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Abstract

This paper develops a new distributed power control scheme for a power splitting-based interference

channel (IFC) with simultaneous wireless information and power transfer (SWIPT). The considered IFC

consists of multiple source-destination pairs. Each destination splits its received signal into two parts for

information decoding and energy harvesting (EH), respectively. Each pair adjusts its transmit power and

power splitting ratio to meet both the signal-to-interference-plus-noise ratio (SINR) and EH constraints at

its corresponding destination. To characterize rational behaviors of source-destination pairs, we formulate

a non-cooperative game for the considered system, where each pair is modeled as a strategic player

who aims to minimize its own transmit power under both SINR and EH constraints at the destination.

We derive a sufficient and necessary condition for the existence and uniqueness of the Nash equilibrium

(NE) of the formulated game. The best response strategy of each player is derived and then the NE can

be achieved iteratively. Numerical results show that the proposed game-theoretic approach can achieve

a near-optimal performance under various SINR and EH constraints.
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I. INTRODUCTION

Wireless energy transfer (WET) technology has drawn significant interest over the past decade

because of its potentially wide applications in our daily life. Recently, the recent emerging

WET techniques have enabled wireless devices to harvest energy from ambient/dedicated radio

frequency (RF) signals [1]. On the other side, it is well known that RF signals are also used to

carry information in wireless communications. As a result, simultaneous wireless information

and power transfer (SWIPT) [2] has recently been proposed to realize the dual utilization of

RF signals for joint information and energy transfer at the same time. Such dual utilization of

RF signals in SWIPT leads to different system design in various setups and applications. For

example, in an interference channel (IFC) with SWIPT, the cross-link interference is still harmful

to the information decoding (ID) at the receiver side, but it becomes beneficial when we pay

more attention to the energy harvesting (EH) aspect.

There have been several papers in the open literature that focus on the design of SWIPT in IFCs

[3]–[7]. Specifically, [3] considered SWIPT in a multiple-input single-output (MISO) IFC, where

the weighted sum-rate was maximized subject to individual EH constraints and transmission

power constraints. In [4], all possible transmission strategies with different combinations of

information decoding and energy harvesting at the receiver side were investigated and compared

in a two-user multiple-input multiple-output (MIMO) IFC, which was subsequently extended to

the general K-user case in [5]. [6] studied the joint beamforming and power splitting problem in

a MISO IFC, where the total transmit power of all transmitters was minimized under both rate

and EH constraints by employing the semidefinite programming (SDP) method. Different from

[6], a second-order cone programming (SOCP) relaxation-based approach was developed in [7]

as an alternative solution to resolve the same total power minimization problem in a decentralized

manner. In all aforementioned papers that designed SWIPT schemes in IFCs, it is assumed that

all source-destination pairs cooperate to achieve the optimal network-wide performance (e.g.,

maximizing the sum-rate/minimizing the total transmit power of all pairs). However, in many

practical scenarios, source-destination pairs may be rational such that they only care about their

own performance instead of the overall one (see [8] and references therein). To the best of our

knowledge, there has been no work that designs SWIPT for the IFC with self-interested source-

destination pairs in the open literature. This gap actually motivates our paper. It is worth pointing
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out that game theory has actually been applied to investigate different setups of communication

networks involving RF energy harvesting in [9]–[12]. But none of them studied the concerned

scenario of IFCs with SWIPT and QoS constraints.

In this paper, we develop a game-theoretic framework for the distributed power control in a

power-splitting based IFC with SWIPT. The main contributions of this paper are summarized

as follows: (1) we formulate a non-cooperative game for the considered IFC-SWIPT system,

where each source-destination pair is modeled as a strategic player who aims to minimize the

source transmit power while satisfying both signal-to-interference-plus-noise ratio (SINR) and

EH constraints at the destination; (2) we derive a sufficient and necessary condition to guarantee

the existence and uniqueness for the Nash equilibrium (NE) of the formulated game; (3) the best

response strategy for each pair is derived and then the NE is achieved in a distributed manner;

(4) numerical results validate the theoretical analysis and show that the proposed game-theoretic

approach can achieve a near-optimal network-wide performance.

II. SYSTEM MODEL AND GAME FORMULATION

In this section, we first describe the system model and then formulate a non-cooperative game

for the considered network.

