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Abstract

Growing attentions have been paid to renewable energy or hybrid energy powered heterogeneous networks

(HetNets). In this paper, focusing on backhaul-aware jointuser association and resource allocation for this type

of HetNets, we formulate an online optimization problem to maximize the network utility reflecting proportional

fairness. Since user association and resource allocation are tightly coupled not only on resource consumption of

the base stations (BSs), but also in the constraints of theiravailable energy and backhaul, the closed-form solution

is quite difficult to obtain. Thus, we solve the problem distributively via employing some decomposition methods.

Specifically, at first, by adopting primal decomposition method, we decompose the original problem into a lower-

level resource allocation problem for each BS, and a higher-level user association problem. For the optimal resource

allocation, we prove that a BS either assigns equal normalized resources or provides equal long-term service

rate to its served users. Then, the user association problemis solved by Lagrange dual decomposition method,

and a completely distributed algorithm is developed. Moreover, applying results of the subgradient method, we

demonstrate the convergence of the proposed distributed algorithm. Furthermore, in order to efficiently and reliably

apply the proposed algorithm to the future wireless networks with an extremely dense BS deployment, we design

a virtual user association and resource allocation scheme based on the software-defined networking architecture.

Lastly, numerical results validate the convergence of the proposed algorithm and the significant improvement on

network utility, load balancing and user fairness.
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I. INTRODUCTION

A. Motivation

Nowadays, with the proliferation of smartphones, tablets,video streaming, and emerging new appli-

cations and services, the data traffic demand in cellular networks grows tremendously [1], [2]. To meet

this demand, cellular networks are trending strongly towards increasing heterogeneity, especially through

overlapping deployment of small cell base stations (BSs), e.g., microcells, picocells and femtocells, which

differ primarily in terms of maximum transmit power, physical size, ease-of-deployment and cost [3]–[7].

In fact, it has been widely accepted that heterogeneous network (HetNet) is a promising approach to

achieve high spectral and energy efficiency. On the other hand, the unprecedented data traffic growth

and rapidly increasing deployment of small cells have pushed the limits of energy consumption in

wireless networks, which causes both serious environment problem and sharp rising energy cost for

network operators [1], [8]–[11]. Then, the economic and ecological concerns, together with the advance

of energy harvesting technologies, have advocated the “green communications” solutions, where cellular

BSs, especially small cell BSs, are powered by renewable energy sources (RES) such as sustainable

biofuels, solar and wind energy [11]–[14]. Moreover, due tolong-term cost savings, easier deployment

and reduced carbon emissions, HetNets with renewable energy powered BSs can be a sustainable and

economically convenient solution for next-generation cellular networks.

As cellular networks evolve into dense, organic and irregular HetNets, load awareness has been elevated

to a central problem [15]. Primarily, in HetNets, due to the disparities of transmit powers and BS

capabilities, even if users are uniformly distributed in geography, the well-known user association schemes

based on “natural” metrics like signal-to-interference-plus-noise ratio (SINR) or received signal strength

indicator (RSSI) can lead to an extreme load imbalance amongmacro BSs and small cell BSs [16], [17].

Furthermore, the key performance metric for a user should bethe rate, not SINR. The rate is of course

directly related to SINR (e.g.,log2(1 + SINR)), but it is also proportional to the fraction of resources

that the user gets. Thus, heavily-loaded cells may provide lower rate over time, even though they offer a
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higher SINR [15]. As a consequence, a joint user associationand resource allocation strategy that is able

to both introduce load balancing and improve network-wide performance is needed. While for HetNets

with emerging RES, owning to the dynamics of renewable energy generation and limited capacity of

energy storage, sole RES may not guarantee enough power supplies for all kinds of BSs. Hence, future

HetNets are more likely to adopt hybrid energy supplies withboth traditional electric grid and RES [18].

In this case, since the available energy of RES varies with time and space and the average electric power

consumed by BSs should be limited to save the cost, HetNets call for load balancing strategy that takes

into account the constrained energy supplies. Moreover, the large number of small cell BSs to be deployed

in HetNets may incur overwhelming traffic over backhaul links. However, the current small cell backhaul

solutions, such as xDSL, non-line-of-sight microwave, arefar from the ideal ones providing sufficiently

large data rate [19], [20]. As such, the backhaul (data rate)constraint has become increasingly stringent

in HetNets.

B. Related Works

So far, a lot of works on load balancing for HetNets have been presented. Andrewset al. in [8] survey

the technical issues and primary approaches on load balancing in HetNets. The works in [21]–[25] deal

with joint user association and resource allocation for HetNets powered by grid energy. When it comes

to HetNets with RES, some studies on user association and/orresource allocation have been presented

[26]–[31]. Specifically, for HetNets solely powered by RES,[26] proposes load balancing scheme among

different BSs in order to obtain higher downlink network utility, and [27] designs offline and online

load balancing schemes, which are both energy-aware and QoS-aware. Then, for hybrid energy powered

HetNets, to reduce on-grid energy consumption by maximizing the utilization of green energy, [28] presents

a distributed scheme to enable green-energy aware and latency aware (GALA) user-BS associations, and

[29] formulates and solves a joint multi-stage energy allocation and multi-BS energy balancing problem.

On the other hand, to strive for a balance between the averagetraffic delivery latency and green energy

utilization, [30] proposes a virtually distributed algorithm, and [31] develops a network utility aware
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(NUA) traffic load balancing scheme.

Different from the studies only on user association in [28]–[31] and the references therein [15], this

paper focuses on joint user association and resource allocation for HetNets. For easy implementation and

catering to the existing standard model for LTE, unique association of users, which means each user can

be associated to at most one BS at a time, is considered. This is different from the works in [24] and [25],

where users can be served by multiple BSs simultaneously. Moreover, we take both backhaul and energy

constraints into account, which is distinguished from the works in [21]–[23], [26], [28]–[30]. Then, the

formulated problem has not only mixed integer variables butalso coupled variables in the constraints

of resources, energy and backhaul. Employing some decomposition methods, we efficiently obtain the

condition for two kinds of resource partition of each BS and develop a completely distributed algorithm

for user association, which are the novelty and main contributions of this paper.

C. Contributions

We deal with the backhaul-aware joint user association and resource allocation problem for hybrid

energy powered HetNets, which have both backhaul and energyconstraints. The contributions of this

paper are summarized below.

