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Abstract—The heterogeneous cloud radio access network (H-
CRAN) is a promising paradigm which integrates the advantages
of cloud radio access network (C-RAN) and heterogeneous
network (HetNet). In this paper, we study the joint congestion
control and resource optimization to explore the energy efficiency
(EE)-guaranteed tradeoff between throughput utility and delay
performance in a downlink slotted H-CRAN. We formulate
the considered problem as a stochastic optimization problem,
which maximizes the utility of average throughput and maintains
the network stability subject to required EE constraint and
transmit power consumption constraints by traffic admission
control, user association, resource block allocation and power
allocation. Leveraging on the Lyapunov optimization technique,
the stochastic optimization problem can be transformed and
decomposed into three separate subproblems which can be solved
concurrently at each slot. The third mixed-integer nonconvex
subproblem is efficiently solved utilizing the continuity relaxation
of binary variables and the Lagrange dual decomposition method.
Theoretical analysis shows that the proposal can quantitatively
control the throughput-delay performance tradeoff with required
EE performance. Simulation results consolidate the theoretical
analysis and demonstrate the advantages of the proposal from
the prospective of queue stability and power consumption.

Index Terms—Heterogeneous cloud radio access networks (H-
CRANs), energy efficiency (EE), congestion control, resource
optimization, Lyapunov optimization.

I. I NTRODUCTION

Recently, the mobile operators are facing the continuously
growing demand for ubiquitous high-speed wireless access and
the explosive proliferation of smart phones. Justified by the
urgent trend and projecting the demand a decade ahead, a so-
called 100 times spectral efficiency (SE) boost and 1000 times
energy efficiency (EE) improvement compared to the current
fourth generation (4G) wireless systems are required [1]. The
increasingly demands make it more challenging for operators
to manage and operate wireless networks and provide required
quality of service (QoS) efficiently. Therefore, the fifth gen-
eration (5G) wireless networks are expected to fulfill these
goals by putting forward new wireless network architectures,
advanced signal processing, and networking technologies [2],
[3].
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sponding author, e-mail:pmg@bupt.edu.cn), Yuling Yu (e-mail:
aliceyu1215@gmail.com) are with the Key Laboratory of Univer-
sal Wireless Communications for Ministry of Education, Beijing Uni-
versity of Posts and Telecommunications, China. Zhiguo Ding (e-mail:
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munications, Lancaster University, LA1 4WA, UK.

By leveraging cloud computing technologies, the cloud
radio access network (C-RAN) has emerged as a promising
solution for providing good performance in terms of both
SE and EE across software defined wireless communication
networks [4]. In C-RANs, the remote radio heads (RRHs)
configured only with some front radio frequency (RF) func-
tionalities are connected to the baseband unit (BBU) pool
through fronthaul links (e.g., optical fibers) to enable cloud
computing-based large-scale cooperative signal processing.
However, the constrained fronthaul link between the RRH and
the BBU pool presents a performance bottleneck to large-scale
cooperation gains. Furthermore, real-time voice service and
control signalling are not efficiently supported in C-RANs.
Therefore, the traditional C-RAN must be enhanced and even
evolved.

Motivated by solving the aforementioned challenges, the
heterogeneous cloud radio access network (H-CRAN) has
been proposed to combine the advantages of both C-RANs
and heterogeneous networks (HetNets) in our prior works
[5] [6]. As shown in Fig. 1, the high power nodes (HPNs)
are configured with the entire communication functionalities
from physical to network layers, and the delivery of control
and broadcast signalling is shifted from RRHs to HPNs,
which alleviates the capacity and time delay constraints on
the fronthaul. The BBU pool is interfaced to the HPN for
the inter-tier interference coordination. H-CRANs decouple
the control and user planes, and support the adaptive sig-
naling/control mechanism between connection-oriented and
connectionless modes, which can achieve significant overhead
savings in the radio connection/release. For a time-varying
H-CRAN that adopts orthogonal frequency division multiple
access (OFDMA), besides of power and resource block (RB)
allocation, the traffic admission, the user association arealso
critical for improving key performances.

A. Related Works

The resource optimization is significantly important to high-
light the great potentials of H-CRANs. The EE performance
metric has become a new design goal due to the sharp
increase of the carbon emission and operating cost of wireless
communication systems [7]. The tradeoff relationship between
EE and SE has attracted growing interests in the design
of energy-efficient radio resource optimization algorithms for
wireless communication systems [8] [9]. Power allocation was
studied in [10] to address the EE-SE tradeoff in the downlink
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Fig. 1. The heterogeneous cloud radio access networks (H-CRANs)

multi-user distributed antenna system (DAS) with proportional
rate constraints. The authors of [11]–[13] jointly consider
multi-dimensional resource optimization, such as beamform-
ing optimization, power allocation, and RB assignment, to
explore the EE-SE tradeoff in OFDMA networks. The EE-SE
tradeoff also got deep investigation in Device-to-Device (D2D)
communications and relay-aided cellular networks [14]–[16].

However, the aforementioned literatures are typically based
on the full buffer assumptions and snapshot-based models.
This indicates that the stochastic and time-varying features
of traffic arrivals are not considered into the formulations.
Therefore, only the physical layer performance metrics such
as SE and EE are optimized and the resulting control policy is
only adaptive to channel state information (CSI). In practice,
delay is also a key metric to measure the QoS, which is also
neglected in these literatures.

Contrary to the static models used in the EE-SE tradeoff,
the power-delay tradeoff is usually investigated from the long-
term average perspective in a time-varying system. The authors
of [17] and [18] aimed to dynamically optimize the power
and subband allocations to achieve the Pareto optimal tradeoff
between power consumption and average delay in OFDMA
systems. In [19], a theoretical framework was presented to
analyze power-delay tradeoff in a time-varying OFDMA sys-
tem with imperfect CSIT. Adaptive antenna selection and
power allocation were exploited in [20] to compromise the
power consumption and average delay in downlink distributed
antenna systems. By devising delay-aware beamforming al-
gorithm, [21] studied the power-delay tradeoff in multi-user
MIMO systems.

As a common feature, [17]–[21] assumed that the random
traffic arrival rate is inside the network capacity region. This
indicates that admission control is unnecessary. Moreover,
throughput was not formulated into the problem, thus the
results for power-delay tradeoff can hardly give insights into
energy-efficient resource optimization problems.

B. Main Contributions

In this paper, considering the traffic admission control, the
throughput, as in [22] and [23], is defined as the maximum
amount of admissible traffic that H-CRANs can stably carry,
and therefore it to some extent reflects SE. Based on this, we
try to incorporate throughput, delay, and EE into a theoretical
framework, and effectively balance throughput and delay when
certain EE requirement is guaranteed for any traffic arrivalrate
in slotted H-CRANs. The major contributions of this paper are
twofold.

• The congestion control is incorporated into the radio
resource optimization model for slotted H-CRANs with-
out prior-knowledge of random traffic arrival rates and
channel statistics. The decomposed subproblems can be
solved concurrently at each slot with the online obser-
vation of traffic queues and virtual queues, which have
been determined by the joint optimization results at the
previous slot. Simulations demonstrate the advantages of
the proposal from the prospective of queue stability and
power savings.

• Using the framework of Lyapunov optimization, we put
forward a formulation to quantitatively strike a bal-
ance between average throughput and average delay,
meanwhile guarantee the required EE performance of
H-CRANs. Only by adjusting a control parameter, the
proposal provides a controllable method to balance the
throughput-delay performance on demand, which in turn
adaptively affects admission control and resource alloca-
tion.