A. System Model

In this paper we consider a single-input single-output (SISO)1 IFC consisting of N source-

destination pairs. We use N = {1, · · · , n, · · · , N} to denote the index set of source-destination

pairs, in which the nth pair consists of the nth source and the nth destination. All pairs are

assumed to share the same frequency band and thus they interfere with each other. We assume

that all sources and destinations are equipped with one antenna and operate in a half-duplex

mode. All destinations are equipped with a power splitting [2] devices such that they are able

to decode the information as well as harvest energy from the received signal at the same time.

1It would be more interesting to study a general multiple-input multiple-output (MIMO) IFC with SWIPT. However, this

would need to develop a totally new game-theoretic framework for the joint design of transmit power, transmit and receive

beamforming vectors and power splitting ratio at each source-destination pair, which may constitute another full paper and thus

have been left as our future work.



4

Besides, we consider that the links between all nodes experience the slow and frequency-flat

fading.

Let hnn and hmn denote the channel gain from the nth source to the nth destination and that

from the mth source to the nth destination, respectively. At the nth destination, the received

signal before power splitting can be expressed as

yn = hnn
√
pnxn +

∑
m∈N/{n}

hmn
√
pmxm + zn, (1)

where pn and pm are transmit powers of the nth source and mth source, respectively. xn and xm

denote the unit-energy symbols transmitted by the nth source and mth source. zn ∼ CN (0, δ2
n)

is the additive noise introduced by the receiver antenna at the nth destination.

The nth destination splits the received signal into two streams with a power splitting ratio αn.

The fraction
√
αn of the received signal is used for EH, while the remaining

√
1− αn fraction

is passed to the ID unit.

The ID unit at each receiver will introduce an additional baseband noise to the signal stream

passed to the ID circuit. We assume that this additional baseband noise is an additive Gaussian

random variable with zero mean and variance σ2
n and it should be independent of the antenna

noise zn. Accordingly, we can express the respective harvested energy and received SINR at the

nth destination by

En
(
pn, αn;p−n

)
= ηαn

∑
m∈N

pmGmn, (2)

SINRn

(
pn, αn;p−n

)
=

(1− αn) pnGnn

(1− αn)
(∑

m∈N/{n} pmGmn + δ2
n

)
+ σ2

n

, (3)

where p−n , [p1, · · · , pn−1, pn+1, · · · , pN ]T , Gnn , |hnn|2, Gmn , |hmn|2, and 0 < η < 1 is the

energy conversion efficiency. The notation
(
pn, αn;p−n

)
indicates that pn and αn are variables

given p−n. Note that in (2), we ignore the amount of energy harvested from the antenna noise

since it is normally below the sensitivity of the energy harvesting device in practice [13].

B. Game Formulation

We follow [6], [7] and assume that each destination is subject to strict QoS and EH constraints.

The QoS constraint requires that the received SINR at the nth destination, i.e., SINRn given

in (3), should be no less than a predefined threshold γn, while the EH constraint imposes the
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condition that the value of En defined in (2) should be larger than or equal to the energy threshold

En. In contrast to [6], [7], which assume that all source-destination pairs are cooperative to

minimize the network total transmit power, we consider an alternative non-cooperative scenario

in which the source-destination pairs are all rational and self-interested such that they only want

to minimize their respective transmit powers under their individual SINR and EH constraints. In

this case, the results presented in [6], [7] by minimizing the network total transmit power may

no longer be applicable for the considered non-cooperative scenario. In this regard, we model

the considered system by the well-established game theory [14]. Specifically, we formulate the

following non-cooperative game:

• Players: The N source-destination pairs.

• Actions: Each pair determines its source transmit power and the power splitting ratio at the

destination, i.e., (pn, αn), to minimize its transmit power under the SINR and EH constraints

at the destination.

• Utilities: The source transmit powers pn.

We notice that each player’s strategy (pn, αn) only depends on the transmit powers of the

others p−n, as the power splitting ratio of each player only operates at the destination side.

Thus, given the transmit powers of the others p−n, the best response strategy of the nth pair

(player) is the solution to the following optimization problem,

min
{pn,αn}

pn,

s.t. C1 : 0 ≤ αn < 1,

C2 : pn ≥ 0,

C3 :
(1− αn) pnGnn

(1− αn)
(∑

m∈N/{n} pmGmn + δ2
n

)
+ σ2

n

≥ γn,

C4 : ηαn
∑
m∈N

pmGmn ≥ En.

