,m · bli,m

⎞
⎠ (27)

TABLE I
SIMULATION PARAMETERS

where the first term is the aggregate valuation of the allocated 607

resources, (xl
n,m){−i}, when MNO i does not participate at all 608

in the auction. The second term is the aggregate valuation of the 609

allocation xl
n,m of all MNOs other than i, when i participates 610

in the auction. Next, we prove that our optimized auction 611

mechanism possesses two important properties: 1) truthfulness 612

and 2) individual rationality. 613

Proposition 2 (Truthfulness): The payment rule defined in 614

(27) satisfies the truthfulness property. 615

Proof: The proof is given in Appendix B in the supple- 616

mental file. � 617

Proposition 3 (Individual Rationality): The payment rule 618

defined in (27) satisfies the individual rationality property, and 619

all bidders are guaranteed to obtain nonnegative utility. 620

Proof: The proof is given in Appendix C in the supple- 621

mental file. � 622

IV. PERFORMANCE EVALUATION 623

This section is composed of three parts. First, we explain 624

the simulation scenario employed both for the multiobjective 625

optimization and the system-level simulations. Second, we 626

present the results regarding the estimation of the Pareto front 627

for the multiobjective optimization solved by using the Matlab 628

tools. Finally, we show a performance comparison between 629

the proposed scheme and two state-of-the-art schemes with the 630

development of a custom-made C simulator. 631

A. Simulation Scenario 632

The simulation scenario corresponds to a dense HetNet de- 633

ployment, such as a university campus or an urban area. More 634

specifically, our scenario focuses on a cell served by the BSs of 635

N = 5 MNOs and M = 15 SCs that cover the whole cell area. 636

In our experiments, we consider various scenarios, wherein the 637

MNOs have different traffic volumes (i.e., ρ), different bidding 638

strategies (i.e., nontolerant, linear, and tolerant), different cost 639

requirements (i.e., z), and different bidding levels (i.e., L). 640

The system-level simulations are based on Monte Carlo exper- 641

iments, and the presented results focus on the night zone for 642

the duration of one year.5 The set of parameters is provided 643

in Table I. 644

To assess the performance of our scheme, we compare 645

the proposed multiobjective auction-base switching-off strat- 646

egy (referred to as MAS), to two benchmark solutions: 1) an 647

auction-based switching-off scheme, wherein the income of the 648

5Note that the results are calculated for the case of one macro cell, but they
can be easily extended to extended configurations. Furthermore, we consider
the period of one year since the yearly traffic is considered stable [30].
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Fig. 6. Estimation of Pareto front solutions. (a) Estimated Pareto front forAQ4
multiple MNOs’ requirements, L = 2 and linear bidding strategy. (b) Estimated
Pareto front for multiple bidding strategies, L = 2, and z = 0.1.

third party is the unique objective to be maximized (referred649

as ISO) [17]; and 2) a baseline scenario with full operational650

topology (FOT), where none of the BSs is switched off.651

B. Estimation of the Pareto Front652

Here, we present the Pareto front analysis. In this set of653

experiments, we assume that all operators have the same traffic654

volume equal to the maximum possible traffic load, i.e., ρn = 1.655

In addition, we assume that each MNO submits three different656

bids, corresponding to L = 2, to the third party.657

Fig. 6 shows the Pareto front solutions achieved by solving658

the proposed multiobjective problem for different minimum659

financial gains with the same bidding strategy [see Fig. 6(a)]660

and different bidding strategies with the same minimum profit661

requirement [see Fig. 6(b)]. In both figures, the third party’s662

annual financial gain that can be attained by leasing its re-663

sources to one MNO is represented in the x-axis, and the annual664

economic profits of one MNO are given in y-axis.665

In Fig. 6(a), the set of optimal solutions is shown for the666

linear bidding strategy. Note that the stochastic search per-667

formed by means of the metaheuristic algorithm succeeds in668

estimating a Pareto front for the given parameters of the studied 669

problem. As expected, in all the different cases, the higher the 670

third party’s income (f1(x)), the lower the financial gain of 671

the MNOs (f2(x)). Thus, the Pareto front is monotonically 672

decreasing, meaning that the improvement of one objective 673

leads to the deterioration of the other objective, and there is 674

no feasible global solution maximizing all the objectives. A 675

second observation relies on the motivation of the MNOs to 676

maximize their economic gains, which is a fact that can be 677

explored through the parameter z that reflects the requirements 678

of the minimum profit gain, denoted in (11). As it is plotted 679

in the figure, the greedy behavior of the MNOs for higher cost 680

gains (z = 0.5) leads to lower income for the third party and, 681

at the same time, a lower number of achievable solutions. This 682

result is of significant importance since a greedy behavior from 683

the MNOs’ perspective will produce lower bids that may not be 684

accepted by the third party; thus, the MNOs will not be able to 685

offload their whole traffic. The selection of a proper value of the 686

parameter z helps the operators to decide whether it is profitable 687

for them to bid by taking into account their financial needs, 688

and by observing Fig. 6(a), we conclude that lower values of 689

z lead to higher income for the two involved parties. To provide 690

further insights for our approach, let us also highlight that, in 691

a realistic scenario with a large number of macro BSs, the cost 692

gains for the MNOs and the third party are significantly higher. 693

For example, by applying the proposed switching off technique 694

to the central area of London where an MNO may have up to 695

500 deployed BSs [31], the economic gains may reach up to 696

∼12.500 C for the MNO and up to ∼25.000 C for the third 697

party. 698

In continuation, Fig. 6(b) illustrates the Pareto front by 699

examining different bidding strategies for the case of z = 0.1. 700

Again, we observe that the attained solutions are decreasing 701

monotonically. Moreover, as we see, the more tolerant the 702

bidding strategy of the MNOs, the higher financial gains for the 703

involved parties. This important insight can be easily explained 704

by taking into account the fact that a nontolerant MNO is more 705

greedy; thus, it requests more capacity for the same bids with 706

respect to a tolerant MNO, as shown in Fig. 5. As a result, 707

the third party may lose its incentive to lease the bandwidth, 708

and the economic benefits will be reduced for the MNOs and 709

the SC network. It is noted that the tolerant bidding strategy 710

offers better solutions due to the leasing of more resources and 711

the switching off of higher number of BSs, whereas the linear 712

bidding strategy implies an intermediate solution between the 713

extreme cases. Hence, along with the minimum guaranteed 714

profit, the bidding strategy is also an important indicator that 715

affects the decision of MNOs on bidding. 716

C. Numerical Results 717

Here, the performance results with regard to 718

telecommunication-oriented (network throughput and energy 719

efficiency) and cost-oriented (annual cost and income gains) 720

metrics are shown. In this set of experiments, we study a more 721

realistic scenario, where the MNOs have different traffic vol- 722

umes and, thus, different requirements and outcomes, when 723

our proposed algorithm is applied. According to recent studies 724
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Fig. 7. Annual energy efficiency for z = 0.1 and different bidding strategies.
(a) Tolerant bidding strategy. (b) Nontolerant bidding strategy.

[18], in most European countries, there are usually up to725

two telecommunication companies holding the major part726

of the market share, up to two smaller operators serving an727

intermediate portion of the users, and finally, up to one smaller728

MNO with a very small slice of the market. By exploiting these729

interesting findings, we consider the scenario in which two730

MNOs (i.e., BS1 and BS2) are fully loaded (ρ1 = ρ2 = 1.0),731

two operators (i.e., BS3 and BS4) have relatively lower traffic732

with ρ3 = ρ4 = 0.7, and the fifth MNO (denoted by BS5)733

has very low traffic (ρ5 = 0.3). The results presented in the734

following are calculated for an operating point on the Pareto735

front that is assumed to satisfy all the involved parties in the736

auction. We would like to highlight that the selection of a737

solution among the Pareto front solutions can be either derived738

through agreements between the involved parties or another739

distinguished entity may select it.740

1) Telecommunication Metrics: Fig. 7 presents the total741

network energy efficiency versus L for tolerant [see Fig. 7(a)]742

and nontolerant [see Fig. 7(b)] bidding strategies. The number743

of switched-off BSs of every algorithm is also shown in the744

plot (right y-axis), along with the percentage gains in terms745

of energy efficiency of our approach compared with the state-746

of-the-art works. First, we observe that the energy efficiency747

achieved by the MAS scheme increases with the number of748

levels for tolerant and nontolerant bidding since the biggest749

Fig. 8. Annual energy efficiency for different bidding levels and strategies.

