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Abstract

Growing attentions have been paid to renewable energy orichgmergy powered heterogeneous networks
(HetNets). In this paper, focusing on backhaul-aware joggr association and resource allocation for this type
of HetNets, we formulate an online optimization problem taximize the network utility reflecting proportional
fairness. Since user association and resource allocatetightly coupled not only on resource consumption of
the base stations (BSs), but also in the constraints of #waiitable energy and backhaul, the closed-form solution
is quite difficult to obtain. Thus, we solve the problem disitively via employing some decomposition methods.
Specifically, at first, by adopting primal decomposition huet, we decompose the original problem into a lower-
level resource allocation problem for each BS, and a hi¢ghest user association problem. For the optimal resource
allocation, we prove that a BS either assigns equal norewlizsources or provides equal long-term service
rate to its served users. Then, the user association proislesolved by Lagrange dual decomposition method,
and a completely distributed algorithm is developed. Mwoegpapplying results of the subgradient method, we
demonstrate the convergence of the proposed distribugeditdm. Furthermore, in order to efficiently and reliably
apply the proposed algorithm to the future wireless netwavith an extremely dense BS deployment, we design
a virtual user association and resource allocation scheasedbon the software-defined networking architecture.
Lastly, numerical results validate the convergence of ttep@sed algorithm and the significant improvement on

network utility, load balancing and user fairness.
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I. INTRODUCTION
A. Motivation

Nowadays, with the proliferation of smartphones, tableideo streaming, and emerging new appli-
cations and services, the data traffic demand in cellulavorés grows tremendously [[1],[2]. To meet
this demand, cellular networks are trending strongly towancreasing heterogeneity, especially through
overlapping deployment of small cell base stations (BSg), enicrocells, picocells and femtocells, which
differ primarily in terms of maximum transmit power, phyaisize, ease-of-deployment and caost [3]—[7].
In fact, it has been widely accepted that heterogeneousonietiiHetNet) is a promising approach to
achieve high spectral and energy efficiency. On the othed,htne unprecedented data traffic growth
and rapidly increasing deployment of small cells have pdstie limits of energy consumption in
wireless networks, which causes both serious environmesttlgm and sharp rising energy cost for
network operators [1]/[8]-[11]. Then, the economic andl@gical concerns, together with the advance
of energy harvesting technologies, have advocated theefigcemmunications” solutions, where cellular
BSs, especially small cell BSs, are powered by renewableggnsources (RES) such as sustainable
biofuels, solar and wind energy [11]-[14]. Moreover, dueddng-term cost savings, easier deployment
and reduced carbon emissions, HetNets with renewable ymengered BSs can be a sustainable and
economically convenient solution for next-generatiodutat networks.

As cellular networks evolve into dense, organic and irragtletNets, load awareness has been elevated
to a central problem[[15]. Primarily, in HetNets, due to thispdrities of transmit powers and BS
capabilities, even if users are uniformly distributed imgephy, the well-known user association schemes
based on “natural” metrics like signal-to-interferendaespnoise ratio (SINR) or received signal strength
indicator (RSSI) can lead to an extreme load imbalance amuangyo BSs and small cell BSs [16], [17].
Furthermore, the key performance metric for a user shoulthbeaate, not SINR. The rate is of course
directly related to SINR (e.glpg,(1 + SINR)), but it is also proportional to the fraction of resources

that the user gets. Thus, heavily-loaded cells may prowdet rate over time, even though they offer a



higher SINR [[15]. As a consequence, a joint user associatimhresource allocation strategy that is able
to both introduce load balancing and improve network-wigefgomance is needed. While for HetNets
with emerging RES, owning to the dynamics of renewable gngeneration and limited capacity of
energy storage, sole RES may not guarantee enough powdresufgp all kinds of BSs. Hence, future
HetNets are more likely to adopt hybrid energy supplies Wwibth traditional electric grid and RES [18].
In this case, since the available energy of RES varies witle tand space and the average electric power
consumed by BSs should be limited to save the cost, HetNétfocdoad balancing strategy that takes
into account the constrained energy supplies. Moreovetgttye number of small cell BSs to be deployed
in HetNets may incur overwhelming traffic over backhaul §inklowever, the current small cell backhaul
solutions, such as xDSL, non-line-of-sight microwave, farefrom the ideal ones providing sufficiently
large data rate [19]/ [20]. As such, the backhaul (data red@straint has become increasingly stringent

in HetNets.

B. Related Works

So far, a lot of works on load balancing for HetNets have beesgnted. Andrewst al. in [8] survey
the technical issues and primary approaches on load batamntiHetNets. The works in [21]-[25] deal
with joint user association and resource allocation forNég¢$ powered by grid energy. When it comes
to HetNets with RES, some studies on user association anegource allocation have been presented
[26]-[31]. Specifically, for HetNets solely powered by REZ6] proposes load balancing scheme among
different BSs in order to obtain higher downlink networklityj and [27] designs offline and online
load balancing schemes, which are both energy-aware anea@af®. Then, for hybrid energy powered
HetNets, to reduce on-grid energy consumption by maxirgite utilization of green energy, [28] presents
a distributed scheme to enable green-energy aware anayadeare (GALA) user-BS associations, and
[29] formulates and solves a joint multi-stage energy atmn and multi-BS energy balancing problem.
On the other hand, to strive for a balance between the averaffie delivery latency and green energy

utilization, [30] proposes a virtually distributed algibwin, and [[31] develops a network utility aware



(NUA) traffic load balancing scheme.

Different from the studies only on user associationlin [#81} and the references therein [15], this
paper focuses on joint user association and resource &tilndar HetNets. For easy implementation and
catering to the existing standard model for LTE, unique @ission of users, which means each user can
be associated to at most one BS at a time, is considered.sTtiBarent from the works in [24] and [25],
where users can be served by multiple BSs simultaneouslyedfer, we take both backhaul and energy
constraints into account, which is distinguished from therks in [21]-[23], [26], [28]-[30]. Then, the
formulated problem has not only mixed integer variables ddab coupled variables in the constraints
of resources, energy and backhaul. Employing some decangmomethods, we efficiently obtain the
condition for two kinds of resource partition of each BS amdelop a completely distributed algorithm

for user association, which are the novelty and main camiobs of this paper.