(4)

We denote by (p?n, α
?
n) the optimal solution to the optimization problem (4). It is straightfor-

ward to verify that (4) always has a feasible solution [15]. Considering that pn and αn should

be jointly optimized and they are all dependent on p−n, we can rewrite αn as a function of pn

and p−n, i.e., αn = fn
(
pn,p−n

)
. Then, we denote by Pn

(
p−n

)
the feasible power policies of
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the nth pair given the others’ power strategies, which can be expressed as

Pn
(
p−n

)
, {pn > 0 :SINRn

(
pn, fn

(
pn,p−n

)
;p−n

)
≥ γn,

En
(
pn, fn

(
pn,p−n

)
;p−n

)
≥ En

}
.

(5)

Now, we define p? = [p?1, · · · , p?N ]T and α? = [α?1, · · · , α?N ]T and denote by (p?,α?) the

solution (if exists) to the formulated non-cooperative game, which is well-known as the NE [14].

A NE of the formulated game is a feasible profile (p?,α?) that satisfiesp
?
n ≤ pn

α?n = fn
(
p?n,p

?
−n
) , ∀pn ∈ Pn

(
p?−n

)
, ∀n ∈ N . (6)

III. EXISTENCE AND UNIQUENESS OF THE NE

In this section, we first analyze the best response strategy of each source-destination pair by

solving the optimization problem (4). Then, we derive a sufficient and necessary condition that

guarantees the existence and uniqueness for the NE of the formulated game.

A. The Best Response Strategy

Now, we calculate the best response strategy (p?n, α
?
n) for the nth pair by solving the opti-

mization problem (4), which is described in the following proposition,

Proposition 1. Given p−n, the optimal response strategy of the nth pair can be expressed asp
?
n = −Xn+Yn+γnXn+γnσ2

n+
√

∆n

2Gnn
,

α?n = Xn+Yn+γnXn+γnσ2
n−
√

∆n

2(Xn+γnXn)
,

(7)

where Xn =
∑

m∈N/{n} pmGmn+δ2
n, Yn = En

η
and ∆n = (Xn − Yn + γnXn + γnσ

2
n)

2
+4γnYnσ

2
n.

Proof: See Appendix A.

The best response strategy given in Proposition 1 confirms our discussion that the choice of

α?m, ∀m ∈ N /{n}, of the others will not affect the decision of the nth pair. Therefore, the

competitive interaction among the players is actually proceeded by adjusting their own power

allocation strategy. We thus define the best response function at the nth pair as

p?n = Bn
(
p−n

)
=
−Xn + Yn + γnXn + γnσ

2
n +
√

∆n

2Gnn

, ∀n ∈ N . (8)
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Besides, based on (7), we have

fn
(
pn,p−n

)
=
Xn + Yn + γnXn + γnσ

2
n −
√

∆n

2(Xn + γnXn)
. (9)

The NE of the non-cooperative game can now be redefined asp
?
n = Bn

(
p?−n

)
α?n = fn

(
p?n,p

?
−n
) , ∀n ∈ N , (10)

which can be readily achieved with the well-known best-response dynamics [14] if its existence

and uniqueness are guaranteed. It is worth mentioning that the adopted best-response dynamics

has a low implementation and computation complexity to achieve the NE of the formulated game

in a fully distributed manner. In particular, each link only needs to measure its own channel gain

(i.e., Gnn) and the power of the interference from all other links and the antenna noise (i.e.,

Xn defined in Proposition 1), which could be realized by equipping a radio scene analyzer at

each destination as in [16]. With these local information, each link can easily compute its best

response strategy based on (7) and the NE of the formulated non-cooperative game can be readily

achieved by the best-response dynamics.

Note that the NE of the formulated game does not always exist as the EH and SINR con-

straints of all source-destination pairs cannot be simultaneously satisfied for some special cases.

Motivated by this and inspired by the existing literature, we derive a sufficient and necessary

condition in the following subsections to guarantee the existence and uniqueness of the NE.

