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Abstract—Voronoi-based mobile sensor deployment algorithms
require the knowledge of sensors’ location to guarantee a simple,
reliable coverage detection, and they miss the mark if the location
is inaccurate. But, in practice, it is often too expensive to include a
GPS receiver in each node, and location information is inaccurate
as sensors estimate locations from the messages they receive. We
study sensor deployment algorithms in the presence of location
estimation error, for sensors with non-identical sensing ranges.
We propose a set of Voronoi-based diagrams, named guaranteed
Voronoi diagrams, that guarantee single-cell-based coverage hole
detection algorithms, provided that upper bounds on localization
errors are assumed. Although inaccuracy of location information
would appear to deteriorate the total coverage, our simulation
results demonstrate that the proposed algorithms can exploit this
inaccuracy to improve the network coverage. Hence, even if the
location information is exactly known at each node, assuming
some error margins improves the network coverage if guaranteed
Voronoi diagrams are used.

Index Terms—Mobile sensors deployment, coverage hole, guar-
anteed Voronoi diagram, estimation error.

I. INTRODUCTION

W ITH a diverse range of applications in environmental

monitoring and surveillance, wireless sensor networks

(WSNs) are expected to revolutionize environmental sensing

and play an important role in the future society [1]–[4]. Mobile

sensor networks are advantageous to their static counterparts

as they can cope with topology changes [5]–[7]. Topological

changes are unavoidable in the applications where sensors are

deployed in an ad hoc manner and move either because of

the environment causes, such as wind and current, or because

their objective is to track a moving target [8]. Also, significant

topological changes can result simply from the malfunctioning

of some sensor nodes, e.g., due to power failure [9].

Required for fulfilling the sensing tasks, area coverage is a

key design parameter in any WSN. As such, when the network

topology changes, maintaining or increasing the total sensing
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coverage is very important because each sensor can obtain a

limited view of the environment, both in range and accuracy,

as it can only cover a limited physical area. Mobile sensors

adapt to the network topology and increase the area coverage

by moving toward the correct places.

Movement-assisted sensor deployment protocols based on

Voronoi diagrams are shown to reduce the coverage holes,

both for identical sensors [10]–[13] and non-identical sensors,

where the sensing radii of the sensors are different [14]–[16].

Voronoi-based diagrams facilitate finding the coverage holes

by dividing the field into regions such that, in each region, any

point out of the sensing disk of the corresponding sensor is

a coverage hole. This means that the point cannot be covered

by other sensors. In this method, a single-cell-based coverage

analysis is sufficient. A variant of the Voronoi diagram, known

as weighted Voronoi diagram [16], has been then proposed to

make such an analysis valid for non-identical sensors.

We study mobile sensor deployment in a network where the

prior locations of nodes are not known1, their sensing radii are

non-identical, and their location information is not accurate.

The aforementioned diagrams and corresponding deployment

algorithms are based on the assumption that the exact location

of all sensors is known at each node. In practice, however,

it is often too expensive to include a GPS receiver in each

sensor node. Instead, each sensor estimates the location of its

neighboring nodes by using a localization technique [17], [18],

or it receives the location information by communication via

noisy channels [19]. Hence, this information is not usually

exact, which is challenging because the system performance

depends on the accuracy of the sensors’ position.

In this paper, we introduce three Voronoi-based diagrams

for single-cell-based coverage holes detection in the presence

of localization error, collectively called guaranteed Voronoi

diagram. We then elaborate on how the regions shape and

construction differ from one algorithm to another.

These diagrams are next used to propose sensor deployment

algorithms that use farthest point (FP) and minmax point (MP)

[10], [20] strategies for sensor movement. The combination of

the three diagrams with the two movement strategies results

in six possible deployment algorithms. These algorithms can

be used both when the location information is accurate or

when it has a certain error, as the former is a special case

of the latter. We evaluate the performance of the algorithms

in terms of coverage, energy consumption and convergence

1For example, sensor deployment where sensor nodes are dropped from a
plane over the field [17].
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time. All algorithms are shown to largely improve the total

coverage in a few iterations. The results also indicate that the

movement strategy is more determinant than the diagram, and

the performance of the MP-based algorithms is better than that

of the FP-based algorithms in terms of total coverage area.

This is, however, achieved at the expense of more movements

(starting/braking) and larger travel distances for the sensors,

which in turn increase the energy consumption of the sensors.

Another important contribution of this paper is to show

that assuming some bounded errors on the sensors’ locations

can increase the overall network coverage, if the proposed

algorithms are used. This is attributed to the reduced overlap-

ping coverage areas, due to separating the boundaries of the

sensors’ regions via introducing error bounds. In this sense,

even if the sensors’ locations are exactly known at each node,

considering certain error margins can improve the network

coverage based on the proposed algorithms.

The paper is organized as follows. To get an understanding

of the Voronoi-based diagrams, we review them in Section II.

This sets the stage to propose guaranteed Voronoi-based

diagrams in Section III. In Section IV we study region

construction for the proposed diagrams. We use these diagrams

for sensor deployment in Section V, and we present numerical

results in Section VI. This is followed by our concluding

remarks in Section VII.