The rest of this paper is organized as follows. Section II
will describe the system model and formulate the stochastic
optimization problem. Based on the framework of Lyapunov
optimization, the stochastic optimization problems of traffic
admission control, user association, RB and power allocation
will be transformed and decomposed in Section III. The
challenging subproblem for user association, RB and power
allocation will be solved in Section IV. The performance
bounds of proposal will be analyzed in section V. Numerical
simulations will be shown in Section VI. Finally, Section VII
will summarize this paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we begin with describing the physical layer
model, followed by introducing the queue dynamics and the
queue stability. We then formally formulate the stochastic
optimization problem. For convenience, the notations usedare
listed in Table I.

A. Physical Layer Model

The downlink transmission in an OFDMA-based H-CRAN
is considered, in which one HPN andN RRHs are consisted.
Since the HPN is mainly used to deliver the control signalling
and guarantee the basic coverage for certain area, the UEs
with low traffic arrival rates are more likely served by HPN
and they are labeled as HUEs. Meanwhile, since the RRHs are
efficient to provide high bit rates, the user equipments (UEs)
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TABLE I
SUMMARY OF NOTATIONS

Notation Description
R Set of RRHs
UH Set of HUEs
UR Set of RUEs
KH Set of RBs used by RRHs
KR Set of RBs used by the HPN
sm(t) Association indicator for the HUEm at the time slott

gijk(t)
CSI on the RBk from the RRHi to the RUEj at the
slot t

gimk(t)
CSI on the RBk from the RRHi to the HUEm at the
slot t

gml(t)
CSI on the RBl from the HPN to the HUEm at the slot
t

cH
l
(t) RB usage indicator for the RBl of the HPN at the slott

cR
k
(t) RB usage indicator for the RBk of RRHs at the slott

pijk(t)
Allocated power for the RUEj occupying the RBk of
the RRHi at the slott

pimk(t)
Allocated power for the HUEm occupying the RBk of
the RRHi at the slott

pml(t)
Allocated power for the HUEm occupying the RBl of
the HPN at the slott

ajk(t)
Allocation of the RBk of RRHs to the RUEj at the slot
t

amk(t)
Allocation of the RBk of RRHs to the HUEm at the
slot t

bml(t)
Allocation of the RBl of the HPN to the HUEm at the
slot t

µm(t) Transmit rate of the HUEm at the slott
µj(t) Transmit rate of the RUEj at the slott

Rm(t)
The amount of admitted traffics for the HUEm at the
slot t

Rj(t)
The amount of admitted traffics for the RUEj at the slot
t

Qm(t)
Traffic buffering queue length for the HUEm at the slot
t

Qj(t)
Traffic buffering queue length for the RUEj at the slot
t

γm(t)
Auxiliary variable for the throughput of the HUEm at
the slott

γj(t)
Auxiliary variable for the throughput of the RUEj at the
slot t

Hm(t)
Virtual queue length for the HUEm with arrival γm at
the slott

Hj(t)
Virtual queue length for the RUEj with arrival γj at the
slot t

Z(t)
Virtual queue length for the average EE constraint at the
slot t

xmk Continuous auxiliary variable for RB allocationamk
yml Continuous auxiliary variable for RB allocationbml
wijk Auxiliary variable for power allocationpijk
vimk Auxiliary variable for power allocationpimk
uml Auxiliary variable for power allocationpml

with high traffic arrival rates will be served by the RRHs. Let
R = {1, 2, ..., N} denote the set of RRHs, letUH denote the
set of HUEs and letUR denote the set of RUEs. To completely
avoid the severe inter-tier interferences, the RBs of H-CRAN
are partitioned and assigned respectively to the RRH and the
HPN tiers. LetKR andKH denote the set of RBs used by
RRH tier and HPN tier, respectively. LetW andW0 denote the
system bandwidth and the bandwidth of each RB, respectively.
Any UE that is associated with RRH tier receives signal
simultaneously from multiple cooperative RRHs on allocated
RBs, and the RBs allocated to different UEs are orthogonal, it
is thus inter-RRH interference-free among UEs. The network
is assumed to operate in slotted time with slot durationτ and
indexed byt.

The HUEs can be associated with RRH tier to get more
transmission opportunity when the traffic load of HPN be-
comes heavier, while the RUEs are served only by RRHs,
which is usually in accordance with the practice. The user

association strategy plays an important role in improving
the utilization efficiencies of limited radio resources in an
H-CRAN. Let the binary variablesm(t) indicate the user
association of the HUEm at the slot t, which is 1 when
the HUE m is associated with the RRH tier or 0 when it
is associated with the HPN. Letgijk(t), gimk(t) and gml(t)
represent the CSIs on the RBk from the RRHi to the RUE
j, the RBk from the RRHi to the HUEm, the RB l from
the HPN to the HUEm, respectively. Note that these CSIs
account for the antenna gain, beamforming gain, path loss,
shadow fading, fast fading, and noise together. In this paper, as
the RB allocation for both RRHs and HPN tiers in OFDMA-
based H-CRANs are focused, the antenna configuration and
beamforming design are not specified, and neither of them
affects the general formulation. The CSIs are assumed to be
independently and identically distributed (i.i.d.) over slots, and
takes values in a finite state place. Letpijk(t) denote the
allocated transmit power for RUEj on RB k from RRH i
at slot t, let pimk(t) denote the allocated transmit power for
HUE m on RB k from RRH i if HUE m is associated with
RRH tier at slott, and letpml(t) denote the allocated transmit
power for HUEm on RB l from HPN if HUEm is associated
with HPN at slott. Furthermore, let the binary variableajk(t)
andamk(t) indicate the allocation of RBk of RRH tier to RUE
j and HUEm at slot t, respectively, and letbml(t) indicate
the allocation of RBl of HPN to HUEm at slot t, then we
have the following non-reuse constraints

cRk (t) =
∑

j∈UR

ajk(t) +
∑

m∈UH

sm(t)amk(t) ≤ 1, (1)

cHl (t) =
∑

m∈UH

(1− sm(t))bml(t) ≤ 1. (2)

for the RRH tier and HPN tier, respectively.
For the UEs that are served by RRHs (including all

the RUEs and some associated HUEs), the maximum ratio
combining (MRC) is assumed to be adopted. Therefore, the
transmit rate of RUEj and HUEm at slot t is given by

µj(t) =
∑

k∈KR

ajk(t)W0log2(1 +
∑

i∈R

pijk(t)gijk(t)), (3)

µm(t) = (1− sm(t))
∑

l∈KH

bml(t)W0log2(1 + gml(t)pml(t))

+ sm(t)
∑

k∈KR

amk(t)W0log2(1 +
∑

i∈R

pimk(t)gimk(t)),

(4)
respectively. Accordingly, the total transmit rate of the network
is given by

µsum(t) =
∑

m∈UH

µm(t) +
∑

j∈UR

µj(t), (5)

With the resource allocations, the transmit power of RRHi
and HPN is given by

pi(t)=
∑

j∈UR

∑

k∈KR

ajk(t)pijk(t)+
∑

m∈UH

∑

k∈KR

sm(t)amk(t)pimk(t),

(6)
pH(t) =

∑

m∈UH

∑

l∈KH

(1− sm(t))bml(t)pml(t), (7)
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respectively. Accordingly, the total power consumption ofthe
network is given by

psum(t) =
∑

i∈R

ϕR
effpi(t) + pRc + ϕH

effpH(t) + pHc , (8)

whereϕR
eff andϕH

eff are the drain efficiency of RRH and HPN,
respectively,pRc and pHc are the static power consumption of
RRHs and HPN, respectively, including the circuit power,
the fronthaul power consumption and the backhaul power
consumption.