variety of the proposed bids (higher number of levels) implies 750

a higher number of choices for the resource allocation. Another 751

important remark is that MAS significantly outperforms the 752

baseline scenario, FOT, (where no BS is switched off), and 753

the ISO algorithm. The better performance of our proposal in 754

terms of energy efficiency is justified by the higher number 755

of switched-off BSs as this is highlighted also in the plots. 756

As we have already mentioned in Section III-C, the goal of 757

our proposal lies in maximizing the energy efficiency, an ob- 758

jective neglected in the auction-based works of the literature, 759

whereby only the maximization of the third party’s income 760

was considered. Comparing the behavior of our algorithm in 761

the two figures, it can be observed that the tolerant bidding 762

strategy achieves more considerable gains with respect to the 763

nontolerant bidding, mainly due to the deactivation of many 764

underutilized BSs in the network. These results emphasize 765

the role of the bidding strategy and the number of bidding 766

levels on the achievable energy efficiency, thus providing the 767

necessary insights to the MNOs to select the most appropriate 768

strategy based on their interests. In Fig. 8, the conclusions of 769

Fig. 7(b) and (a) are better illustrated since the comparison 770

between the three schemes and the different bidding strategies 771

is more clearly shown. Finally, we should mention that the 772

results of linear bidding are not shown here for simplicity, given 773

that the achieved gains range between the two aforementioned 774

cases. 775

Along with the total network energy efficiency performance, 776

it is interesting to study the individual energy efficiency gains 777

of the different MNOs. To that end, the individual gains for 778

the specific (but representative) case of z = 0.1 and the two 779

different bidding strategies are quantified in Table II, where 780

interesting conclusions can be extracted. In particular, inde- 781

pendently of the bidding strategy and the number of L, the 782

ISO scheme is beneficial only for the group of operators that 783

switch off their BSs, who are always the same (MNO1 and 784

MNO2), whereas the rest of the operators always keep their 785

BSs active. More specifically, the MNOs that switch off their 786

BSs theoretically achieve infinite energy efficiency, as they 787
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TABLE II
OPERATOR ENERGY EFFICIENCY (X 104 Mbits/Joule) WITH RESPECT TO THE FOT SCHEME FOR z = 0.1

Fig. 9. (a) Normalized throughput for different bidding levels and strategies.
(b) Number of lacking PRBs.

have their traffic served at zero energy cost, whereas the active788

operators serve their own traffic without improving their situa-789

tion. The proposed MAS eliminates this unfairness by offering790

the chance to more MNOs to switch off their BSs, providing791

them with extra incentives to participate in the auction. The792

individual gains are remarkable of our proposal for both the793

MNOs and the whole network.794

Despite the importance of the energy efficiency results, the795

deactivation of the BSs in the network and the traffic offloading796

to the SCs potentially implies loss of connections. To that797

end, we study the normalized throughput that represents the798

percentage of served connections in the system. In Fig. 9(a),799

it can be observed that, as the number of switched-off BSs800

increases, the MAS approach experiences small losses (around801

5% and 3% for tolerant and nontolerant bidding, respectively). 802

The degraded performance is explained by the high number 803

of deactivated BSs, leading to the service of all the traffic 804

mainly by the SC network (since at most one BS remains 805

active). The MNOs are able to decide whether the throughput 806

performance can be sacrificed to achieve energy efficiency, or 807

even small losses are prohibitive (thus, a tolerant strategy is not 808

acceptable). The results in terms of lacking PRBs are given 809

in Fig. 9(b). As it is observed, a larger number of PRBs are 810

lacking, when the MAS strategy is applied. In our case, there 811

are different reasons for the degraded throughput performance. 812

The unserved users exist because either lower bids (thus, fewer 813

PRBs) are selected or the overall PRBs are not adequate for the 814

total offloaded traffic. However, the impact on the throughput is 815

negligible, as it was shown in Fig. 9(a). 816

2) Cost Metrics: The total annual network cost and the 817

individual annual gains for the operators and the third party, 818

compared with the state-of-the-art algorithm and having as a 819

benchmark the FOT scheme, are presented in Figs. 10 and 12, 820

respectively. 821

The annual network cost is given versus the different number 822

of bidding levels and for the tolerant [see Fig. 10(a)] and 823

nontolerant [see Fig. 10(b)] bidding strategies, respectively. 824

The total network cost is the sum of the average cost of all 825

MNOs and the third party for the operation of all infrastructures 826

(i.e., the active BSs and SCs). The first observation is that the 827

network cost is the same for level pairs (l = 3 and l = 5) and 828

(l = 7 and l = 9) for the MAS algorithm, due to the number 829

of switched-off BSs that is the same for the two cases. The 830

MAS scheme achieves a considerable reduction up to 94% 831

and 96% for tolerant bidding, when compared with ISO and 832

FOT schemes, respectively. For the case of nontolerant bidding 833

strategy, the cost reduction is lower. This result is explained by 834

the fact that MNOs are more greedy, and in their attempt to 835

increase their economic gains, they do not offer high bids for 836

the requested capacity. As a consequence, the third party does 837

not accept the allocation of resources to low prices, and some 838

BSs may not be switched off. Concerning the ISO scheme, we 839

observe that the total annual cost is not affected by the different 840

bidding levels since, in ISO auction, only one bid is offered 841

based on the maximum traffic expectations, and fewer BSs are 842

deactivated. A clear comparison between MAS, for tolerant and 843

nontolerant bidding, and ISO is given in Fig. 11, where the 844

annual network cost behavior is highlighted. 845

The individual revenue of each MNO and the third party is 846

plotted in Fig. 12. We may observe that, similar to the energy 847

efficiency gains, the ISO scheme provides financial gains only 848

to particular operators (MNO1 and MNO2) and particularly to 849
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Fig. 10. Annual network cost for z = 0.1 and different bidding strategies.
(a) Tolerant bidding strategy. (b) Nontolerant bidding strategy.

Fig. 11. Annual network cost for different bidding levels and strategies.

the MNOs that switch off their networks, whereas the economic850

gains of the remaining operators are zero compared with the851

FOT scheme since these MNOs keep their BSs active and serve852

Fig. 12. Annual cost gain for z = 0.1 and different bidding strategies.
(a) Tolerant bidding strategy. (b) Nontolerant bidding strategy.

their own traffic without having any benefit from the auction. 853

On the other hand, for the proposed MAS approach, more 854

operators are able to have economic benefits, independently of 855

the particular number of levels. Furthermore, as the number of 856

bidding levels increases, the MAS algorithm achieves higher 857

financial gains for the operators due to the higher number 858

of combinations of bids offered. In addition, for the tolerant 859

bidding strategy [see Fig. 12(a)], the economic gains are higher 860

compared with the nontolerant behavior [see Fig. 12(b)]. 861

D. Discussion 862

Based on the analysis in Sections IV-B and IV-C, we have 863

shown that the proposed MAS scheme outperforms the state-of- 864

the-art approaches in terms of energy efficiency (network and 865

individual), annual network cost, and individual cost gains. In 866

addition, it achieves balanced results for the MNOs with respect 867

to the individual energy efficiency and cost gains. Furthermore, 868

through a performance assessment, we have identified the sig- 869

nificance of the bidding behavior, the number of levels, and pa- 870

rameter z. In particular, better performance results are attained 871

in terms of energy efficiency, aggregate network cost, and indi- 872

vidual cost gains, when a higher number of levels are chosen 873
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and through tolerant bidding. Moreover, higher values of z874

achieve lower gains for both the MNOs and the third party. Fi-875

nally, although minor losses may appear in terms of throughput,876

the attained benefits with respect to energy efficiency, individ-877

ual and network cost gains are remarkable and are adequate for878

giving the necessary incentives to the MNOs and the third party879

to apply the proposed auction-based switching-off strategy.880

V. CONCLUSION881

In this paper, motivated by the low BS utilization during882

the night and the coexistence of multiple MNOs and third-883

party SCs in the same area, we proposed a novel auction-based884

offloading and switching-off algorithm that achieves energy885

savings and cost reduction by encouraging MNOs to offload886

their traffic and switch off the redundant BSs. Moreover, by887

employing auction tools and novel bidding strategies, we intro-888

duced a switching-off scheme that allows the MNOs to reduce889

their expenditures. The proposed scheme has been evaluated890

in terms of energy efficiency and cost metrics for various891

conditions (different bidding levels and behaviors). The results892

have shown that our proposal can significantly improve the893

network energy efficiency, guaranteeing at the same time the894

throughput. Regarding the financial costs/gains, the proposed895

scheme provides higher cost benefits and fairness compared896

with the state-of-the-art algorithms. It provides also interesting897

insights concerning the rules and behaviors that the MNOs898

should follow when they participate in an auction strategy. The899

study of other schemes for the solution of the problem (such900

as backwards induction) and the potential trade-offs would be901

interesting research line for future works.902
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Abstract—The emerging data traffic demand has caused a mas-6
sive deployment of network infrastructure, including macro base7
stations (BSs) and small cells (SCs), leading to increased energy8
consumption and expenditures. However, the network underuti-9
lization during low traffic periods (e.g., night zone) enables the10
mobile network operators (MNOs) to save energy by having their11
traffic served by third-party SCs, thus being able to switch off12
their BSs. In this paper, we propose a novel market approach to13
foster the opportunistic utilization of the unexploited SCs capacity,14
where the MNOs, instead of requesting the maximum capacity15
to meet their highest traffic expectations, offer a set of bids re-16
questing different amounts of resources from the third-party SCs17
at lower costs. Motivated by the conflicting financial interests of18
the MNOs and the third party, the restricted capacity of the SCs19
that is not adequate to carry the whole traffic in multioperator20
scenarios, and the necessity for energy-efficient solutions, we in-21
troduce a combinatorial auction framework, which includes 1) a22
bidding strategy, 2) a resource-allocation scheme, and 3) a pricing23
rule. We propose a multiobjective framework as an energy- and24
cost-efficient solution for the resource-allocation problem, and we25
provide extensive analytical and experimental results to estimate26
the potential energy and cost savings that can be achieved. In27
addition, we investigate the conditions under which the MNOs28
and the third-party companies should take part in the proposed29
auction.30