II. BACKGROUND

In mathematics, a Voronoi diagram or Voronoi partition of

a collection of points (called seeds, nodes, etc.) is a partition

of a plane into cells (polygons) such that each cell contains

exactly one node and every point in a given polygon is

closer to its generating node than to any other node. Voronoi

diagrams are popular in discovering the coverage holes in

sensor deployment algorithms [10]–[16].

Let F ⊂ R
2 be a field containing n sensors si, 1 ≤ i ≤ n,

with sensing ranges ri, ri > 0, located at planar coordinate

pi = (xi, yi). We denote this set of sensors by S = {si},
where i ∈ NS := {1, 2, . . . , n}. Throughout this paper we

assume i, j ∈ NS and i 6= j, unless otherwise stated. We use

d(a, b) or ‖ b− a ‖ to denote the Euclidean distance between

two points a and b.

Definition 1. The coverage area of a sensor (si, ri) located

at pi is a disk of radius ri centered at pi. This is called the

sensing disk, and its border the sensing circumcircle. A point

q is covered by this sensor if and only if d(q, pi) ≤ ri.

Definition 2. For a given deployment of sensors in a field F ,

the total coverage hole is defined as the collection of all points

in F that are out of the sensing circumcircles of all sensors.

A key requirement of any effective sensor deployment is to

maximize the total coverage of a desired field (F) for a given

number of sensors (n). Commonly, the field is divided into n
cells, each corresponding to one sensor, and the local coverage

of each cell is maximized separately. Described shortly in this

section, Voronoi-based diagrams are popular for this purpose.

A. Identical Sensors

Consider a set of sensors with the same sensing radii, i.e.,

ri = rj = r. A Voronoi diagram (VD) partitions the field

into n cells in a way that any point in each cell can be only

sensed by its corresponding sensor. More precisely, the region

corresponding to sensor i is defined by

ΠVD
i = {q ∈ F | d(q, pi) ≤ d(q, pj)}. (1)

Obviously, if si is not able to sense a given point q in its own

region, i.e., if d(q, pi) > ri, then other sensors are not able to

do so, either. Hence, to find the coverage holes of the field F ,

it suffices to check the coverage holes at each cell individually.

Such a single-cell-based coverage hole detection simplifies the

hole detection process and is suitable to develop distributed,

self-deployment protocols for sensor networks [10].

B. Non-Identical Sensors

The above partitioning assumes the sensing ranges of the

sensors are equal, i.e., ri = rj = r. However, in many applied

WSNs the sensors are non-identical [21], i.e., their sensing

radii are different. In such networks, the partitioning (1) is ob-

viously inefficient as a point not covered by its sensor may be

covered by a neighboring sensor. To benefit from the simplicity

of single-cell-based coverage hole detection, weighted Voronoi

diagrams are proposed in [15]. These diagrams are developed

by modifying the distance metrics with positive weights. Some

commonly-used weighted Voronoi diagrams, in the context of

WSNs, are reviewed here.

1) Multiplicatively Weighted Voronoi Diagram (MWVD):

This diagram is developed based on multiplying the distance

between points by positive weights [22]. In the context of

sensor deployment, the multiplicatively weighted distance of

a point q from the sensor (si, ri) is defined as dMW(q, si) :=
1
ri
× d(q, pi), where pi represents the position of si [23].

Using the above distance metric, the set of all points q which

are closer to si than sj , is characterized by

ΠMWVD
i = {q ∈ F |

d(q, pi)

ri
≤

d(q, pj)

rj
}. (2)

2) Additively Weighted Voronoi Diagram (AWVD): An ad-

ditively weighted distance is defined by subtracting a positive

weight from the distance between points, e.g., dAW(q, si) :=
d(q, pi)−ri [15]. With this metric, additively weighted Voronoi

diagram (AWVD) divides the field F such that

ΠAWVD
i = {q ∈ F | d(q, pi)− ri ≤ d(q, pj)− rj}. (3)

3) Power Diagram (PD): In power diagram, the power of

q with respect to a circle of radius ri centered at pi is defined

as dp(q, si) = d2(q, pi)−r2i , and the subregion corresponding

to si is characterized by [24]:

ΠPD
i = {q ∈ F | d2(q, pi)− r2i ≤ d2(q, pj)− r2j}. (4)

Remark 1. From (2)–(4), it is easy to see that when ri = rj
for all i, j ∈ NS , the above weighted Voronoi diagrams reduce

to the Voronoi diagram in (1).

A fundamental property of the above weighted diagrams is

that if a point in Πi is not covered by si it cannot be covered
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by any other sensor implying that the coverage holes can be

found based on a single-cell-based search. This is because

Proposition 1. In all of the above weighted Voronoi diagrams,

for any q ∈ Πi, d(q, pi) > ri ⇒ d(q, pj) > rj .

Proposition 1 is valid only if the perfect locations of each

sensor and its neighbors are known; otherwise, the diagrams

defined by (1)–(4) cannot guarantee a single-cell-based cover-

age hole detection.

Localization, i.e., determining the location of sensors, is one

of the central problems of real-world WSNs and is required

for the completion of many basic tasks, including packet

routing and coverage detection. In practice, the locations of

sensors are not perfectly known, as they are either estimated by

using a localization technique or received via a noisy channel.