C. Contributions

We deal with the backhaul-aware joint user association &sdurce allocation problem for hybrid
energy powered HetNets, which have both backhaul and ermrgsgtraints. The contributions of this
paper are summarized below.

« We consider a hybrid energy powered HetNet with limited back and take into account the unique
association of users, which can be easily extended to desreesgy-constrained LTE HetNets with
wired or wireless backhaul connections. With the objectiffenaximizing network utility reflecting
proportional fairness (PF), we formulate an online optatian problem. However, its closed-form
solution is quite difficult to obtain in threefold: both biiyaand continuous variables; tightly coupled
variables in multiple constraints; and desired distridugelutions for each user and BS.

« Due to the coupling and non-convexity, we employ severalbdgmsition methods to solve the
formulated problem. Firstly, by applying primal decompimsi method, we decompose the original
problem into a lower-level resource allocation problem angigher-level user association problem.

Secondly, we further decompose the resource allocatidsigmointo subproblems for each BS. Then,



based on complementary slackness property, we efficiebtigima BS’s optimal resource partition,
which either assigns equal normalized resources or prevedaal long-term service rate to its served
users. Thirdly, given optimal resource partition of BSs, sodve the user association problem with
Lagrange dual decomposition method, and develop a conhpldigributed algorithm for joint user
association and resource allocation.

« For the efficient and reliable application of the proposegbathm to the future wireless networks
with an extremely dense BS deployment, we design a virtual association and resource allocation
(VUARA) scheme based on software-defined networking (SDishitecture. Since virtual users and
virtual BSs (vBSs) can be generated in the radio access riedwamntroller (RANC) to emulate
a distributed user association and resource allocatiomisnl that requires interactive adjustments
between users and BSs, the proposed scheme significantiyagethe communication overhead over
air interface and avoids the information leaking to users.

« We demonstrate the convergence of the proposed distrilalgedthm both by applying results of the
subgradient method in theory and by numerical results vétidom network realizations. Moreover,
compared with max-SINR association and range expansiarciasi®n, numerical results indicate
that, the proposed algorithm provides a significant impnoet on network utility, load balancing
and user fairness. Furthermore, we present and analyzdf¢gioeseof energy and backhaul constraints
on algorithm performance.

The rest of the paper is organized as follows. We describeetiergy-constrained HetNet under

consideration in Sectionlll, and formulate the optimizatimroblem in Sectiom_Ill. The solution to the
formulated problem is presented in Section IV. Seclion \egiimplementation of the VUARA scheme.

Simulation studies are provided in Section VI, and Sedtidhcéncludes the paper.



[I. SYSTEM MODEL
A. An Energy-Constrained HetNet

We consider a HetNet composed éftiers of BSs, where each tier models a particular type of.BSs
For example, letA = 3, then tier 1 consists of traditional macro BSs, tier 2 and 3ienay be comprised
of pico BSs and femto BSs, respectively. Generally, macre, B0 BSs and femto BSs have different
transmission power and coverage. Moreover, for BSs of mdiffetiers, their energy consumption and
backhaul capacities vary widely, and the coefficients ohpass between them and the users are also
different. All the BSs are assumed to be connected by a highdspackhaul through which information
exchange with negligible delay is possible. Furthermoregrgsuch a HetNet, we adopt a hybrid energy
supply, i.e., the BSs are powered by traditional electrid,gRES, or both. For BSs with RES, the RES
collects energy from the environment by solar panels andladmills and charges the corresponding
battery (each BS has its own RES and battery, which vary vhi¢ghsize of the BS). This is especially
important in rural areas, where the access to electric gay be impossible or too expensive. A network
model for such HetNet with backhaul layout is given in Higwhere pico BSs and femto BSs are all

treated as small cell BSs.
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Fig. 1. Network model

We denote byV = {1,2,--- N} andK = {1,2,--- , K} the sets of all BSs and all single antenna



users, respectively. Each BS in skf schedules transmissions over contiguous time-frequetutg, s
referred to as RBs, each comprising a block of OFDM subaardad symbols. Moreover, the transmitting

power of BSn € N on each RB is assumed to be always constant.

B. Transmission Model

According to [29], the duration of one association periodhjcl refers to a time duration in which
the BSs and the users involved have stable associationsndemn the dynamics of renewable energy
generation and mobile traffic intensity. Here, we omit thecsfic definition of these periods, and simply
denote the association period by index £ = {1,---,L}, and its time duration as®”. In following
subsections, we focus on tligh association period.

At time instantt of the (th association period, we denote the channel power gaindegtwiser: € K

and BSn € N by H!)(t) as
HY (1) = GO (1), ¥(n, k) € N x K, (1)

WhereGif,i(t) is the large-scale slow fading component capturing effet{gath-loss and shadowing, and
F,EQ (t) represents the small-scale fast fading componenk * denotes the Cartesian product of two
sets. Moreover, it is assumed tkﬁff,l(t) remains constant during one association period. Thus,nit ca
be simplified ai}ﬁf,l. To model the small-scale Rayleigh fading, it is assumetl Eti%(t) fluctuates fast
during an association period following an exponential atmlity distribution function with variance 1
[22].

The instantaneous SINR from B%to userk on a RB is

PP HY 1)

n

SINRY (1) = :
Yy PUHQ () + 07

(2)

where P ande(l) are transmission power of BSand; on a RB in the association periédrespectively,

ando? denotes the thermal noise spectral power.



Accordingly, the instantaneous achievable rate at ksérit is served by BSn, can be written as
RU(t) = Bology(1 + SINRG (1)), (3)

where B, denotes the bandwidth over which a RB is realized.