Index Terms—Auction, energy efficiency, game theory, green31
networking, heterogeneous networks (HetNets), multiobjective op-32
timization, offloading, switching off.33

I. INTRODUCTION34

A. Motivation35

The rapid expansion of mobile services, along with the36

emerging demand for multimedia applications, driven by the37

widespread use of laptops, tablets, and smart devices, has led38
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to an impressive growth of data traffic during the last few 39

years. Global mobile data traffic is expected to increase nearly 40

tenfold, reaching 24.3 EB per month by 2019 [1]. Hence, 41

mobile network operators (MNOs1) seek to extend their in- 42

frastructure by installing more base stations (BSs). In an effort 43

to increase the capacity of their network and meet these press- 44

ing traffic demands, they also lease capacity and bandwidth 45

resources from third parties, who deploy low-powered small- 46

cell (SC) networks to provide enhanced services via traffic 47

offloading from macro BSs to SCs during peak hours [2]. For 48

instance, Nokia Networks [3] has recently built networks of 49

interconnected SCs, enabling operators to extend the coverage 50

and increase the capacity of existing macro networks. The 51

involvement of various entities of corporate nature with differ- 52

ent financial goals generates a new ecosystem with interesting 53

dynamics to be studied. To that end, in [4], the economics 54

of offloading are investigated, whereas auction theory is used 55

to model economic transactions between conflicting parties in 56

several works [5]–[7] through offloading schemes with auction- 57

based resource-allocation problems. 58

The dense heterogeneous networks (HetNets) imply sig- 59

nificant increase in the capital and operational expenditures 60

(CapEx and OpEx) of MNOs [8], and as a result, there is a 61

strong motivation to investigate energy-efficient solutions to 62

bring down the energy consumption and the cost of networks. 63

This goal can be accomplished through the switching off of the 64

underutilized nodes when the traffic is significantly low. Since 65

the BSs are the most power hungry and expensive components 66

of the networks [9], the research community has shifted toward 67

the investigation of BS switching-off schemes [10]–[15]. De- 68

spite their promising results, these works examine only one tier 69

of macro BSs, whereas the presence of multiple MNOs raises 70

new challenges and open issues. 71

The SC deployment in current HetNets can be the key to 72

implementing novel energy and cost-efficient solutions. By 73

encouraging the traffic offloading from BSs to SCs during low 74

traffic periods, when the SC resources are most likely to remain 75

unused, part of the BS infrastructure can be switched off. Given 76

that the energy consumption of the BSs is considerably higher 77

with respect to the SCs, even when the traffic load is low, such 78

solutions can yield high energy gains for the MNOs. Thus, 79

offloading can be exploited to concentrate the users to the SCs 80

1The terms “MNO” and “operator” will be used interchangeably in the
remainder of this paper.
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and allow the BSs with no traffic to be switched off. However,81

despite the potential gains of the opportunistic exploitation of82

the capacity of SCs and the deactivation of the redundant BSs83

during low traffic conditions, very few research works exist in84

the literature so far.85

An overview of the existing techniques in energy-efficient86

network planning is presented in [16], highlighting the advan-87

tages and the shortcomings of the algorithms and revealing88

the open issues that should be further studied in the field of89

HetNets and operators’ collaboration. In the same context, in90

[17], an auction-based offloading scheme is proposed for the BS91

switching off, where the operators submit a bidding value, and a92

third party’s income optimization approach is followed to solve93

the resource-allocation problem. However, only a particular94

network configuration is considered, where it is assumed that95

the SC capacity is sufficient to serve the traffic of the network,96

allowing the switching off of all the BSs.97

Despite the clear benefits of the BSs switching off via of-98

floading, the presence of multiple MNOs in the same area [18]99

would complicate the application of this scheme since the SCs100

may not be able to fully support the network traffic. Another101

limitation of the auction-based state-of-the-art works [5], [6],102

[17] consists in the fact that the MNOs propose a single103

bidding value for the requested capacity, based on the maximum104

predictions about the traffic that they are willing to offload.105

However, these predictions do not always correspond to the106

real traffic values, which can be significantly lower than the107

maximum values, leading to increased costs for the operators108

and inefficient use of the SC capacity resources.109

B. Contribution110

In this paper, motivated by the aforementioned issues, we111

propose a novel energy-efficient solution for dense HetNets,112

which considers the interests of the involved parties (MNOs and113

third party) and the time-varying traffic characteristics. More114

specifically, we introduce an offloading mechanism, where the115

operators lease the capacity of an SC network owned by a third116

party, to be able to switch off their BSs and maximize their117

energy efficiency, when the traffic demand is low. The MNOs118

request capacity from several SCs and can only switch off their119

BSs if all their requests are satisfied, enabling them to offload120

all their traffic to the SC network.121

To that end, the allocation of the SC resources among a122

set of competing MNOs is mathematically formulated as an123

auction. Since the exact resource requirements of the network124

are unknown beforehand, the MNOs employ past reports to125

predict the maximum expected traffic load. Then, exploiting126

the fact that, with a high probability, the actual traffic will127

be lower than the predicted maximum (especially during low128

traffic periods), the MNOs submit a set of bids to the SCs,129

requesting for lower capacity resources (with respect to the130

maximum estimated requirements). With this approach, the SC131

resources can be more efficiently utilized, and the MNOs are132

likely to pay a lower price for the leased capacity, taking a133

small risk of not being able to serve all users under some134

circumstances (i.e., when the traffic approaches the maximum135

predictions and the leased capacity is not sufficient). Our key136

contribution is to study this very interesting trade-off between 137

the potential energy and financial gains of this solution and 138

the risk of not fully satisfying all the users, thus providing the 139

MNOs with the necessary insights to decide whether it is prof- 140

itable to participate in the auction, depending on their tolerance 141

to the potential loss of some users. 142

In addition, the conflicting interests of the involved parties 143

are also taken into consideration. On the one hand, the MNOs 144

aim to reduce their energy consumption and expenditures by 145

offloading their traffic and switching off their BS infrastructure. 146

However, to deactivate a BS, all its traffic should be offloaded 147

to the SC network (i.e., the MNO should win in all the auctions 148

involving the particular BS). On the other hand, the third 149

party wants to maximize its income by leasing the maximum 150

possible amount for resources to the MNOs. However, the 151

resource allocation policy that maximizes the third party’s 152

income may not enable the operators to switch off their BSs. 153

Our proposed auction-based strategy takes into account these 154

conflicting interests to achieve a feasible, efficient, and energy- 155

saving resource-allocation scheme. 156

In summary, the contribution of this paper is described as 157

follows. 158

159

1) Bidding Strategy: We propose a novel bidding strategy, 160

where MNOs submit a set of bids (and not only one bid) 161

to the third party, requesting different capacity resources, 162

based on the predictions about their maximum traffic. The 163

diversity of bids allows more offloading opportunities, 164

which is profitable for both the MNOs and the third party. 165

2) Auction Design and Switching Off Decision: We design 166

an auction scheme that enables the efficient usage of SCs 167

resources under low traffic conditions. Our framework 168

motivates the MNOs to quantify their tolerance about 169

requesting fewer resources and form the different levels 170

of bids. We show that the proposed auction-based scheme 171

has two desirable properties: 1) truthfulness; and 2) indi- 172

vidual rationality. The mechanism is designed based on a 173

multiobjective framework, where the conflicting interests 174

of the involved parties are considered, to provide the 175

optimal solution that maximizes the economic profit of 176

both the third party and the MNOs and minimizes the 177

network energy consumption at the same time. 178

3) Performance Evaluation: We validate the theoretical 179

analysis of the multiobjective problem by computing 180

the Pareto front (i.e., the set of optimal) solutions and 181

assess the effectiveness of the proposed auction-based 182

switching-off algorithm. The analytical and simula- 183

tion results indicate the potential energy efficiency and 184

economic gains in the network and give the necessary 185

insights to the MNOs to decide whether it is beneficial 186

to enter in a resource allocation negotiation with the 187

third party. 188

The remainder of this paper is organized as follows. The 189

system model is described in Section II. In Section III, we in- 190

troduce the auction-based optimization approach that is used for 191

the BSs’ switching-off decision. The performance evaluation is 192

provided in Sections IV and V concludes this paper. 193
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Fig. 1. Network configuration with one macro cell served by N MNOs and
covered by M third-party SCs.

