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Abstract—The problem of modulation classification for a
multiple-antenna (MIMO) system employing orthogonal fre-
quency division multiplexing (OFDM) is investigated under
the assumption of unknown frequency-selective fading channels
and signal-to-noise ratio (SNR). The classification problem is
formulated as a Bayesian inference task, and solutions are
proposed based on Gibbs sampling and mean field variational
inference. The proposed methods rely on a selection of the
prior distributions that adopts a latent Dirichlet model for
the modulation type and on the Bayesian network formalism.
The Gibbs sampling method converges to the optimal Bayesian
solution and, using numerical results, its accuracy is seen to
improve for small sample sizes when switching to the mean field
variational inference technique after a number of iterations. The
speed of convergence is shown to improve via annealing and
random restarts. While most of the literature on modulation
classification assume that the channels are flat fading, that the
number of receive antennas is no less than that of transmit
antennas, and that a large number of observed data symbols
are available, the proposed methods perform well under more
general conditions. Finally, the proposed Bayesian methods are
demonstrated to improve over existing non-Bayesian approaches
based on independent component analysis and on prior Bayesian
methods based on the ‘superconstellation’ method.

Index Terms—Bayesian inference; Modulation classification;
MIMO-OFDM; Gibbs sampling; Mean field variational infer-
ence; Latent Dirichlet model.

I. INTRODUCTION

Cognitive radio is a wireless communication technology
that addresses the inefficiency of the radio resource usage
via computational intelligence [1], [2]. Cognitive radios have
both civilian and military applications [3]. A major task in
such radios is the classification of the modulation format of
unknown received signals. As the pairing of multiple-antenna
(MIMO) transmission and orthogonal frequency division mul-
tiplexing (OFDM) data modulation has become central to
fourth generation (4G) and fifth generation (5G) wireless
technologies, a need has arisen for the development of new
classification algorithms capable of handling MIMO-OFDM
signals.

Modulation classification methods are generally classi-
fied as inference-based or pattern recognition-based [3]. The

Copyright (c) 2015 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

Y. Liu, O. Simeone and A. M. Haimovich are with the Center for
Wireless Communications and Signal Processing Research (CWCSPR), ECE
Department, New Jersey Institute of Technology (NJIT), Newark, NJ 07102,
USA (email: {yl227, osvaldo.simeone, haimovic}@njit.edu).

W. Su is with the U.S. Army Communication-Electronics Research De-
velopment and Engineering Center, I2WD, Aberdeen Proving Ground, MD
21005, USA (email: wei.su@ieee.org).

DISTRIBUTION STATEMENT A: Approved for public release, distribu-
tion is unlimited

inference-based approaches fall into two categories, namely
Bayesian and non-Bayesian methods [4]. Bayesian methods
model unknown parameters as random variables with some
prior distributions, and aim to evaluate the posterior probability
of the modulation type. Non-Bayesian methods, instead, model
unknown parameters as nuisance variables that need to be
estimated before performing modulation classification. With
pattern recognition-based methods, specific features are ex-
tracted from the received signal and then used to discriminate
among the candidate modulations. Compared to the pattern
recognition-based approaches, inference-based methods gen-
erally achieve better classification performance at the cost of
a higher computational complexity [3].

There is ample literature on classification algorithms for
single-antenna (SISO) systems [3], [5]-[20]. Among them, a
Bayesian method using Gibbs sampling is proposed in [19].
In [20], a systematic Bayesian solution based on the latent
Dirichlet Bayesian Network (BN) is proposed, which general-
izes and improves upon the work in [19]. A preprocessor for
modulation classification is developed in [21], whereby the
timing offset is estimated using grid-based Gibbs sampling1.
We note that, while most algorithms rely on the assumption
that the channels are flat fading or additive white Gaussian
noise channels, the approaches in [19]-[21] are well-suited also
for frequency selective fading channels.

Only few publications address modulation classification in
MIMO systems [22]-[26]. The task of modulation classifica-
tion for MIMO is more challenging than for SISO due to the
mutual interference between the received signals and to the
multiplicity of unknown channels. In [22], a non-Bayesian ap-
proach, referred to as independent component analysis (ICA)-
phase correction (PC), is proposed, where the channel matrix
required for the calculation of the hypotheses test is estimated
blindly by ICA [27]. Several related pattern recognition-
based algorithms are introduced in [23]-[25], where source
streams are separated by ICA-PC or a constant modulus
algorithm, and diverse higher-order signal statistics are used
as discriminating features. Moreover, a pattern recognition-
based algorithm using spatial and temporal correlation func-
tions as distinctive features is reported in [26] for MIMO
frequency-selective channels with time-domain transmission.
The approach is not applicable to modulation classification
for MIMO-OFDM systems. As for MIMO-OFDM systems, a
non-Bayesian approach is proposed in [28] based on ICA-PC
and an assumed invariance of the frequency-domain channels

1In grid-based Gibbs sampling, a grid of points is first selected within the
domain of a variable x to be sampled. Then the conditional probability density
function (normalized or non-normalized) of variable x is computed at each
selected point, which is used for sampling x.
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across the coherence bandwidth. It is finally noted that the
results in this paper were partially presented in [29].

Main Contributions: In this work, we develop Bayesian
modulation classification techniques for MIMO-OFDM sys-
tems operating over frequency-selective fading channels, as-
suming unknown channels and signal-to-noise ratio (SNR).
Our main contributions are as follows.

1) A modulation classification technique is proposed based
on Gibbs sampling for MIMO-OFDM systems. Inspired
by the latent Dirichlet models in machine learning [30],
this approach leverages a novel selection of the prior
distributions for the unknown variables, the modulation
format and the transmitted symbols. This selection was
first adopted by some of the authors in [20] for SISO sys-
tems. As compared to SISO systems, a Gibbs sampling
implementation such as in [20] may have an impracti-
cally slow convergence due to the high-dimensional and
multimodal distributions in MIMO systems. The strategy
of annealing [31]-[33] combined with multiple random
restarts [34]-[37] is hence proposed here to improve the
convergence speed.

2) An alternative Bayesian solution for modulation classi-
fication in MIMO-OFDM systems that leverages mean
field variational inference [38] is proposed, based on the
same latent Dirichlet prior selection.

3) A hybrid approach that switches from Gibbs sampling to
mean field variational inference is proposed for modula-
tion classification in MIMO-OFDM systems. The hybrid
approach is motivated by the fact that the Gibbs sampler
is superior to mean field as a method for exploring the
global solution space, while the mean field algorithm
has better convergence speed in the vicinity of a local
optima [38]-[40].

4) Extensive numerical results demonstrate that the pro-
posed Gibbs sampling method converges to an effective
solution, and its accuracy improves for small sample
sizes when switching to the mean field variational in-
ference technique after a number of iterations. More-
over, the speed of convergence is seen to be generally
improved by multiple random restarts and annealing
[31]-[37]. Overall, while most of the reviewed existing
modulation classification algorithms for MIMO-OFDM
systems work under the assumptions that the channels
are flat fading [22]-[25], that the number of receive
antennas is no less than the number of transmit antennas
[22]-[25], and/or that the number of samples is large
(as for pattern recognition-based methods) [23]-[26],
the proposed method achieves satisfactory performance
under more general conditions.