• We consider a hybrid energy powered HetNet with limited backhaul and take into account the unique

association of users, which can be easily extended to general energy-constrained LTE HetNets with

wired or wireless backhaul connections. With the objectiveof maximizing network utility reflecting

proportional fairness (PF), we formulate an online optimization problem. However, its closed-form

solution is quite difficult to obtain in threefold: both binary and continuous variables; tightly coupled

variables in multiple constraints; and desired distributed solutions for each user and BS.

• Due to the coupling and non-convexity, we employ several decomposition methods to solve the

formulated problem. Firstly, by applying primal decomposition method, we decompose the original

problem into a lower-level resource allocation problem anda higher-level user association problem.

Secondly, we further decompose the resource allocation problem into subproblems for each BS. Then,



5

based on complementary slackness property, we efficiently obtain a BS’s optimal resource partition,

which either assigns equal normalized resources or provides equal long-term service rate to its served

users. Thirdly, given optimal resource partition of BSs, wesolve the user association problem with

Lagrange dual decomposition method, and develop a completely distributed algorithm for joint user

association and resource allocation.

• For the efficient and reliable application of the proposed algorithm to the future wireless networks

with an extremely dense BS deployment, we design a virtual user association and resource allocation

(vUARA) scheme based on software-defined networking (SDN) architecture. Since virtual users and

virtual BSs (vBSs) can be generated in the radio access networks controller (RANC) to emulate

a distributed user association and resource allocation solution that requires interactive adjustments

between users and BSs, the proposed scheme significantly reduces the communication overhead over

air interface and avoids the information leaking to users.

• We demonstrate the convergence of the proposed distributedalgorithm both by applying results of the

subgradient method in theory and by numerical results with random network realizations. Moreover,

compared with max-SINR association and range expansion association, numerical results indicate

that, the proposed algorithm provides a significant improvement on network utility, load balancing

and user fairness. Furthermore, we present and analyze the effects of energy and backhaul constraints

on algorithm performance.

The rest of the paper is organized as follows. We describe theenergy-constrained HetNet under

consideration in Section II, and formulate the optimization problem in Section III. The solution to the

formulated problem is presented in Section IV. Section V gives implementation of the vUARA scheme.

Simulation studies are provided in Section VI, and Section VII concludes the paper.



6

II. SYSTEM MODEL

A. An Energy-Constrained HetNet

We consider a HetNet composed ofA-tiers of BSs, where each tier models a particular type of BSs.

For example, letA = 3, then tier 1 consists of traditional macro BSs, tier 2 and tier 3 may be comprised

of pico BSs and femto BSs, respectively. Generally, macro BSs, pico BSs and femto BSs have different

transmission power and coverage. Moreover, for BSs of different tiers, their energy consumption and

backhaul capacities vary widely, and the coefficients of path loss between them and the users are also

different. All the BSs are assumed to be connected by a high speed backhaul through which information

exchange with negligible delay is possible. Furthermore, given such a HetNet, we adopt a hybrid energy

supply, i.e., the BSs are powered by traditional electric grid, RES, or both. For BSs with RES, the RES

collects energy from the environment by solar panels and/orwindmills and charges the corresponding

battery (each BS has its own RES and battery, which vary with the size of the BS). This is especially

important in rural areas, where the access to electric grid may be impossible or too expensive. A network

model for such HetNet with backhaul layout is given in Fig. 1,where pico BSs and femto BSs are all

treated as small cell BSs.

Electric 

grid

Core

CU Aggregation 

switch
Sink

switch

Macro

BS

Small cell 

BS

Small cell BS

Small cell 

BS

Backhaul (Fiber)
Backhaul (Wireless)
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Electric-power line
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RES Battery

Fig. 1. Network model

We denote byN = {1, 2, · · · , N} andK = {1, 2, · · · , K} the sets of all BSs and all single antenna
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users, respectively. Each BS in setN schedules transmissions over contiguous time-frequency slots,

referred to as RBs, each comprising a block of OFDM subcarriers and symbols. Moreover, the transmitting

power of BSn ∈ N on each RB is assumed to be always constant.

B. Transmission Model

According to [29], the duration of one association period, which refers to a time duration in which

the BSs and the users involved have stable associations, depends on the dynamics of renewable energy

generation and mobile traffic intensity. Here, we omit the specific definition of these periods, and simply

denote the association period by indexl ∈ L = {1, · · · , L}, and its time duration ass(l). In following

subsections, we focus on thelth association period.

At time instantt of the lth association period, we denote the channel power gain between userk ∈ K

and BSn ∈ N by H
(l)
nk(t) as

H
(l)
nk(t) = G

(l)
nk(t)F

(l)
nk (t), ∀(n, k) ∈ N ×K, (1)

whereG(l)
nk(t) is the large-scale slow fading component capturing effectsof path-loss and shadowing, and

F
(l)
nk (t) represents the small-scale fast fading component. “· × ·” denotes the Cartesian product of two

sets. Moreover, it is assumed thatG
(l)
nk(t) remains constant during one association period. Thus, it can

be simplified asG(l)
nk. To model the small-scale Rayleigh fading, it is assumed that F (l)

nk (t) fluctuates fast

during an association period following an exponential probability distribution function with variance 1

[22].

The instantaneous SINR from BSn to userk on a RB is

SINR(l)
nk(t) =

P
(l)
n H

(l)
nk(t)∑

j 6=n P
(l)
j H

(l)
jk (t) + σ2

, (2)

whereP (l)
n andP (l)

j are transmission power of BSn andj on a RB in the association periodl, respectively,

andσ2 denotes the thermal noise spectral power.
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Accordingly, the instantaneous achievable rate at userk, if it is served by BSn, can be written as

R
(l)
nk(t) = B0 log2(1 + SINR(l)

nk(t)), (3)

whereB0 denotes the bandwidth over which a RB is realized.