B. Queue Dynamics and Queue Stability

In the considered H-CRAN, separate buffering queues are
maintained for each UE. LetQm(t) and Qj(t) denote the
length of buffering queues maintained for HUEm and RUE
j, respectively. LetAm(t) and Aj(t) denote the amount of
random traffic arrivals at slott destined for HUEm ∈ UH

and RUEj ∈ UR, respectively.
Assumption 1 (Random Traffic Arrivals Model): Assume

that Am(t) andAj(t) are i.i.d. over time slots according to
a general distribution, which are independent w.r.t.m and j.
Furthermore, there exists certain peak amount of traffic arrivals
Amax

m andAmax
j , respectively, which satisfyingAm(t) ≤ Amax

m

andAj(t) ≤ Amax
j .

In practice, the statistics ofAm(t) and Aj(t) are usually
unknown to H-CRANs, and the achievable capacity region is
usually difficult to estimate, the situation that the exogenous
arrival rates are outside of the network capacity region may
occur. In this situation, the traffic queues cannot be stabilized
without a transport layer flow control mechanism to limit the
amount of data that is admitted. To this end, the H-CRAN
tries to maximize its utility by admitting as many traffic
datas as possible, and to minimize the penalty from traffic
congestion by transmitting as many traffic datas as possible
with the limited radio resources. LetRm(t) andRj(t) denote
the amount of admitted traffic datas out of the potentially
substantial traffic arrivals for HUEm and RUEj, respectively.
Therefore, the traffic buffering queues for HUEm and RUE
j evolve as

Qm(t+ 1) = max{Qm(t)− µm(t)τ, 0}+Rm(t), (9)

Qj(t+ 1) = max{Qj(t)− µj(t)τ, 0}+Rj(t), (10)

respectively, where we have0 ≤ Rm(t) ≤ Am(t) and 0 ≤
Rj(t) ≤ Aj(t) at each slot.

To model the impacts of joint congestion control and
resource allocation on the average delay and the achieved
throughput utility, the definition of network stability will be
formally given.

Definition 1: A single discrete time queueQ(t) is strongly
stable if

lim sup
T→∞

1

T

T−1
∑

t=0

E[Q(t)] < ∞ (11)

Definition 2: A network of queues is strongly stable if all
the individual queues of the network are strongly stable.

To guarantee certain EE requirement when dynamically
making congestion control and resource optimization for the
H-CRAN. As in [24], the definition of EE is given as follows.

Definition 3: The EE of considered H-CRAN is defined as
the ratio of the long-term time averaged total transmit rate
to the corresponding long-term time averaged total power
consumption in the unit of bits/Hz/J, which is given by

ηEE =

lim
T→∞

1
T

T−1
∑

t=0
E[µsum(t)]

W lim
T→∞

1
T

T−1
∑

t=0
E[psum(t)]

=
µ̄sum

Wp̄sum
, (12)

A queue is strongly stable if it has a bounded time average
queue backlog. According to the Little’s Theorem [25], the
average delay is proportional to the average queue length
for a given traffic arrival rate. Furthermore, when a network
of traffic queues is strongly stable, the average achieved
throughput can be given by the time averaged amount of
admitted exogenous traffic arrivals. Therefore, the average
throughput for HUE and RUE is expressed as

r̄m = lim
T→∞

1

T

T−1
∑

t=0

Rm(t), (13)

r̄j = lim
T→∞

1

T

T−1
∑

t=0

Rj(t), (14)

respectively.

C. Problem Formulation

The profit brought by dynamic joint congestion control and
resource optimization can be characterized by the utility of
average throughput, which is given by

U(r̄) = α
∑

j∈UR

gR(r̄j) + β
∑

m∈UH

gH(r̄m), (15)

wherer̄ = [r̄m, r̄j : m ∈ UH , j ∈ UR] is the vector of average
throughput for all UEs,gR(.) andgH(.) are the non-decreasing
concave utility function for RUEs and HUEs, respectively,α
andβ are the positive utility prices which indicate the relative
importance of corresponding utility functions.

Let r = [Rj(t), Rm(t) : j ∈ UR,m ∈ UH ], s(t) = [sm(t) :
m ∈ UH ], p = [pijk(t), pimk(t), pml(t) : j ∈ UR,m ∈
UH , i ∈ R, k ∈ KR, l ∈ KH ], a = [ajk(t), amk(t), bml(t) :
j ∈ UR,m ∈ UH , k ∈ KR, l ∈ KH ] denote the vectors of
traffic admission, user association, power allocation and RB
allocation, respectively. To maximize the throughput utility of
networks and ensure the strong stability of traffic queues atthe
same time by joint congestion control and resource optimiza-
tion, the stochastic optimization problem can be formulated as
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follows:

max
{r,s,p,a}

U(r̄)

s.t. C1 : cRk (t) ≤ 1, ∀k, t,
C2 : cHl (t) ≤ 1, ∀l, t,
C3 : pi(t) ≤ pmax

i , ∀i, t,
C4 : pH(t) ≤ pmax

H , ∀t,
C5 : ηEE ≥ ηreq

EE
,

C6 : Qm(t) and Qj(t) are strongly stable, ∀m, j,
C7 : Rm(t) ≤ Am(t), Rj(t) ≤ Aj(t), ∀m, j, t,
C8 : ajk(t), amk(t), bml(t), sm(t) ∈ {0, 1}, ∀j, k,m, l, t.

(16)
where pmax

i and pmax
H denote the maximum transmit power

consumption of RRHi and HPN, respectively, andηreqEE denote
the required EE of the network. C1 and C2 ensure that each RB
of both tiers cannot be allocated to more than one UE. C3 and
C4 restrict the instantaneous transmit power of each RRH and
HPN. C5 makes the EE performance above predefined level.
C6 ensures the queue stability to guarantee a finite average
delay for each queue. C7 ensures that the amount of admitted
traffics cannot be more than that of arrivals, C8 is the binary
constraint for the RB allocation and the user association.

For realistic H-CRANs, on one hand, the bursty traffic
arrivals are time-varying and unpredictable, and the key pa-
rameters are hardly captured, which makes it infeasible to
obtain optimal solution in an offline manner; on the other hand,
the dense deployment of RRHs in H-CRANs exacerbates the
computational complexity of centralized solution. Therefore,
an online and low-complexity solution to make decisions
effectively on user association, RB and power allocation will
be designed in the following sections.

III. D YNAMIC OPTIMIZATION UTILIZING LYAPUNOV

OPTIMIZATION

In response to the challenges of problem (16), we take
advantage of Lyapunov optimization techniques [22] to design
an online control framework, which is able to make all three
important control decisions concurrently, including traffic ad-
mission control, user association, RB and power allocation.

A. Equivalent Formulation via Virtual Queues

The formulated dynamic resource optimization problem in
(16) involves maximizing a non-decreasing concave function
of average throughputs, which is a bottleneck for solution.
To address this issue, the non-negative auxiliary variables
γm(t) and γj(t) are introduced to transform problem (16)
into an equivalent optimization problem with a time averaged
utility function of instantaneous throughputs instead of autility
function of average throughputs. Letγ = [γm(t), γj(t) : m ∈
UH , j ∈ UR] be the vector of introduced auxiliary variables,
then we have the following equivalent problem:

max
{r,s,p,a,γ}

lim
T→∞

1
T

T−1
∑

t=0
U(γ(t))

s.t. C1− C8,
C9 : γj(t) ≤ Amax

j , γm(t) ≤ Amax
m , ∀j,m, t,

C10 : γ̄j ≤ r̄j , γ̄m ≤ r̄m, ∀j,m.
(17)

whereU(γ(t)) = α
∑

j∈UR

gR(γj(t)) + β
∑

m∈UH

gH(γm(t)), γ̄j =

lim
T→∞

1
T

T−1
∑

t=0
γj(t) and γ̄m= lim

T→∞

1
T

T−1
∑

t=0
γm(t). Let ropt, s

opt,

p
opt and a

opt denote the optimal solution to the original
problem (16), and letr∗, s∗, p∗, a∗, andγ∗ denote the optimal
solution to the equivalent problem (17), then we have the
following theorem.