II. SYSTEM MODEL AND OPERATION194

A. Network Configuration195

We consider an urban scenario, focusing on an area of a196

macro cell. In the macro cell, we assume that N MNOs provide197

coverage through their BSs, which are denoted by BSn, where198

n ∈ N = {1, . . . , N} characterizes the MNOn. Let us high-199

light that, in dense networks, due to legal regulations, MNOs200

are obligated to install their antennas and BSs on the same201

buildings; thus, we examine networks with collocated BSs [18].202

Moreover, in the macro cell, SCs, owned by a third party, are203

randomly distributed. Each SC is represented as SCm, where204

m ∈ M = {1, . . . ,M}. We assume that the number of SCs is205

adequate to cover the area of the macro cell [19]. As it will be206

explained in the following, the MNOs are motivated to offload207

their traffic to the third-party SCs by paying the corresponding208

price, thus enabling part of BS infrastructure to be switched209

off during low traffic conditions. The network configuration is210

shown in Fig. 1.211

B. Traffic Load Model212

In this paper, we adopt a realistic traffic pattern [20], [21]213

that corresponds to the maximum traffic per operator in a given214

cell. Fig. 2(a) plots the maximum traffic per hour, which is215

denoted by Loadmax(h), throughout the day.2 Without loss of216

generality, we focus on the time zone between 01:00 A.M. and217

09:00 A.M., when the traffic per BS is relatively low (i.e., less218

than 40 Mb/s, which corresponds to 35% of the cell’s capacity).219

The selection of the night zone may vary according to the traffic220

variations, and our algorithm can be adapted to different traffic221

conditions. In addition, we assume that the traffic volumes of222

different MNOs may be different, although they follow the223

same pattern. Hence, we define ρn ∈ [0, 1] as the percentage of224

each operator’s traffic load with respect to the maximum traffic225

for the respective hour. In this paper, we have used traffic data226

sets that include information of one operator for ten BSs during227

the period of one year, thus including weekends, weekdays,228

and day and night hours. To that end, the reports consists of229

various values for both low and high traffic. Provided that the230

2The parameter h can be dropped for the sake of simplicity.

Fig. 2. Traffic pattern scenario and real data traffic values. (a) Traffic load
during the 24-hour day. (b) Real data for traffic load patterns.

data sets had huge information, we classified the days of the 231

year into different periods of time (e.g., seasons, weekdays, 232

and weekends). Based on these real traffic reports and by 233

using simple statistical analysis, we have obtained the necessary 234

insights about the minimum, maximum, and average values of 235

the traffic load, and we have plotted some indicative numbers in 236

Fig. 2(b). Each one of the six values corresponds to the average 237

traffic that was observed in different days during the year. In 238

addition, we express the BS utilization as a percentage of the 239

total BS’s capacity resources for the extreme cases of minimum 240

and maximum traffic loads. The two values, i.e., Loadmin and 241

Loadmax, are very critical, and it is very important for the 242

MNOs to be able to predict them. 243

Unlike the existing works in the literature, where each MNO 244

places only one bid corresponding to the maximum capacity 245

requirements, in this paper, we propose that the MNOs place 246

multiple bids corresponding to different levels of the predicted 247

traffic load, as shown in Fig. 2(b). Thus, given the estimated 248

minimum and maximum traffic load levels and assuming that 249

the actual traffic values will, most probably, lie between these 250

extreme values, we are able to calculate different levels of 251

traffic. In this paper, we consider L+ 1 different traffic load 252

levels. The number of levels depends on the MNOs’ strategy 253
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Fig. 3. Traffic during the night zone and different levels of traffic estimation.

that will be further explained in the following. Each level l ∈254

L = {0, . . . , L} corresponds to traffic that is equal to255

Loadl = Loadmin +
Loadmax − Loadmin

L
· l

=

(
1 − l

L

)
· Loadmin +

l

L
· Loadmax. (1)

Evidently, the two extreme values are Load0 = Loadmin and256

LoadL = Loadmax. Fig. 3 shows an example, depicting various257

traffic levels for a specific hour (h = 02 :00 A.M.). Based258

on the above, Appendix A of the supplemental file provides259

a theoretical estimation of the traffic that can be offloaded,260

explaining the process of mapping the users of the MNOs to261

the capacity of the SCs.262

III. AUCTION-BASED SWITCHING-OFF ALGORITHM263

Here, we present the combinatorial auction employed to264

select the MNOs that can offload their traffic to the SCs, thus265

being able to switch off their BSs. We provide the bidding strat-266

egy, and we formulate the integer linear programming model,267

which ensures the optimal allocation and the switching-off268

strategy for the auction. In addition, to ensure truthful bidding,269

the Vickrey—Clarke—Grooves (VCG) payment mechanism270

[22] is employed.271

A. Big Picture272

By considering the limited capacity of the SCs and the273

MNOs’ incentive to switch off their BSs, we use an auction-274

based mechanism to motivate the operators to offload the traffic275

to the third-party SC network. Fig. 4 illustrates the main idea of276

the scheme. In our proposal, both the MNOs and the third party277

take part in the decision process, each one having a separate278

role in the framework. On one hand, the MNOs act as buyers,279

who are willing to lease the SCs resources and opportunistically280

offload their traffic. On the other hand, the third party, acting as281

a seller, collects the bids, and through an auction, the subset of282

MNOs that can offload their traffic, is selected. The proposed283

auction-based switching-off scheme consists of three main284

Fig. 4. Auction illustration and proposed algorithm flowchart.

steps: bidding, allocation, and pricing, whose process and the 285

respective decision-makers (in parenthesis) are presented as fol- 286

lows. First, in the bidding phase (MNOs), the MNOs place their 287

bids to the third party according to the different values of the 288

requested bandwidth. Each bid includes the information of the 289

requested capacity and the corresponding price that the MNO is 290

willing to offer. Second, in the allocation step (third party and 291

MNOs), the third party collects the MNOs’ bids. The selection 292

of the optimal resource allocation can be derived through the so- 293

lution of the resource-allocation problem. Third, in the pricing 294

step (third party), the third party decides each winner’s payment 295

price, based on the resource allocation of the previous step. The 296

winning MNOs offload their whole traffic to the SCs and switch 297

off their BSs, whereas the losing bidders keep their BSs active. 298

B. Bidding Strategy 299

Each SCm of the third party (seller) has unexploited capacity 300

resources that is willing to lease to the MNOs. The MNOs 301

(buyers) want to offload their traffic to the SCs by requesting 302

specific capacity resources to lease, based on the predictions 303

of the traffic load. The number of the physical resource blocks 304

(PRBs) is calculated in Appendix A of the supplementary AQ1305

file. The MNOs valuate the requested resource N l
PRBn,m

at a 306

given price ul
n,m, unknown to the third party and the other 307

bidders, where l is the level of resources, n ∈ N refers to 308

the corresponding operator, and m ∈ M corresponds to the 309

specific SC that the MNO wants to lease the resources from. In 310

the proposed auction-based scheme, each operator submits a set 311

of bid pairs Bl
n,m = (bln,m, N l

PRBn,m
), representing the price 312

bln,m ≤ ul
n,m, which the nth MNO pays for leasing the capacity 313

N l
PRBn,m

from the mth SC. In general, these two values (i.e., 314

bln,m, ul
n,m) may not necessarily be the same. However, in a 315

truthful auction such as the one that we have (the truthfulness 316

property of the auction will be explained in Section III-D), it 317

is proved that the private valuation and the bidding price are 318

equal; thus, bln,m = ul
n,m [5], [6]. After the reception bid pairs, 319

the selection of the subset of the MNOs, whose traffic can be 320

offloaded to the corresponding SCs, follows. 321
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Fig. 5. Bidding strategy versus tolerance function.AQ2

To gain further insights on the bidding strategy, let us322

consider the following example. Given the predicted expecta-323

tions about the traffic, each MNO m submits multiple bids,324

b0n,m, b1n,m, . . . , bln,m, . . . , bLn,m, indicating the offered price for325

the requested number of PRBs. Through the different bid pairs,326

the MNOs actually reveal their outage probability tolerance.327

In particular, by leasing the maximum calculated number of328

PRBs (NL
PRBn,m

) for the highest bid bLn,m, the MNOs guarantee329

service to all their users. Controversially, by obtaining a smaller330

number of PRBs (e.g., N l
PRBn,m

with l < L), the MNO pays331

a smaller price at a risk of leaving some users in outage.332

The minimum number of requested PRBs N0
PRBn,m

constitutes333

an upper bound of the operator’s outage tolerance. Another334

parameter determined by each MNO is the number of levels.335

A higher number of levels results in more bid pairs, thus336

increasing the performance of the auction while inducing more337

communication overhead and higher computational complexity.338

To flexibly model the MNOs’ outage tolerance, we introduce339

a satisfaction function that represents the bidding value (which340

is equal to the valuation price) that the MNO is willing to341

pay for leasing a specific bandwidth. To that end, we define342

the number of lacking PRBs as the difference between the343

maximum number of PRBs minus the actually obtained PRBs344

allocated the MNO, given by345

N l
PRBn,m,lack = NL

PRBn,m
−N l

PRBn,m
. (2)