In general, since the mobility of users between BSs takes place at larger time scales and channel may

vary during the whole association period, the association decision should be taken considering the long-

term rate that a given user will obtain if it is associated with a certain BS. Referring to [22], the long-term

SINR from BSn to userk on a RB can be written as

SINR
(l)

nk =
P

(l)
n G

(l)
nk∑

j 6=n P
(l)
j G

(l)
jk + σ2

, (4)

and the corresponding long-term rate is

R
(l)
nk = B0 log2

(
1 + SINR

(l)

nk

)
. (5)

On the other hand, the number of users associated with a BS is usually more than one, and the users

of the same BS need to share the resources. Thus, the long-term service rate achieved by a user depends

on the load of the BS and will only be a fraction of the rateR
(l)
nk (unless BSn exclusively serves user

k in association periodl). That is to say, a user’s long-term service rate for its association with a BS

depends on both the load and the resource partition method ofthe BS. In this paper, we assume unique

association of users and define the user association indicator x(l)
nk as

x
(l)
nk =





1, if user k is associated with BSn,

0, otherwise.

(6)

In addition, denoting the fraction of RBs over which userk is served by BSn asy(l)nk, the overall rate
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of userk and the required backhaul of BSn can be respectively given as

R
(l)
k =

∑

n∈N

x
(l)
nky

(l)
nkR

(l)
nkWn, (7)

Z(l)
n =

∑

k∈K

x
(l)
nky

(l)
nkR

(l)
nkWn, (8)

whereWn is the total number of RBs of BSn, and may vary for different BSs.

Since the backhaul of BSs is considered to be constrained, for BS n ∈ N , there is

Z(l)
n ≤ Zn,bh, (9)

whereZn,bh is BS n’s maximum backhaul capacity that differs considerably among theA-tiers of BSs.

C. BSs’ Energy Consumption and Constraints

Firstly, adopting the model in EARTH project [32], the energy consumption of BSn in association

period l can be expressed as

C(l)
n = s(l)

[
Pn0 + δn

(∑
k∈K

x
(l)
nky

(l)
nkWn

)
P (l)
n

]
, (10)

wherePn0 is the fixed part of BSn’s power consumption,δn is the variable power consumption slope,

and δn

(∑
k∈K x

(l)
nky

(l)
nkWn

)
P

(l)
n is the variable part related to the transmission power and the consumed

resources. It should be noted that, for BSs belonging to different tiers, their fixed power consumption,

power consumption slopes and transmission power vary widely [4], [32].

Then, due to RES and batteries adopted by some BSs, we analyzetheir battery dynamics.

In order to provide a general model for energy harvesting BSs, we do not assume a particular type of

energy harvester. Specifically, we assume that BSn is powered by both RES and electric grid. LetB
(l)
n

andE(l)
n respectively be the battery level and the renewable energy arriving at the beginning of association

periodl. Here,E(l)
n can also be viewed as the energy arriving in the association period l−1, but is not used
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until period l. This assumption is reasonable since, in practice, user association and resource allocation

decisions can only be made based on the battery state information available at the beginning of the

association period. Besides, it is assumed that, for a larger BS that is powered by RES, the corresponding

RES power and battery capacity are also larger.

At the beginning of association periodl + 1, the battery level of BSn is updated as

B(l+1)
n = f

(
B(l)

n , C
(l)
n,E, E

(l+1)
n

)
, (11)

wheref(·) depends upon the battery dynamics, such as storage efficiency and memory effects [31].C(l)
n,E

is BS n’s energy consumption from RES in association periodl. A common practice is to consider the

battery update as

B(l+1)
n = max

{
0,min

{
B(l)

n − C
(l)
n,E + E(l+1)

n , Bnmax

}}
, (12)

whereBnmax denotes BSn’s maximum battery capacity, the inner minimization accounts for possible

battery overflows, and the outer maximization assures the non-negativity of the battery levels. In general,

C
(l)
n,E will be limited by a function of the current battery level, i.e.,

C
(l)
n,E ≤ g(l)n (B(l)

n ), (13)

whereg(l)n (·) limits the renewable energy that can be used in association period l in order to spend the

energy in a more conservative way. Simply, we can consider that only a given fraction of the battery is

allowed to be used.

At the same time, in order to save the cost on electric power, we give BSn’s limited average electric

power, i.e., the electric grid energy can be used freely on the condition that the average power over all

association periods is no greater than the thresholdGn,ave [33],

1

L

∑

l∈L

C
(l)
n,G =

1

L

∑

l∈L

[
C(l)

n − C
(l)
n,E

]
≤ Gn,ave, (14)
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whereC(l)
n,E = 0, if BS n is solely powered by the electric grid.

Transforming the average electric power into each association period and combining (13), we have

C(l)
n = C

(l)
n,E + C

(l)
n,G ≤ g(l)n (B(l)

n ) +Gn,ave, (15)

which can be regard as the energy constraint for BSn in association periodl.

Remark 1: In the above description, we didn’t give any notation indicating the specific energy supplies

of BSs. This is due to the fact that, for BSs without RES, we cansetg(l)n (B
(l)
n ) = 0; while for BSs without

energy supplies from electric grid, we haveGn,ave= 0.

III. PROBLEM FORMULATION

In practice, only causal information, i.e., information ofthe past and current channel states and energy

harvesting, is available. Thus, an online approach is quitedesirable. In addition, based on the analysis

of BSs’ energy consumption and constraints, we can address the user association and resource allocation

problem on each association period. In the following sections, the superscript(l) is omitted.

Firstly, taking a utility function perspective, we assume that userk obtains utilityUk(Rk). In order

to achieve a desired balance between network-wide performance and user fairness, we shall choose a

continuously differentiable, monotonically increasing,and strictly concave utility function. Such that,

larger rate yields greater utility, and the shape of the concave function also imposes some desired notion

of fairness. Here, we consider the well-known PF, which is imposed by choosing the utility function

Uk (Rk) = log (Rk) . (16)
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Then, the network utility maximization problem is given as:

P1 : max
x,y

∑

k∈K

log

(
∑

n∈N

xnkynkRnkWn

)
(17)

s.t.
∑

n∈N

xnk = 1, ∀k ∈ K (17a)

∑

k∈K

xnkynk ≤ 1, ∀n ∈ N (17b)

∑

k∈K

xnkynkRnkWn ≤ Zn,bh, ∀n ∈ N (17c)

Cn ≤ gn(Bn) +Gn,ave, ∀n ∈ N (17d)

xnk ∈ {0, 1}, ∀n ∈ N , ∀k ∈ K (17e)

ynk ∈ [0, 1], ∀n ∈ N , ∀k ∈ K (17f)

where (17a) denotes that each user can only be associated with one BS at a given time; (17b), (17c) and

(17d) respectively specify the constraints of resources, backhaul and energy for all the BSs; (17e) and

(17f) keep the association indicators binary and the resource allocation variables being between 0 and 1,

respectively.