B. Existence of NE

From the structure of the optimization problem (4) at each source-destination pair, we can

observe that the NE of the formulated game is existent only when the conditions (C3) and (C4)

for all pairs can be met at the same time. Starting from this observation, we obtain the following

proposition regarding a sufficient and necessary condition for the existence of NE:

Proposition 2. Define a square matrix Ω ∈ RN×N as

[Ω]n,m =

0, if m = n,

Gmnγn
Gnn

, if m 6= n.
(11)
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The NE of the formulated game exists if and only if (iff) the spectral radius of Ω, denoted

by ρ(Ω), is less than one, where the spectral radius of the matrix Ω is defined as the largest

absolute eigenvalue of Ω, i.e., ρ(Ω) , max
i

(|λi|) with λi’s representing eigenvalues of Ω [17].

Proof: To proceed, we first rewrite all SINR constraints (i.e., (C3)’s) in a matrix form. After

some algebra manipulations, we get (I−Ω)ppp > uuu with ppp > 000 (component-wise), where I is the

identity matrix, ppp = [p1, · · · , pN ]T ,

uuu =

γ1

(
δ2

1 +
σ2
1

1−α1

)
G11

, . . . ,
γN

(
δ2
N +

σ2
N

1−αN

)
GNN

T ,
and the matrix Ω can be expressed as (11). With reference to [18] (i.e., Perron-Frobenious

theorem), the existence of a feasible power profile ppp > 000 satisfying (I−Ω)ppp > uuu is equivalent

to ρ(Ω) < 1.

We are now rewriting all EH constraints constraints in a matrix form and have Gppp > EEE ,

where G is a N ×N matrix with [G]n,m = αnGmn and the vector EEE = [E1/η, . . . , EN/η]T . It is

readily to verify that if there exists a feasible power profile ppp > 000 satisfying the SINR constraint

inequality (I−Ω)ppp > uuu, we can always guarantee that the energy constraint inequality Gppp > EEE

is also satisfied by scaling up the feasible profile ppp. Thus, the overall sufficient and necessary

condition for the existence of NE is ρ(Ω) < 1, which completes the proof.

It is interesting to observe from Proposition 2 that the condition for the existence of NE

only depends on the channel gains and SINR thresholds. Also, the derived condition is actually

the same as that for the power minimization problem in conventional IFCs with only SINR

constraints, which was given and proved in [19]. This indicates that the introduction of EH

constraints does not lead to a stricter condition for the existence of the NE.

Since a condition is needed to guarantee the existence of NE, there is nonzero probability that

the derived condition is not satisfied in certain cases. In these cases, admission control schemes

should be adopted to opt out a few source-destination pairs to guarantee the existence of NE

among the remaining active pairs. Optimal strategies to opt several pairs out the formulated game

in the rounds when the derived condition is not satisfied would be quite difficult to achieve, and

are actually beyond the scope of this paper. Moreover, this admission control issue is actually

not specific to the adopted game-theoretic approach but rather arises regardless of the method

used. The interested reader is referred to [20], [21] and references therein.
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C. Uniqueness of NE

The best-response dynamics, i.e., the iterative behaviors of each player with its best response

strategy, can be regarded as a mapping process [22]. A sufficient condition to guarantee the

uniqueness of the NE is equivalent to the condition to guarantee the mapping process is a

contraction, which then implies that the mapping has a unique fixed point. We then refer to the

contraction mapping theorem [22], i.e.,

Theorem 1. A mapping T : X → X (X is a closed subset of the real number set RN ) is a

contraction if and only if ||T (x)− f(y)|| ≤ β||x− y||, ∀x, y ∈ X and β ∈ [0, 1). Moreover, the

mapping T has a unique fixed point if it is a contraction.

Note that the well-known contraction mapping theorem has been widely adopted in open

literature due to its following advantages [23]. First, it can guarantee the uniqueness of the

NE. Second, it does not require that the space being mapped onto itself is convex or bounded.

Third, it has the inherent convergence property. Additionally, it is also pointed out in [23] that

the contraction mapping theorem provides a quite general condition for the mapping to have a

unique fixed point. Then, we can have the following proposition regarding the uniqueness of

the NE:

Proposition 3. If the NE of the formulated non-cooperative game exists (i.e., the condition

ρ(Ω) < 1 in Proposition 2 is satisfied), then the game has a unique NE.

Proof: See Appendix B.