The rest of the paper is organized as follows. The signal model
is introduced in Sec. II. In Sec. III, we briefly review some
necessary preliminary concepts, including Bayesian inference
and BNs, while in Sec. IV, we formulate the modulation
classification problem under study as a Bayesian inference
task, and propose solutions based on Gibbs sampling and
on mean field variational inference. Numerical results of the
proposed methods are presented in Sec. V. Finally, conclusions

are drawn in Sec. VI.
Notation: The superscripts T and H denote matrix or

vector transpose and Hermitian, respectively. The i-th row
of the matrix B is denoted as B(i,·) and the j-th column
is denoted as B(·,j). Lower case bold letters and upper case
bold letters are used to denote column vectors and matrices,
respectively. The notation b�bi, where b = [b1, ..., bn]

T and
i ∈ {1, ..., n}, denotes the vector composed of all the elements
of b except bi. We use an angle bracket 〈·〉� to represent the
expectation with respect to the random variables indicated in
the subscript. For notational simplicity, we do not indicate
the variables in the subscript when the expectation is taken
with respect to all the random variables inside the bracket 〈·〉�
The notations ψ(·) and 1(·) stand for the digamma function
[41] and the indicator function, respectively. The cardinality
of a set B is denoted |B|. We use the same notation, p(·),
for both probability density functions (pdf) and probability
mass function (pmf). Moreover, we will identify a pdf or
pmf by its arguments, e.g., p(X|Y ) represents the distribution
of random variable X given the random variable Y . The
notations CN (µ,C) and IG (a, b) represent the the circularly
symmetric complex Gaussian distribution with mean vector µ
and covariance matrix C and the inverse gamma distribution
with shape parameter a and scale parameter b, respectively.

II. SYSTEM MODEL

Consider a MIMO-OFDM system operating over a
frequency-selective fading channel with N subcarriers, Mt

transmit antennas, Mr receive antennas and a coherence
period of K OFDM symbols. All frequency-domain symbols
transmitted during the coherence period are taken from a finite
constellation A ∈ A, such as M -PSK or M -QAM, where
A is the (finite) set containing all possible constellations.
Without loss of generality, A is assumed to be a constellation
of symbols with average power equal to 1. The number of
transmit antennas Mt is assumed known. We observe that
several algorithms have been proposed for the estimation of
Mt [42], [43]. We focus on the problem of detecting the
constellation A in the absence of information about the SNR,
the transmitted symbols and the fading channel coefficients.

After matched filtering and sampling, assuming
that time synchronization has been successfully
performed at least within the error margin afforded
by the cyclic prefix, the frequency-domain samples
y[n, k] = [y1[n, k], ..., yMr

[n, k]]T , received across the
Mr receive antennas, at the n-th subcarrier of the k-th OFDM
frame, are expressed as

y[n, k] = H[n]s[n, k] + z[n, k], (1)

where H[n] is the Mr×Mt frequency-domain channel matrix
associated with the n-th subcarrier; s[n, k] is the Mt×1 vector
composed of the symbols transmitted by the Mt antennas,
i.e., s[n, k] = [s1[n, k], ..., sMt

[n, k]]T , with smt [n, k] ∈ A
being the symbol transmitted by the mt-th transmit antenna
over the n-th subcarrier of the k-th OFDM symbol; and
z[n, k] = [z1[n, k], ..., zMr [n, k]]T ∼ CN (0, σ2I) is complex
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white Gaussian noise, which is independent over indices n and
k. The frequency-domain channel matrix H[n] can be written

H[n] =

 h̃1,1 [n] · · · h̃Mt,1 [n]
...

. . .
...

h̃1,Mr
[n] · · · h̃Mt,Mr

[n]

 , (2)

where h̃mt,mr = [h̃mt,mr [1] , ..., h̃mt,mr [N ]]T denotes the
N × 1 frequency-domain channel vector between the mt-th
transmit antenna and the mr-th receive antenna. Assuming
that the channel for any pair (mt,mr) has at most L symbol-
spaced taps, we write h̃mt,mr = Whmt,mr , with hmt,mr the
L× 1 time-domain channel vector and W the N × L matrix
composed of the first L columns of the DFT matrix of size
N . Note that the channel is fixed within the coherence frame
of K OFDM symbols.

According to (1) and (2), the NK × 1 received frequency-
domain signals ymr = [ymr [1]T , ...,ymr [K]T ]T at the mr-th
receive antenna is given by

ymr =

Mt∑
mt=1

Dmt h̃mt,mr + zmr , mr = 1, ...,Mr, (3)

where ymr [k] = [ymr [1, k], ..., ymr [N, k]]T ;
Dmt = [Dmt,1, ...,Dmt,K ]T is an NK × N matrix
representing the transmitted symbols with Dmt,k an
N × N diagonal matrix whose (n, n) element is
smt [n, k]; and zmr = [zmr [1]T , ..., zmr [K]T ]T with
zmr [k] = [zmr [1, k], ..., zmr [N, k]]T .

Let us further define the NKMt × 1 vector s =
[s1, .., sK ]T containing all the transmitted symbols with
sk = [s[1, k]T , ..., s[N, k]T ]T ; the LMtMr × 1 vector
h = [hT1 , ...,h

T
Mr

]T for the time domain channels associated
with all the transmit-receive antenna pairs, where hmr =
[hT1,mr , ...,h

T
Mt,mr ]

T ; and the NKMr×1 receive signal vector
y = [yT1 , ...,y

T
Mr

]T . The task of modulation classification is
for the receiver to correctly detect the modulation format A
given only the received samples y, while being uninformed
about the symbols s, the channel h and the noise power σ2.
Using (1) and (3), the likelihood function p

(
y|A, s,h, σ2

)
of

the observation is given by

p
(
y
∣∣∣A, s,h, σ2

)
=
∏
n,k

p
(
y[n, k]

∣∣∣s[n, k],H[n], σ2
)

=
∏
mr

p
(
ymr

∣∣∣s,hmr , σ2
)
, (4)

with ymr |(s,hmr , σ2) ∼ CN (
∑Mt

mt=1
DmtWhmt,mr , σ

2I)
and y[n, k]|(s[n, k],H[n], σ2) ∼CN (H[n]s[n, k], σ2I).

III. PRELIMINARIES

As formalized in the next section, in this paper we formulate
the modulation classification problem as a Bayesian inference
task. In this section, we review some necessary preliminary
concepts. Specifically, we start by introducing the general task
of Bayesian inference in Sec. III-A; we review the definition
of BN, which is a useful graphical tool to represent knowledge

about the structure of a joint distribution, in Sec. III-B;
and, finally, we review approximate solutions to the Bayesian
inference task, namely, Gibbs sampling in Sec. III-C, and mean
field variational inference in Sec. III-D.

A. Bayesian Inference

Bayesian inference aims to compute the posterior probabil-
ity of the variables of interest given the evidence, where the
evidence is a subset of the random variables in the model.
Specifically, given the values of some evidence variables
Θe = θe, one wishes to estimate the posterior distribution
of a subset of the unknown variables Θu = [Θ1, ...,ΘG]T .
We assume here for simplicity of exposition that all variables
are discrete with finite cardinality. However, the extension
to continuous variables with pdfs is immediate, as it will
be argued. The conditional pmf of Θu given the evidence
Θe = θe is proportional to the product of a prior distribution
p(Θu) on the unknown variables Θu and of the likelihood of
the evidence p(Θe|Θu):

p(Θu|Θe = θe) ∝ p(Θu)p(Θe = θe|Θu). (5)

If one is interested in computing the posterior distribution of
the unknown variable Θj , then a direct approach would be to
write

p(Θj = θj |Θe = θe) =
∑

θu�θj

p(Θu = θu|Θe = θe). (6)

The inference task (6) is made difficult in practice by the mul-
tidimensional summation over all the values of the variables
Θu�Θj . Note also that, if the variables are continuous, the
operation of summation is replaced by integration and a similar
discussion applies. Next, we discuss the BN model.