But, if the users are not able to obtain the accurate location

information, related applications, e.g., coverage hole detection,

cannot be accomplished. This motivates the investigation of

reliable and simple coverage analysis methods.

III. GUARANTEED VORONOI-BASED DIAGRAMS

In this section, by modifying the existing Voronoi diagrams,

we propose new diagrams that guarantee a single-cell-based

coverage analysis. We study a WSN in which the locations of

sensors are estimated at different nodes and thus are subject

to errors. Our objective is to find n cells, each corresponding

to one of the sensors, such that it is guaranteed that if a point

inside a cell is not sensed by its corresponding sensor, no other

sensor can sense it either.

A. Regions’ Characteristics

Suppose that measurement errors are upper bounded and

these bounds are known at each sensor. More precisely, let pi
(the exact location of si) be within a disk of radius ǫij , ǫij ≥ 0,

centered at pij , where pij is the measured location of si at

sensor j. Hence, d(q, pij) − ǫij ≤ d(q, pi) ≤ d(q, pij) + ǫij ;

i.e., ǫij denotes the maximum error in the estimation of the

location of si at sj . Similarly, suppose si measures its own

location (pii) with some errors bounded by ǫii.
Since pij is the estimated position of si at sj , then the exact

location of si is somewhere within a disk of radius ǫij centered

at pij . Hence, in general, for an arbitrary distance function f ,

the set of all points q ∈ F surely closer to si than to sj is

characterized by

max
q1∈C(pii,ǫii)

f(q, q1, ri) ≤ min
q2∈C(pji,ǫji)

f(q, q2, rj), (5)

where C(a, r) denotes a circle of radius r centered at a.

For example, for the additively weighted distance where

f(q, q1, ri) , d(q, q1)− ri, (5) reduces to

max
q1∈C(pii,ǫii)

d(q, q1)− ri ≤ min
q2∈C(pji,ǫji)

d(q, q2)− rj . (6)

Next, since the maximum possible distance between q and a

point in C(pii, ǫii) is d(q, pii)+ ǫii and the minimum distance

between q and a point in C(pji, ǫji) is d(q, pji) − ǫji, we

design the cell borders based on these worst case scenario.

That is, we use d(q, pii) + ǫii and d(q, pij)− ǫij , rather than

d(q, pi) and d(q, pj) when finding the cell borders. Then, for

any q ∈ F , the region characterized by (6) can be shown by

d(q, pii) + ǫii − ri ≤ d(q, pji)− ǫji − rj . (7)

This means that, at the worst case where sensor si is shifted

ǫii away from point q in its region and the neighboring sensors

have moved toward q by ǫij , si is still closer to q than any sj .

Using such a modified diagram, a single-cell-based search is

guaranteed, even with estimation error. Then, the mathematical

characterization of the ith region for different diagrams can be

modified as below:

1) Guaranteed MWVD (GMWVD):

ΠGMWVD
i = {q ∈ F |

d(q, pii) + ǫii
ri

≤
d(q, pij)− ǫij

rj
}.

(8)

A special case of this approach, in which ǫii = 0 has recently

been studied in [19].

2) Guaranteed AWVD (GAWVD):

ΠGAWVD
i = {q ∈ F | d(q, pi)−ri+ ǫii ≤ d(q, pj)−rj− ǫij}.

(9)

3) Guaranteed Power Diagram (GPD):

ΠGPD
i = {q ∈ F | [d(q, pii)+ǫii]

2−r2i ≤ [d(q, pij)−ǫij ]
2−r2j}.

(10)

Remark 2. One special case of the above diagrams is the case

with ǫii = 0, or pii = pi. This is practically important, e.g.,

in GPS-equipped sensors [18] and can be studied per se, too.

B. Regions’ Properties

It is now easy to see that Proposition 1 is valid for any of

the above guaranteed regions. In addition, we have

Proposition 2. The regions defined by (8)–(10) are disjoint.

Proof: On the one hand, one can straightforwardly verify

that ΠGMWVD
i ⊆ ΠMWVD

i , ΠGAWVD
i ⊆ ΠMAVD

i and ΠGPD
i ⊆

ΠPD
i . For example, from (8) we obtain

d(q,pi)
ri

≤ d(q,pj)
rj

−
ǫii
ri
− ǫij

rj
which implies

d(q,pi)
ri

≤ d(q,pj)
rj

in (2), and proves

ΠGMWVD
i ⊆ ΠMWVD

i . On the other hand, since the regions

corresponding to the MWVD, AWVD and PD, defined by (2)–

(4), are mutually disjoint, their subsets are disjoint too.