In general, since the mobility of users between BSs takesepdd larger time scales and channel may
vary during the whole association period, the associaterisibn should be taken considering the long-
term rate that a given user will obtain if it is associatedwatcertain BS. Referring to [22], the long-term

SINR from BSn to userk on a RB can be written as

(D) O
) PG,
SINR,;, = OO (4)
2 by Gy + 0

and the Corresponding |0ng-terlll rate is
RY — B,1 1+ SIN © 5
nk 01089 + Rnk . ( )

On the other hand, the number of users associated with a BSualy more than one, and the users
of the same BS need to share the resources. Thus, the longé&vice rate achieved by a user depends
on the load of the BS and will only be a fraction of the rd?%,i (unless BSn exclusively serves user
k in association period). That is to say, a user’s long-term service rate for its eission with a BS
depends on both the load and the resource partition methtitedBS. In this paper, we assume unique
association of users and define the user association indi:c%\,lt as

1, if userk is associated with B%,
Ty = (6)

0, otherwise.

In addition, denoting the fraction of RBs over which useis served by BS: aSyff,Z, the overall rate



of userk and the required backhaul of B&can be respectively given as

Rg) = Z nkynkngWm (7)
neN

Z0 = R W, (8)
kek

where W, is the total number of RBs of B&, and may vary for different BSs.

Since the backhaul of BSs is considered to be constraine®83a: € N, there is
ZW < Z, oh, 9
where Z, y, is BS n's maximum backhaul capacity that differs considerably aghthe A-tiers of BSs.

C. BSs’ Energy Consumption and Constraints

Firstly, adopting the model in EARTH project [32], the enemrpnsumption of BS» in association

period/ can be expressed as

C = sV P+ 8, (32, allyiiwn) PO, (10)

where P, is the fixed part of BS's power consumptiong,, is the variable power consumption slope,
and 6, <Zk6,c xnkynkW ) P is the variable part related to the transmission power aedctinsumed
resources. It should be noted that, for BSs belonging teewdifft tiers, their fixed power consumption,
power consumption slopes and transmission power vary widé¢l [32].

Then, due to RES and batteries adopted by some BSs, we arthbizdattery dynamics.

In order to provide a general model for energy harvesting, B®sdo not assume a particular type of
energy harvester. Specifically, we assume thatrBS powered by both RES and electric grid. Ly’
and £ respectively be the battery level and the renewable energyra at the beginning of association

period]. Here,E" can also be viewed as the energy arriving in the associagaog — 1, but is not used
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until period!/. This assumption is reasonable since, in practice, usecias®n and resource allocation
decisions can only be made based on the battery state informavailable at the beginning of the
association period. Besides, it is assumed that, for an@§ethat is powered by RES, the corresponding
RES power and battery capacity are also larger.

At the beginning of association peridd- 1, the battery level of BS: is updated as
B = f (B, Cle EL). (12)

. . — l
where f(-) depends upon the battery dynamics, such as storage efficiencmemory effects [31171(@,)5

is BS n’s energy consumption from RES in association pefiod common practice is to consider the
battery update as

n n

B = max {0, min { BY) — g + B, Buma} | ¢

where B,max denotes BSh’'s maximum battery capacity, the inner minimization acdsufor possible
battery overflows, and the outer maximization assures tinenegativity of the battery levels. In general,

C(Z)E will be limited by a function of the current battery levele.i.

OV < g"(BY), (13)

Whereg,(f)(-) limits the renewable energy that can be used in associagoindg! in order to spend the
energy in a more conservative way. Simply, we can considardhly a given fraction of the battery is
allowed to be used.

At the same time, in order to save the cost on electric powergiwe BSn’s limited average electric
power, i.e., the electric grid energy can be used freely enctimdition that the average power over all
association periods is no greater than the thresbld. [33],

% > Che= % Sl -l < Grae (14)

lel lel
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WhereCff,)E =0, if BS n is solely powered by the electric grid.

Transforming the average electric power into each assonigieriod and combinindg (13), we have

O = %+ 0" < g (BY) + G e (15)

n,

which can be regard as the energy constraint forrBif association period.
Remark 1:In the above description, we didn’'t give any notation intiimgthe specific energy supplies
of BSs. This is due to the fact that, for BSs without RES, Wesxa]y,(f)(Bff)) = 0; while for BSs without

energy supplies from electric grid, we hag& ave = 0.

I1l. PROBLEM FORMULATION

In practice, only causal information, i.e., informationtbé past and current channel states and energy
harvesting, is available. Thus, an online approach is qigtgirable. In addition, based on the analysis
of BSs’ energy consumption and constraints, we can addnessger association and resource allocation
problem on each association period. In the following sestjdhe superscript) is omitted.

Firstly, taking a utility function perspective, we assunmattuserk obtains utility Uy (Ry). In order
to achieve a desired balance between network-wide perfozenand user fairness, we shall choose a
continuously differentiable, monotonically increasirand strictly concave utility function. Such that,
larger rate yields greater utility, and the shape of the asadunction also imposes some desired notion

of fairness. Here, we consider the well-known PF, which ipased by choosing the utility function

Uk (Ry) = log (Ry) - (16)
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Then, the network utility maximization problem is given as:

P1: 1 nkUnk Bk Wi 17
rgzxZog(Zxkyk k ) ( )

kel nenN

st Y am=1Vkek (17a)
neN
Z TopYnk < 1,Vn € N (17b)
kek
Z xnkynkRnkWn S Zn,bha Vn € N (17C)
kek
Cn < gn(By) + Grave Vn € N (17d)
T, € {0,1},Vn € N, Vk € K (17e)
Yk € [0,1],YVn € N,Vk € K (17f)

where (17a) denotes that each user can only be associate@natBS at a given time; (17b), (17¢) and
(17d) respectively specify the constraints of resourcaskbaul and energy for all the BSs; (17e) and
(17f) keep the association indicators binary and the resoaliocation variables being between 0 and 1,
respectively.