B. Bayesian Network

A BN is an acyclic graph that can be used to represent useful
aspects of the structure of a joint distribution. Each node in the
graph represents a random variable, while the directed edges
between the nodes encode the probabilistic influence of one
variable on another. Node Θi is defined to be a parent of
Θj , if an edge from node Θi to node Θj exists in the graph.
According to the BN’s chain rule [38], the influence encoded
in a BN for a set of variables Θ = [Θ1, ...,ΘJ ]T can be
interpreted as the factorization of the joint distribution in the
form

p (Θ) =

J∏
j=1

p
(
Θj |PaΘj

)
, (7)

where we use PaΘj to denote the set of parent variables
of variable Θj . Note that (7) encodes the fact that each
variable Θj is independent of its ancestors in the BN, when
conditioning on its parent variables PaΘj . In the following,
we will find it useful to rewrite (7) in a more abstract way as
[38]

p (Θ) =
∏
φ

φ (Bφ) , (8)

where the product is taken over all J factor φ(Bφ) =
p(Θj |PaΘj ) with Bφ = {Θj ,PaΘj}.
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C. Gibbs Sampling

Markov chain Monte Carlo (MCMC) techniques provide
effective iterative approximate solutions to the Bayesian infer-
ence task (6) that are based on randomization and can obtain
increasingly accurate posterior distributions as the number
of iterations increases. The goal of these techniques is to
generate M random samples θ(1)

u , ...,θ(M)
u from the desired

posterior distribution p(Θu|Θe = θe). This is done by
running a Markov chain whose equilibrium distribution is
p(Θu|Θe = θe). As a result, according to the law of large
numbers, the multidimensional summation (or integration) (6)
can be approximated by an ensemble average. In particular,
the marginal distribution of any particular variable Θj in Θu

can be estimated as

p (Θj = θj |Θe = θe) ≈
1

M

M∑
m=M0+1

1
(
θ

(m)
j = θj

)
, (9)

where θ(m)
j is the m-th sample for Θj generated by the Markov

chain, and M0 denotes the number of samples used as burn-in
period to reduce the correlations with the initial values [35].

Gibbs sampling is a classical MCMC algorithm that defines
the aforementioned Markov chain by sampling all the variables
in Θu one-by-one. Specifically, the algorithm begins with a set
of arbitrary feasible values for Θu. Then, at step m, a sample
for a given variable Θj is drawn from the conditional distribu-
tion p(Θj |Θu�Θj ,Θe). Whenever a sample is generated for a
variable, the value of that variable is updated within the vector
Θu. It can be shown that the required conditional distributions
p(Θj |Θu�Θj ,Θe) may be calculated by multiplying all the
factors in the factorization (8) that contain the variable of
interest and then normalizing the resulting distribution, i.e.,
we have

p(Θj |Θu�Θj ,Θe) ∝
∏

φ: Θj∈Bφ

φ (Bφ) , (10)

where the right-hand side of (10) is the product of the factors
in (8) that involve the variable Θj .

Remark 1: In order for Markov chain Monte Carlo algo-
rithms to converge to a unique equilibrium distribution, the
associated Markov chain needs to be irreducible and aperiodic
[38, Ch. 12]. In the context of the Gibbs sampling, a sufficient
condition for asymptotic correctness of Gibbs sampling is that
the distributions p(Θj |Θu�Θj ,Θe) are strictly positive in
their domains for all j.

Remark 2: When applying Gibbs sampling to practical
problems, in particular those with high-dimensional and mul-
timodal posterior distribution p(Θj |Θu�Θj ,Θe), slow con-
vergence may be encountered due to the local nature of the
updates. One approach to address this issue is to run Gibbs
sampling with multiple random restarts that are initialized with
different feasible solutions [34]-[37]. Moreover, within each
run, simulated annealing may be used to avoid low-probability
“traps.” Accordingly, the prior probability, or the likelihood,
may be parametrized by a temperature parameter T , such that
a large temperature implies a lower reliance on the evidence
aimed at exploring more thoroughly the range of the variables.

Samples are generated, starting with a high temperature and
ending with a low temperature [31]-[33].

D. Mean Field Variational Inference

Mean field variational inference provides an alternative way
to approach the Bayesian inference problem of calculating
p(Θj = θj |Θe = θe). The key idea of this method is
that of searching for a distribution q(Θu) that is closest
to the desired posterior distribution p(Θu|θe), in terms of
the Kullback-Leibler (KL) divergence KL (q(Θu)||p(Θu|θe)),
within the class Q of distributions that factorize as the product
of marginals, i.e., q(Θu) =

∏G
j=1 q(Θj) [38, Ch. 11]. The

corresponding variational problem is given as

minimize
q

KL (q(Θu)||p(Θu|θe)) (11)

s.t. q ∈ Q.

By imposing the necessary optimality conditions for problem
(11), one can prove that the mean field approximation q(Θu)
is locally optimal only if the proportionality [38]

q (Θj) ∝ exp

{ ∑
φ: Θj∈Bφ

〈
lnφ (Bφ)

〉
q(Bφ�Θj)

}
(12)

holds for all j = 1, .., G, where the expectation in (12) is taken
with respect to the distribution q(Bφ�Θj) = q(Θu)/q(Θj).
The idea of the mean field variational inference is to solve
(12) by means of fixed-point iterations (see [38] for details).
It can be shown that each iteration of (12) results in a better
approximation q to the target distribution p(Θu|θe), hence
guaranteeing convergence to a local optimum of problem (11)
[38, Sec. 11.5.1]. Once an approximating distribution q(Θu) is
obtained, an approximation of the desired posterior p(Θu|θe)
can be obtained as p(Θu|θe) ≈ q(Θu), and the marginal pos-
terior distribution may be approximated as p(Θj |θe) ≈ q(Θj).

IV. BAYESIAN INFERENCE FOR MODULATION
CLASSIFICATION

In this section, we solve the problem of detecting the
modulation A ∈ A by adopting a Bayesian inference for-
mulation. First, in Sec. IV-A, we discuss the problem of
selecting a proper prior distribution, and argue that a latent
Dirichlet model inspired by [30] and first used for modulation
classification in [20], provides an effective choice. Then, based
on this prior model, we develop two solutions, one based on
Gibbs sampling, in Sec. IV-B, and the other based on mean
field variational inference, in Sec. IV-C.