It should be noted that the regions generated by (8)–(10) do

not partition the field. That is, there are neutral areas which do

not belong to any of the guaranteed regions. Mathematically,
⋃n

i=1 Πi 6= F for the GMWVD, GAWVD and GPD. However,

the total neutral area is not comparable to the assigned area,

if ǫij is relatively small for any i, j ∈ NS . More importantly,

the neutral areas are not necessarily coverage holes; they might

be covered with one or more sensors. Examples of the above-

mentioned guaranteed diagrams are shown in Fig. 1

IV. SHAPE OF THE REGIONS

A. With Perfect Location Information

To determine to which cell a given point belongs to, it is

important to find the borders between cells in Voronoi-based

diagrams. To find the locus of points which are on the cell
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Fig. 1. Guaranteed diagrams for a field containing three sensors with different sensing radii and imperfect location information. The dark blue regions show the
areas which are not assigned to any sensor, implying that a single-cell-based coverage hole detection is not applicable to them. (a) Guaranteed multiplicatively
weighted Voronoi diagram (GMWVD). (b) Guaranteed additively weighted Voronoi diagram (GAWVD). (c) Guaranteed power diagram (GPD).

borders of different diagrams represented by (1)–(4), the “≤”

needs to be satisfied with “equality” in those regions. Then, for

a VD in (1) we get d(q, pi) = d(q, pj) which implies q to be

on the perpendicular bisector of the segment connecting pi to

pj ; i.e., the locus is a line. Next, on the borders of the MWVD

we have
d(q,pi)

ri
=

d(q,pj)
rj

, or equivalently,
d(q,pi)
d(q,pj)

= ri
rj

, α,

and we have

Proposition 3. The border between si and sj in the MWVD

is an arc of an Apollonian circle of radius R =
αd(pi,pj)
(1−α2) .

Proof: See Section VIII-A.

This is visualized in Fig. 2, where A and B represent the

locations of si and sj and α = ri/rj < 1 is a constant.

The locus of all points E such that EA/EB = α is a circle

of radius R = α
1−α2 d(A,B). In addition, the center of this

circle is on the extension of line segment AB such that OA =
α2

1−α2 d(A,B) and OB = d(A,B)
1−α2 . These can be verified based

on the coordinate of the O, which is (xA−α2xB

1−α2 , yA−α2yB

1−α2 )
from the proof given in Section VIII-A.

Similarly, for the AWVD it can be seen that

Proposition 4. The borders of regions in the AWVD are

composed of arcs of different hyperbolas.

Proof: From (3), the points satisfying the distance metric

of the AWVD with equality result in d(q, pi) − d(q, pj) =
ri − rj , β, where β is a constant. On the other hand, from

analytical geometry we know that hyperbola is defined as the

locus of points such that the absolute value of the difference of

their distances from two fixed points is a constant. Hence, the

border between si and sj , located in A and B, respectively,

in the AWVD is an arc of a hyperbola which intersects the

segment AB in a point like T such that AT = d(A,B)+β

2 and

BT = d(A,B)−β

2 (see Fig. 3).

Proposition 5. The border between si and sj in the PD is a

line.

Proof: Consider a constant α and two points A and B in

a 2D plane. It can be easily shown that the locus of any point

E such that d2(A,E)− d2(B,E) = α is a line perpendicular

E

A

O

B

Fig. 2. Apollonian circle centered at O. A and B are the locations of si
and sj .

T B A 

Fig. 3. A representation of the border between sensors in the AWVD, where
si and sj are located in A and B, respectively.

to segment AB which intersects it in H such that AH =
d2(A,B)−α

2d(A,B) and BH = d2(A,B)−α

2d(A,B) (see Fig. 4). Hence, the

border between si and sj in the PD is a line perpendicular to

the segment connecting si to sj [25], [26].

Table I summarizes the main points of the above proposi-

tions.

When location information is perfect, the power diagram

is preferred to the other weighted Voronoi diagrams from

the region construction point of view, because computing the

cell boundaries and constructing the regions is simpler. This

is particularly important in the sensor networks context as

a less computationally complex algorithm implies a better

energy efficiency. However, when estimation error comes in,

this argument is not valid.

B. With Location Estimation Error

The main advantage of the GAWVD to the GMWVD and

GPD is the fact that the borders of the region for each sensor

can be determined analytically; in fact, similar to the AWVD

diagram, these borders are hyperbolic arcs, except that the

constant β , ri − rj is replaced with β − ǫii − ǫji, as from
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H A B 

E 

Fig. 4. A representation of the border between sensors in the PD. A and B
are the locations of si and sj , respectively.

TABLE I
TYPES OF VORONOI DIAGRAMS AND THEIR BORDERS

Diagram Type Distance from si Borders

VD ‖ x− pi ‖ line

AWVD ‖ x− pi ‖ −ri hyperbolic arc

MWVD
‖x−pi‖

ri
circular arc

PD ‖ x− pi ‖
2 −r2i line

(9) we obtain d(q, pii) − d(q, pji) = ri − rj − ǫii − ǫji.
In contrast, the characteristics of the regions defined by the

GMWVD and GPD are different from that of the MWVD and

PD. Moreover, it is not easy to find the borders of regions

in the GMWVD and GPD. For instance, (8) does not result

in a constant
d(q,pii)
d(q,pij)

; hence, unlike (2), the locus is not an

Apollonian circle. Likewise, the regions shape is not known

for (10), while in GAWVD the regions have the same shape

as AWVD.

There are many different algorithms for constructing various

types of Voronoi diagrams, but in all of them it is required to

find the boundaries of the Voronoi regions [26]. Since energy

consumption is a major concern in any WSN, it is important

to keep this process as simple as possible and the GAWVD

seems to be a better option in this sense, as it will require less

message exchange for region construction.