The satisfaction function is determined by the requested ca-346

pacity of each MNO and is monotonically decreasing with the347

number of lacking PRBs. We also consider that, for each MNO,348

there is a lower bound for the minimum number of requested349

PRBs, which minimizes the MNO’s satisfaction. This bound350

indicates that for fewer PRBs the MNO will not participate in351

the auction. Fig. 5 shows three examples of the outage tolerance352

function. Three bidding values are emphasized in the plot: The353

highest bid bLn,m, corresponding to the maximum requested354

capacity NL
PRBn,m

(with N l
PRBn,m,lack = 0), the lowest bid355

b0n,m, and an intermediate value bln,m. As the number of lacking356

PRBs increases (depicted by the arrow direction in Fig. 5), the357

bid values decrease, and as a consequence, losses in terms of the358

served users may be observed. If the number of lacking PRBs359

exceeds N0
PRBn,m,lack, the MNO will not participate in the auc-360

tion; thus, no bid lower than b0n,m will be submitted. The three 361

points (A, B, and C) marked in Fig. 5 correspond to the different 362

tolerance functions of three operators. An outage-tolerant MNO 363

(point C) requests for less bandwidth for the same bidding value 364

bln,m compared with a nontolerant MNO (point A) that still 365

requests high capacity from the third party. Hence, the nontol- 366

erant MNO places higher priority on guaranteeing user service, 367

whereas the outage-tolerant MNO is willing to sacrifice some 368

resources to increase its probability of winning the auction and 369

switching off its BS, thus enhancing energy efficiency. Finally, 370

point B corresponds to an intermediate bidding strategy defined 371

by a linear function between the two examined parameters. 372

The user outage tolerance function (keeping in mind that 373

bln,m = ul
n,m) is modeled as3 374

bln,m = bLn,m −
bLn,m − b0n,m

NL
PRBn,m

−N0
PRBn,m

·
(
N l

PRBn,m

)δ

. (3)

The distinctive cases for the satisfaction curves are as 375

follows. 376
377

• Nontolerant MNO (Point A): For the nontolerant MNO, 378

the outage tolerance function is convex, with δ < 1. 379

• Average-tolerant MNO (Point B). There is a linear re- 380

lation between the bidding strategies and the outage 381

tolerance of the MNOs, by substituting δ = 1 in (3). 382

• Tolerant MNO (Point C). For the tolerant MNO, the 383

satisfaction function is concave, with δ > 1. 384

The parameter δ may obtain a wide range of values. The selec- 385

tion of a value equal to δ � 1 corresponds to a strictly nontoler- 386

ant MNO, who decreases its bid requests very fast. In contrast, a 387

very high value of this indicative parameter (i.e., δ � 1) would 388

lead to very slowly decreasing bidding values and, thus, to a 389

very tolerant operator. 390

C. Auction Formulation 391

By employing the properties of combinatorial auction theory, 392

we formulate the problem of the opportunistic offloading as 393

an auction. Each MNO n ∈ N places the corresponding bid 394

pairs Bl
n,m. Having received the bids, the third party selects 395

the subset of MNOs that maximizes the desired goals of all the 396

involved participants. We define xl
n,m as a binary decision vari- 397

able that indicates whether the corresponding bidder (MNO n) 398

is winner (xl
n,m = 1) or not (xl

n,m = 0) in the corresponding 399

SCm and for the lth bidding value. 400

The cost of using the SC infrastructure and the increased 401

consumed energy are the main objectives: the maximization 402

of the profits (the economic objectives of the third party and 403

the MNOs) and the minimization of the energy consumption 404

(the energy objective). In continuation, a detailed analysis of 405

the objectives of each party is presented. 406

1) Third Party’s Objective: The third party aims at maximiz- 407

ing its profit by leasing high volumes of the capacity of SCs at 408

3The values of b0n,m and bLn,m will be calculated in details in the succeeding
section, where the constraints and requirements posed by the MNOs and the
third party are given within the optimization framework.
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increased prices. The profit is defined as the difference of the409

MNOs’ winning bids minus its expenses (CapEx and OpEx).410

We define the financial gain of the SC network CGSC as411

f1(x) = CGSC =
∑
n∈N

∑
m∈M

∑
l∈L

xl
n,m · bln,m −M · CSC (4)

where CSC is the cost of a SC, corresponding to the sum of its412

CapEx and the traffic-dependent OpEx. For the calculation of413

the SCs cost, the cost model presented in [23] is employed.414

To ensure its objective, the third party introduces a minimum415

profit, which is described as a function of its total cost, i.e.,416

CGmin
SC = y ·M · CSC, y > 0. (5)

Given the minimum profit, which is calculated by (5), we417

estimate the reservation price as follows.418

Proposition 1: The reservation price is defined as the mini-419

mum price that a seller would be willing to accept for leasing420

the corresponding bandwidth, i.e.,421

blres,n,m =
N l

PRBn,m

Nmax
PRB

· y ·M · CSC. (6)

Proof: The third party is willing to share its resources422

among the MNOs based on proportional fairness by ensuring423

that a minimum profit gain will be achieved, at the same time.424

To that end, it calculates a reservation price, which is the425

minimum price that the third party will accept from an MNO426

to lease a specific bandwidth. The maximum number of PRBs427

that the nth MNO can offload to the mth SC is given by428

N l
PRBn,m

=
blres,n,m · xl

n,m∑
n∈N

∑
l∈L

blres,n,m · xl
n,m

·Nmax
PRB. (7)

Finally, by using (5) and (7) in (4), the reservation price for429

offloading traffic is calculated. �430

The reservation price in (6) is not the price that the MNOs431

will propose to lease their requested capacity, although it is432

a threshold price that the third party uses to eliminate all the433

offers that are less than the accepted. The reservation price can434

be either announced or unknown to the MNOs. The reservation435

price means that the seller would rather withhold the capacity436

if the proposed bids are too low (i.e., lower than the reservation437

price), and given this price, the auction process can be acceler-438

ated since the set of prices that are lower than the reservation439

price can be discarded.440

2) MNOs’ Objective: The objective of each MNO is the441

maximization of its financial profits. The maximization of the442

profits of the nth MNO is defined as the revenue from switching443

off its BS minus the winning bids for leasing the requested444

capacity from the third party. Therefore, the profit (cost gain)445

can be written as446

f2(x) = CGn = CBS · xn −
∑
m∈M

∑
l∈L

xl
n,m · bln,m (8)

with 447

xn =
∏

m∈M

∑
l∈L

xl
n,m ∀n ∈ N (9)

and CBS being the cost of a BS, whose model is also presented 448

in [23], provided that 449

∑
l∈L

xl
n,m ∈ {0, 1} ∀n ∈ N ∀ l ∈ L. (10)

At this point, let us recall that an operator is able to switch 450

off its BS if it wins in an auction in all the SCs, a condition that 451

is represented by the product in (9). The product is equal to 1 452

only when the nth MNO wins in M auctions in respective SCs; 453

otherwise, it is 0. 454

The MNOs are willing to participate in the auction and lease 455

bandwidth resources from a third party if they guarantee a mini- 456

mum profit gain. Consequently, they introduce a minimum pro- 457

fit, which is described as a percentage of their total costs, i.e., 458

CGmin
n = z · CBS, 0 < z < 1. (11)

The bidding strategy of the MNOs, along with the proposed 459

bids, depend on the minimum profit gain and the operation costs 460

of the BSs. However, the cost gain can be attained if and only 461

if the nth MNO wins in M auctions and is able to lease the 462

requested capacity. In addition, since we consider uniform traf- 463

fic in the macro cell, we conclude that the bids in the different 464

SCs must be equal and proportional to the corresponding traffic. 465

Thus, the maximum bid price for offloading the traffic in the 466

mth cell is calculated as 467

bLn,m =
(1 − z) · CBS

M
. (12)