Theorem1: The optimal solution for the transformed prob-
lem (17) can be directly turned into an optimal solution for
the original problem (16). Specifically, the optimal solution for
the original problem can be obtained asropt = r

∗, sopt = s
∗,

p
opt = p

∗, anda
opt = a

∗.
Proof: Please refer to Appendix A.

To ensure the average constraints for auxiliary variables in
C10, the virtual queuesHm(t) andHj(t) are introduced for
each HUE and each RUE, respectively, and they evolve as

Hm(t+ 1) = max{Hm(t)−Rm(t), 0}+ γm(t), (18)

Hj(t+ 1) = max{Hj(t)−Rj(t), 0}+ γj(t), (19)

where Hm(0) = 0, Hj(0) = 0, γm(t) and γj(t) will be
optimized at each slot.

Similarly, to ensure the EE performance constraint C5,
the virtual queueZ(t) with initial value Z(0) = 0 is also
introduced, and it evolves as

Z(t+ 1) = max{Z(t)− µsum(t), 0}+WηreqEEpsum(t), (20)

Intuitively, the auxiliary variables γm(t), γj(t) and
WηreqEEpsum(t) can be looked as the arrivals of virtual queues
Hm(t), Hj(t) andZ(t), respectively, whileRm(t), Rj(t) and
µsum(t) can be looked as the service rate of such virtual
queues.

Theorem2: The constraints C5 and C10 can be satisfied
only when the virtual queuesHm(t), Hj(t) and Z(t) are
stable.

Proof: Please refer to Appendix B.

B. Problem Transformulation via Lyapunov Optimization

Let χ(t) = [Qm(t), Qj(t), Hm(t), Hj(t), Z(t) : m ∈
UH , j ∈ UR] denote the vector of the traffic queues and virtual
queues. To represent a scalar metric of queue congestion, the
quadratic Lyapunov function is defined as

L(χ(t))= 1
2 (
∑

m∈UH

Q2
m(t)+

∑

m∈UH

H2
m(t)+

∑

j∈UR

Q2
j(t)+

∑

j∈UR

H2
j (t)+Z

2(t)),

(21)
where a small value ofL(χ(t)) implies that both actual
queues and virtual queues are small and the queues have
strong stability. Therefore, the queue stability can be ensured
by persistently pushing the Lyapunov function towards a
lower congestion state. To stabilize the traffic queues, while
additionally satisfy some average constraints and optimize
the system throughput utility, the Lyapunov conditional drift-
minus-utility function is defined as

∆(χ(t))=E[L(χ(t + 1))−L(χ(t))−V U(γ(t))|χ(t)],
(22)

where the control parameterV (V ≥ 0) represents the empha-
sis on utility maximization compared to queue stability. By
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adjustingV , flexible design choices among various tradeoff
points between queue delay and throughput utility can be made
by operators. With the dynamics of practical traffic queues and
introduced virtual queues, the upper bound of drift-plus-utility
is derived in the following lemma.

Lemma1: At slot t, for any observed queue state, the
Lyapunov drift-minus-utility of an H-CRAN with any joint
congestion control and resource optimization strategy satisfies
the following inequality,

∆(χ(t)) ≤ C − E

[

∑

j∈UR

(V αgR(γj(t))−Hj(t)γj(t))

+
∑

m∈UH

(V βgH(γm(t))−Hm(t)γm(t))|χ(t)

]

− E

[

∑

m∈UH

(Hm(t)−Qm(t))Rm(t)

+
∑

j∈UR

(Hj(t)−Qj(t))Rj(t)|χ(t)

]

− E

[

∑

m∈UH

Qm(t)µm(t)τ +
∑

j∈UR

Qj(t)µj(t)τ

+Z(t)(µsum(t)−WηreqEEpsum(t))|χ(t)] ,
(23)

whereC is a finite constant parameter that satisfies

C ≥ 1
2E

[

(WηreqEEpsum(t))
2
+ µ2

sum(t) +
∑

j∈UR

(2R2
j(t)+

µ2
j(t)τ

2 + γ2
j ) +

∑

m∈UH

(2R2
m(t) + µ2

m(t)τ2 + γ2
m)|χ(t)

]

.

(24)
Proof: Please refer to Appendix C.

According to the theory of Lyapunov optimization, instead
of minimizing the drift-minus-utility expression (22) directly, a
good joint congestion control and resource optimization strat-
egy can be obtained by minimizing the right hand side (R.H.S.)
of (23) at each slot, which can be decoupled to a series of
independent subproblems and can be solved concurrently with
the real-time online observation of traffic queues and virtual
queues at each slot.

C. Problem Decomposition

1) Auxiliary Variable Selection:The optimal auxiliary vari-
ables can be obtained by minimizing the first item of R.H.S.
of (23) at each slot, i.e.−

∑

j∈UR

(V αgR(γj(t))−Hj(t)γj(t))−
∑

m∈UH

(V βgH(γm(t))−Hm(t)γm(t)). Since the auxiliary

variables are independent among different UEs, the minimiza-
tion can be decoupled to be computed for each UE separately
as

max
γj(t)

V αgR(γj(t))−Hj(t)γj(t)

s.t. γj(t) ≤ Amax
j ,

(25)

max
γm(t)

V βgH(γm(t))−Hm(t)γm(t)

s.t. γm(t) ≤ Amax
m .

(26)

Apparently, the problems above are both convex optimiza-
tion problems. Therefore, the optimal auxiliary variablescan

be derived by differentiating the objective function and make
the result equal to zero. In the case of logarithmic utility
function, we haveγj(t) = min

[

V α
Hj(t)

, Amax
j

]

and γm(t) =

min
[

V β
Hm(t) , A

max
m

]

, where a largerHj(t) decreasesγj(t),

which in turn avoids the further increase ofHj(t).
2) Optimal Traffic Admission Control:The optimal traf-

fic admission control can be obtained by minimizing
the second item of R.H.S. of (22) at each slot, i.e.
∑

m∈UH

[Hm(t)−Qm(t)]Rm(t) +
∑

j∈UR

[Hj(t)−Qj(t)]Rj(t).

Similarly, it can be further decoupled to be computed for each
UE separately as follows

max
Rm

(Hm(t)−Qm(t))Rm(t)

s.t. Rm(t) ≤ Am(t),
(27)

max
Rj

(Hj(t)−Qj(t))Rj(t)

s.t. Rj(t) ≤ Aj(t),
(28)

which are linear problems with the following optimal solu-
tions:

Rm(t) =

{

Am(t), if Hm(t)−Qm(t) > 0,
0, else,

(29)

Rj(t) =

{

Aj(t), if Hj(t)−Qj(t) > 0,
0, else.

(30)

This is a simple threshold-based admission control strategy.
When the traffic queueQm(t) (or Qj(t)) is smaller than a
thresholdHm(t) (or Hj(t)), then the newly traffic arrivals are
admitted into the maintained traffic queues. Consequently,this
not only reduces the value ofHm(t) (or Hj(t))so as to push
γm(t) (or γj(t)) to become closer toRm(t) (orRj(t)), but also
increases the throughputRm(t) (or Rj(t)) so as to improve
the utility. On the other hand, when traffic queueQm(t) or
(Qj(t)) is larger than a thresholdHm(t) (or Hj(t)), then the
traffic arrivals will be denied to ensure the stability of traffic
queues.