Sincexnks take binary values and
∑

n∈N xnk = 1, we have

∑

k∈N

log

(
∑

n∈N

xnkynkRnkWn

)

=
∑

k∈K

∑

n∈N

xnk log (ynkRnkWn) .

(18)

Unfortunately, due to binary variablesxnks and continuous variablesynks, P1 is a mixed integer

nonlinear programming (MINLP) problem, which is generallyNP-hard. Moreover, the variablesxnks and

ynks are coupled in the constraints of resources, backhaul and energy, which brings much more complexity.

Furthermore, the optimal solution should be distributed for each user and BS. In the following section,

we focus on solvingP1 distributively by employing some decomposition methods.

Remark 2:The above joint user association and resource allocation problem is a MINLP problem.
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MINLP problems have the difficulties of both of their sub-classes, i.e., the combinatorial nature of mixed

integer programming (MIP) and the difficulty in solving nonlinear programming (NLP). Since both MIP

and NLP are NP-complete, the joint user association and resource allocation problemP1 is NP-hard [34].

IV. SOLUTION

In this section, the solution to the formulated problem is detailed, and a completely distributed algorithm

is developed for the backhaul-aware joint user associationand resource allocation in energy-constrained

HetNets.

A. Primal Decomposition

Obviously, the choices ofynks rely on the values ofxnks. Given these coupled variables, we can apply

the primal decomposition method to decomposeP1 into the following problems in two levels. Firstly, by

fixing variablesxnks, we have the lower-level problem:

P2 : max
y

∑

n∈N

∑

k∈Kn

log (ynkRnkWn) (19)

s.t.
∑

k∈Kn

ynk ≤ 1, ∀n ∈ N (19a)

∑

k∈Kn

ynkRnkWn ≤ Zn,bh, ∀n ∈ N (19b)

∑

k∈Kn

ynk ≤
[gn(Bn) +Gn,ave] /s− Pn0

δnWnPn

, ∀n ∈ N (19c)

0 ≤ ynk ≤ 1, ∀k ∈ Kn, ∀n ∈ N (19d)

whereKn denotes the set of users that associated with BSn, and |Kn| =
∑

k∈K xnk.
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Then, whenynks are fixed, the higher-level problem (or the master problem)is given by

P3 : max
x

∑

k∈K

∑

n∈N

xnk log (ynkRnkWn) (20)

s.t.
∑

n∈N

xnk = 1, ∀k ∈ K (20a)

xnk ∈ {0, 1}, ∀n ∈ N , ∀k ∈ K (20b)

Since there are no couplings among the subproblems,P2 can be further decomposed intoN subproblems

for all the BSs:

P4 : max
y

∑

k∈Kn

log (ynkRnkWn) (21)

s.t.
∑

k∈Kn

ynk ≤ Qn,P (21a)

∑

k∈Kn

ynkRnkWn ≤ Zn,bh (21b)

0 ≤ ynk ≤ 1, ∀k ∈ Kn (21c)

where

Qn,P = min

{
1,

[gn(Bn) +Gn,ave] /s− Pn0

δnWnPn

}
(22)

is obtained based on (19a) and (19c), and can be regarded as the normalized resources that BSn can

afford with constraints from both overall RBs and availableenergy.

B. Resource Allocation with Fixed User Association

Defining Lagrange multipliersµn andνn, the Lagrangian function ofP4 is given as

L =
∑

k∈Kn

log (ynkRnkWn)− µn

(
∑

k∈Kn

ynk −Qn,P

)

− νn

(
∑

k∈Kn

ynkRnkWn − Zn,bh

)
.

(23)
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Applying Karush-Kuhn-Tucker (KKT) conditions, we obtain

y∗nk =
1

µ∗
n + ν∗

nRnkWn

, ∀k ∈ Kn. (24)

It is easily observed that,ynk is completely dependent on dual variablesµn andνn. Intuitively, µn and

νn can be interpreted as the prices of BSn determined by load situation and backhaul state, respectively.

When BSn is overloaded (i.e.,
∑

k∈Kn
ynk ≥ Qn,P) or its backhaul is overflowed (i.e.,

∑
k∈Kn

ynkRnkWn ≥

Zn,bh), the corresponding priceµn or νn goes up, then a userk’s resource fractionynk from associating

with it decreases. Otherwise, the prices go down,ynk increases, and BSn becomes more attractive.

Generally, this KKT system can be solved by finding the appropriate dual variables(µn, νn). To achieve

this, a two-dimensional search or classic constrained optimization techniques such as subgradient method

or augmented Lagrangian can be applied. However, both of them are computationally intensive and might

not be practical for large-scale problem. Therefore, in thefollowing, we focus on solving this KKT system

efficiently based on its specific construction.

On one hand, we note that both the constraints (21a) and (21b)in P4 are monotonic functions ofynk,

and ynk is also a monotonic function ofµn when νn is fixed and vice versa. On the other hand, the

complementary slackness in constrained optimization states that, for inequality constraintsfi(x) ≤ 0 that

are tight with equality, the associated dual variables are non-zero. Using this result, at a local optimum,

each BS can be either energy-constrained or backhaul-constrained. Thus, we can perform our search on

two single dual variables instead of a two-dimensional search.

Specifically, if BSn is energy-constrained, i.e.,





∑
k∈Kn

y∗nk = Qn,P,

∑
k∈Kn

y∗nkRnkWn ≤ Zn,bh,

(25)
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then, there is 



µ∗
n ≥ 0,

ν∗
n = 0.

(26)

Substituting (24) and (26) into the first equation of (25), weobtain

y∗nk =
1

µ∗
n

=
Qn,P

|Kn|
, ∀k ∈ Kn, (27)

which means that BSn assigns equal normalized resources to its associated users.

Else if BSn is backhaul-constrained, similarly, there is

y∗nk =
1

ν∗
nRnkWn

=
Zn,bh

|Kn|RnkWn

, ∀k ∈ Kn, (28)

which means that BSn averages its backhaul capacity among the associated users,and all of them achieve

equal long-term service rate.