V. DEPLOYMENT PROTOCOLS

In this part different deployment protocols are developed for

a network of mobile sensors with non-identical sensing ranges

subject to inaccurate locations information. To this end, we use

existing movement strategies, e.g., farthest point method [16],

and apply them to the proposed guaranteed diagrams.

A. Deployment Algorithm Details

The proposed deployment algorithms are iterative, and in

each iteration the following steps are carried out:

i) All sensors broadcast their sensing radii and positions. Thus,

based on the received information, every sensor constructs its

own region, given a guaranteed diagram.

ii) Every sensor detects coverage holes in its own region in a

distributed manner (i.e., independently).

iii) After discovering the coverage holes, by using a spe-

cific movement algorithm (which will be discussed in sub-

section V-B), the corresponding sensor calculates its new

candidate location.

Algorithm 1 Deployment Algorithm for the FPGAW algo-

rithm

k ← 0, iterations← 0, D ← 1
while D = 1 and iterations < Imax do

for i = 1 to n do

• construct Πi according to (9) and set Πk
i ← Πi

• find πk
i (the area of the ith region that is covered by

si)

end for

• iterations← iterations+ 1
• k ← k + 1
• C ← 0

for i = 1 to n do

• calculate a new location (pki ) for si, based on the

FPGAW movement strategy

• evaluate πk
i based on the new location for the current

region (Πk−1
i )

if πk
i > πk−1

i + δ then

move si to pki
C ← C + 1

end if

end for

if C = 0 then

D = 0
end if

end while

iv) Once the new location is calculated, the corresponding cov-

erage area is evaluated (based on the previously-constructed

region) and compared to the current coverage area. The sensor

moves to the new location only if the resulting coverage area

is greater than the present value; otherwise, it does not move

in this iteration.

v) To have a termination criterion for the algorithm, a proper

threshold δ is defined; the algorithm is terminated if no

sensor can improve its coverage area by this threshold or a

predefined number of iterations (Imax) has been completed. δ
and Imax are chosen based on which of the coverage, energy

consumption or convergence time is the main concern. For

example, when the convergence time or energy consumption is

the main concern the operator choose a relatively small Imax

and relatively large δ in the beginning. On the other hand,

when the coverage is the most important concern, a relatively

large Imax and small threshold δ are chosen by the operator

such that the covered area increases as much as possible.

The deployment algorithms are iterative and in each iter-

ation it is tried to improve the total coverage, at least as

much as a threshold δ > 0. The algorithm is stopped if

no improvement is possible or a certain number of iterations

(Imax) has passed. Algorithm 1 briefly describes the FPGAW

method. The deployment algorithm for the other algorithms

(i.e., the FPGMW, MPGP, etc.) is exactly the same, except

that the movement algorithm changes accordingly.
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Fig. 5. Snapshots for the positions of 36 sensors with three different sensing radii, as given in Table II, at a 50m× 50m field under MPGP algorithm. (a)
the initial coverage (b) coverage after one iteration (c) coverage after five iterations

B. Movement Strategies

In this subsection, we describe the movement strategies

applied for sensor deployment in this paper. Remember that a

movement strategy is required in step iii of the above iterative

algorithm to find a new candidate point (position) for each

sensor. We use the following movement strategies in our work.

1) Farthest Point (FP) Strategy: The main idea behind this

strategy is to move every sensor to the farthest point in its

region such that the area of coverage hole is decreased. If the

sensor si detects a coverage hole in its corresponding region,

it calculates the farthest point in that region, and moves toward

it until this point is covered.

2) Minmax Point (MP) Strategy: There are certain network

topologies and sensor configurations for which the FP strategy

is not very effective. Examples of such regions are shown

in [27], in which usually the angle is narrow, and thus if the

sensor moves there the local coverage (i.e., coverage in the

cell) decreases. Under such a situation, the algorithm forces

the sensor to remain in its previous location while it was

still possible to improve the local coverage if the sensor was

properly placed in the region.

The minmax point (MP) strategy is proposed in the sequel

to address this shortcoming of the FP strategy. The main

idea behind the MP strategy is that to achieve maximum

coverage, no sensor should be too far from any point in its

corresponding region. The MP strategy considers the candidate

position for each sensor as a location inside the corresponding

region whose distance from the farthest point of the region is

minimum. This may yield a better coverage compared to the

one obtained by using the FP technique.

The above movement strategies can be used in combination

with the diagrams we introduced in Section III. Specifically,

the following deployment algorithms are possible if the FP

strategy is used for movement (step iii of the above iterative

algorithm).

• Farthest point based GMWVD (FPGMW)

• Farthest point based GAWVD (FPGAW)

• Farthest point based GPVD (FPGP)

Similarly, one can use the MP movement strategy in each

of the diagrams to get MPGMW, MPGAW and MPGP de-

ployment algorithms. We compare the performance of these

TABLE II
THE NUMBER OF SENSORS WITH DIFFERENT RADII FOR EACH n.

r = 6m r = 6.5m r = 7m

n = 18 10 6 2

n = 27 15 9 3

n = 36 20 12 4

n = 45 25 15 5

algorithms for various number of sensors in the next section.