Sincez,,;s take binary values angl ., ., = 1, we have

keN neN

— Z Z Tk 108 (Ynk Rk W) -

kEK neN

(18)

Unfortunately, due to binary variables,,s and continuous variableg,.s, P1 is a mixed integer
nonlinear programming (MINLP) problem, which is generalli?>-hard. Moreover, the variableg,s and
yniS are coupled in the constraints of resources, backhaulrardye which brings much more complexity.
Furthermore, the optimal solution should be distributeddach user and BS. In the following section,
we focus on solving?l distributively by employing some decomposition methods.

Remark 2: The above joint user association and resource allocatioblgmm is a MINLP problem.
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MINLP problems have the difficulties of both of their subsdas, i.e., the combinatorial nature of mixed
integer programming (MIP) and the difficulty in solving nordar programming (NLP). Since both MIP

and NLP are NP-complete, the joint user association andires@llocation probler?l is NP-hard [[34].

IV. SOLUTION

In this section, the solution to the formulated problem ided, and a completely distributed algorithm
is developed for the backhaul-aware joint user associaihresource allocation in energy-constrained

HetNets.

A. Primal Decomposition

Obviously, the choices af,,;s rely on the values of,,;.s. Given these coupled variables, we can apply
the primal decomposition method to decomp®&deinto the following problems in two levels. Firstly, by

fixing variablesz,;s, we have the lower-level problem:

P2:max Y > log (yur Rk W) (19)
Y neN kek,
st. Y yu <LVneN (19a)
kekn
Z ynkRnkWn < Zn,bha VneN (19b)
keKn
[gn(Bn> + Gn ave] /S - PnO
< b
Z Ynk < T ,YneN (19¢)
ken
0< yor < L,VEk €K, VneN (19d)

whereC,, denotes the set of users that associated witmB8nd |IC,,| = >, .« Tnk-
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Then, wheny,,,.s are fixed, the higher-level problem (or the master problengjven by

P3 : max Z Z Tk log (ynkRnkWn) (20)
m ke neN
st. Y wu=1Vkek (20a)
neN
Tor €{0,1},Vn e N,Vk € K (20b)

Since there are no couplings among the subprobl@2san be further decomposed imbsubproblems

for all the BSs:

P4 : max Z log (Ynk Rk W) (21)

Y ke,
S.t. Z Ynk S Qn,P (21a)

ke,

k;elc’!L
0<yu <1LVkeEK, (21c)

where
. . [gn(Bn) + Gn,ave] /5 - PnO

Qup = min {1, e (22)

is obtained based on (19a) and (19c), and can be regardec astmalized resources that BScan

afford with constraints from both overall RBs and availableergy.

B. Resource Allocation with Fixed User Association

Defining Lagrange multipliers,, and v, the Lagrangian function dP4 is given as

kekn kekn

—Un (Z ynkRnkWn - Zn,bh) .

kekn

(23)
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Applying Karush-Kuhn-Tucker (KKT) conditions, we obtain

1
e = Vk € Ky, 24
P A R &Y

It is easily observed tha,,, is completely dependent on dual variablesandv,,. Intuitively, u,, and
v, can be interpreted as the prices of BSletermined by load situation and backhaul state, respbgtiv
When BSn is overloaded (i.e . ynk > Qnp) OF its backhaul is overflowed (i.€},, ., Ynk kWi >
Znph), the corresponding price,, or v, goes up, then a useérs resource fractiory,; from associating
with it decreases. Otherwise, the prices go down,increases, and B8 becomes more attractive.

Generally, this KKT system can be solved by finding the appatg dual variable$,,, v,). To achieve
this, a two-dimensional search or classic constrainedropition techniques such as subgradient method
or augmented Lagrangian can be applied. However, both af tre computationally intensive and might
not be practical for large-scale problem. Therefore, inftlewing, we focus on solving this KKT system
efficiently based on its specific construction.

On one hand, we note that both the constraints (21a) and (1%} are monotonic functions af,.;,
and y,,; is also a monotonic function of, when v, is fixed and vice versa. On the other hand, the
complementary slackness in constrained optimizatiorestdtat, for inequality constraingg(x) < 0 that
are tight with equality, the associated dual variables ame-zero. Using this result, at a local optimum,
each BS can be either energy-constrained or backhaulreoret. Thus, we can perform our search on
two single dual variables instead of a two-dimensional dear

Specifically, if BSn is energy-constrained, i.e.,

Zkelcn Yni = Qn,ps
(25)

> ek, Yme kWi < Z ph,
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then, there is

ty, >0,
(26)
vi=0
Substituting [[24) and(26) into the first equation [of](25), el&ain
1 Qn P
o IR
which means that B& assigns equal normalized resources to its associated users
Else if BSn is backhaul-constrained, similarly, there is
1 Zn
Y = 2V € Ko, (28)

which means that B& averages its backhaul capacity among the associated asdrall of them achieve
equal long-term service rate.

Moreover, in the extreme case that BSis both energy-constrained and backhaul-constrainede the
areu’ >0, v >0, and both[(2l7) and (28) are satisfied. Thus, we have

_ Zy.bh
Qn,PWn

Ry VE € Ky, (29)

which implies that all the associated users of/BBave the same data rate. In this case yB£$signs equal
normalized resources to the associated users, and theissdousers achieve equal long-term service
rate.

In summary, by applying the complementary slackness ptgpee can efficiently obtain the optimal
resource partition of BSs. Moreover, sineéd is a convex problem, the local optimum is also the unique

global optimum. Furthermore, we have the following profiosi
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Proposition 1: Based on the rates of associated userspB&n optimally decide its resource partition:

= Kn|Zn
) et ik € K, S e, Fos < Kolo
e (30)
Wﬁ Vk € K,, otherwise
Proof: Please refer to the AppendiX A for a proof. =

That is to say, to maximize the network utility, Eke,cn R < "VCV” Q” bh 'BS n divides its normalized
resources constrained by both overall RBs and availableggnequally among the associated users;
otherwise, BSn will average its backhaul capacity, and all the associatstuachieve equal long-term

service rate.