Similarly, the minimum bidding price is a proportional value 468

of the maximum one, which is given by 469

b0n,m = v · (1 − z) · CBS

M
(13)

where v ∈ (0, 1). The bidding values of the remaining L− 1 470

levels can be calculated based on (3), depending on the maxi- 471

mum bid value and the relation between the outage tolerance of 472

the MNOs and the discount they can be offered for the lower 473

requested bandwidth. 474

3) Overall Objective: The overall objective of the network 475

is the minimization of the energy consumption. This can be 476

attained by reducing the number of active BSs, given that the 477

BSs are responsible for the major part of energy consumption 478

in the network. The network energy consumption E[E] is 479

f3(x)=E[E]=
∑
n∈N

E [EBSn
] · (1−xn)+M · E[ESC] (14)

where E[EBSn
] and E[ESC] represent the energy consumption 480

of BS and SC, respectively. 481
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The combinatorial auction formulation should include all the482

objectives of the participating entities. To capture the trade-off483

between the objectives, the multiobjective optimization [24] is484

employed. The target is to find a subset of acceptable solutions485

according to a set of objectives. In general terms, the objectives486

may be conflicting, and consequently, a single global optimum487

may not exist. Hence, the notion of an optimum set x∗ becomes488

very important. Some relevant definitions are given in the489

following.490

Definition 1: Given the three objectives, f1(x), f2(x), and491

f3(x), and provided that x1 and x2 are two decision variables,492

then x1 is said to be the Pareto dominant, and is denoted x1 �493

x2 if and only if fi(x1) ≥ fi(x2) ∀ i ∈ {1, 2, 3}, and fj(x1) >494

fj(x2), for at least one index j ∈ {1, 2, 3}.495

Definition 2: x∗ is said to be Pareto optimal (or nondom-496

inated), if there is no other x, so that x dominates x∗. The497

set of all Pareto solutions in the decision space is called the498

Pareto optimal set and the image of the Pareto optimal set in499

the objective space is called the Pareto optimal front.500

Based on the aforementioned definitions, the ILP multiobjec-AQ3 501

tive optimization problem can be formulated as follows.502

Definition 3: The allocation problem is to determine the503

optimal solution {xl
n,m} ∀n ∈ N ∀m ∈ M, and ∀ l ∈ L that504

maximizes the distinctive objectives of the involved parties in505

the auction, subject to capacity and offloading targets506

P1 : max [CGSC, CGn, −E[E]] (15)

s.t.∑
n∈N

∑
l∈L

xl
n,m ·N l

PRBn,m
≤ Nmax

PRB ∀m ∈ M (16)

∑
l∈L

xl
n,m ∈ {0, 1} ∀n ∈ N ∀m ∈ M (17)

bln,m ≥ blres,n,m ∀n ∈ N ∀m ∈ M ∀ l ∈ L (18)

xl
n,m ∈ {0, 1} ∀n ∈ N ∀m ∈ M ∀ l ∈ L. (19)

The constraint in (16) ensures that the total number of507

allocated resources does not exceed their availability, constraint508

(17) ensures that only one bid of the nth MNO in the mth SC509

can be the winning bid among the l different ones, constraint510

(18) ensures that the bids are higher than the reservation price,511

and constraint (19) ensures the integrality of the binary variable.512

The objectives of the proposed optimization formulation are513

contradictory. The maximization of the third party income does514

not imply the BSs switching off, whereas the energy objective515

does not ensure the third party’s interests. The maximization516

of the financial gains of the third party may lead to additional517

economic losses from the MNOs’ perspective since the maxi-518

mization of this objective may lead to a resource allocation that519

does not imply the deactivation of BSs.520

Exploiting the fact that the BSs are responsible for the major521

part of the energy consumption, the third objective of the prob-522

lem f3(x) can be transformed into a constraint. Energy con-523

sumption is minimized when the maximum number of MNOs524

switches off their BSs after winning in M auctions, a condition525

represented by the product in (9). Thus, the problem P1 is526

transformed into a simpler formulation in (20), and at the same 527

time, the energy consumption objective is not neglected, in 528

contrast to former works [17], where only the maximization of 529

the third party’s income is considered. The equivalent problem 530

is as follows: 531

P2 : max [CGSC, CGn] (20)

s.t. ∏
m∈M

∑
l∈L

xl
n,m ∈ {0, 1} ∀n ∈ N (21)

∑
n∈N

∑
l∈L

xl
n,m ·N l

PRBn,m
≤ Nmax

PRB ∀m ∈ M (22)

∑
l∈L

xl
n,m ∈ {0, 1} ∀n ∈ N ∀m ∈ M (23)

bln,m ≥ blres,n,m ∀n ∈ N ∀m ∈ M ∀ l ∈ L (24)

xl
n,m ∈ {0, 1} ∀n ∈ N ∀m ∈ M ∀ l ∈ L. (25)

The objective function (20) aims at maximizing the financial 532

gain of both the third party and the MNOs. Constraint (21) 533

ensures that an operator either wins in one auction in the M 534

SCs (and switches off its BS) or loses in all the auctions (keeps 535

its BS active). Thus, this constraint ensures the minimization 536

of the energy consumption given by (14) since the selected 537

resource allocation leads to the highest number of switched-off 538

BSs, while at the same time achieving the increase in MNOs 539

and third party’s income. Constraints (22)–(25) are the same as 540

(16)–(19), respectively. 541

The multiobjective problem P2 belongs to the class 542

NP-Complete since it is equivalent to the 0–1 knapsack prob- 543

lem, which is a well-known problem in combinatorial optimiza- 544

tion. For the NP-hard problems, an optimal solution is difficult 545

to be found due to the large number of variables [24]. However, 546

there are different solutions that represent the best feasible state 547

of the investigated system, e.g., the best resource allocation 548

for the deactivation of the highest number of BSs. To find the 549

best possible representation or a good approximation of these 550

optimal solutions that are widely known as the Pareto optimal 551

set or as the optimal Pareto front and to overcome the high 552

complexity of multiobjective problems, metaheuristic methods 553

(also sometimes called genetics) have become a very active 554

research area, and several algorithms have been proposed [25], 555

[26]. Although, the metaheuristic algorithms do not guarantee 556

that this approximation is the optimal, the solutions are still 557

good and near optimal.4 558

The metaheuristic algorithm that finds the Pareto solution 559

for our multiobjective optimization problem works on a set 560

of possible combinations of the decision variables [24]. The 561

basic definition of the Pareto front is that it consists of exactly 562

those point solutions that are not dominated by any other point. 563

The different objectives cannot be optimized simultaneously. 564

Thus, first, the solutions that maximize the MNOs’s income 565

and the third party’s economic gains are calculated separately. 566

4For the sake of simplicity, we use the term “Pareto front” throughout this
paper to refer to the obtained solutions through metaheuristics.
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Obviously, these solutions that maximize the cost gains of the567

MNOs and the third-party always belong to the Pareto front568

and, in fact, they are its endpoints. A simple algorithm to569

find the other solutions (if any) on the Pareto front begins by570

sorting the solutions according to one of the objectives, e.g.,571

third party’s income. The algorithm then starts with the point572

with the maximum gain for the third party and continues to573

the successive solutions in order of increasing third party’s cost574

until the solutions with higher cost gain value for the operators575

is found. This solution is then added to the Pareto front, and the576

search is restarted from it.577

Through the use of metaheuristics, the problem can be solved578

efficiently and quickly for a relatively small number of MNOs579

and SCs [25], [27], [28]. This assertion cannot be concluded580

and generalized for large networks. In the investigated network581

configuration with 5 MNOs, 15 SCs, and 9 bidding levels, the582

runtime of the solution is very short. At this point, let us clarify583

that the numbers selected for the MNOs and the SCs are based584

on the most typical and realistic scenarios in recent studies [18],585

[19] since the most common scenarios in European countries586

involve three to four MNOs, and 15 SCs can cover the service587

are of one macro BS.588

D. Pricing Strategy589

Having defined the ILP model, we now illustrate the payment590

rule, which is of crucial importance for the realization of the591

auction for the third party. The VCG payment induces all592

the users to reveal their actual valuations for the requested593

bandwidth. In the VCG mechanism, the third party charges the594

bidders (MNOs) with a price for the requested capacity. For595

example, an MNO who requires large bandwidth will have to596

pay a high price since its request results in dissatisfying other597

MNOs who lose in the auction because of the limited capacity598

resources and will not be able to offload their traffic.599

Let us denote by pln,m the price paid by the MNO n to the600

third party for the allocated capacity of the mth SC. The payoff601

function for bidder n that represents the difference between the602

gain of the MNO attained through the BS switching off and603

the true valuation minus the paid price (let us recall that in the604

truthful auction ul
n,m = bln,m) is605

Ui =

⎧⎨
⎩

CGi +
∑

m∈M

∑
l∈L

ul
i,m −

∑
m∈M

∑
l∈L

pli,m, if i is selected

−CBS, otherwise.
(26)

The payment rule for each MNO can be defined as follows:606

pli,m =
∑

n∈N\{i}

∑
m∈M

∑
l∈L

(
xl
i,m

){−i} · bli,m

−

⎛
⎝ ∑

n∈N\{i}

∑
m∈M

∑
l∈L

xl
i,m · bli,m

−
∑

n∈N\{i}

∑
m∈M

∑
l∈L

xl
i,m · bli,m

⎞
⎠ (27)