A. Latent Dirichlet Bayesian Network

According to (5), the joint distribution of the unknown
variables (A, s,h, σ2) may be expressed

p
(
A, s,h, σ2

∣∣∣y) ∝ p(y
∣∣∣A, s,h, σ2

)
p
(
A, s,h, σ2

)
, (13)

where the likelihood function p
(
y|A, s,h, σ2

)
is given in (4),

and the term p
(
A, s,h, σ2

)
stands for the prior information
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Figure 1. BN G1 for the modulation classification scheme based on the
factorization (13). The nodes inside the rectangle are repeated NK times.

on the unknown quantities. The prior is assumed to factorize
as

p
(
A, s,h, σ2

)
=p (A)

{ ∏
n,k,mt

p (smt [n, k]|A)

}
·

·
∏

mt,mr

p (hmt,mr ) p
(
σ2
)
. (14)

1) Conventional Prior: A natural choice for the prior
distribution of the unknown variables (A, s,h, σ2) is given
by A ∼ uniform (A), smt [n, k]|A ∼ uniform(A), hmt,mr ∼
CN (0, αI), and σ2 ∼ IG (α0, β0) with fixed parameters
(α, α0, β0) [20]. Recall that the inverse Gamma distribution
is the conjugate prior for the Gaussian likelihood at hand,
and that uninformative priors can be obtained by selecting
sufficiently large α and β0 and sufficiently small α0 [35]. The
factorization (14) implies that, under the prior information, the
variables A, hmt,mr and σ2 are independent of each other, and
that the transmitted symbols smt [n, k] are independent of all
the other variables in (14) when conditioned on the modulation
A. The BN G1 that encodes the factorization given by (13),
along with (4) and (14), is shown in Fig. 1.

The Bayesian inference task for modulation classification of
MIMO-OFDM is to compute the posterior probability of the
modulation A conditioned on the received signal y, namely

p (A|y) =
∑
s

ˆ
p
(
A,s,h, σ2|y

)
dhdσ2. (15)

Following the discussion in Sec. III, the calculation in (15)
is intractable because of the multidimensional summation
and integration. Gibbs sampling (Sec. III-C) and mean field
variational inference (Sec. III-D) offer feasible alternatives.
However, the prior distribution (14) does not satisfy the
sufficient condition mentioned in Remark 1, since some of
the conditional distributions required for Gibbs sampling are
not strictly positive in their domains. In particular, the required
conditional distribution for modulation A can be expressed as

p(A = a|s,h, σ2,y) ∝ p (A)
∏

n,k,mt

p (smt [n, k]|A) . (16)

The conditional distribution term p(smt [n, k]|A = a) in
(16) is zero for all values of smt [n, k] not belonging to the

constellation a, i.e., p(smt [n, k]|a) = 0 for smt [n, k] /∈ a.
Therefore, the conditional distribution p(A = a|s,h, σ2,y)
is equal to zero if the transmitted symbols s do not belong
to a. As a result, the Gibbs sampler may fail to converge to
the posterior distribution (see, e.g., [21]). In order to alleviate
the problem outlined above, we propose to adopt a prior
distribution encoded on a latent Dirichlet BN G2 shown in
Fig. 2.

2) Latent Dirichlet BN: Next, we introduce the Gibbs
sampler based on on a latent Dirichlet BN G2 in details.
Accordingly, each transmitted symbol smt [n, k] is distributed
as a random mixture of uniform distributions on the different
constellations in the set A. Specifically, a random vector pA
of length |A| is introduced to represent the mixture weights,
with pA(a) being the probability that each symbol smt [n, k]
belongs to the constellation a ∈ A. Given the mixture weights
pA, the transmitted symbols smt [n, k] are mutually indepen-
dent and distributed according to a mixture of uniform dis-
tributions, i.e., p (smt [n, k]|pA) =

∑
a: smt [n,k]∈a pA (a) / |a|.

The Dirichlet distribution is selected as the prior distribution
of pA in order to simplify the development of the proposed
solutions, as shown in the following subsections. In particular,
given a set of nonnegative parameters γ = [γ1, · · · , γ|A|]T , we
have pA ∼ Dirichlet (γ) [38]. We recall that the parameter
γa has an intuitive interpretation as it represents the number
of symbols in constellation a ∈ A observed during some
preliminary measurements.

Figure 2. BN G2 for the modulation classification scheme based on the
Dirichlet latent variable pA. The nodes inside the rectangle are repeated NK
times.

The BN G2 encodes a factorization of the conditional
distribution p(pA, s,h, σ2|y)

p(pA, s,h, σ
2|y)

∝p
(
y
∣∣∣pA, s,h, σ2

)
p (pA)

{ ∏
n,k,mt

p (smt [n, k]|pA)

}
·

·
∏

mt,mr

p (hmt,mr ) p
(
σ2
)
, (17)

where we have pA ∼ Dirichlet (γ) with a set of nonnegative
parameters γ = [γ1, · · · , γ|A|]T [38], p (smt [n, k]|pA) =∑
a: smt [n,k]∈a pA (a) / |a|, and the other distributions are as

in (4) and (14). The Bayesian inference task for modulation
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classification is to compute the posterior probability of the
mixture weight vector pA conditional on the received signal
y, namely

p (pA|y) =
∑
s

ˆ
p
(
pA|s,h, σ2

∣∣∣y) dhdσ2, (18)

and then to estimate A as the value that maximize the a
posteriori mean of pA:

Â = arg max
a∈A

〈
pA (a) | y

〉
p(pA|y)

. (19)

The proposed approach guarantees that all the conditional
distributions needed for Gibbs sampling based on the BN G2

are non-zero, and therefore the aforementioned convergence
problem for the inference based on BN G1 is avoided.

B. Modulation Classification via Gibbs Sampling

In this subsection, we elaborate on Gibbs sampling for
modulation classification. As explained in Sec. III-C, in or-
der to sample from the joint posterior distribution (17), the
distribution of each variable conditioned on all other variables
is needed. According to (10), we have (for derivations see
Appendix II):

1) The conditional distribution of the vector pA, given s,
h, σ2 and y can be expressed as

p
(
pA

∣∣∣s,h, σ2,y
)
∼ Dirichlet (γ + c) , (20)

where c =
[
c1, · · · , c|A|

]T
, and ca is the number of

samples of transmitted symbols in constellation a ∈ A;
2) The distribution of transmitted symbols smt [n, k], con-

ditioned on pA, s�smt [n, k], h, σ2 and y, is given by

p
(
smt [n, k]

∣∣∣pA, s�smt [n, k],h, σ2,y
)

∝p (smt [n, k]|pA) p
(
y[n, k]

∣∣∣s[n, k],H[n], σ2
)
, (21)

where we recall that when a new sample is generated
for smt [n, k] , the new value is updated and used in
computing subsequent samples in s;

3) The required distribution for channel vector hmt,mr is
given by

hmt,mr

∣∣∣ (PA, s,h�hmt,mr , σ
2,y
)

∼CN (ĥmt,mr , Σ̂mt,mr ), (22)

where we have(
Σ̂mt,mr

)−1

=
1

σ2
WHDH

mt (DmtW) , (23)

and

ĥmt,mr =
Σ̂mt,mr

σ2
WHDH

mt ·

·
(

ymr −
∑

m′
t 6=mt

Dm′
t
h̃m′

t,mr

)
; (24)

4) The conditional distribution for σ2, conditioned on pA,
s, h, and y, is given by

σ2
∣∣∣pAs,h,y ∼ IG (α, β) , (25)

where α = α0 + NKMr and β = β0 +∑
mr

∥∥∥ymr −∑mt
Dmt h̃mt,mr

∥∥∥2

. Note that (20) is a
consequence of the fact that Dirichlet distribution is
the conjugate prior of the categorical likelihood [38];
(22) can be derived by following from standard MMSE
channel estimation results [44]; and (25) follows the
fact that the inverse Gamma distribution is the conjugate
prior for the Gaussian distribution [45].

We summarize the proposed Gibbs sampler for modulation
classification in Algorithm 1.