For clarity, we define BSs’ resource partition indicatoras:

1 “Cn‘Zn bh
17 If Zkejcn Rnk S WnQnp

W, = (31)
0, otherwise

which will be used in the subsection TV-D.

C. User Association Given Resource Partition of BSs

By substituting [(2l7) and’(28) intB3 respectively, we can obtain the corresponding solutionsiéer
association. Here, taking the resource allocation[id (&r)example, we show the solution in detail.

Specifically, the corresponding user association probkem i

P5: max Z Z Tk lOg (Qn Pl Ve ) (32)

kel neN ZkGIC Lk

st ) au=1Vkek (32a)
neN
Tor €{0,1},Vn e N,Vk € K (32b)

P5 is still combinatorial due to binary variables,,s. Towards its solution, firstly, a set of auxiliary

variables{¢, = >, =} are introduced; then, to develop a distributed algorithra,adopt Lagrange
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dual decomposition method whereby a Lagrange multiplies introduced to relax the coupled constraints
(bn = ZICEIC xnk,vn - N-

The dual problem can be expressed as:

P6: G : min G(v) = H(v) + I(v), (33)
where
H(v) =max » > 2 [0g(QnpRuW,) — vi] (34)
¥ neN kekk

st. Y zu=1YkeK (34a)

neN
T, € {0,1},Vn € N,Vk € K (34b)
= max ;‘b" n — log(6n)]. (35)

According to the direct observatio{ (v) can be further simplified tanax [log(Q, pRnxWn) — Uy
which means usek chooses one BS to maximizbg(Q, pR,..W,) — v,]. It is indeed an algorithm at
userk’s side, and the optimal user association can be written as

1 if n=ny

0 otherwise,
wheren;, = arg max,, {log(Q, pRuW,) — vn}.
For I(v), the optimum loady,, can be calculated for B8 by applying KKT condition, and we have

¢n, = min{exp(v, — 1), K}. (37)

This is indeed an algorithm at B&s side.

Note that the dual functiordz(v) is not differentiable, ad{(v) is a piecewise linear function and
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not differentiable. Therefore, we cannot use the usualigmidnethods; instead, we will solve the dual
problem using subgradient method.

It is easy to verify thatu,(v,) = ¢, — > .o Tni IS @ subgradient of dual functiofi(v) at pointv,,.
Thus, by subgradient method, we obtain the following alfponi for Lagrange multipliew,,:

un(t +1) = [vn(t) — 7 (t) <¢n(t) - ank(t)>] : (38)

ke

wheren,, (1) is a positive scalar stepsize, ang™denotes the projection onto the set of non-negative
real numbers.
Similarly, the optimal user association for resource atam in (28) can be written as:

1 ifn=ng

ok = (39)
0 otherwise,
wheren;, = arg max,, {log(Z,pn) — vn}, v, Can be updated in the same way as[in (38), andas the
same expression as in_(37).
It is easy to see that the multiplier can be regarded as a message between users and BSs, and be
interpreted as the service cost of BSs decided by theirablairesources, energy and backhaul. Moreover,
it tradeoffs supply and demandl;, .. z..(t) is deemed the serving demand of B&and ¢,, the service
provided by BSu. In fact, [38) meets the law of supply and demand, which m#zatshe service cost will
go up if the demang _, _,- =,.+(t) exceeds the supply, and vice versa. Therefore, some overloaded BSs
will increase their service price such that fewer users ase@ated with them, while other under-loaded

ones will decrease the service prices to attract more users.

D. A Distributed Algorithm for Backhaul-Aware Joint Usersasiation and Resource Allocation

As presented in the above subsections, the formulated batklware joint user association and resource

allocation problem is solved distributively through salelecompositions. For clarity, the procedure of
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the problem decompositions is illustrated as in Elg. 2. Sigatly, the original problenPl is decomposed
into a lower-level resource allocation probld?P? and a higher-level user association problEe P2 is
further decomposed into subproblefd4 for each BS. SolvingP4, the optimal resource partition for a
BS is obtained. Given solution 4, which is a function of user association indicatd?8,is transformed
into P5. ThenP5 is solved through Lagrange dual decomposition, and its pradlem isP6. By solving
P6 with given solution to the master problem (optimal Lagrangdtiplier), the optimal user association,

together with the optimal resource partition of BSs, is dateed.

P1

Original Problem

P2 ? ? P3 I Primal

Lower-level Problem Higher-level Problem Decomposition

Resource Allocation Cell Association I

Problem of BSs Problem of Users \

P4 ES
— | User Association Problem

| Subprobler T | | Subproblem Nl Given Resource Partition of BSs ?
/ \ | Lagrange Dual
P6 Decomposition

| Dual Problernl | Master Probleml #

Fig. 2. The problem decompositions

Based on the above solution, we further present the disédbalgorithm for backhaul-aware joint user
association and resource allocation in energy-constlaietNets, which can be divided into algorithms

for each user and BS as in AlgoritHth 1 ddd 2, respectively.

Algorithm 1 The Distributed Algorithm at Usek €
if ¢t =0 then
EstimateR,,;., Vn € N, by utilizing pilot signals.
else
Receivew,(t) andv,(t), Yn € N broadcasted by all BSs and choose BSaccording to:

ny, = arg max {[log (R.xQnpW,) — vn(t)] wn(t)

+[log(Znpn) — vn(t)] [1 = wn ()]},

If there is more than one optimal association at the same, timuser can choose any one of them.
Feedback association informatiof:;(t) = 1 to BS nj.
end if
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Algorithm 2 The Distributed Algorithm at BS, € NV
if £t =0 then
Initialize resource partition indicatav,,(0), stepsize,,(0) andv,(0).
else
Receive association information,.(t) = 1, Vk € K, determine the resource partition and update
w,(t + 1) according to

1 ICn Z7L
17 If ZkEIC xnk‘(t)Rnk S ‘Wn‘Qn’l;h7
0, otherwise

wp(t+1) = {

Calculateg, (t) via
On(t) = min{exp (v,(t) — 1), K}.