TABLE I
SIMULATION PARAMETERS

where the first term is the aggregate valuation of the allocated 607

resources, (xl
n,m){−i}, when MNO i does not participate at all 608

in the auction. The second term is the aggregate valuation of the 609

allocation xl
n,m of all MNOs other than i, when i participates 610

in the auction. Next, we prove that our optimized auction 611

mechanism possesses two important properties: 1) truthfulness 612

and 2) individual rationality. 613

Proposition 2 (Truthfulness): The payment rule defined in 614

(27) satisfies the truthfulness property. 615

Proof: The proof is given in Appendix B in the supple- 616

mental file. � 617

Proposition 3 (Individual Rationality): The payment rule 618

defined in (27) satisfies the individual rationality property, and 619

all bidders are guaranteed to obtain nonnegative utility. 620

Proof: The proof is given in Appendix C in the supple- 621

mental file. � 622

IV. PERFORMANCE EVALUATION 623

This section is composed of three parts. First, we explain 624

the simulation scenario employed both for the multiobjective 625

optimization and the system-level simulations. Second, we 626

present the results regarding the estimation of the Pareto front 627

for the multiobjective optimization solved by using the Matlab 628

tools. Finally, we show a performance comparison between 629

the proposed scheme and two state-of-the-art schemes with the 630

development of a custom-made C simulator. 631

A. Simulation Scenario 632

The simulation scenario corresponds to a dense HetNet de- 633

ployment, such as a university campus or an urban area. More 634

specifically, our scenario focuses on a cell served by the BSs of 635

N = 5 MNOs and M = 15 SCs that cover the whole cell area. 636

In our experiments, we consider various scenarios, wherein the 637

MNOs have different traffic volumes (i.e., ρ), different bidding 638

strategies (i.e., nontolerant, linear, and tolerant), different cost 639

requirements (i.e., z), and different bidding levels (i.e., L). 640

The system-level simulations are based on Monte Carlo exper- 641

iments, and the presented results focus on the night zone for 642

the duration of one year.5 The set of parameters is provided 643

in Table I. 644

To assess the performance of our scheme, we compare 645

the proposed multiobjective auction-base switching-off strat- 646

egy (referred to as MAS), to two benchmark solutions: 1) an 647

auction-based switching-off scheme, wherein the income of the 648

5Note that the results are calculated for the case of one macro cell, but they
can be easily extended to extended configurations. Furthermore, we consider
the period of one year since the yearly traffic is considered stable [30].
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Fig. 6. Estimation of Pareto front solutions. (a) Estimated Pareto front forAQ4
multiple MNOs’ requirements, L = 2 and linear bidding strategy. (b) Estimated
Pareto front for multiple bidding strategies, L = 2, and z = 0.1.

third party is the unique objective to be maximized (referred649

as ISO) [17]; and 2) a baseline scenario with full operational650

topology (FOT), where none of the BSs is switched off.651

B. Estimation of the Pareto Front652

Here, we present the Pareto front analysis. In this set of653

experiments, we assume that all operators have the same traffic654

volume equal to the maximum possible traffic load, i.e., ρn = 1.655

In addition, we assume that each MNO submits three different656

bids, corresponding to L = 2, to the third party.657

Fig. 6 shows the Pareto front solutions achieved by solving658

the proposed multiobjective problem for different minimum659

financial gains with the same bidding strategy [see Fig. 6(a)]660

and different bidding strategies with the same minimum profit661

requirement [see Fig. 6(b)]. In both figures, the third party’s662

annual financial gain that can be attained by leasing its re-663

sources to one MNO is represented in the x-axis, and the annual664

economic profits of one MNO are given in y-axis.665

In Fig. 6(a), the set of optimal solutions is shown for the666

linear bidding strategy. Note that the stochastic search per-667

formed by means of the metaheuristic algorithm succeeds in668

estimating a Pareto front for the given parameters of the studied 669

problem. As expected, in all the different cases, the higher the 670

third party’s income (f1(x)), the lower the financial gain of 671

the MNOs (f2(x)). Thus, the Pareto front is monotonically 672

decreasing, meaning that the improvement of one objective 673

leads to the deterioration of the other objective, and there is 674

no feasible global solution maximizing all the objectives. A 675

second observation relies on the motivation of the MNOs to 676

maximize their economic gains, which is a fact that can be 677

explored through the parameter z that reflects the requirements 678

of the minimum profit gain, denoted in (11). As it is plotted 679

in the figure, the greedy behavior of the MNOs for higher cost 680

gains (z = 0.5) leads to lower income for the third party and, 681

at the same time, a lower number of achievable solutions. This 682

result is of significant importance since a greedy behavior from 683

the MNOs’ perspective will produce lower bids that may not be 684

accepted by the third party; thus, the MNOs will not be able to 685

offload their whole traffic. The selection of a proper value of the 686

parameter z helps the operators to decide whether it is profitable 687

for them to bid by taking into account their financial needs, 688

and by observing Fig. 6(a), we conclude that lower values of 689

z lead to higher income for the two involved parties. To provide 690

further insights for our approach, let us also highlight that, in 691

a realistic scenario with a large number of macro BSs, the cost 692

gains for the MNOs and the third party are significantly higher. 693

For example, by applying the proposed switching off technique 694

to the central area of London where an MNO may have up to 695

500 deployed BSs [31], the economic gains may reach up to 696

∼12.500 C for the MNO and up to ∼25.000 C for the third 697

party. 698

In continuation, Fig. 6(b) illustrates the Pareto front by 699

examining different bidding strategies for the case of z = 0.1. 700

Again, we observe that the attained solutions are decreasing 701

monotonically. Moreover, as we see, the more tolerant the 702

bidding strategy of the MNOs, the higher financial gains for the 703

involved parties. This important insight can be easily explained 704

by taking into account the fact that a nontolerant MNO is more 705

greedy; thus, it requests more capacity for the same bids with 706

respect to a tolerant MNO, as shown in Fig. 5. As a result, 707

the third party may lose its incentive to lease the bandwidth, 708

and the economic benefits will be reduced for the MNOs and 709

the SC network. It is noted that the tolerant bidding strategy 710

offers better solutions due to the leasing of more resources and 711

the switching off of higher number of BSs, whereas the linear 712

bidding strategy implies an intermediate solution between the 713

extreme cases. Hence, along with the minimum guaranteed 714

profit, the bidding strategy is also an important indicator that 715

affects the decision of MNOs on bidding. 716

C. Numerical Results 717

Here, the performance results with regard to 718

telecommunication-oriented (network throughput and energy 719

efficiency) and cost-oriented (annual cost and income gains) 720

metrics are shown. In this set of experiments, we study a more 721

realistic scenario, where the MNOs have different traffic vol- 722

umes and, thus, different requirements and outcomes, when 723

our proposed algorithm is applied. According to recent studies 724
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Fig. 7. Annual energy efficiency for z = 0.1 and different bidding strategies.
(a) Tolerant bidding strategy. (b) Nontolerant bidding strategy.

[18], in most European countries, there are usually up to725

two telecommunication companies holding the major part726

of the market share, up to two smaller operators serving an727

intermediate portion of the users, and finally, up to one smaller728

MNO with a very small slice of the market. By exploiting these729

interesting findings, we consider the scenario in which two730

MNOs (i.e., BS1 and BS2) are fully loaded (ρ1 = ρ2 = 1.0),731

two operators (i.e., BS3 and BS4) have relatively lower traffic732

with ρ3 = ρ4 = 0.7, and the fifth MNO (denoted by BS5)733

has very low traffic (ρ5 = 0.3). The results presented in the734

following are calculated for an operating point on the Pareto735

front that is assumed to satisfy all the involved parties in the736

auction. We would like to highlight that the selection of a737

solution among the Pareto front solutions can be either derived738

through agreements between the involved parties or another739

distinguished entity may select it.740

1) Telecommunication Metrics: Fig. 7 presents the total741

network energy efficiency versus L for tolerant [see Fig. 7(a)]742

and nontolerant [see Fig. 7(b)] bidding strategies. The number743

of switched-off BSs of every algorithm is also shown in the744

plot (right y-axis), along with the percentage gains in terms745

of energy efficiency of our approach compared with the state-746

of-the-art works. First, we observe that the energy efficiency747

achieved by the MAS scheme increases with the number of748

levels for tolerant and nontolerant bidding since the biggest749

Fig. 8. Annual energy efficiency for different bidding levels and strategies.