Remark 3. It is worth mentioning that the computational

complexity for calculating the new location of the i-th sensor

in the farthest point and minmax point strategies is of order

O(mi) and O(m4
i ), respectively, where mi is the number of

boundary curves of the i-th region [28], [16]. Since typically

a guaranteed Voronoi-based region does not have ”too many”

boundary curves, the computational complexity of the pro-

posed strategies is usually not very high.

VI. SIMULATION RESULTS

We evaluate the performance of the proposed algorithms

by performing simulations for a different number of sensors

in a 50m × 50m field. The results presented in this section

are obtained by using 20 random initial arrangements for the

sensors. The coverage improvement threshold δ is set to be

0.1m2, meaning that if the local coverage (i.e., coverage in

a cell) improvement by all sensors is less than 0.1m2, the

algorithm stops. There are three types of sensors with sensing

radii equal to 6m, 6.5m and 7m. The value of ǫii is set to be 0,

i.e., we assume each sensor knows its exact location, whereas

ǫij = 0.1m for all nodes. We run simulations for four different

number of sensors, namely, n = 18, 27, 36, 45. Table II shows

the number of sensors from each type for different n. For

each setting, we carry out simulation for different algorithms

which are the FPGAW, FPGMW, FPGP, MPGAW, MPGMW,

and MPGP. Note that, the parameters used in this section are

within the ranges used in the literature [10], [29]–[32], and

they are also consistent with sensor prototypes such as Smart

Dust (UC Berkeley), CTOS dust, and Wins (Rockwell) [33].
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Fig. 6. Network coverage using different algorithms at various iterations: (a) for 18 sensors (b) for 36 sensors.

A. Coverage

Total sensing coverage of the field, after a certain number

of iterations, is the first parameter we are interested in. Fig. 6

shows the coverage factor of the sensor network (defined as the

ratio of the covered area to the total area) for each algorithm

at various iterations when 18 and 36 sensors are deployed.

It can be seen that the coverage is sharply increasing for the

first few iterations and after several iterations the coverage

remains almost constant. For example, the coverage goes from

less than 80% up to more than 96% just in five iterations,

for all MP-based algorithms in Fig. 6(b). The coverage plots

for n = 27, 45 are not included due to the space limit and

similarity of their behavior to the cases in Fig. 6. Obviously,

the sensing coverage depends on the number of sensors and

it increases when n goes up. To visualize this, in Fig. 7 we

plot the initial and final coverage factor versus the number of

sensors for each of the proposed deployment algorithms.
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Fig. 7. Initial and final coverage versus the number of sensors for different
algorithms. The FP- and MP-based algorithms make two separate clusters.

Overall, the coverage provided by the MP-based algorithms

is larger than that of the FP-based algorithms. This is, however,

achieved at the expense of a larger number of movements,

more travel distances, and longer time (more iterations), as

represented in Fig. 8(a) to Fig. 8(c), respectively. Figure 8(a)

indicates that the average moving distance per sensor, required

to cover the field, decreases as the number of sensors increases.

This makes sense as the higher the number of sensors, the

better the initial coverage and thus fewer movements are

needed to improve the coverage. It is worth mentioning that

finding the minimum number of sensors to reach a 100%

coverage for a network of nonidentical mobile sensors is an

open problem even when the exact locations of sensors are

known and there is no measurement error.

B. Energy Consumption

The three parameters evaluated in Fig. 8 are key indicators

of energy consumption in sensor deployment [27]. According

to [34], [35], each mobile sensor node consumes 8.268J energy

to travel one meter non-stop. In addition, each starting/braking

consumes energy which varies in different systems [10].2

Based on the above examples, we consider two cases: in the

first case the required energy for a sensor to restart is equal

to the amount of energy it consumes to travel 1m, and in

the second case it is equal to energy consumption for 4m

movement [10], [33]. Tables III and IV represent the energy

consumption corresponding to each algorithm at those two

scenarios.

In general, the difference in the performance of the MP-

based algorithms is not too much compare to the differ-

2Apart from the movement and restarting, there is also another cause
for energy consumption. This is message passing required to figure out the
neighboring sensors and make the movement decision. We neglect this as it
is very small compared to the energy require for movements [10].

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TVT.2016.2537403

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



8

18 27 36 45
0.5

1

1.5

2

2.5

3

Number of sensors

N
u

m
b

e
r 

o
f 

m
o

v
e

m
e

n
ts

 

 

FPGAW

MPGAW

FPGMW

MPGMW

FPGP

MPGP

(a)

18 27 36 45
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Number of sensors

A
v
e

ra
g

e
 m

o
v
in

g
 d

is
ta

n
c
e

 (
m

)

 

 

FPGAW

MPGAW

FPGMW

MPGMW

FPGP

MPGP

(b)

18 27 36 45
6

7

8

9

10

11

12

Number of sensors

S
to

p
p
in

g
 r

o
u
n
d

 

 

FPGAW

MPGAW

FPGMW

MPGMW

FPGP

MPGP

(c)

Fig. 8. Movement related graphs for the proposed algorithms with different number of sensors: (a) number of movements, (b) average travel distance per
sensor, and (c) average number of iterations, required to reach the termination condition.

TABLE III
THE ENERGY CONSUMPTION IN JOULE IN THE FIRST CASE.