Algorithm 1 Gibbs Sampling

• Initialize θ(0)
u = {p(0)

A , s(0),h(0), σ2(0)} from prior dis-
tributions as discussed in Sec. IV-A

• for each iteration m = 1 : M

– given {s(m−1),h(m−1), σ2(m−1)} draw a sample
p

(m)
A from p(pA|s,h, σ2,y) in (20);

– given {p(m)
A ,h(m−1), σ2(m−1)

, (s�smt [n, k])(m)},
draw a sample s

(m)
mt [n, k] from

p(smt [n, k]|pA, s�smt [n, k],h, σ2,y) in (21);
– given {p(m)

A , s(m), σ2(m−1)
, (h�hmt,mr )

(m)} and
the current sample values for , draw a sample h(m)

mt,mr
from p(hmt,mr |(PA, s,h�hmt,mr , σ

2,y)) in (22);
– given {p(m)

A , s(m),h(m)} draw sample σ2(m) from
p(σ2|pAs,h,y) in (25);

• end for

Remark 3: In [19], an alternative Gibbs sampling approach
based on a “superconstellation” is proposed to solve the
convergence problem at hand for modulation classification in
SISO. The Gibbs sampling scheme in [19] can be viewed
as an approximation of the approach based on the latent
Dirichlet BN obtained by setting the prior distribution pA ∼
Dirichlet (γ) such that γ = 0 and by setting the sample value
of pA to be equal to the mean of the conditional distribution
p(pA|s,h, σ2,y), i.e., p

(m)
A = c/

∑
a∈A ca [20], where we

recall that ca is the number of symbols that belong to con-
stellation a ∈ A. The performance of the “superconstellation”
approach extended to MIMO OFDM is discussed in Sec. V.

Remark 4: When the SNR is high, the convergence speed
is severely limited by the close-to-zero probabilities
in the conditional distribution (21). Specifically, as
the Gibbs sampling proceeds with its iterations, the
samples of σ2 tend to be small, making the relationship
between y[n, k] and smt [n, k] almost deterministic. In
particular, the term p(y[n, k]|s[n, k],H[n], σ2) in (21)
satisfies p(y[n, k]|s(m)[n, k],H(m)[n], (σ2)(m)) ' 1
for the selected sample value s(m)[n, k] , and
p(y[n, k]|s(m)[n, k],H(m)[n], (σ2)(m)) ' 0 for all other
possible values for s[n, k]. As a result, transition between
states with different values in the Markov chain occurs with a
very low probability leading to extremely slow convergence.
As discussed in Remark 2, the strategy of Gibbs sampling
with multiple random restarts and annealing may be adopted
to address this issue. For simulated annealing, we substitute
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the conditional distribution (25) for σ2 with an iteration
dependent prior given as [33]

σ2
∣∣∣pAs,h,y ∼ IG (α′, β) , (26)

where we have α′(m) = (1 − (1 − p0) exp(−m/m0))α,
with m denoting the current iteration index, p0 = 0.1 and
m0 = 0.3M , where M is the total number of iterations.
For multiple restarts, we propose to use the entropy of the
pmf

〈
pA
〉
p(pA|y)

, estimated in a run as the metric, to choose
among the Nrun runs of Gibbs sampling which one should be
used in (19). Specifically, the run with the minimum entropy
estimate

〈
pA
〉
p(pA|y)

is selected. The rationale of this choice
is that an estimate

〈
pA
〉
p(pA|y)

with a low entropy identifies
a specific modulation type with a smaller uncertainty than an
estimate

〈
pA
〉
p(pA|y)

with higher entropy (i.e., closer to a
uniform distribution).

C. Modulation classification via Mean Field Variational In-
ference

Following the discussion in Sec. III-D, the goal of
mean field variational inference applied to the prob-
lem at hand is that of searching for a distribution
q(pA, s,h, σ

2) that is closest to the desired posterior distribu-
tion p(pA, s,h, σ2|y), in terms of the Kullback-Leibler (KL)
divergence KL

(
q(pA, s,h, σ

2)||p(pA, s,h, σ2|y)
)
, within the

class Q of distributions that factorize as

q(pA, s,h, σ
2) = q (pA) q (s) q (h) q

(
σ2
)
, (27)

where q (s) =
∏K
k=1

∏N
n=1

∏Mt

mt
q(smt [n, k]), and q (h) =∏Mt

mt

∏Mr

mr
hmt,mr . Next, we present the fixed-point equations

for mean field variational inference. These update equations
may be derived by applying (12) to the joint pdf (17). We
recall that (12) requires taking expectations of the relevant
variables with respect to updated distribution q. If all distri-
butions q (pA), q (h) and q

(
σ2
)

are initialized by choosing
from the conjugate exponential prior family [39], [46] in a
way being consistent with the priors in (17), namely q (pA)
being a Dirichlet distribution, q (h) being a circularly complex
Gaussian distribution, and q

(
σ2
)

being an inverse Gamma dis-
tribution, these fixed point update equations can be calculated,
using a similar approach as in the Appendix I, as follows.

1) The fixed point update equation for the mixture weight
vector pA can be expressed as

q (pA) = Dirichlet (γ + g) , (28)

where g =
[
g1, · · · , g|A|

]T
and ga =∑

n,k,mt

∑
smt [n,k]∈a q(smt [n, k]).

2) The update equation for the transmitted symbol
smt [n, k] is given by

q (smt [n, k]) ∝ exp
[〈

ln p (smt [n, k]|pA)
〉
q(pA)

+〈
ln p

(
y[n, k]|s[n, k],H[n], σ2

) 〉
q(s[n,k]�smt [n,k],h,σ2)

]
(29)

where the detailed expression of (29) is shown in Ap-
pendix III.

3) The equation for the channel vector hmtmr is given by

q (hmtmr ) = CN (ĥmt,mr , Σ̂mt,mr ), (30)

where (
Σ̂mt,mr

)−1

=
α

β
WH

〈
DH
mtDmt

〉
W, (31)

ĥmt,mr

=
α

β
WH

〈
Dmt

〉H(
ymr −

∑
m′
t 6=mt

Λm′
t,mr

)
, (32)

Λm′
t,mr

=
〈
Dmt

〉
Wĥm′

t,mr
, (33)

and
〈
DH
mtDmt

〉
is a diagonal matrix whose(n, n) ele-

ment is equal to
∑K
k=1

〈
|smt [n, k]|2

〉
.

4) The fixed point update equation for the noise variance
σ2 can be expressed as

q
(
σ2
)

= IG (α, β) , (34)

where α = α0 +NKMr, and β = β0 +
∑
mr

βmr with

βmr = |ymr |
2 − 2real

[
yHmr

∑
mt

Λmt,mr

]
+

+
∑
mt

Ψmt,mr +
∑
mt

Ξmt,mr , (35)

Ψmt,mr =tr
[
WH

〈
DH
mtDmt

〉
WΣ̂mt,mr

]
+

ĥHmt,mrW
H
〈
DH
mtDmt

〉
Wĥmt,mr , (36)

and

Ξmt,mr = ĥHmt,mrW
H
〈
Dmt

〉H〈
Dm′

t

〉
Wĥm′

t,mr
,

(37)
where we use tr[·] to denote the trace of a matrix.

We summarize the proposed iterative mean field variational
inference for modulation classification in Algorithm 2.