Update Lagrange multiplies, (¢t + 1) via
vp(t+1) = lvn(t) — () <¢n(t) - ank(t)>] :
kek

Broadcast the newv, (¢ + 1) andv,(t + 1) to all users.
end if

According to the above Algorithin] 1 and 2, in each iteratiomche user reports its service request to
only one BS to which it expects to connect, and each BS adjtsstservice cost only relies on local
information and then broadcasts it to all users. Thereftire,distributed method owns the amount of
exchanged information a®(N + K) for each iteration, and the algorithms at a user’s side and'a B
side have computation complexity ¢1(N) and O(K), respectively. Due to high convergence speed of
the distributed algorithm, the iteration number is smalbn€equently, the distributed algorithm may be
more practicable for some cases, especially for largeeqmaiblems, even if there exits more exchanged
information.

After carrying out the algorithms at each user’s side andh &®’'s side, the distributed algorithm can
be guaranteed to converge, which will be proved by employasglts of the subgradient methad [35] in
the following proposition.

Proposition 2: Let v* denote an optimal value of the dual variable. With consteygsze, the proposed
distributed algorithm is proved to converge statisticatly*, i.e., for anye > 0, there exists a stepsizg

such thatlim sup, ,. G <W) — G(v*) < ¢, wherev(t) = + 37, v(t); while for diminishing stepsize,
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the distributed algorithm is guaranteed to converge to fitemal value.
Proof: Please refer to the AppendiX B for a proof. [ |
Therefore, based on results on convergence of the subgtadiethod, for constant stepsize, the
proposed algorithm is guaranteed to converge to within ghteirhood of the optimal value; while for
diminishing stepsize, the algorithm is guaranteed to cae/¢o the optimal value. Moreover, since we
focus on constant stepsize for theoretical proof, we witivelthe convergence with diminishing stepsize

by numerical results in Sectidn VI.

V. IMPLEMENTATION BASED ONSDN

Although the proposed algorithm has provided a distributedr association and resource allocation
solution, its application to the future wireless networkghwan extreme BS deployment may still be
inefficient due to the required interactive adjustmentsvbeh users and BSs. In this section, based on
the newly emerged SDN architecture, we design a VUARA schevheh reduces the communication
overhead over air interface and avoids the informationifepko users.

In the design of next-generation wireless networks, thdlemges faced by current network architectures
cannot be solved without a radical paradigm shift. Recebyutilizing SDN, some architectures, such
as software-define radio access network (SoftRAN) [36] aoftAs [37], have been proposed. Briefly,
these architectures can accelerate the innovations fariatiware forwarding infrastructure and software
networking algorithms through control and data separaterable the efficient and adaptive sharing of
network resources through network virtualization, actievaximum spectrum efficiency through cloud-
based collaborative baseband processing and enhancey egfficgency through the dynamic scaling of
computing capacity of the software-defined BSs [37]. Treeefbased on these architectures, we design
a VUARA scheme. Mainly, by leveraging cloud computing antimeek virtualization, virtual users and
vBSs can be generated in the radio access networks conffRANC) to emulate a distributed joint user
association and resource allocation solution that reguistwork measurements and iterative adjustments

between users and BSs.
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The implementation of VUARA is shown in Figl 2. Generallycitnsists of three phases. The first
phase is the initial user association and network measumsmauring which the users and BSs measure
and report their downlink SINRs, available energy and badkitapacities to the RANC. In the second
phase, the RANC firstly generates virtual users and vBSsthardsimulates the iterative user association
and operation statuses (reflecting resource partitioml, laad price of access) adjustments between users
and BSs based on the information collected in the first phA&en the iterations converge, optimal cell
association of users and resource allocation of BSs argedkrin the third phase, the RANC informs
individual users and BSs about cell association and resopactition decisions. The major optimization
of the VUARA scheme is done in the second phase. To be arallytitactable, we assume that (1) the
RANC can successfully collect network information from Bifs and users, and (2) the data rates of

users do not change within one user association process.

p OB —— —— — — — — — — — — — — — -
| Auvailable energy and RANC I
backhaul capacity _ |jeesscsccscsccccccccas ' I

> vUARA x*, y* to BSs
ndusers  _|

| Downlink SINRs

users

|<—1 st phase—>|<72nd phase—>|<3rd phase>|

Fig. 3. The implementation of VUARA

In summary, firstly, it is the RANC that jointly optimizes thuser association and resource allocation
based on network measurements. Secondly, instead of exalgainformation over air interface that may
introduce additional communication overhead and incuraegbwer consumption, the virtual users and
vBSs can iteratively update their BS selections and opmratiatuses via a wired link, e.g., a message bus.
Lastly, with VUARA, on one hand, the communication overheaer air interface is significantly reduced;
on the other hand, the virtualization avoids leaking BS$iimation to users since all the iterations are

simulated in the RANC.
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VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the propbseihaul-aware joint user association and
resource allocation algorithm for energy-constrainedNdé&t. Specifically, a 3-tier HetNet composed of
one macro BS and several small cell (micro, femto) BSs isidensd. The location of the macro BS is
fixed and it forms a conventional cellular structure, whiteey small cell BSs are randomly located in an
orthohexagonal area with side lengih0m. We assume that there exist two kinds of users in the scenario
i.e., hotspot users and random users. The former are logatdx vicinity of each BS and the number
of them is fixed, while the latter are randomly deployed inwiele area with varying number (denoted
by Kiang). The simulation topology is given in Figl 4. Moreover, theeggy and backhaul constraints of
each BS and other basic parameters are presented in[Tabie hoted that, since the proposed algorithm
deals with joint user association and resource allocatith @nergy constraints in an association period,

we consider the overall energy constraint of a BS withousjgscific components.