Algorithm n = 18 n = 27 n = 36 n = 45

MPGAW 65.1927 60.3690 35.3093 20.7924

MPGMW 66.9240 58.8187 34.0968 20.0077

MPGP 66.2859 59.4573 35.4912 21.0696

FPGAW 45.8470 39.5863 27.3415 15.6598

FPGMW 45.0402 39.8145 27.1246 16.1306

FPGP 48.2261 40.3440 27.3778 15.6896

TABLE IV
THE ENERGY CONSUMPTION IN JOULE IN THE SECOND CASE.

Algorithm n = 18 n = 27 n = 36 n = 45

MPGAW 132.5080 133.4489 74.7545 43.1435

MPGMW 137.2020 129.2804 71.5784 41.1187

MPGP 134.0835 130.8377 75.0743 43.6963

FPGAW 81.6061 87.6326 64.1685 37.5976

FPGMW 83.0060 89.6063 63.9172 38.5369

FPGP 86.4656 89.1711 64.2738 37.5723

ence between one MP-based algorithm and one FP-based

algorithm, in terms of coverage, average moving distance,

average number of movements to achieve a certain level of

coverage or after a certain number of iterations, and the energy

required for that. A similar pattern is observed for the FP-

based algorithms. In other words, although the structures of

TABLE V
THE RATIO OF QUALITY AGAINST PRICE FOR THE FIRST SCENARIO.

Algorithm n = 18 n = 27 n = 36 n = 45

MPGAW 1.6111 1.4166 1.9132 2.6302

MPGMW 1.5716 1.4518 1.9774 2.7256

MPGP 1.5901 1.4363 1.9031 2.5954

FPGAW 2.1814 2.0590 2.4109 3.4146

FPGMW 2.2510 2.0448 2.4241 3.3287

FPGP 2.0958 2.0230 2.4001 3.4135

TABLE VI
THE RATIO OF QUALITY AGAINST PRICE FOR THE SECOND SCENARIO.

Algorithm n = 18 n = 27 n = 36 n = 45

MPGAW 0.7926 0.6408 0.9037 1.2676

MPGMW 0.7666 0.6605 0.9420 1.3263

MPGP 0.7861 0.6527 0.8997 1.2514

FPGAW 1.2255 0.9301 1.0272 1.4222

FPGMW 1.2214 0.9086 1.0287 1.3933

FPGP 1.1689 0.9153 1.0223 1.4254

cells in the GAWVD, GMWVD and GPD are different, this

does not have much effect on the performance of the sensor

deployment algorithms. In contrast, the movement strategy, i.e.

the FP or MP, is more determinant, as for a given diagram (e.g.,
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the GPD), the performance of the deployment algorithms, in

various senses, is noticeably different for the MP and FP, as

it is evident from Figs. 6–8 and Tables III-IV.

By considering the coverage and energy consumption as

quality and price of the algorithms, respectively, one can define

the ratio of quality to price as a new parameter for comparing

the performance of the proposed algorithms. More precisely,

this parameter is defined as the (coverage factor × area of

the field) over (energy consumption of each sensor × number

of sensors). Tables V and VI present the above-mentioned

parameter for each algorithm in both scenarios.

C. Convergence time

It is also instructive to look at the number of iterations

required to terminate each algorithm. This is shown in Fig. 8(c)

in which, except for n = 18, the number of iterations required

to reach a steady state (i.e., to terminate the algorithm since

there is not more improvement) decreases as the number of

sensors goes up. This makes sense, as with higher number

of sensors, initial coverage is high and it takes less time

(iterations) to reach the steady state. In addition, when there

are larger numbers of sensors in the field, the guaranteed

Voronoi-based regions are smaller and hence the chance that

each sensor covers its region is higher, which implies that the

termination condition will be satisfied in a shorter period of

time. However, when the number of sensors is very small to

cover the field, the average number of movements and the

number of iterations become smaller, possibly because initial

distribution of sensors is such that they do not overlap much,

and thus do not require many movement to get to the final

(optimum) distribution. To better understand this, consider the

extreme case where there is only one sensor in the field. Then,

it is clear that if the sensing area of the sensor is completely

inside the filed, the coverage cannot be improved anymore

and thus the sensor does not need any movement; further, the

number of iterations in the deployment algorithm will be 0. If

the sensing area of the sensor is partially out of the field, the

system can reach its best performance just in one movement

and at the first iteration. In light of Fig. 8(c), and Fig. 8(a), it

can be concluded that 18 sensors are not enough to effectively

cover the field.

D. Magnitude of Error Bound

Finally, we investigate the effect of the magnitude of error

on the coverage performance. Table VII presents the coverage

results for the FPGMW algorithm. Interestingly, the system

performance can improve if the error bound is increased to

a certain extent, depending on the number of sensors in the

field. For example, from Table VII one can see that for n = 18
if ǫij goes from 0 up to 0.75m, the coverage increases. For

this specific case, the best result is achieved for ǫij = 0.75m

which is relatively high when compared with the sensors radii.

When the number of sensors increases the best performance

is attained for smaller error magnitudes, e.g., 0.1m for n =
36, 45. However, for any n the performance with some mild

errors is better than that for the based on the exact information

where ǫij = 0 and ǫii = 0. Similar behavior is seen for the

other algorithms. Specifically, Table IV in [36] reports such

results for the FPGAW.