3) Optimal User Association, RB and Power Allocation:
The optimal user association, RB, and power allocation at slot
t can be obtained by minimizing the remaining item of R.H.S.
of (22), which is expressed as

min
s,p,a

−
∑

m∈UH

Bm(t)µm(t)−
∑

j∈UR

Bj(t)µj(t)

+ YR(t)
∑

i∈R

pi(t) + YH(t)pH(t)

s.t. C1,C2,C3,C4,C8.

(31)

whereBm(t) = Qm(t)τ + Z(t), Bj(t) = Qj(t)τ + Z(t),
YR(t) = WηreqEEϕ

R
effZ(t), YH(t) = WηreqEEϕ

H
effZ(t). However,

since the transmission rateµm(t), µj(t) and the transmit
power consumptionpi(t) and pH(t) are functions of user
associationsm(t), RB allocationajk(t), amk(t) and bml(t)
and power allocationpijk(t), pimk(t) and pml(t), this sub-
problem is a mixed-integer nonconvex problem and is usually
prohibitively difficult to solve. To address this challenge, the
computationally efficient algorithm for this subproblem will
be studied in the next section.
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IV. OPTIMAL USERASSOCIATION, RB AND POWER

ALLOCATION

In this section, we commit to an effective method to solve
the subproblem of user association, RB and power allocation.
The continuity relaxation of binary variables and the Lagrange
dual decomposition method will be first utilized, upon which
the optimal primal solution is then obtained. As this subprob-
lem is optimized at each slot, the slot indext will be ignored
for brevity.

A. Continuity Relaxation

The multiplicative binary variables are first removed as
xmk = (1 − sm)amk and yml = (1− sm)bml, where
xmk ∈ [0, 1] andyml ∈ [0, 1]. The binary variablesajk, xmk

and yml are then relaxed to take continuous values in [0,1].
Furthermore, to make the problem tractable, the auxiliary
variables are introduced aswijk = ajkpijk, vimk = xmkpimk

and uml = ymlpml. Let x = [ajk, xmk, yml : j ∈ UR,m ∈
UH , k ∈ KR, l ∈ KH ] denote the vector of relaxed RB
allocation variables. Letw = [wijk , vimk, uml : i ∈ R, j ∈
UR,m ∈ UH , k ∈ KR, l ∈ KH ] denote the vector of
introduced auxiliary variables. Thus the optimization problem
(31) can be finally rewritten as

min
x,w

−
∑

m∈UH

Bm(
∑

l∈KH

ymllog2(1 + gmluml/yml)

+
∑

k∈KR

xmklog2(1 +
∑

i∈R

vimkgimk/xmk))

−
∑

j∈UR

Bj

∑

k∈KR

ajklog2(1 +
∑

i∈R

wijkgijk/ajk)

+ YR

∑

i∈R

(
∑

k∈KR

∑

m∈UH

vimk+
∑

k∈KR

∑

j∈UR

wijk)

+ YH

∑

m∈UH

∑

l∈KH

uml

s.t.
∑

j∈UR

ajk +
∑

m∈UH

xmk ≤ 1, ∀k,
∑

m∈UH

xml ≤ 1, ∀l,
∑

k∈KR

∑

m∈UH

vimk +
∑

k∈KR

∑

j∈UR

wijk ≤ pmax
i , ∀i,

∑

m∈UH

∑

l∈KH

uml ≤ pmax
H ,

ajk, xmk, yml ∈ [0, 1], ∀j, k,m, l.
(32)

Since the term −xmklog2(1 +
∑

i∈R

vimkgimk/xmk),

−ymllog2(1+gmluml/yml) and−ajklog2(1+
∑

i∈R

wijkgijk/ajk)

are the perspective functions of convex functions
−log2(1 +

∑

i∈R

vimkgimk), −log2(1 + gmluml) and

−log2(1 +
∑

i∈R

wijkgijk), respectively, the objective of

(32) is a convex function. Furthermore, the constraints of
(32) are all linear with the continuity relaxation of binary
variables. According to the Salter’s condition, the zero
Lagrange duality gap is guaranteed [26].

B. Dual Decomposition

The convex optimization problem can be solved by La-
grange dual decomposition. Specifically, the Lagrangian func-

tion of the primal objective function is given by

L(λ) = min
x,w

−
∑

m∈UH

Bm(
∑

l∈KH

ymllog2(1 + umlgml/yml)

+
∑

k∈KR

xmklog2(1 +
∑

i∈R

vimkgimk/xmk))

−
∑

j∈UR

Bj

∑

k∈KR

ajklog2(1 +
∑

i∈R

wijkgijk/ajk)

+
∑

i∈R

(YR + θi)(
∑

k∈K

∑

m∈UH

vimk +
∑

k∈KR

∑

j∈UR

wijk)

−
∑

i∈R

θip
max
i + (YH + θ0)

∑

m∈UH

∑

l∈KH

uml − θ0p
max
H ,

(33)
where θ = [θ0, θ1, θ2, ..., θN ] is the vector of Lagrangian
dual variables related to the HPN and RRH transmit power
constraints. The Lagrangian dual function is given by

D(θ) = min
x,w

L(θ)

s.t.
∑

m∈UH

yml ≤ 1, ∀l,
∑

j∈UR

ajk +
∑

m∈UH

xmk ≤ 1, ∀k,

ajk, xmk, yml ∈ [0, 1], ∀j, k,m, l.

(34)

and the dual optimization problem is given by

max
θ

D(θ)

s.t. θ � 0,
(35)

Based on the Karush-Kuhn-Tucker (KKT) conditions, the
optimal power allocation can be obtained by differentiating
the objective function of (33) with respect tovimk, wijk and
uml, which are given by

v∗imk=







Bm

(YR + θi) ln 2
−

1 +
∑

i′ 6=i

v∗i′mkgi′mk

gimk







+

xmk, (36)

w∗
ijk=







Bj

(YR + θi) ln 2
−

1 +
∑

i′ 6=i

w∗
i′jkgi′jk

gijk







+

ajk, (37)

u∗
ml =

[

Bm

(YH + θ0) ln 2
−

1

gml

]+

yml, (38)

where[x]+ = max{x, 0}. The derived power allocations have
the form of multi-level watering-filling and the water-filling
levels are determined by the traffic queue states and the virtual
queue state.

Substituting the optimal power allocationsv∗imk, w∗
ijk and

u∗
ml into (33) and denoting

Φmk=
∑

i∈R

(YR + θi)pimk−BmRblog2(1+
∑

i∈R

pimkgimk), (39)

Λjk =
∑

i∈R

(YR + θi)pijk−BjRblog2(1+
∑

i∈R

pijkgijk), (40)

Γml = (YH + θ0)pml −BmRb log(1 + gmlpml), (41)

For notation simplicity, the dual function can be simplified
as
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min
x

∑

m∈UH

∑

k∈KR

Φmkxmk +
∑

m∈UH

∑

l∈KH

Γmlyml +
∑

j∈UR

∑

k∈KR

Λjkajk

s.t.
∑

m∈UH

yml ≤ 1, ∀l,
∑

j∈UR

ajk +
∑

m∈UH

xmk ≤ 1, ∀k,

ajk, xmk, yml ∈ [0, 1], ∀j, k,m, l.
(42)

which is a linear programming (LP) problem. It can be
proven that if the bounded linear programming problem has
an optimal solution, then at least one of the optimal solutions
is composed of the extreme points [27].

With the continuity relaxation, the optimal RB allocation
and user association will be derived effectively accordingto
the following scheme.