Moreover, in the extreme case that BSn is both energy-constrained and backhaul-constrained, there

areµ∗
n ≥ 0, ν∗

n ≥ 0, and both (27) and (28) are satisfied. Thus, we have

Rnk =
Zn,bh

Qn,PWn

, ∀k ∈ Kn, (29)

which implies that all the associated users of BSn have the same data rate. In this case, BSn assigns equal

normalized resources to the associated users, and the associated users achieve equal long-term service

rate.

In summary, by applying the complementary slackness property, we can efficiently obtain the optimal

resource partition of BSs. Moreover, sinceP4 is a convex problem, the local optimum is also the unique

global optimum. Furthermore, we have the following proposition.
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Proposition 1: Based on the rates of associated users, BSn can optimally decide its resource partition:

y∗nk =





Qn,P

|Kn|
, ∀k ∈ Kn, if

∑
k∈Kn

Rnk ≤
|Kn|Zn,bh

WnQn,P
,

Zn,bh

|Kn|RnkWn
, ∀k ∈ Kn, otherwise.

(30)

Proof: Please refer to the Appendix A for a proof.

That is to say, to maximize the network utility, if
∑

k∈Kn
Rnk ≤ |Kn|Zn,bh

WnQn,P
, BS n divides its normalized

resources constrained by both overall RBs and available energy equally among the associated users;

otherwise, BSn will average its backhaul capacity, and all the associated users achieve equal long-term

service rate.

For clarity, we define BSs’ resource partition indicator̟as:

̟n =





1, if
∑

k∈Kn
Rnk ≤

|Kn|Zn,bh

WnQn,P
,

0, otherwise.

(31)

which will be used in the subsection IV-D.

C. User Association Given Resource Partition of BSs

By substituting (27) and (28) intoP3 respectively, we can obtain the corresponding solutions for user

association. Here, taking the resource allocation in (27) for example, we show the solution in detail.

Specifically, the corresponding user association problem is:

P5 : max
x

∑

k∈K

∑

n∈N

xnk log

(
Qn,PRnkWn∑

k∈K xnk

)
(32)

s.t.
∑

n∈N

xnk = 1, ∀k ∈ K (32a)

xnk ∈ {0, 1}, ∀n ∈ N , ∀k ∈ K (32b)

P5 is still combinatorial due to binary variablesxnks. Towards its solution, firstly, a set of auxiliary

variables{φn =
∑

k∈K xnk} are introduced; then, to develop a distributed algorithm, we adopt Lagrange
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dual decomposition method whereby a Lagrange multiplierυ is introduced to relax the coupled constraints

φn =
∑

k∈K xnk, ∀n ∈ N .

The dual problem can be expressed as:

P6 : G : min
υ

G(υ) = H(υ) + I(υ), (33)

where

H(υ) =max
x

∑

n∈N

∑

k∈K

xnk [log(Qn,PRnkWn)− υn] (34)

s.t.
∑

n∈N

xnk = 1, ∀k ∈ K (34a)

xnk ∈ {0, 1}, ∀n ∈ N , ∀k ∈ K (34b)

I(υ) = max
φn≤K

∑

n∈N

φn [υn − log(φn)] . (35)

According to the direct observation,H(υ) can be further simplified tomax
n

[log(Qn,PRnkWn)− υn]

which means userk chooses one BS to maximize[log(Qn,PRnkWn)− υn]. It is indeed an algorithm at

userk’s side, and the optimal user association can be written as

xnk =





1 if n = nk

0 otherwise,

(36)

wherenk = argmaxn {log(Qn,PRnkWn)− υn}.

For I(υ), the optimum loadφn can be calculated for BSn by applying KKT condition, and we have

φn = min{exp(υn − 1), K}. (37)

This is indeed an algorithm at BSn’s side.

Note that the dual functionG(υ) is not differentiable, asH(υ) is a piecewise linear function and
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not differentiable. Therefore, we cannot use the usual gradient methods; instead, we will solve the dual

problem using subgradient method.

It is easy to verify thatun(υn) = φn −
∑

k∈K xnk is a subgradient of dual functionG(υ) at pointυn.

Thus, by subgradient method, we obtain the following algorithm for Lagrange multiplierυn:

υn(t+ 1) =

[
υn(t)− ηn(t)

(
φn(t)−

∑

k∈K

xnk(t)

)]+
, (38)

whereηn(τ) is a positive scalar stepsize, and “+” denotes the projection onto the setℜ+ of non-negative

real numbers.

Similarly, the optimal user association for resource allocation in (28) can be written as:

x̃nk =





1 if n = ñk

0 otherwise,

(39)

where ñk = argmaxn {log(Zn,bh)− υn}, υn can be updated in the same way as in (38), andφn has the

same expression as in (37).

It is easy to see that the multiplierυ can be regarded as a message between users and BSs, and be

interpreted as the service cost of BSs decided by their available resources, energy and backhaul. Moreover,

it tradeoffs supply and demand,
∑

k∈K xnk(t) is deemed the serving demand of BSn andφn the service

provided by BSn. In fact, (38) meets the law of supply and demand, which meansthat the service cost will

go up if the demand
∑

k∈K xnk(t) exceeds the supplyφn and vice versa. Therefore, some overloaded BSs

will increase their service price such that fewer users are associated with them, while other under-loaded

ones will decrease the service prices to attract more users.

D. A Distributed Algorithm for Backhaul-Aware Joint User Association and Resource Allocation

As presented in the above subsections, the formulated backhaul-aware joint user association and resource

allocation problem is solved distributively through several decompositions. For clarity, the procedure of
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the problem decompositions is illustrated as in Fig. 2. Specifically, the original problemP1 is decomposed

into a lower-level resource allocation problemP2 and a higher-level user association problemP3. P2 is

further decomposed into subproblemsP4 for each BS. SolvingP4, the optimal resource partition for a

BS is obtained. Given solution toP4, which is a function of user association indicators,P3 is transformed

into P5. ThenP5 is solved through Lagrange dual decomposition, and its dualproblem isP6. By solving

P6 with given solution to the master problem (optimal Lagrangemultiplier), the optimal user association,

together with the optimal resource partition of BSs, is determined.