The key to better understand the effect of the magnitude of

the error bounds in the above results, is the fact that assuming a

non-zero error bound for some sensor’s location (i.e., ǫij 6= 0)

our algorithms do not partition the filed, meaning that, there

remain regions in the field that are not assigned to any of the

sensors, as shown in dark blue in Fig. 1. This, however, does

not imply that such regions will not be covered, necessarily.

It means that, compared to the case where there was no error

bound (i.e., ǫij = 0), the sensors will target a smaller region to

cover, and thus they are more likely to cover this region, and

satisfy the algorithm termination criterion, in fewer iterations.

With this in mind, one can see that if the bounds are very big,

the sensors’ regions shrink largely so that they can easily cover

this small region without covering the region corresponding

to ǫij = 0) to a good extent. Under such circumstances, one

can expect the proposed algorithms perform poorly, and the

total coverage be less than the case with no error. Simulation

results confirm this, as for any n the coverage corresponding to

ǫij = 1.5m is smaller than that of the first column (ǫij = 0), in

Table VII. When the magnitude of the error bound is relatively

small,3 the sensors have bigger regions and higher degrees

of freedom to move, and can be placed in a better position

such that maximize the local coverage. In the extreme case of

ǫij = 0, although the regions are the largest (they partition the

field), the sensors are more prone to cover the same area too.

That is, even though the individual coverage can be more than

the case with ǫij 6= 0, the overall coverage could be less due to

the possible overlaps between the sensor’s covered areas. For

example, in the case of the farthest point based algorithms, if

the farthest point of two neighboring sensors is the same point,

they both move toward that point and this increases the chance

that the area around that point be covered by both sensors. An

error bound, however, creates a neutral region between the

sensors (see Fig. 1), eliminating the common boundaries. So,

even if two sensors move toward each other the area of the

overlapped region would be smaller. Therefore, in general, we

expect to have smaller overlapped regions throughout the field.

In view of the above results and the intuition we provided,

even when the locations of the sensors are exactly known at

each node, it makes sense to assume some bounded errors

for them and exploit the proposed guaranteed Voronoi-based

diagrams to improve the system performance. The magnitude

of the optimal bound depends on other parameters such as

the density of sensors in the field and their sensing radii,

and it decreases as the number of sensors goes up. Note that,

although the system performance improves by considering a

certain amount of error, this improvement is at the cost of

more complexity in computation of the sensors’ regions.

VII. CONCLUSIONS

We have developed three Voronoi-based diagrams to in-

crease the sensing coverage of mobile sensor networks with

3This comparison is with respect to the area assigned to the sensors. So for
a given field, when n increases the regions assigned to the sensors becomes
smaller, on average, and the error bounds should be smaller too.
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TABLE VII
THE FINAL COVERAGE PERCENTAGE FOR DIFFERENT MEASUREMENT ERRORS BASED ON THE FPGMW ALGORITHM WITH ǫii = 0.1m.

ǫij = 0 ǫij = 0.1m ǫij = 0.25m ǫij = 0.5m ǫij = 0.75m ǫij = 1m ǫij = 1.5m

n = 18 72.61% 72.12% 72.03% 73.13% 73.30% 73.06% 72.14%

n = 27 89.30% 89.79% 90.02% 89.11% 88.42% 87.40% 85.88%

n = 36 97.16% 97.26% 96.85% 96.10% 95.03% 94.07% 92.37%

n = 45 97.84% 97.92% 97.91% 97.3% 96.82% 96.23% 94.36%

non-identical sensing radii, in the presence of location estima-

tion errors. In all of these algorithms, the search for coverage

holes is performed independently in each cell, to keep the

complexity of the algorithms low. We have then used two

movement strategies, namely, the farthest point and minmax

point, within the cells developed by the proposed diagrams to

relocate the sensors in order to increase the networks sensing

coverage. Numerical results show the effectiveness of the

proposed diagrams and deployment algorithms in increasing

the network’s coverage in the presence of localization error.

By assuming some error bounds for the location information,

the boundaries of the sensors regions are separated to reduce

the area of overlapping coverage regions, and thus to increase

the total coverage when compared to the case where the exact

location information is applied.

VIII. APPENDIX

A. Proof of Proposition 3

Proof: Let α ,
|d(q,pi)|
|d(q,pj)|

. First, suppose α 6= 1. We can

write

|d(q, pi)| = α|d(q, pj)| (11)

⇔d2(q, pi) = α2d2(q, pj)

⇔(x− xpi
)2 + (y − ypi

)2 = α2
[

(x− xpj
)2 + (y − ypj

)2
]

⇔

(

x−
xpi
− α2xpj

1− α2

)2

+

(

y −
ypi
− α2ypj

1− α2

)2

= R2,

R = α
1−α2

√

(xpi
− xpj

)2 + (ypi
− ypj

)2 = α
1−α2 d(pi, pj). In

this proof, the first two steps are obvious by inspection. The

last step follows simple, but a bit cumbersome, algebra. For

α = 1, which implies ri = rj , the MWVD simplifies to the

VD and we know that the locus is a line (the perpendicular

bisector of the segment connecting pi to pj).
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