• For the RBk of RRH tier, the RB allocation to HUEm
is decided by

xmk =















1, if m = argmin{Φmk : m ∈ UH}
&Φmk < min{Λjk : j ∈ UR}
&Φmk < min{Γml : l ∈ KH},

0, else.
(43)

If there is RB of RRH tier allocated to HUEm, then we
havesm = 1.

• The remaining RBs of RRH tier will be allocated to
RUEs. LetK′

R denote the remaining RBs of RRH tier,
then for RBk ∈ K′

R, theajk is given by

ajk =

{

1, if j = argmin{Λjk : j ∈ UR}&Λjk < 0,
0, else.

(44)
• After the RB allocation of RRH tier is accomplished, the

RBs of HPN tier will be allocated. LetU ′
0 denote the set

of HUEs that are served by HPN. The RB allocationyml

is given by

yml =

{

1, if m = argmin{Γml : m ∈ U ′
0},

0, else.
(45)

It is worth noting that, after the continuity relaxation, the
binaryxmk, ajk andyml can be still obtained at the extreme
point of constraint set, i.e., 0 or 1.

To recover the optimal primal solution, the dual variables
are then iteratively computed using the subgradient method
[28],

θ
(n+1)
0 =

[

θ
(n)
0 + ξ

(n+1)
0 ∇

(n+1)
0

]+

, (46)

θ
(n+1)
i =

[

θ
(n)
i + ξ

(n+1)
i ∇

(n+1)
i

]+

, (47)

wheren is the iteration index,ξ(n)0 and ξ
(n)
i is the step size

at then-th iteration to guarantee the convergence,∇
(n+1)
0 and

∇
(n+1)
i are the subgradient of the dual function, which are

given by

∇
(n+1)
0 =

(

∑

m∈UH

∑

l∈KH

u
(n)
ml − pmax

H

)

, (48)

∇
(n+1)
i =





∑

j∈UR

∑

k∈KR

w
(n)
ijk +

∑

j∈UR

∑

k∈KR

v
(n)
imk− pmax

i



 . (49)

Finally, the overall procedure of joint congestion control
and resource optimization is summarized in theAlgorithm 1 .

Algorithm 1 The Joint Congestion Control and Resource
Optimization Algorithm

1: For each slot, observe the traffic queuesQm(t), Qj(t) and
the virtual queuesHm(t), Hj(t), Z(t);

2: Calculate the optimal auxiliary variablesγm(t) andγj(t)
by solving (25) and (26);

3: Determine the optimal amount of admitted trafficsRm(t)
andRj(t) according to (29) and (30);

4: repeat
5: Obtain the optimal power allocationpimk and pijk of

RRH tier by iteratively updating (36) and (37);
6: Obtain the optimal power allocationpml of HPN ac-

cording to (38);
7: Obtain the optimal RB allocationamk andajk of RRH

tier according to (43) and (44) and derive the optimal
user associationsm;

8: Obtain the optimal RB allocationbml of HPN tier
according to (45);

9: Update the Lagrangian dual variablesθ according to
(46) and (47);

10: until certain stopping criteria is met;
11: Update the traffic queuesQm(t), Qj(t) and the virtual

queuesHm(t), Hj(t) and Z(t) according to (9), (10),
(18), (19) and (20).

V. PERFORMANCEBOUNDS

In this section, the performance bounds of the proposed
algorithm based on Lyapunov optimization will be mathemat-
ically analyzed.

A. Bounded Queues

SupposeφH andφR are the largest right-derivative ofgH(.)
and gR(.), respectively, then the proposed algorithm based
on Lyapunov optimization ensures that the traffic queues are
bounded, which is given byTheorem 3.

Theorem3: For arbitrary traffic arrival rates (possibly
exceeding the network capacity of H-CRAN) and certain EE
requirement, an H-CRAN using the proposed algorithm with
any V ≥ 0 can guarantee the following bounds of traffic
queues:

Qj(t) ≤ V αφR + 2Amax
j , (50)

Qm(t) ≤ V βφH + 2Amax
m . (51)

Proof: Please refer to Appendix D.

B. Utility Performance

The utility performance of proposed solution based on
Lyapunov optimization is given byTheorem 4.

Theorem4: For arbitrary arrival rates and certain EE
requirement, an H-CRAN using the proposed algorithm with
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any V ≥ 0 can provides the following utility performance
under certain EE requirement:

U(r̄) ≥ U∗ − C/V, (52)

where U∗ is the optimal infinite horizon utility over all
algorithms that stabilize traffic queues and satisfy required
EE performance constraint.

Proof: Please refer to Appendix E.
To readily understand the obtained results indicated in

Theorem 3 andTheorem 4, some important observations are
further provided as follows.

• Theorem 4 shows thatU(r̄) ≥ U∗ − C/V . Besides,
U(r̄) ≤ U∗. Therefore, we haveU∗ − C/V ≤ U(r̄) ≤
U∗, which indicates thatU(r̄) can be arbitrarily close
to U∗ by setting a sufficiently largeV to makeC/V
arbitrarily small and close to 0. This will be further
verified in the following simulation section as shown in
Fig. 2.

• Theorem 3 and Theorem 4 both show the delay-
utility tradeoff of [O(V ), 1 − O(1/V )], which provides
an important guideline to explicitly balance the delay-
throughput performance on demand. This will also be
further verified in the simulation section as shown in Fig.
2 and Fig. 3.

Remark1: The traffic models are not specified throughout
this paper, as they do not affect the problem formulation and
the corresponding analysis. Moreover, although the packet
traffic arrivals with i.i.d. and constant arrival rates are con-
sidered in this paper, the proposal and the corresponding
theoretical analysis results still hold for other arrivalsthat are
independent from slot to slot, but their arrival rates are time-
varying and ergodic (possibly non-i.i.d.). The reason is that
the joint congestion control and resource optimization policy
is made only based on the size of the queues without requiring
the knowledge of traffic arrivals. Therefore, the proposal is
robust to the traffic arrival distribution model.

VI. SIMULATIONS

In this section, simulations will be carried out to evaluate
the performances of proposed Joint-Congestion-Control-and-
Resource-Optimization (JCCRO) scheme in an H-CRAN.

A. Parameters Setting

The considered H-CRAN consists of 1 HPN, 4 RRHs, 12
HUEs and 10 RUEs. The HPN is located in the center of the
cell area, while the RRHs, HUEs and RUEs are uniformly
distributed. There are 8 RBs and 12 RBs in the RB setsKH

andKR, respectively. The bandwidth of each RB isW0 = 15
kHz, so the system bandwidth isW = 300 kHz. The slot
duration is 0.01 second. The path loss model of RRH and HPN
is given by31.5 + 40.0 log 10(d) and 31.5 + 35.0 log 10(d),
respectively, whered denotes the distance between transmit-
ter and receiver in meters. The fast-fading coefficients are
all generated as i.i.d. Rayleigh random variables with unit
variances. The noise power is -102 dBm. For the HPN, the
drain efficiency, the maximum transmit power consumption
and the static power consumption are given byϕH

eff = 1,
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Fig. 2. Total average throughput versus control parameterV

pmax
H = 10 W, pHc = 2 W, respectively. For the RRHs, the

drain efficiency, the total transmit power consumption and the
static power consumption are given byϕR

eff = 1, pmax
i = 3

W, pRc = 1 W, respectively. For simplicity of comparison,
the utility function of total average throughput is adopted,
i.e. U(r̄) = α

∑

j∈UR

r̄j + β
∑

m∈UH

r̄m, where the positive utility

prices for RUEs and HUEs areα = 1 andβ = 1, respectively.
It is worth noting that in this special case, the first subproblem
to derive optimal auxiliary variables is not required. The traffic
arrivals of HUEs and RUEs follow Poisson distribution, and
the mean traffic arrival rate for RUEλj and HUEλm is given
by λj = λ and λm = 0.5λ, respectively. Each point of the
following curves is averaged over 5000 slots.