Algorithm 2 Mean Field Variational Inference
• Initialize q (pA), q (s), q (h) and q

(
σ2
)

• for each iteration m = 1 : M

– given the most updated distribution q (s), q (h) and
q
(
σ2
)
, update the distribution q (pA) using (28);

– given the most updated distribution q (pA),
q (s�smt [n, k]), q (h) and q

(
σ2
)
, update the

distribution q (smt [n, k]) using (29);
– given the most updated distribution q (pA), q (s),
q (h�hmt,mr ) and q

(
σ2
)
, update the distribution

q (hmt,mr ) using (30);
– given the most updated distribution q (pA), q (s),

and q (h), update the distribution q
(
σ2
)

according
to (34);

• end for

Remark 5: While Gibbs sampler is generally known to be
superior to mean field as a method for exploring the global
solution space, the mean field algorithm is known to have
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Table I
COMPUTATIONAL COMPLEXITY FOR GIBBS SAMPLING

Unknowns Computational complexity for sampling
the variable

pA O{NK}
s O{M2

t MrNKMA}
h O{MtMr[NK(NL+L2+MtN)+L3]}
σ2 O{MtMrN2K}

Total O{NitMtMr[NK(NL+ L2 +MtN +
MtMA) + L3]}

better convergence speed in the vicinity of a local optima [38],
[39], [40]. Following [39], we then propose a hybrid strategy
strategy that switches from Gibbs sampling to mean field
variational inference to “zoom in” on the local minimum of the
optimization problem (11). Additional discussion on this point
can be found in the next section. A break-down of the contribu-
tion to the computational complexity of each iteration for the
proposed Gibbs sampler are shown in Table I. In summary,
the Gibbs sampler requires O{NitMtMr[NK(NL + L2 +
MtN+MtMA)+L3]} basic arithmetic operations, where Nit
is the total number of iterations and MA is the total number of
states of all possible constellations, i.e., MA =

∑
a∈A |a|. At

each iteration, the number of the basic arithmetic operations
required for mean field variational inference is of the same
order of magnitude as that for Gibbs sampling. This similarity
of the computational complexity of Gibbs sampling and mean
field variational inference is also reported in [39], [40] and
[47].

V. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we evaluate the performance of the pro-
posed modulation classification schemes for the detection of
three possible modulation formats within a MIMO-OFDM
system. The performance criterion is the probability of correct
classification assuming that all the modulations are equally
likely. Normalized Rayleigh fading channels are assumed
such that E[‖hmt,mr‖

2
] = 1. We define the average SNR

as 10 log(Mt/σ
2). Unless stated otherwise, the following

conditions are assumed: i) A={QPSK, 8-PSK, 16QAM};
ii) Mt = Mr = 2 antennas; iii) K = 2 OFDM sym-
bols; and iv) L = 5 taps with relative powers given by
[0 dB,−4.2 dB,−11.5 dB,−17.6 dB, −21.5 dB].

A. Performance of Gibbs Sampling

1) Gibbs Sampling with Restarts and Annealing: We first
investigate the performance of the proposed Gibbs sampling
algorithms with or without multiple random restarts and sim-
ulated annealing within each run (see Remark 4). The number
of runs in each process of Gibbs sampling with multiple
random restarts is selected to be Nrun = 5, and the number
of iterations in each run is M = 2000, where M0 = 0.85M
initial samples are used as burn-in period.2 Note here that
the total number of iterations required for Gibbs sampling
is Nit = NrunM . All elements of the vector parameter γ

2The samples in the burn-in period are not used to evaluate the average in
(19).

of the prior distribution pA ∼ Dirichlet (γ) are selected
to be equal to a parameter γ. As also reported in [20], it
may be shown, via numerical results, that the modulation
classification performance is not sensitive to the choice of
parameter γ as long as the value of the virtual observation γ
(see Sec. IV-A2) is not very small (γ < 1). For the numerical
experiments in this paper, we select the values of γ to be equal
to 8% of the total number of symbols, e.g., in this example
γ = [0.08NKMt] = 40.

In Fig. 3, the probabilities of correct classification for
regular Gibbs sampling, Gibbs sampling with multiple random
restarts, Gibbs sampling with annealing and Gibbs sampling
with both multiple random restarts and annealing are plot-
ted as a function of SNR. We also show for reference the
performance of the ’superconstellation’ scheme, with both
multiple random restarts and annealing, of [19] (see Remark
3) extended to MIMO OFDM systems. From Fig. 3, it can
be seen that the proposed strategy outperforms the approach
in [19]. Moreover, both strategies of multiple random restarts
and annealing improve the success rate, and that the best
performance is achieved by Gibbs sampling with both random
restarts and annealing. As discussed in Remark 4, annealing
is seen to be especially effective in the high-SNR regime.

Figure 3. Probability of correct classification using Gibbs sampling versus
SNR (N = 128, Mt =Mr = 2, K = 2 and L = 5).

2) Performance Under Incorrect Channel Length Esti-
mates: Next, we study the effect of incorrect channel length
estimates. The relative powers of the considered channel taps
are [0 dB,−2 dB,−2.5 dB]. We considered the performance of
the proposed scheme under overestimated, correctly estimated,
or underestimated channel lengths. Specifically, the channel
length estimates take three possible values, namely L̂ = 1,
L̂ = 3 or L̂ = 5, while L = 3. The same values for
the parameters of Gibbs sampler are used as in Sec. V-A1.
Fig. 4 shows the probabilities of correct classification for
Gibbs sampling with both random restarts and annealing
versus SNR. It is observed that there is a minor performance
degradation with an overestimated channel length. Here, for
this example, the degradation caused by the overfitting when a
more complex model with L̂ = 5 is used is minor. In contrast,
a more severe performance degradation is observed for the
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Table II
CONFUSION MATRIX OF THE PROPOSED GIBBS SAMPLER FOR THREE

MODULATION FORMATS AT 5 DB

Estimated
QPSK 8-PSK 16-QAM

Actual
QPSK 96.3% 2.7% 1.0%
8-PSK 9.2% 88.1% 2.7%

16-QAM 15.4% 18.6% 66.0%

case of the underestimated channel length. This significant
degradation is caused by the bias introduced by the simpler
model with L̂ = 1. We also carried out the experiments for
L = 5 taps with relative powers of [0 dB,−2 dB,−2.5 dB,
−3.1 dB,−4.2 dB]. The performance is very similar to that for
the case of L = 3 shown in Fig. 4 and is hence not reported
here.

Figure 4. Probability of correct classification using Gibbs sampling versus
SNR with different channel length estimates L̂ (N = 128, Mt = Mr = 2,
K = 2 and L = 3).

3) Performance with a Larger A: To study the effect
of modulation pool A with a larger size, besides the three
modulations considered above, we added 16-PSK into the
modulation pool, i.e., A={QPSK, 8-PSK, 16QAM, 16-PSK}.
The relative powers of the multi-path components and the
parameters of the Gibbs sampler take the same value as in Sec.
V-A2. The performance of the proposed Gibbs sampler for the
cases of three and four modulation formats is shown in Fig.
4. As expected, some performance degradation is observed
for a larger set of possible modulation schemes. To gain more
insight into the classifier behavior, the confusion matrices for
both cases of three and four modulation schemes for SNR
of 5 dB are shown in Tables II and III, respectively. The
confusion matrices show the probabilities of deciding for a
given modulation format when another format is the correct
one. For instance, the element associated with row ‘8-PSK’
and column ‘QPSK’ in Table II indicates that, when the actual
modulation scheme is 8-PSK, the probability that the estimated
modulation is QPSK is 9.2%. Comparing Table II with Table
III, it can be seen that the decreased accuracy is mainly caused
by the confusion between the two most similar modulation
formats, namely 8-PSK and 16-PSK.