Till now, we can claim that the derived condition (i.e., ρ(Ω) < 1) is actually a sufficient

and necessary condition for the existence and uniqueness of the NE of the formulated game.

Furthermore, if the condition is satisfied, the best response dynamics is guaranteed to achieve

the unique NE in a distributed manner.

IV. NUMERICAL RESULTS

In this section, we provide some numerical results to validate the above theoretical analysis.

We denote by dmn the inter-link distance between the mth source and the nth destination,

∀m ∈ N /{n}, and denote by dnn the inner-link distance between the nth source and the nth

destination. All channels are assumed to experience quasi-static flat Rayleigh fading. We adopt
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Fig. 1. Probability of the existence and uniqueness of the NE versus the inter-link distance dmn with different values of N

and γn, where dnn = 5m.

a channel model with E [Gmn] = 10−3(dmn)−ζ and E [Gnn] = 10−3(dnn)−ζ , where ζ ∈ [2, 5]

is the path-loss factor and a 30dB average signal power attenuation is assumed with reference

distance of 1m. In all simulations, we set dnn = 5m and dmn = 10m unless otherwise stated.

Besides, we have η = 0.5, ζ = 3, δ2
n = −60dBm, and σ2

n = −50dBm, ∀n ∈ N .

Since the existence and uniqueness of NE of the formulated game depend on the channel gains

{Gmn} (See Proposition 2-3), there is a nonzero probability that the sufficient and necessary

condition ρ(Ω) < 1 is not satisfied for a certain set of channel realization and SINR thresholds.

To quantify how frequently the condition ρ(Ω) < 1 holds, we perform Monte Carlo simulations

to evaluate the probability of existence and uniqueness of NE (i.e., the condition ρ(Ω) < 1

is satisfied) for several different scenarios. Specifically, in Fig. 1 we plot the curves of this

probability versus the inter-link distance with different numbers of links and SINR thresholds.

We can observe from this figure that, the probability of ρ(Ω) < 1 grows quickly as the inter-

link distance increases and can approach to one when the inter-link distance is large enough

for all simulated cases. Moreover, this probability also improves when either the number of

links or SINR thresholds decreases. Both of these observations are caused by a decrease of

inter-link interference. As discussed in the previous section, when the condition ρ(Ω) < 1 is not
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Fig. 2. The convergence of best-response dynamics in the formulated non-cooperative game with four source-destination pairs

starting from two different sets of initial points, which are distinguished by solid lines and dash lines.

satisfied, admission control schemes should be adopted to opt out a few source-destination pairs to

guarantee the existence (also uniqueness) of NE among the remaining active pairs. For simplicity,

in the sequel we consider the scenario that appropriate admission control schemes have been

carried out at the beginning of each transmission block such that the NE of the formulated game

is guaranteed to exist among the active source-destination pairs, i.e., the condition ρ(Ω) < 1 is

assumed to be satisfied.

Next, we demonstrate the convergence of best-response dynamics in the formulated non-

cooperative game for a four-pair setup with one randomly generated channel realization as well

as SINR and EH constraints. The pairs 1-4 are assumed with SINR constraints 0dB, 0dB, 10dB,

10dB, and EH constraints −20dBm, −10dBm, −20dBm , −10dBm, respectively. Fig. 2(a) and

Fig. 2(b) show the transmit power and the power splitting ratio of each pair versus the number of

iterations, respectively. Two cases starting from two random sets of initial points are presented,

which are distinguished by dash and solid lines, respectively. It can be observed from this

figure that both p?n and α?n can converge quickly to the same stationary values (i.e., the NE)

from different starting points. Also, as the minimum p?n is about 20dBm, the signal-to-noise

ratio (SNR) region is over 70dB (σ2
n = −50dBm), which is practical for energy harvesting

devices. Note that due to the space limitation, we only show results in Fig. 2 for one random
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Fig. 3. Averaged total transmit power versus the EH constraint with different SINR constraints in a two-pair network.

realization of channel gains and the constraints, although similar results can also be shown

for other realizations. This validates the effectiveness of the derived sufficient and necessary

condition of the NE. At last, it is worth pointing out that the optimal α2 is shown to be closed

to one in Fig. 2(b). This phenomenon corresponds to the scenario that the inter-link interference

suffered by pair 2 is very weak such that it only needs a sufficiently small transmit power to

meet its SINR constraint. In such a case, the transmit power of this pair is mainly dominated

by its EH constraint and thus the optimal value of α2 for this link should approach to one to

align with the objective of minimizing the source transmit power.