500 :
A Macro BS
400 Micro BS

Femto BS
Hotspot users
Random users

300

x + 00

200

100}

[m]
o

-100

-200}

-3001

-4001

-500 :
-500 0 500

Fig. 4. Simulation topology
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TABLE |
THE BASIC PARAMETERS

Parameter macro BS micro BS femto BS
Number 1 4 10
Hotspot users 25 10 5

Pno (W) 130 56 4.8

On, 4.7 2.6 8.0
Output power (dBm) 46 35 20
Path loss (dB) 34 4 401log,4(d) 37+ 301og,,(d)
W, 500 100 50
Available Energy (J/s) 300 65 5.6
Zn pn (Mbps) 2000 200 20

o? (dBm) -111.45

A. Convergence

Given one random network realization, Fig. 5 presents thgrdrege multiplierv and network utility
versus iterations. Specifically, the dashed lines refer $s’B.agrange multipliers with random initial
values and distinct convergence process, and the solicshoa/s the network utility in terms of users’
long-term service rate. Since the values of Lagrange nigigoand network utility are widely divergent,
Fig. [ adopts double ordinates, i.e., left ordinate andtrayinate, to refer to them respectively. The
convergence of the proposed algorithm is demonstratedgn@zi Moreover, it is also shown that, the

proposed algorithm may have a very fast convergence rate wammeters are set properly.

1600

11580

11560

lity

1540 °

uti

1520

Network

11500

1480

Network utility

; - - 1460
30 40 50 60 70 80

Iterations

Fig. 5. Lagrange multipliew and network utility versus iterationg{ana = 100)
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B. Comparisons with Max-SINR and Range Expansion

To demonstrate the superiority of the proposed algorithra, compare it with the common user
association schemes, i.e., max-SINR association, whsbcéses users to the BS with the highest received
SINR, and range expansion association, where the idea iddaaell selection offset to the reference
signals of the small cells in order to offload some traffic frtre macrocells. Considering the energy and
backhaul constraints, for max-SINR association and ramgaresion association, we adopt equal resource
allocation among the users associated with the same BS aminmalaachievable rate first (MARF)
scheduling[[16] that selects users in descending order luézable rates, given backhaul constraints. In
addition, since the best offset (or biasing) factor is veffiadilt to obtain, here, we use offsets of 10dB
and 12dB for micro BSs and femto BSs, respectively. All thbofeing results are averaged ovéo*
random network realizations.

Given varying number of random users and small cell BSs)irBigs.[6 and 7 respectively present
the network utility and percentage of users associated mglcro BS with the above three association
methods. Specifically, Fid.] 6 shows the significant improsetmon network utility with the proposed
algorithm, while the network utility with both max-SINR a&sation and range expansion association
is very low. Then, in Fig[l7, it is easy to see that the pergmtaf users with the proposed algorithm
is the lowest, while with the max-SINR association is highdhese facts confirm that (1) the max-
SINR association will lead to very unbalanced load among &8s greatly degraded network utility; (2)
the range expansion association leads to better load hadarmut the improvement of load balancing
may not overwhelm the degradation in SINR that certain usefter; (3) the proposed algorithm gains
significant improvement on both network utility and loaddrading, since it takes both energy and backhaul
constraints into consideration, and jointly optimizes tiser association and resource partition. Moreover,
it is obvious that, with fixed number of small cell BSs and mmadke increase of the number of random
users, the network utility increases given the above these@ation schemes, while the percentage of

users associated with macro BS decreases. On the other \wahdnore small cells deployed, all the
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association schemes achieve much better performancems td@rboth network utility and load balancing.

2600 —©— Max-SINR (N, =4.N, =10)
= B = Range expansion (Nmi=4,N'e=10)
2300 " o ++ Proposed algorithm (N_=4,N, =10)
+ Max-SINR (Nmi:z’NerS) )
- 2000| = A - Range expansi.on M 2N O
= o * . Proposed algorithm (le=2,N'e=5) o o
21700f e v
2 o I
8 1400 ..o ok ]
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Fig. 7. Percentage of users with macro BS

Then, to measure the status of users’ long-term servics,rate introduce the Jain’s fairness index,
that is, p = (3 Bi)?/(K Y 1o R2). The largerp that belongs to the intervdl /K, 1] means more
balanced long-term service rates among the users. Givealthee three association schemes, Fig. 8
presents fairness index among long-term service rateses.ukt is observed that, (1) the fairness index
of the proposed algorithm is much greater than that of eithax-SINR association or range expansion

association; and (2) compared with max-SINR, the fairnedsex of range expansion association is only
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a little higher. These are due to the facts that, on one hdredptoposed algorithm jointly optimizes
the user association and resource allocation under camtstiaf resources, energy and backhaul; on the
other hand, the offset factor set here may be far from thet*pbesich degrades the performance of
the range expansion association. Moreover, it is worth moeimy that, for max-SINR association and
range expansion association with equal resource allotaim MARF scheduling, some users may be
dropped since their BSs are running out of backhaul; whikkl wWie proposed algorithm, all the users are
accommodated. In addition, both the number of users andothamnall cell BSs have impacts on user
fairness, that is, for the proposed algorithm, both thedased deployment of small cells and decreased
access of users improve the user fairness. While for maXRSidsociation and range expansion association,
the increase of the number of small cells will not improve tiser fairness index, which further proves

that these two association schemes have little help in giyiuser fairness.