Primal 

Decomposition

Lagrange Dual 

Decomposition

P1

Lower-level Problem

Resource Allocation 
Problem of BSs

P2 P3

Higher-level Problem

Cell Association 
Problem of Users

Subproblem 1 Subproblem N...

P4
P5

Dual Problem Master Problem

P6

Original Problem 

User Association Problem

 Given  Resource Partition of BSs

Fig. 2. The problem decompositions

Based on the above solution, we further present the distributed algorithm for backhaul-aware joint user

association and resource allocation in energy-constrained HetNets, which can be divided into algorithms

for each user and BS as in Algorithm 1 and 2, respectively.

Algorithm 1 The Distributed Algorithm at Userk ∈ K
if t = 0 then

EstimateRnk, ∀n ∈ N , by utilizing pilot signals.
else

Receive̟n(t) andυn(t), ∀n ∈ N broadcasted by all BSs and choose BSn∗
k according to:

n∗
k =argmax

n

{[log (RnkQn,PWn)− υn(t)]̟n(t)

+ [log(Zn,bh)− υn(t)] [1−̟n(t)]} ,

If there is more than one optimal association at the same time, a user can choose any one of them.
Feedback association informationxn∗

k
k(t) = 1 to BS n∗

k.
end if
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Algorithm 2 The Distributed Algorithm at BSn ∈ N
if t = 0 then

Initialize resource partition indicator̟ n(0), stepsizeηn(0) andυn(0).
else

Receive association informationxnk(t) = 1, ∀k ∈ K, determine the resource partition and update
̟n(t+ 1) according to

̟n(t+ 1) =

{
1, if

∑
k∈K xnk(t)Rnk ≤

|Kn|Zn,bh

WnQn,P
,

0, otherwise.

Calculateφn(t) via
φn(t) = min{exp (υn(t)− 1) , K}.

Update Lagrange multiplierυn(t + 1) via

υn(t+ 1) =

[
υn(t)− ηn(t)

(
φn(t)−

∑

k∈K

xnk(t)

)]+
.

Broadcast the new̟ n(t+ 1) andυn(t + 1) to all users.
end if

According to the above Algorithm 1 and 2, in each iteration, each user reports its service request to

only one BS to which it expects to connect, and each BS adjustsits service cost only relies on local

information and then broadcasts it to all users. Therefore,the distributed method owns the amount of

exchanged information ofO(N +K) for each iteration, and the algorithms at a user’s side and a BS’s

side have computation complexity ofO(N) andO(K), respectively. Due to high convergence speed of

the distributed algorithm, the iteration number is small. Consequently, the distributed algorithm may be

more practicable for some cases, especially for large-scale problems, even if there exits more exchanged

information.

After carrying out the algorithms at each user’s side and each BS’s side, the distributed algorithm can

be guaranteed to converge, which will be proved by employingresults of the subgradient method [35] in

the following proposition.

Proposition 2: Let υ∗ denote an optimal value of the dual variable. With constant stepsize, the proposed

distributed algorithm is proved to converge statisticallyto υ
∗, i.e., for anyǫ > 0, there exists a stepsizeη,

such thatlim supt→∞G
(
υ(t)

)
−G(υ∗) ≤ ǫ, whereυ(t) = 1

t

∑t

l=1 υ(t); while for diminishing stepsize,
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the distributed algorithm is guaranteed to converge to the optimal value.

Proof: Please refer to the Appendix B for a proof.

Therefore, based on results on convergence of the subgradient method, for constant stepsize, the

proposed algorithm is guaranteed to converge to within a neighborhood of the optimal value; while for

diminishing stepsize, the algorithm is guaranteed to converge to the optimal value. Moreover, since we

focus on constant stepsize for theoretical proof, we will show the convergence with diminishing stepsize

by numerical results in Section VI.

V. IMPLEMENTATION BASED ON SDN

Although the proposed algorithm has provided a distributeduser association and resource allocation

solution, its application to the future wireless networks with an extreme BS deployment may still be

inefficient due to the required interactive adjustments between users and BSs. In this section, based on

the newly emerged SDN architecture, we design a vUARA scheme, which reduces the communication

overhead over air interface and avoids the information leaking to users.

In the design of next-generation wireless networks, the challenges faced by current network architectures

cannot be solved without a radical paradigm shift. Recently, by utilizing SDN, some architectures, such

as software-define radio access network (SoftRAN) [36] and SoftAir [37], have been proposed. Briefly,

these architectures can accelerate the innovations for both hardware forwarding infrastructure and software

networking algorithms through control and data separation, enable the efficient and adaptive sharing of

network resources through network virtualization, achieve maximum spectrum efficiency through cloud-

based collaborative baseband processing and enhance energy efficiency through the dynamic scaling of

computing capacity of the software-defined BSs [37]. Therefore, based on these architectures, we design

a vUARA scheme. Mainly, by leveraging cloud computing and network virtualization, virtual users and

vBSs can be generated in the radio access networks controller (RANC) to emulate a distributed joint user

association and resource allocation solution that requires network measurements and iterative adjustments

between users and BSs.
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The implementation of vUARA is shown in Fig. 2. Generally, itconsists of three phases. The first

phase is the initial user association and network measurements, during which the users and BSs measure

and report their downlink SINRs, available energy and backhaul capacities to the RANC. In the second

phase, the RANC firstly generates virtual users and vBSs, andthen simulates the iterative user association

and operation statuses (reflecting resource partition, load, and price of access) adjustments between users

and BSs based on the information collected in the first phase.When the iterations converge, optimal cell

association of users and resource allocation of BSs are derived. In the third phase, the RANC informs

individual users and BSs about cell association and resource partition decisions. The major optimization

of the vUARA scheme is done in the second phase. To be analytically tractable, we assume that (1) the

RANC can successfully collect network information from allBSs and users, and (2) the data rates of

users do not change within one user association process.

RANC 

vUARA

BSs

users

Available energy and 
backhaul capacity

Downlink SINRs

1st phase 2nd phase 3rd phase

vBSs
Virtual 
users

, ,xv f J

x*, y* to BSs
and users

Fig. 3. The implementation of vUARA

In summary, firstly, it is the RANC that jointly optimizes theuser association and resource allocation

based on network measurements. Secondly, instead of exchanging information over air interface that may

introduce additional communication overhead and incur extra power consumption, the virtual users and

vBSs can iteratively update their BS selections and operation statuses via a wired link, e.g., a message bus.