Fig. 3 illustrates the averaged total transmit power versus the EH constraints with different

SINR constraints in a two-pair network setup. The averaged total transmit power obtained by

the proposed game-theoretic approach is compared with an optimal strategy calculated via an

exhaustive search. The optimal strategy is conducted based on the assumption that all source-

destination pairs cooperate with each other to minimize the averaged total transmit power. We

note that the optimal scheme here is actually consistent with the problems considered in [6] and

[7]. The SINR and EH constraints for two pairs are assumed to be the same, respectively. Each
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curve is obtained by averaging over 104 independent channel realizations. It can be observed from

Fig. 3 that, the averaged total transmit power of the proposed game-theoretic method can closely

match that of the optimal results. Note that the proposed strategy cannot perfectly coincide with

the optimal strategy due to the rational and selfish behaviors of source-destination pairs in our

game formulation. In addition, it is also shown that with the increasing of γn or En, the averaged

total transmit power increases accordingly to meet the higher SINR and EH constraints.

V. CONCLUSION

In this paper, we developed a game-theoretic framework to tackle the distributed joint power

and power splitting ratio problem in a IFC with SWIPT. We formulated a non-cooperative game

for the considered system, where each source-destination pair is modeled as a selfish and rational

player who aims to minimize its own transmit power under both SINR and EH constraints. We

derived the best response strategy of each player and thus the NE can be obtained iteratively. A

sufficient and necessary condition to guarantee the existence and uniqueness of the NE was also

provided. The numerical results validated the derived condition and showed that the performance

of the proposed game-theoretic approach can closely match the optimal strategy on averaged

transmit power under various SINR and EH constraints.

APPENDIX A

PROOF OF PROPOSITION 1

First of all, we could notice that the constraint (C3) and (C4) should hold with equality at the

optimal solution; otherwise, we can always reduce the power of pn. Therefore, we can solve the

following equations to achieve the optimal solution of the formulated problem in (4)
γn − (1−αn)pnGnn

(1−αn)(
∑

m∈N/{n} pmGmn+δ2n)+σ2
n

= 0,

En − ηαn
∑

m∈N pmGmn = 0.

(12)

Let Xn =
∑

m∈N/{n} pmGmn + δ2
n and Yn = En

η
, we have

(1−αn)pnGnn

(1−αn)Xn+σ2 = γn,

αn (pnGnn +Xn) = Yn.
(13)
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By solving αn first, we can readily obtain

αn =
Xn + Yn + γnXn + γnσ

2
n ±
√

∆n

2(Xn + γnXn)
, (14)

where ∆n , (Xn − Yn + γnXn + γnσ
2
n)2 + 4γnYnσ

2
n > 0.

Recall that the optimization problem (4) always has a feasible solution and 0 ≤ αn ≤ 1. It is

easy to check that

αn =
Xn + Yn + γnXn + γnσ

2
n +
√

∆n

2(Xn + γnXn)

>
Xn + Yn + γnXn + γnσ

2
n + |Xn − Yn + γnXn + γnσ

2
n|

2(Xn + γnXn)

> 1,

(15)

which is invalid. We thus obtain

α?n =
Xn + Yn + γnXn + γnσ

2
n −
√

∆n

2(Xn + γnXn)
, (16)

and with some algebra manipulations, we have

p?n =
−Xn + Yn + γnXn + γnσ

2
n +
√

∆n

2Gnn

, (17)

which completes the proof.