variety of the proposed bids (higher number of levels) implies 750

a higher number of choices for the resource allocation. Another 751

important remark is that MAS significantly outperforms the 752

baseline scenario, FOT, (where no BS is switched off), and 753

the ISO algorithm. The better performance of our proposal in 754

terms of energy efficiency is justified by the higher number 755

of switched-off BSs as this is highlighted also in the plots. 756

As we have already mentioned in Section III-C, the goal of 757

our proposal lies in maximizing the energy efficiency, an ob- 758

jective neglected in the auction-based works of the literature, 759

whereby only the maximization of the third party’s income 760

was considered. Comparing the behavior of our algorithm in 761

the two figures, it can be observed that the tolerant bidding 762

strategy achieves more considerable gains with respect to the 763

nontolerant bidding, mainly due to the deactivation of many 764

underutilized BSs in the network. These results emphasize 765

the role of the bidding strategy and the number of bidding 766

levels on the achievable energy efficiency, thus providing the 767

necessary insights to the MNOs to select the most appropriate 768

strategy based on their interests. In Fig. 8, the conclusions of 769

Fig. 7(b) and (a) are better illustrated since the comparison 770

between the three schemes and the different bidding strategies 771

is more clearly shown. Finally, we should mention that the 772

results of linear bidding are not shown here for simplicity, given 773

that the achieved gains range between the two aforementioned 774

cases. 775

Along with the total network energy efficiency performance, 776

it is interesting to study the individual energy efficiency gains 777

of the different MNOs. To that end, the individual gains for 778

the specific (but representative) case of z = 0.1 and the two 779

different bidding strategies are quantified in Table II, where 780

interesting conclusions can be extracted. In particular, inde- 781

pendently of the bidding strategy and the number of L, the 782

ISO scheme is beneficial only for the group of operators that 783

switch off their BSs, who are always the same (MNO1 and 784

MNO2), whereas the rest of the operators always keep their 785

BSs active. More specifically, the MNOs that switch off their 786

BSs theoretically achieve infinite energy efficiency, as they 787
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TABLE II
OPERATOR ENERGY EFFICIENCY (X 104 Mbits/Joule) WITH RESPECT TO THE FOT SCHEME FOR z = 0.1

Fig. 9. (a) Normalized throughput for different bidding levels and strategies.
(b) Number of lacking PRBs.

have their traffic served at zero energy cost, whereas the active788

operators serve their own traffic without improving their situa-789

tion. The proposed MAS eliminates this unfairness by offering790

the chance to more MNOs to switch off their BSs, providing791

them with extra incentives to participate in the auction. The792

individual gains are remarkable of our proposal for both the793

MNOs and the whole network.794

Despite the importance of the energy efficiency results, the795

deactivation of the BSs in the network and the traffic offloading796

to the SCs potentially implies loss of connections. To that797

end, we study the normalized throughput that represents the798

percentage of served connections in the system. In Fig. 9(a),799

it can be observed that, as the number of switched-off BSs800

increases, the MAS approach experiences small losses (around801

5% and 3% for tolerant and nontolerant bidding, respectively). 802

The degraded performance is explained by the high number 803

of deactivated BSs, leading to the service of all the traffic 804

mainly by the SC network (since at most one BS remains 805

active). The MNOs are able to decide whether the throughput 806

performance can be sacrificed to achieve energy efficiency, or 807

even small losses are prohibitive (thus, a tolerant strategy is not 808

acceptable). The results in terms of lacking PRBs are given 809

in Fig. 9(b). As it is observed, a larger number of PRBs are 810

lacking, when the MAS strategy is applied. In our case, there 811

are different reasons for the degraded throughput performance. 812

The unserved users exist because either lower bids (thus, fewer 813

PRBs) are selected or the overall PRBs are not adequate for the 814

total offloaded traffic. However, the impact on the throughput is 815

negligible, as it was shown in Fig. 9(a). 816

2) Cost Metrics: The total annual network cost and the 817

individual annual gains for the operators and the third party, 818

compared with the state-of-the-art algorithm and having as a 819

benchmark the FOT scheme, are presented in Figs. 10 and 12, 820

respectively. 821

The annual network cost is given versus the different number 822

of bidding levels and for the tolerant [see Fig. 10(a)] and 823

nontolerant [see Fig. 10(b)] bidding strategies, respectively. 824

The total network cost is the sum of the average cost of all 825

MNOs and the third party for the operation of all infrastructures 826

(i.e., the active BSs and SCs). The first observation is that the 827

network cost is the same for level pairs (l = 3 and l = 5) and 828

(l = 7 and l = 9) for the MAS algorithm, due to the number 829

of switched-off BSs that is the same for the two cases. The 830

MAS scheme achieves a considerable reduction up to 94% 831

and 96% for tolerant bidding, when compared with ISO and 832

FOT schemes, respectively. For the case of nontolerant bidding 833

strategy, the cost reduction is lower. This result is explained by 834

the fact that MNOs are more greedy, and in their attempt to 835

increase their economic gains, they do not offer high bids for 836

the requested capacity. As a consequence, the third party does 837

not accept the allocation of resources to low prices, and some 838

BSs may not be switched off. Concerning the ISO scheme, we 839

observe that the total annual cost is not affected by the different 840

bidding levels since, in ISO auction, only one bid is offered 841

based on the maximum traffic expectations, and fewer BSs are 842

deactivated. A clear comparison between MAS, for tolerant and 843

nontolerant bidding, and ISO is given in Fig. 11, where the 844

annual network cost behavior is highlighted. 845

The individual revenue of each MNO and the third party is 846

plotted in Fig. 12. We may observe that, similar to the energy 847

efficiency gains, the ISO scheme provides financial gains only 848

to particular operators (MNO1 and MNO2) and particularly to 849
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Fig. 10. Annual network cost for z = 0.1 and different bidding strategies.
(a) Tolerant bidding strategy. (b) Nontolerant bidding strategy.

Fig. 11. Annual network cost for different bidding levels and strategies.

the MNOs that switch off their networks, whereas the economic850

gains of the remaining operators are zero compared with the851

FOT scheme since these MNOs keep their BSs active and serve852

Fig. 12. Annual cost gain for z = 0.1 and different bidding strategies.
(a) Tolerant bidding strategy. (b) Nontolerant bidding strategy.

their own traffic without having any benefit from the auction. 853

On the other hand, for the proposed MAS approach, more 854

operators are able to have economic benefits, independently of 855

the particular number of levels. Furthermore, as the number of 856

bidding levels increases, the MAS algorithm achieves higher 857

financial gains for the operators due to the higher number 858

of combinations of bids offered. In addition, for the tolerant 859

bidding strategy [see Fig. 12(a)], the economic gains are higher 860

compared with the nontolerant behavior [see Fig. 12(b)]. 861

D. Discussion 862

Based on the analysis in Sections IV-B and IV-C, we have 863

shown that the proposed MAS scheme outperforms the state-of- 864

the-art approaches in terms of energy efficiency (network and 865

individual), annual network cost, and individual cost gains. In 866

addition, it achieves balanced results for the MNOs with respect 867

to the individual energy efficiency and cost gains. Furthermore, 868

through a performance assessment, we have identified the sig- 869

nificance of the bidding behavior, the number of levels, and pa- 870

rameter z. In particular, better performance results are attained 871

in terms of energy efficiency, aggregate network cost, and indi- 872

vidual cost gains, when a higher number of levels are chosen 873
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and through tolerant bidding. Moreover, higher values of z874

achieve lower gains for both the MNOs and the third party. Fi-875

nally, although minor losses may appear in terms of throughput,876

the attained benefits with respect to energy efficiency, individ-877

ual and network cost gains are remarkable and are adequate for878

giving the necessary incentives to the MNOs and the third party879

to apply the proposed auction-based switching-off strategy.880

V. CONCLUSION881

In this paper, motivated by the low BS utilization during882

the night and the coexistence of multiple MNOs and third-883

party SCs in the same area, we proposed a novel auction-based884

offloading and switching-off algorithm that achieves energy885

savings and cost reduction by encouraging MNOs to offload886

their traffic and switch off the redundant BSs. Moreover, by887

employing auction tools and novel bidding strategies, we intro-888

duced a switching-off scheme that allows the MNOs to reduce889

their expenditures. The proposed scheme has been evaluated890

in terms of energy efficiency and cost metrics for various891

conditions (different bidding levels and behaviors). The results892

have shown that our proposal can significantly improve the893

network energy efficiency, guaranteeing at the same time the894

throughput. Regarding the financial costs/gains, the proposed895

scheme provides higher cost benefits and fairness compared896

with the state-of-the-art algorithms. It provides also interesting897

insights concerning the rules and behaviors that the MNOs898

should follow when they participate in an auction strategy. The899

study of other schemes for the solution of the problem (such900

as backwards induction) and the potential trade-offs would be901

interesting research line for future works.902
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AUTHOR QUERIES

AUTHOR PLEASE ANSWER ALL QUERIES

AQ1 = Please check if the expanded form provide for “PRBs” is appropriate. If not, kindly provide the
necessary correction.

AQ2 = If possible, please provide an updated image of Fig. 5 so that the labels for the x- and y-axis are
enlarged for improved readability.

AQ3 = Please expand the ILP acronym.
AQ4 = Please update the images of Figs. 6(a) and (b) so that the x-axis label is amended to reflect “Third-

party...” instead of “Third party...”
AQ5 = Please provide publication update in Ref. [13].
AQ6 = Please provide membership history of author “Luis Alonso.”
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