B. The Delay-Throughput Tradeoff with Guaranteed EE

Fig. 2 and Fig. 3 illustrate the performances of throughput,
delay with guaranteed EE versus different control parameter
V when the mean traffic arrival rate isλ = 6 kbits/slot. As
can be seen, the achieved utility of total average throughput
increases to optimum at the speed ofO(1/V ) asV increases,
which is due to the fact that a largerV implies that the control
solution emphasizes more on throughput utility. However, the
utility improvement starts to diminish with excessive increase
of V , which can adversely aggravate the congestion as the
average delay increases linearly withV . All these verify
the observations indicated byTheorem 3 and Theorem 4.
Furthermore, Fig. 4 plots the achieved EE verses different
control parameterV , which shows that the achieved EE is
always larger than or equal toηreqEE .

It can be further observed from Fig. 2 - Fig. 4 that there
exists a ceratin EE thresholdηthrEE of the network when making
a tradeoff between delay and throughput. In our simulations,
the EE threshold isηthrEE = 1.12, which is actually the EE
archived by the case without EE requirement. Specifically,
when the required EE is belowηthrEE, the actually achieved
EE and delay-throughput tradeoff is almost the same as the
situation without EE requirement. Once the required EE is
above the thresholdηthrEE, the total average throughput sharply
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decreases (see Fig. 2), and the average delay also increases
(see Fig. 3). This is because, to guarantee the required EE,
the network has to decrease the transmit power, which further
result in the decrease of transmit rate, followed by the decrease
of achieved throughput and the increase of average delay. All
the above observations indicate that the network can guarantee
the EE performance when maximizing the throughput. At this
point, the control parameterV provides a controllable method
to flexibly balance throughput-delay performance tradeoffwith
guaranteed EE. To let the H-CRAN work in a preferred state,
what we only need to do is to select an appropriate control
parametersV .

C. The Convergence of The Proposed Solution

Fig. 5 shows the average number of convergence iterations
for the proposal. It can be generally observed that the proposal
under different EE requirements can converge fairly fast.
Besides, the convergence speed is influenced by some key
parameters. On the one hand, a largerV means a larger average
sum rate and then a slower convergence. On the other hand,
as clarified in Fig. 2, a larger EE requirementηreqEE makes a
smaller average sum rate, which means a faster convergence.
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V

D. The Performance Comparison under Different Traffic Ar-
rival Rate

To validate the efficacy of the proposed JCCRO scheme,
we compare its performances with the Maximum-Sum-Rate
(MSR) scheme, which is modeled as

max
∑

j∈UR

µj(t) +
∑

m∈UH

µm(t)

s.t. C1− C5,C8.
(53)

For the JCCRO scheme, we set the control parameter as
V = 1000. From Fig. 6, it can be observed that the total
average transmit rate of the proposed JCCRO scheme with
different EE requirement are the same and not less than the
total traffic arrival rate at first, then go to the maximum values
as the mean traffic arrival rate increases. From Fig. 7, it can
be observed that the average delay of the proposed JCCRO
scheme always increases with increasing mean arrival rate,
that is because more traffic arrivals means larger transmit rate,
which cannot be large enough due to the EE constraint. Again,
the results of Fig. 6 and Fig. 7 confirm that the setting of EE
requirement have a great effect on system performance.

As for the compared MSR scheme, on the one hand, the total
average transmit rate keeps unchanged as the traffic arrivalrate
varies (see Fig. 6). The reason is that the MSR scheme does not
consider stochastic traffic arrivals and delivers data under the
full buffer assumption. On the other hand, the average delayof
MSR scheme is almost the same as that of JCCRO scheme at
first, but it begins to sharply increase to infinity as time elapse
when the arrival rate is large than a certain value(see. Fig.
7). This is because both schemes are able to timely transmit
all the arrived data when the arrival rate is small, while the
traffic admission control component of JCCRO starts to work
to make the queues stable as the arrival rates increase.

In Fig. 8, we further compare the total avergae power
consumption of the JCCRO scheme and the MSR scheme.
We can see that the power consumption of MSR scheme
keeps unchanged as traffic arrival rate varies and is much
more than that of JCCRO scheme in the relatively light traffic
states. This is because that the MSR scheme delivers data
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under the full buffer assumption and fails to adapt to the
traffic arrivals, which thus leads to a waste of energy despite
achieving the same EE performance. All the observations from
Fig. 6 - Fig. 8 validate the advantages of joint congestion
control and resource optimization: 1) in the relative lighttraffic
states, more energy can be saved with the adaptive resource
optimization, and 2) in the relative heavy traffic states, the
traffic queues can be stabilized with the traffic admission
control.

VII. C ONCLUSION

This work has focused on the stochastic optimization of EE-
guaranteed joint congestion control and resource optimization
in a downlink slotted H-CRAN. Based on the Lyapunov
optimization technique, this stochastic optimization problem
has been transformed and decomposed into three subproblems
which are solved at each slot. The continuality relaxation of
binary variables and Lagrange dual decomposition method
have been exploited to solve the third subproblem efficiently.
An EE-guaranteed[O(1/V ),O(V )] throughput-delay tradeoff
has been finally achieved by the proposed scheme, which has
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Fig. 8. Total average power consumption versus mean traffic arrival rateλ

been verified by both the mathematical analysis and numerical
simulations. The simulation results have shown the significant
impact of EE requirement on the achieved throughput-delay
tradeoff and have validated the significant advantages of joint
congestion control and resource optimization. For the future
work, it would be interesting to extend our proposed model
to provide deterministic delay guarantee for real-time traffic
applications in realistic networks, e.g., mobile video andvoice.

APPENDIX A
PROOF OFTHEOREM 1

Let U∗
1 andU∗

2 be the optimal utility of problems (16) and
(17), respectively. For ease of notation, letΩ∗

1 and Ω∗
2 be

the optimal solutions that achieveU∗
1 and U∗

2 , respectively.
SinceU(.) is a non-decreasing concave function, by Jensen’s
inequality, we have

U(γ̄) ≥ Ū(γ) = U∗
2 . (54)

Since the solutionΩ∗
2 satisfies the constraint C10, then we

have

U(r̄) ≥ U(γ̄). (55)

Furthermore, sinceΩ∗
2 is feasible for the transformed prob-

lem (17), it also satisfies the constraints of the original problem
(16). Therefore, we can have

U∗
1 ≥ U(r̄) ≥ U∗

2 . (56)

Now we prove thatU∗
2 ≥ U∗

1 . Since Ω∗
1 is an optimal

solution to the original problem, it satisfies the constraints C1-
C8, which are also the constraints of the transformed problem.
By choosingγm = r̄∗m and γj = r̄∗j for all slot t together
with the policy Ω∗

1, we then have a feasible policy for the
transformed problem (17), that is

U∗
2 ≥ Ū(γ) = U(r̄) = U∗

1 . (57)

Therefore, we haveU∗
1 = U∗

2 and can further conclude the
Theorem 1.
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APPENDIX B
PROOF OFTHEOREM 2

The constraint C5 is proved firstly, and C10 can be proved
similarly. When the virtual queueHj(t) is stable, then we
have lim

T→∞

E[Hj(T )]
T

= 0 with the probability 1. It is clear that

Hj(t+ 1) ≥ Hj(t)−Rj(t) + γj(t). Summing this inequality
over time slotst ∈ {0, 1, ..., T − 1} and dividing the result by
T yields

Hj(T )−Hj(0)

T
+

1

T

T−1
∑

t=0

Rj(t) ≥
1

T

T−1
∑

t=0

γj(t). (58)

By takingT asymptotically closed to infinity, we finally have
C5.