APPENDIX B

PROOF OF PROPOSITION 2

We first set Tn(p) = Bn(p−n) and T (p) = (Tn(p))n∈N . Then, the proof of this proposition

follows if the sufficient and necessary condition derived in Proposition 2 can guarantee that

the mapping T (p) is a contraction mapping. To this end, we define that ϕTn(p) = |Tn(p) −

Tn(p′)| and ϕn = |pn − p′n|, ∀p,p′ ≥ 0. Recall that Xn =
∑

m∈N/{n} pmGmn + δ2
n and ∆n =

(Xn − Yn + γnXn + γnσ
2
n)

2
+ 4γnYnσ

2
n, we have X ′n =

∑
m∈N/{n} p

′
mGmn + δ2

n and ∆′n =

(X ′n − Yn + γnX
′
n + γnσ

2
n)

2
+ 4γnYnσ

2
n. Then, we have

ϕTn(p) =|Tn(p)− Tn(p′)|

=

∣∣∣∣∣−Xn + γnXn +
√

∆n +X ′n − γnX ′n −
√

∆′n
2Gnn

∣∣∣∣∣
=

∣∣∣∣∣ 1

2Gnn

[
(γn − 1)(Xn −X ′n) +

∆n −∆′n√
∆n +

√
∆′n

]∣∣∣∣∣
(18)
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We can further simplify the term ∆n −∆′n in (18) as follows

∆n −∆′n =
(
Xn − Yn + γnXn + γnσ

2
n

)2 −
(
X ′n − Yn + γnX

′
n + γnσ

2
n

)2

=
[(
Xn − Yn + γnXn + γnσ

2
n

)
+
(
X ′n − Yn + γnX

′
n + γnσ

2
n

)]
×[(

Xn − Yn + γnXn + γnσ
2
n

)
−
(
X ′n − Yn + γnX

′
n + γnσ

2
n

)]
=
[(
Xn − Yn + γnXn + γnσ

2
n

)
+
(
X ′n − Yn + γnX

′
n + γnσ

2
n

)]
[(γn + 1) (Xn −X ′n)] .

(19)

Substituting (19) into (18), we have

ϕTn(p) =

∣∣∣∣Xn −X ′n
2Gnn

[γn − 1 + Zn(γn + 1)]

∣∣∣∣ , (20)

where Zn is defined as

Zn ,
(Xn − Yn + γnXn + γnσ

2
n) + (X ′n − Yn + γnX

′
n + γnσ

2
n)

√
∆n +

√
∆′n

. (21)

By realizing that
√

∆n > |Xn − Yn + γnXn + γnσ
2
n| > 0 and

√
∆′n > |X ′n − Yn + γnX

′
n + γnσ

2
n| >

0, ∀γn, En, σ2
n > 0, we have the following inequality regarding Zn

|Zn| <
|(Xn − Yn + γnXn + γnσ

2
n) + (X ′n − Yn + γnX

′
n + γnσ

2
n)|

|Xn − Yn + γnXn + γnσ2
n|+ |X ′n − Yn + γnX ′n + γnσ2

n|

≤ |Xn − Yn + γnXn + γnσ
2
n|+ |X ′n − Yn + γnX

′
n + γnσ

2
n|

|Xn − Yn + γnXn + γnσ2
n|+ |X ′n − Yn + γnX ′n + γnσ2

n|

= 1,

(22)

where the second inequality holds by following the fact that |a+ b| ≤ |a| + |b|. With |Zn| < 1

proved above, we can further simplify (20) as follows

ϕTn(p) =

∣∣∣∣Xn −X ′n
2Gnn

[γn − 1 + Zn(γn + 1)]

∣∣∣∣ < ∑
m∈N/n

∣∣∣∣Gmnγn
Gnn

∣∣∣∣ |pm − p′m| = ∑
m∈N/n

Gmnγn
Gnn

ϕm.

(23)

We now define the vectors ϕT =
[
ϕT1(p), · · · , ϕTN (p)

]T , ϕ = [ϕ1, · · · , ϕN ]T and define the

square matrix Ω ∈ RN×N as in (11).

We thus have ϕT < Ωϕ. With reference to [19], we can obtain

‖ϕT ‖w2,block = ‖T (p)− T (p′)‖w2,block < ‖Ω‖w∞,mat‖p− p′‖w2,block, (24)

where ‖x‖w2,block is the block-maximum norm of a vector x for a positive vector w [22] and

‖ · ‖w∞,mat is the induced ∞-norm for matrix [17]. Thus, if ‖Ω‖w∞,mat < 1, the NE is guaranteed
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to be unique because the mapping in (24) is a contraction. As Ω is a nonnegative matrix, we

have ‖Ω‖w∞,mat < 1⇔ ρ(Ω) < 1 [22], which is guranteed when the NE of the formulated game

exists (see Proposition 2). This completes the proof.
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