Lastly, with vUARA, on one hand, the communication overheadover air interface is significantly reduced;

on the other hand, the virtualization avoids leaking BSs’ information to users since all the iterations are

simulated in the RANC.
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VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposedbackhaul-aware joint user association and

resource allocation algorithm for energy-constrained HetNets. Specifically, a 3-tier HetNet composed of

one macro BS and several small cell (micro, femto) BSs is considered. The location of the macro BS is

fixed and it forms a conventional cellular structure, while other small cell BSs are randomly located in an

orthohexagonal area with side length500m. We assume that there exist two kinds of users in the scenario,

i.e., hotspot users and random users. The former are locatedin the vicinity of each BS and the number

of them is fixed, while the latter are randomly deployed in thewhole area with varying number (denoted

by Krand). The simulation topology is given in Fig. 4. Moreover, the energy and backhaul constraints of

each BS and other basic parameters are presented in Table I. It is noted that, since the proposed algorithm

deals with joint user association and resource allocation with energy constraints in an association period,

we consider the overall energy constraint of a BS without itsspecific components.

−500 0 500
−500

−400

−300

−200

−100

0

100

200

300

400

500

[m]

[m
]

 

 
Macro BS
Micro BS
Femto BS
Hotspot users
Random users

Fig. 4. Simulation topology
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TABLE I
THE BASIC PARAMETERS

Parameter macro BS micro BS femto BS

Number 1 4 10
Hotspot users 25 10 5
Pn0 (W) 130 56 4.8
δn 4.7 2.6 8.0
Output power (dBm) 46 35 20
Path loss (dB) 34 + 40 log

10
(d) 37 + 30 log

10
(d)

Wn 500 100 50
Available Energy (J/s) 300 65 5.6
Zn,bh (Mbps) 2000 200 20
σ
2 (dBm) -111.45

A. Convergence

Given one random network realization, Fig. 5 presents the Lagrange multiplierυ and network utility

versus iterations. Specifically, the dashed lines refer to BSs’ Lagrange multipliers with random initial

values and distinct convergence process, and the solid lineshows the network utility in terms of users’

long-term service rate. Since the values of Lagrange multipliers and network utility are widely divergent,

Fig. 5 adopts double ordinates, i.e., left ordinate and right ordinate, to refer to them respectively. The

convergence of the proposed algorithm is demonstrated in Fig. 5. Moreover, it is also shown that, the

proposed algorithm may have a very fast convergence rate when parameters are set properly.
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Fig. 5. Lagrange multiplierυ and network utility versus iterations (Krand = 100)
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B. Comparisons with Max-SINR and Range Expansion

To demonstrate the superiority of the proposed algorithm, we compare it with the common user

association schemes, i.e., max-SINR association, which associates users to the BS with the highest received

SINR, and range expansion association, where the idea is to add a cell selection offset to the reference

signals of the small cells in order to offload some traffic fromthe macrocells. Considering the energy and

backhaul constraints, for max-SINR association and range expansion association, we adopt equal resource

allocation among the users associated with the same BS and maximal achievable rate first (MARF)

scheduling [16] that selects users in descending order of achievable rates, given backhaul constraints. In

addition, since the best offset (or biasing) factor is very difficult to obtain, here, we use offsets of 10dB

and 12dB for micro BSs and femto BSs, respectively. All the following results are averaged over104

random network realizations.

Given varying number of random users and small cell BSs, firstly, Figs. 6 and 7 respectively present

the network utility and percentage of users associated withmacro BS with the above three association

methods. Specifically, Fig. 6 shows the significant improvement on network utility with the proposed

algorithm, while the network utility with both max-SINR association and range expansion association

is very low. Then, in Fig. 7, it is easy to see that the percentage of users with the proposed algorithm

is the lowest, while with the max-SINR association is highest. These facts confirm that (1) the max-

SINR association will lead to very unbalanced load among BSsand greatly degraded network utility; (2)

the range expansion association leads to better load balancing, but the improvement of load balancing

may not overwhelm the degradation in SINR that certain userssuffer; (3) the proposed algorithm gains

significant improvement on both network utility and load balancing, since it takes both energy and backhaul

constraints into consideration, and jointly optimizes theuser association and resource partition. Moreover,

it is obvious that, with fixed number of small cell BSs and moderate increase of the number of random

users, the network utility increases given the above three association schemes, while the percentage of

users associated with macro BS decreases. On the other hand,with more small cells deployed, all the
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association schemes achieve much better performance in terms of both network utility and load balancing.
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Then, to measure the status of users’ long-term service rates, we introduce the Jain’s fairness index,

that is,ρ = (
∑

k∈KRk)
2/(K

∑
k∈K R2

k). The largerρ that belongs to the interval[1/K, 1] means more

balanced long-term service rates among the users. Given theabove three association schemes, Fig. 8

presents fairness index among long-term service rates of users. It is observed that, (1) the fairness index

of the proposed algorithm is much greater than that of eithermax-SINR association or range expansion

association; and (2) compared with max-SINR, the fairness index of range expansion association is only
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a little higher. These are due to the facts that, on one hand, the proposed algorithm jointly optimizes

the user association and resource allocation under constraints of resources, energy and backhaul; on the

other hand, the offset factor set here may be far from the “best”, which degrades the performance of

the range expansion association. Moreover, it is worth mentioning that, for max-SINR association and

range expansion association with equal resource allocation and MARF scheduling, some users may be

dropped since their BSs are running out of backhaul; while with the proposed algorithm, all the users are

accommodated. In addition, both the number of users and thatof small cell BSs have impacts on user

fairness, that is, for the proposed algorithm, both the increased deployment of small cells and decreased

access of users improve the user fairness. While for max-SINR association and range expansion association,

the increase of the number of small cells will not improve theuser fairness index, which further proves

that these two association schemes have little help in providing user fairness.
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C. Effects of Energy and Backhaul Constraints

Since constraints of both energy and backhaul are taken intoconsideration, we illustrate their effects

on algorithm performance. All the results are averaged over104 random network realizations. Firstly, Fig.