It is similarly concluded that we can have the inequality
WηreqEE p̄sum ≤ µ̄sum, i.e. ηEE ≥ ηreqEE , only when the virtual
queueZ(t) is stable.

APPENDIX C
PROOF OFLEMMA 1

By leveraging the fact that(max[a− b, 0] + c)2 ≤ a2+b2+
c2−2a(b− c), ∀a, b, c ≥ 0 and squaring Eq. (9), Eq. (10), Eq.
(18), Eq. (19) and Eq. (20), we have

Q2
m(t+1)−Q2

m(t)≤R2
m(t)+µ2

m(t)τ
2−2Qm(t)(µm(t)τ−Rm(t)),

(59)
Q2

j(t+1)−Q2
j(t) ≤ R2

j (t)+µ2
j(t)τ

2−2Qj(t)(µj(t)τ−Rj(t)),
(60)

H2
m(t+1)−H2

m(t) ≤ γ2
m(t)+R2

m(t)−2Hm(t)(Rm(t)−γm(t)),
(61)

H2
j (t+1)−H2

j (t) ≤ γ2
j (t)+R2

j (t)− 2Hj(t)(Rj(t)− γj(t)),
(62)

Z2(t+ 1)− Z2(t) ≤ (WηreqEEpsum(t))
2 + µ2

sum(t)− 2Z(t)
(µsum(t)−WηreqEEpsum(t)).

(63)
According to the definition of Lyapunov drift, we then have

the following expression by summing up the above inequalities
and taking expectation over both sides,

E[L(χ(t+ 1)− L(χ(t))] ≤
1
2

∑

j∈UR

E[2R2
j(t)+µ2

j(t)τ
2+γ2

j ]+
1
2

∑

m∈UH

E[2R2
m(t)+µ2

m(t)τ+γ2
m]

+E[W 2(ηreqEE)
2p2sum(t)+µ

2
sum(t)]−

∑

j∈UR

E[Qj(t)(µj(t)τ−Rj(t))]

−
∑

m∈UH

E[Qm(t)(µm(t)−Rm(t))]−
∑

j∈UR

E[Hj(t)(Rj(t)−γj(t))]

−
∑

m∈UH

E[Hm(t)(Rm(t)−γm(t))]−E[Z(t)(µsum(t)−Wη
req
EEpsum(t))],

(64)
Finally, the upper bound of drift-minus-utility expression

can be obtained as Eq. (22) by subtracting the expression
V E{U(γ)} from the both sides of Eq. (64).

APPENDIX D
PROOF OFTHEOREM 3

The bounds of traffic queues for RUEs are proved firstly,
and that for MUEs can be proved similarly. Suppose that the
following inequality holds at slott,

Hj(t) ≤ V αφR +Amax
j , (65)

If Hj(t) ≤ V αφR, then it is easy to getHj(t) ≤ V αφR +
Amax

j according to the admission constraintRj(t) ≤ Amax
j .

Else if Hj(t) ≥ V αφR, since the utility functiongR(.) is a
non-decreasing concave function andφR is the largest right-
derivative of gR(.), the following inequality can be easily
established,

V αgR(γj(t))−Hj(t)γj(t) ≤ V αgR(0)
+(V αφR −Hj(t))γj(t) ≤ V αgR(0).

(66)

which follows that whenHj(t) ≥ V αφR, the auxiliary vari-
ables decision in (25) forcesγj to be 0. Therefore, inequality
(65) also holds at slott+ 1,

Hj(t+ 1) ≤ Hj(t) ≤ V αφR +Amax
j . (67)

With above bound of virtual queue, the bound of traffic
queue is proved next. IfQj(t) ≤ Hj(t), according to the
admission control policy in (30), we have

Qj(t+ 1) = Qj(t) +Rj(t) ≤ Qj(t) +Amax
j

≤ Hj(t) +Amax
j = V αφR + 2Amax

j .
(68)

APPENDIX E
PROOF OFTHEOREM 4

To prove the bound of utility performance, the following
lemma is required.

Lemma2: For arbitrary arrival rates, there exists a random-
ized stationary control policyπ for H-CRAN that chooses
feasible control decisions independent of current traffic queues
and virtual queues, which yields the following steady state
values:

γπ
m(t) = r∗m, γπ

j (t) = r∗j , (69)

E[Rπ
m(t)] = r∗m,E[Rπ

j (t)] = r∗j , (70)

E[µπ
m(t)τ ] ≥ E[Rπ

m(t)],E[µπ
j (t)τ ] ≥ E[Rπ

j (t)], (71)

E[µπ
sum(t)] ≥ WηreqEEE[p

π
sum(t)]. (72)

As the similar proof ofLemma 2 can be found in [29], the
details are omitted to avoid redundancy. Since the proposed
solution is obtained by choosing control variables that can
minimize the R.H.S. of Eq. (22) among all feasible decisions
(including the randomized control decisionπ in Lemma 2) at
each slot, then we have

∆(χ(t)) ≤ C − E

[

∑

j∈UR

(V αgR(γ
π
j (t))−Hj(t)γ

π
j (t))

+
∑

m∈UH

(V βgH(γπ
m(t))−Hm(t)γπ

m(t))|χ(t)

]

− E

[

∑

m∈UH

(Hm(t)−Qm(t))Rπ
m(t)

+
∑

j∈UR

(Hj(t)−Qj(t)]R
π
j (t))χ(t)

]

− E

[

∑

m∈UH

Qm(t)µπ
m(t)τ +

∑

j∈UR

Qj(t)µ
π
j (t)τ

+Z(t)(µπ
sum(t)−WηreqEEp

π
sum(t))|χ(t)] ,

(73)



IEEE TRANS. VEH. TECH. 13

Since the randomized stationary policy is independent of
χ(t), we have

∆(χ(t)) ≤ C −
∑

j∈UR

[E[V αgR(γ
π
j (t))]−Hj(t)E[γ

π
j (t)]]

+
∑

m∈UH

[E[V βgH(γπ
m(t))]−Hm(t)E[γπ

m(t)]]−
∑

m∈UH

(Hm(t)

−Qm(t))E[Rπ
m(t)]−

∑

j∈UR

(Hj(t)−Qj(t))E[R
π
j (t)]

−
∑

m∈UH

Qm(t)E[µπ
m(t)τ ] −

∑

j∈UR

Qj(t)E[µ
π
j (t)τ ]

− Z(t)(E[µπ
sum(t)]−WηreqEEE[p

π
sum(t)]),

(74)
By plugging (70)-(72) into the R.H.S. of (74), we have

E[L(χ(t+1))−L(χ(t))]−V E[U(γ(t))] ≤ C −V U∗. (75)

Then by summing the above over slott ∈ {0, 1, ...T − 1}
and dividing the result byT , we have

E[L(χ(t+ 1))]− E[L(χ(0))]

T
−

1

T

T−1
∑

t=0

E[U(γ(t))] ≤ C−V U∗.

(76)
Considering the fact thatL(χ(t+1)) ≥ 0 andL(χ(0)) = 0,

we then have

lim
T→∞

1

T

T−1
∑

t=0

E[U(γ(t))] ≥ U∗ − C/V. (77)

Furthermore, since the utility function is a non-decreasing
concave function, according to Jensen’s inequality, we finally
have

U(r̄) ≥ U(γ̄) ≥
1

T

T−1
∑

t=0

E[U(γ(t))] ≥ U∗ − C/V. (78)
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