Figure 5. Probability of correct classification using Gibbs sampling versus
SNR with different sets A of possible modulation schemes (N = 128, Mt =
Mr = 2, K = 2 and L = 3).

Table III
CONFUSION MATRIX OF THE PROPOSED GIBBS SAMPLER FOR FOUR

MODULATION FORMATS AT 5 DB

Estimated
QPSK 8-PSK 16-QAM 16-PSK

Actual

QPSK 96.8% 1.8% 0.6% 0.8%
8-PSK 9.4% 43.4% 3.6% 43.6%

16-QAM 18.8% 11.6% 60.6% 9.0%
16-PSK 11.8% 37.8% 3.8% 46.6%

B. Performance of Mean Field Variational Inference

Here, we study the performance of a hybrid scheme, in-
spired by [39], that starts with a Gibbs sampler in order
to perform a global search in the parameter space and then
switches to mean field variational inference to speed up
the convergence to a nearby local optima. In the switching
iteration, all the needed marginal distributions for mean field
variational inference are initialized as the conditional distribu-
tions for Gibbs sampling in the previous iteration, namely the
marginal distributions are initialized as follows,

q(ms)(pA) = p(ms−1)(pA|s,h, σ2,y), (38)

q(ms)(smt [n, k])

=p(ms−1)(smt [n, k]|pA, s�smt [n, k],h, σ2,y), (39)

q(ms)(hmtmr )

=p(ms−1)(hmt,mr |PA, s,h�hmt,mr , σ
2,y), (40)

and
q(ms)(σ2) = p(ms−1)(σ2|pAs,h,y), (41)

where ms denotes the index of the switching iteration.
To demonstrate the effectiveness of this approach, we con-

sider modulation classification using received samples within
one OFDM frame (K = 1) over Rayleigh fading channels with
two taps (L = 2) and with the relative powers [0 dB,−4.2 dB].
The SNR is 10 dB and the DFT size is N = 64 or 128. After
the first eight iterations of regular Gibbs sampling (without
random restarts and annealing), we switch to the mean field
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variational inference. The probability of correct classification
of both regular Gibbs sampling and the hybrid approach versus
the number of iterations M with M0 = 0.9M burn-in samples
is shown in Fig. 6. It can be observed that the hybrid approach
outperforms Gibbs sampling especially when the number of
iterations is small.

Figure 6. Probability of correct classification using Gibbs sampling and mean
field variational inference versus M (Mt = Mr = 2, K = 1, L = 2 and
SNR=10 dB).

C. Comparison of Gibbs Sampling and ICA-PC [28]

Here, we compare the classification results achieved by the
proposed Gibbs sampling scheme with the ICA-PC approach
of [28], which extends to MIMO-OFDM the techniques stud-
ied in [22]. The approach in [28] exploits the invariance of the
frequency-domain channels across the coherence bandwidth to
perform classification. Specifically, the subcarriers are grouped
in sets of D adjacent subcarriers whose frequency-domain
channel matrices are assumed to be identical. Let us denote
the frequency-domain channel matrix and the received samples
for the i-th group by Hi and yi respectively, i = 1, ..., N/D.
To compute the likelihood function p(yi|A = a,Hi) of
the received samples yi over the subcarriers within group i,
an estimate Ĥi of the channel matrix Hi is first obtained
using ICA-PC, and then the likelihood p(yi|A = a,Hi) is
approximated as p(yi|A = a, Ĥi). Accordingly, the likelihood
function p(y|A = a,H) of all the received samples y is
approximated as p(y|A = a, Ĥ) =

∏
i p(yi|A = a, Ĥi),

where Ĥ = {Ĥi}N/Di=1 . The detected modulation is selected
as Â = arg maxa∈A p(y|A = a, Ĥ).

In Fig. 7, we plot the performance of the approach based
on ICA-PC with different values of D and Gibbs sampling
with random restarts and annealing. The number of runs are
Nrun = 5, and the annealing schedule is (26). It can be
seen from Fig. 7 that Gibbs sampling significantly outperforms
ICA-PC. In this regard, note that, with D = 4, the accuracy in
ICA-PC is poor due to the insufficient number of observed data
samples; while with D = 16, the model mismatch problem
becomes more severe due to the assumption of equal channel
matrices in each subcarrier group.

To further emphasize the advantages of the proposed
Bayesian techniques, in Fig. 7, we consider the case in which
there are fewer receive antennas than transmit antennas by
setting Mr = 1 and all other parameters as above. While
ICA-PC cannot be applied due to the ill-posedness of the
ICA problem, it can be observed that a success rate of 71%
can be attained by the proposed Gibbs scheme at 15 dB. It
should be mentioned however, that the complexity of ICA-PC
of the order of O{MtMrKNM

Mt
u } [24] is smaller than that

of Gibbs sampling (see Remark 5), where Mu denotes the
maximum number of states of a constellation among all the
possible modulation types, i.e., Mu = maxa∈A{|a|}.

.

Figure 7. Probability of correct classification using Gibbs sampling with
multiple random restarts and annealing and approach of [28] based on ICA-
PC versus SNR (N = 128, K = 2 and L = 5).

D. Performance for Coded OFDM Signals

To investigate the performance of the proposed Gibbs
sampling approach in the presence of a model mismatch,
we study here the case of coded OFDM. Specifically, we
assume that the information bits are first encoded using a
convolutional code, and then modulated. We apply Gibbs
sampling with multiple random restarts and annealing with
all relevant parameters being the same as in Sec. V-A. The
code rates are 1/3, 1/2 and 2/3, respectively. In Fig. 8, the
probability of correct classification is shown versus SNR. It
can be seen from the figure that the success rate decreases only
slightly (up to 6%) as the code rate decreases. The degradation
is caused by the fact that the coded transmitted symbols are
not mutually independent due to the convolutional coding,
and hence their prior distribution is mismatched with respect
to the model (17). As the SNR increases, the performance
degradation for coded signals become minor, because, in this
regime, Gibbs sampling relies more on the observed samples
than on the priors. We also studied the performance of the
proposed Gibbs sampling for OFDM systems with space-
frequency coded symbols (SF-OFDM) [48]. Compared to the
uncoded case, minor performance degradation (2% at 15 dB
and up to 8% at 0 dB) is observed also due to the presence of
a model mismatch.
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Figure 8. Probability of correct classification using Gibbs sampling with
multiple random restarts and annealing versus SNR for convolution coded
OFDM signals with different code rate (N = 128, Mt = Mr = 2, K = 2
and L = 5).

VI. CONCLUSIONS

In this paper, we have proposed two Bayesian modulation
classification schemes for MIMO-OFDM systems based on a
selection of the prior distributions that adopts a latent Dirichlet
model and on the Bayesian network formalism. The proposed
Gibbs sampling method converges to an effective solution
and, using numerical results, its accuracy is demonstrated
to improve for small sample sizes when switching to the
mean field variational inference technique after a number of
iterations. The speed of convergence is shown to improve via
multiple random restarts and annealing. The techniques are
seen to overcome the performance limitation of state-of-the-art
non-Bayesian schemes based on ICA and Bayesian schemes
based on “superconstellation” methods. In fact, while most
of the mentioned existing modulation classification algorithms
rely on the assumptions that the channels are flat fading, that
the number of receive antennas is no less than the number
of transmit antenna, and/or that a large amount of samples
are available (as for pattern recognition-based methods), the
proposed schemes achieve satisfactory performance under
more general conditions. For example, with Mt = 2 transmit
antennas and under frequency selective fading channels with
L = 5 taps, a correct classification rate of above 97% may be
attained with Mr = 2 receive antennas and with 256 received
samples at each antenna; and a success rate of above 70% may
be achieved with Mr = 1 receive antenna and 256 received
samples at the antenna. Moreover, the proposed Gibbs sampler
presents a graceful degradation in the presence of a model mis-
match caused by channel coding, e.g., a decrease in the success
rate by 6% with a code rate of 1/3. Future works include
devising a Gibbs sampling scheme that accounts for the effects
of the timing and carrier frequency offsets for MIMO systems
following, e.g., [21], [44], [49]. In addition, the development of
Bayesian classification techniques that address non-Gaussian
noise is also a topic for further investigation.