9 shows the network utility and percentage of users with macro BS versus ratio between the available

energy and that in Table I. We can see that, with the increase of available energy at each BS, the network
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utility firstly increases then stays almost unchanged due tobackhaul constraints. While the percentage of

users associated with macro BS firstly decreases since more users will associate with the small cell BSs

once they have more or enough energy. However, because of thebackhaul constraints, the percentage may

not keep on decreasing. Then, the network utility and percentage of users with macro BS versus ratio

between the backhaul capacities and those in Table I are given in Fig. 10. It is observed that, with the

increase of backhaul capacity at each BS, firstly, the network utility increases rapidly, while the percentage

of users with macro BS remains almost unchanged; then the network utility has slower increase, while the

percentage decreases. This is due to the fact that, at the beginning, all the BSs may be greatly constrained

by their backhaul, thus, with the increase of backhaul capacities, the network utility increases fast, while

the percentage of users with macro BS may not decrease; then,when backhaul capacities are large enough,

available energy becomes the constraints for all the BSs, especially for macro BS, as a result, the network

utility may not keep on increasing, while the percentage of users with macro BS decreases. However, Figs.

9 and 10 only show the rough tendency with the increase of available energy and backhaul capacities,

respectively, and the results greatly depend on the parameter settings given in Table I.
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Fig. 9. Effects of energy constraints (Krand = 100)

Moreover, in Figs. 11 and 12, the network utility and percentage of users with macro BS are respectively

presented with varying constraints of energy and backhaul.Particularly, the change of energy and backhaul

constraints is the same as that in Figs. 9 and 10, respectively. It is observed that, with fixed backhaul
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Fig. 10. Effects of backhaul constraints (Krand = 100)

(energy), the network utility and percentage of users with macro BS have the same tendency as those in

Fig. 9 (Fig. 10). Besides, Figs. 11 and 12 also show that, compared to the network utility improvement

with increasing backhaul capacities of all the BSs, the network utility increases rapidly with the increase

of available energy; and the percentage of users with macro BS reduces much faster with increasing

available energy of all the BSs, compared to its change with the increase of backhaul capacities. These

may due to the fact that, the available energy of BSs affects the algorithm performance together with

the available resources of BSs. Thus, much greater impacts are observed. Nevertheless, the constraints

of both backhaul and energy affect the algorithm performance, and the impacts relate to the parameter

settings given in Table I. In a word, the specific effects of energy and backhaul constraints are coupled

and complicated; the network design should take both of theminto account.

VII. CONCLUSIONS

In this paper, given a HetNet powered by hybrid energy, we focus on the backhaul-aware joint user

association and resource allocation problem. To balance network-wide performance and user fairness,

we formulate an online network utility maximization problem reflecting PF, which has tightly coupled

variables (both binary and continuous) in the constraints of resources, energy and backhaul. Then, by

adopting some decomposition methods, the condition for twokinds of resource partition of a BS is
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Fig. 12. Effects of energy and backhaul constraints on percentage of users with macro BS (Krand = 100)

efficiently obtained, and a completely distributed algorithm is developed. Finally, the convergence of the

distributed algorithm is proved by employing results of thesubgradient method. Moreover, based on

SDN architecture, we develop a vUARA scheme for future wireless networks with an extremely dense

BS deployment. Lastly, numerical results indicate that, compared with max-SINR and range expansion,

the proposed algorithm provides a significant improvement on network utility, load balancing and user

fairness.
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APPENDIX A

PROOF OFPROPOSITION1

If BS n is energy-constrained, according to (27) and the second inequality of (25), we have

∑

k∈Kn

Qn,P

|Kn|
RnkWn ≤ Zn,bh, (40)

i.e.,
∑

k∈Kn

Rnk ≤
|Kn|Zn,bh

WnQn,P
, (41)

which means that, to maximize the network utility, if
∑

k∈Kn
Rnk ≤

|Kn|Zn,bh

WnQn,P
, BSn will divide its available

resources equally among the associated users; otherwise, BS n is backhaul-constrained, and according

to (28), it will average the backhaul capacity and provide all the associated users with equal long-term

service rate.

APPENDIX B

PROOF OFPROPOSITION2

Given constant stepsizeηn(t) = η, according to the updating ofυ, we have

‖υ(t+ 1)− υ
∗‖22

=
∥∥[υ(t)− ηu(t)]+ − υ

∗
∥∥2
2

≤ ‖υ(t)− ηu(t)− υ
∗‖22

= ‖υ(t)− υ
∗‖22 − 2ηu(t)T (υ(t)− υ

∗)+η2 ‖u(t)‖22

≤‖υ(t)−υ
∗‖22−2η (G(υ(t))−G(υ∗)) + η2 ‖u(t)‖22 ,

(42)
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where the last inequality follows from the definition of subgradient. Applying the inequalities recursively,

we obtain

2

t∑

l=1

η (G(υ(l))−G(υ∗))

≤−‖υ(t+ 1)−υ
∗‖22+‖υ(1)−υ

∗‖22+
t∑

l=1

η2 ‖u(l)‖22

≤‖υ(1)−υ
∗‖22+

t∑

l=1

η2 ‖u(l)‖22 .

(43)

From this inequality, we have

1

t

t∑

l=1

(G(υ(l))−G(υ∗)) ≤
‖υ(1)− υ

∗‖22
2tη

+

∑t

l=1η ‖u(l)‖
2
2

2t
. (44)

SinceG(υ) is a convex function, by Jensen’s inequality, there is

G
(
υ(t)

)
−G(υ∗) ≤

‖υ(1)− υ
∗‖22

2tη
+

∑t

l=1 η ‖u(l)‖
2
2

2t
. (45)

When bothφn(l) and
∑K

k=1 xnk(l) are bounded,‖u(l)‖22 is bounded too, i.e.,sup
l

‖u(l)‖22 ≤ c , where

c is a scalar. Then,

G
(
υ(t)

)
−G(υ∗) ≤

‖υ(1)− υ
∗‖22

2tη
+

ηc

2
. (46)

Therefore,lim supt→∞G
(
υ(t)

)
−G(υ∗) ≤ ǫ, whereǫ = ηc/2. That is to say, given constant stepsize,

the algorithm converges statistically to withinηc/2 of the optimal value. Besides, if stepsizeη is small

enough, the algorithm converges to the optimal value.
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