0.4,
Q,’; ,,,,,,
o3sf ¥,
e, 9.
i Tk,
o3r R0 2 z ,,,,,,,, O
0.25 —©— Max-SINR (N, _=4N,=10) W', * ,,,,,,,,, ,2

= B = Range expansion (Nm‘:A,N'e=10)
0.2} ' o ++ Proposed algorithm (N, =4,N, =10)

—xp— Max-SINR (N, =2.N, =5)
- A = Range expansion (N,;=2.N, =5)

Fairness index

0.15

01l .*‘ + Proposed algorithm (N_=2,N, =5)

50 75 100 125 150 175 200
K

rand

Fig. 8. Fairness index among long-term service rates ofsuser

C. Effects of Energy and Backhaul Constraints

Since constraints of both energy and backhaul are takenctsideration, we illustrate their effects
on algorithm performance. All the results are averaged ov€random network realizations. Firstly, Fig.
shows the network utility and percentage of users with m&$ versus ratio between the available

energy and that in Tablé I. We can see that, with the increhaeailable energy at each BS, the network
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utility firstly increases then stays almost unchanged dusattkhaul constraints. While the percentage of
users associated with macro BS firstly decreases since nsers will associate with the small cell BSs
once they have more or enough energy. However, because batkéaul constraints, the percentage may
not keep on decreasing. Then, the network utility and peacgnof users with macro BS versus ratio
between the backhaul capacities and those in Table | are giv€ig.[10. It is observed that, with the
increase of backhaul capacity at each BS, firstly, the ndtwblity increases rapidly, while the percentage
of users with macro BS remains almost unchanged; then therieutility has slower increase, while the
percentage decreases. This is due to the fact that, at thenbeg all the BSs may be greatly constrained
by their backhaul, thus, with the increase of backhaul atipacthe network utility increases fast, while
the percentage of users with macro BS may not decrease;whemn, backhaul capacities are large enough,
available energy becomes the constraints for all the B®&ogaly for macro BS, as a result, the network
utility may not keep on increasing, while the percentagesefrs with macro BS decreases. However, Figs.
and[ 10 only show the rough tendency with the increase ofablai energy and backhaul capacities,

respectively, and the results greatly depend on the paearsettings given in Table |.

1700 T 0.2
—©0— Network utility

= B = Percentage of users with macro BS

- §
1600 [

Network utility

1500 [

Percentage of users with macro BS

1400 ! ! ! !
0.9 0.94 0.98 1.02 1.06 11

Ratio between available energy and that in Table 1

Fig. 9. Effects of energy constraint& g = 100)

Moreover, in Figs. 11 and 12, the network utility and peregestof users with macro BS are respectively
presented with varying constraints of energy and backlRarticularly, the change of energy and backhaul

constraints is the same as that in Figs. 9 10, respactives observed that, with fixed backhaul
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Fig. 10. Effects of backhaul constraint&énd = 100)

(energy), the network utility and percentage of users witdtra BS have the same tendency as those in
Fig.[@ (Fig.[10). Besides, Figs. 111 ahd 12 also show that, emetpto the network utility improvement
with increasing backhaul capacities of all the BSs, the odtwatility increases rapidly with the increase
of available energy; and the percentage of users with maGadgluces much faster with increasing
available energy of all the BSs, compared to its change wighincrease of backhaul capacities. These
may due to the fact that, the available energy of BSs affdesalgorithm performance together with
the available resources of BSs. Thus, much greater impaetslesserved. Nevertheless, the constraints
of both backhaul and energy affect the algorithm perforreamnd the impacts relate to the parameter
settings given in Tablg I. In a word, the specific effects oérgy and backhaul constraints are coupled

and complicated; the network design should take both of thremaccount.

VIlI. CONCLUSIONS

In this paper, given a HetNet powered by hybrid energy, waigoon the backhaul-aware joint user
association and resource allocation problem. To balanteonle-wide performance and user fairness,
we formulate an online network utility maximization proiviereflecting PF, which has tightly coupled
variables (both binary and continuous) in the constrairitsesources, energy and backhaul. Then, by

adopting some decomposition methods, the condition for kimals of resource partition of a BS is
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efficiently obtained, and a completely distributed alduritis developed. Finally, the convergence of the
distributed algorithm is proved by employing results of sh&gradient method. Moreover, based on
SDN architecture, we develop a VUARA scheme for future sl networks with an extremely dense
BS deployment. Lastly, numerical results indicate thampared with max-SINR and range expansion,
the proposed algorithm provides a significant improvemennetwork utility, load balancing and user

fairness.
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APPENDIX A

PROOF OFPROPOSITION1

If BS n is energy-constrained, according kal(27) and the secorglality of (25), we have

Z %PRnkWn < Zn,bha (40)
ke, | N|
ie.,
ICTL ZTL
> Ry < Rl Zuin, (41)
kel nQn,P
which means that, to maximize the network utilitypif, ., R, < “;;;‘g"’z“, BSn will divide its available

resources equally among the associated users; otherwse, iB backhaul-constrained, and according
to (28), it will average the backhaul capacity and providetla associated users with equal long-term

service rate.

APPENDIX B

PROOF OFPROPOSITIONZ2

Given constant stepsizg,(¢) = n, according to the updating af, we have

lo(t+1) — vl

2

= [[lo(®) = nu®)]” — v

< Jlo() = ru(t) — vl3 (42)
= [lo(t) = v*[l; — 2nu(®)’ (v(t) — ) +0? [u(t)ll;

<o) —v*ll;=2n G(v(@) = G(")) +0* [ut)ll;,
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where the last inequality follows from the definition of suhdjient. Applying the inequalities recursively,

we obtain

t
< —lo(t + 1) =" |5+l () —vTlls+ Y 0P u@)l; (43)
=1

t
<[v() =I5+ 7 u(Dl;.
=1

From this inequality, we have

SinceG(v) is a convex function, by Jensen’s inequality, there is

o) —v*lly - iy llu@)ll;
= . 45
2tn * 2t (45)

GG@”—G@ﬂS

When bothg, (1) and 31, 2, (1) are bounded}u(l)|> is bounded too, i.esup |u(l)|> < ¢ , where
l

c is a scalar. Then,

(1) — v*|? c
o) = vl

—. 46
2tn 2 (46)

GG@ﬂ—G@wg

Therefore lim sup,_, G <v(t)> — G(v*) <¢ wheree = nc/2. That is to say, given constant stepsize,
the algorithm converges statistically to withifz/2 of the optimal value. Besides, if stepsigds small

enough, the algorithm converges to the optimal value.
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