APPENDIX I
DISTRIBUTIONS

In this Appendix, we give the expressions for all standard
distributions that are useful to derive the conditional distribu-
tions for Gibbs sampling in Appendix II.

1) Dirichlet Distribution: Z ∼ Dirichlet (c) ,

p (Z) =
Γ
(∑kz

i=1 ci

)
∏kz
i=1 Γ (ci)

kz∏
i=1

zci−1
i , (42)

where kz denotes the length of the vector Z, and Γ(·)
stands for the gamma function [41].

2) Circular complex Gaussian distribution: Z ∼ CN (µ,Σ),

p (Z) =
1

πkz det (Σ)
exp

{
− (Z− µ)

H
Σ−1 (Z− µ)

}
,

(43)
where we use det(·) to denote the determinant of a
matrix.

3) Inverse Gamma distribution:: z ∼ IG(c, d),

p (Z) =
dc

Γ (c)
z−c−1 exp

(
−d
z

)
. (44)

APPENDIX II
DERIVATIONS OF CONDITIONAL DISTRIBUTIONS FOR

GIBBS SAMPLING

In this Appendix, the required conditional distributions for
Gibbs sampling are derived.

A. Expression for p(pA|s,h, σ2,y)

Applying (10) to (17), we have

p
(
pA

∣∣∣s,h, σ2,y
)

∝p (pA)

{ ∏
n,k,mt

p (smt [n, k]|pA)

}
∝
∏
a∈A

[pA (a)]
γ(a)−1

∏
n,k,mt

[ ∑
a: smt [n,k]∈a

pA (a) / |a|
]

=
∏
a∈A

1

|a|
[pA (a)]

γ(a)−1+ca

∼Dirichlet (γ + c) , (45)

where c =
[
c1, · · · , c|A|

]T
, and ca is the number of samples

of transmitted symbols in constellation a ∈ A.

B. Expression for p(hmt,mr |(PA, s,h�hmt,mr , σ
2,y))

Applying (10) to (17), we have

p
(
hmt,mr

∣∣∣ (PA, s,h�hmt,mr , σ
2,y
))

∝p (hmt,mr ) p
(
y
∣∣∣pA, s,h, σ2

)
∝ exp

{
− hHmt,mr

(
Σ̂mt,mr

)−1

hmt,mr+

2real

[
hHmt,mr

(
Σ̂mt,mr

)−1

ĥmt,mrhmt,mr

]}
∼CN (ĥmt,mr , Σ̂mt,mr ), (46)
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where (
Σ̂mt,mr

)−1

=
1

αh
I +

1

σ2
WHDH

mtDmtW

≈ 1

σ2
WHDH

mtDmtW, (47)

and

ĥmt,mr =Σ̂mt,mr

1

σ2
WHDH

mt ·

·
(

ymr −
∑

m′
t 6=mt

Dm′
t
h̃m′

t,mr

)
, (48)

where the approximation in (47) follows from the fact that αh
is very large such that the term 1/αhI can be neglected.

C. Expression for p
(
σ2|pAs,h,y

)
Applying (10) to (17), we have

p
(
σ2
∣∣∣pAs,h,y

)
∝p
(
σ2
)
p
(
y
∣∣∣pA, s,h, σ2

)
∝
(
σ2
)−α0−1

exp

(
−β0

σ2

)
Mr∏
mr=1

1

σ2NK
exp

{
− 1

σ2

∥∥∥∥∥ymr −
Mt∑
mt=1

DmtWhmt,mr

∥∥∥∥∥
2}

∝
(
σ2
)−(α0+MrNK)−1 ·

· exp

(
−
β0 +

∑Mr

mr=1

∥∥∥ymr −∑Mt

mt=1
DmtWhmt,mr

∥∥∥2

σ2

)
∼IG (α, β) , (49)

where α = α0 + NKMr and β = β0 +∑
mr

∥∥∥ymr −∑mt
Dmt h̃mt,mr

∥∥∥2

.

APPENDIX III

EVALUATION OF (29)

By taking expectation with respect to updated distribution
q (pA) and q

(
s[n, k]�smt [n, k],h, σ2

)
receptively, it can be

shown that the expression for
〈

ln p (smt [n, k]|pA)
〉
pA

is〈
ln p (smt [n, k]|pA)

〉
q(pA)

=
∑
a∈A

1 (smt [n, k] ∈ a) [ψ (γa)− ψ (γ0)− ln |a|] , (50)

where γ0 =
∑
a∈A γa; and the expression for〈

ln p
(
y[n, k]|s[n, k],H[n], σ2

) 〉
is〈

ln p
(
y[n, k]|s[n, k],H[n], σ2

) 〉
q(s[n,k]�smt [n,k],h,σ2)

∝α
β

{
2real

[
yH [n, k]

] 〈
H[n]

〉〈
s[n, k]

〉
q(s[n,k]�smt [n,k])

− tr
(〈

HH [n]H[n]
〉
cov (s[n, k])

)
−
〈
s[n, k]

〉H
q(s[n,k]�smt [n,k])·

·
〈
HH [n]H[n]

〉〈
s[n, k]

〉
q(s[n,k]�smt [n,k])

}
, (51)

with the (m′t,m
′′
t ) element of the covariance matrix of the

vector s[n, k]

cov (s[n, k])(m′
t,m

′′
t )

=var(sm′
t
[n, k])

=


〈 ∣∣sm′

t
[n, k]

∣∣2 〉− 〈 ∣∣sm′
t
[n, k]

∣∣ 〉2, if m′t = m′′t ,

m′′t 6= mt;

0, otherwise.

(52)

the m′t-th element of
〈
s[n, k]

〉
q(s[n,k]�smt [n,k]) being

〈
s[n, k]

〉
(m,t)

=

{〈
sm′

t
[n, k]

〉
, if m′t 6= mt

smt [n, k], if m′t = mt

, (53)

the (m′r,m
′
t) element of

〈
H[n]

〉
being the n-th element of

the matrix product Wĥm′
t,m

′
r
, and the (m′t,m

′′
t ) element of〈

HH [n]H[n]
〉

being[〈
HH [n]H[n]

〉]
(m′

t,m
′′
t )

=

∑Mr

mr=1

{
tr
[[

W(n,·)
]H

W(n,·)Σm′′
t ,mr

]
+

〈
hm′′

t ,mr

〉H [
W(n,·)

]H
W(n,·)

〈
hm′′

t ,mr

〉}
, if m′t = m′′t ;〈

H[n]
〉

(·,m′
t)

〈
H[n]

〉
(·,m′′

t )
, if m′t 6= m′′t .

(54)
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