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Achievable Degrees-of-Freedom of theK-user SISO Interference Channel with
Blind Interference Alignment using Staggered Antenna Switching

Ahmed M. Alaa∗†, Student Member, IEEE, Mahmoud H. Ismail† ‡, Senior Member, IEEE

Abstract—In this paper, we characterize the achievable (linear)
Degrees-of-Freedom (DoF) of theK-user SISO Interference
Channel with Blind Interference Alignment (BIA) using stag-
gered antenna switching. In such scheme, each transmitter is
equipped with one conventional antenna and each receiver is
equipped with one reconfigurable (multi-mode) antenna. Assum-
ing that the channel is known to the receivers only, we show
that by using linear BIA with staggered antenna switching at
the receiver, a sum DoF of 2K

K+2
is achievable. This result implies

that using BIA, we can double the DoF achieved by orthogonal
multiple access schemes for large number of users. Moreover,
we propose a systematic algorithm to generate the transmit
beamforming vectors and the reconfigurable antenna switching
patterns, showing that it can achieve the 2K

K+2
sum DoF for anyK.

Finally, we apply this algorithm to the 4-user SISO Interference
Channel, and demonstrate that4

3
sum DoF is indeed achievable.

Index Terms—Blind interference alignment, degrees of free-
dom, interference channel, reconfigurable antennas.

I. I NTRODUCTION

I NTERFERENCE is one of the most important factors that
limit the capacity of wireless networks. Because character-

izing the exact capacity region of interference channels isquite
complicated, the Degrees-of-Freedom (DoF) has emerged as
a convenient metric to quantify the capacity limits of such
channels. The DoF correspond to the number of independent
interference-free signaling dimensions, and have been charac-
terized for many multiuser network settings.

Recently, interference alignment(IA) has been shown to
achieve the DoF of various wireless networks [1],[2]. In
[3], Cadambeet al. have shown that IA can achieve the
K
2 DoF of the K-user interference channel. However, the
IA schemes presented therein require global channel state
information to be known at the transmitters (CSIT), which is
not always possible in practical systems. Stemming from this
point, many research efforts have been dedicated to develop
“Blind Interference Alignment”(BIA) techniques that can
be applied without CSIT. In [4], Jafar has shown that BIA
can be applied if the channel temporal correlation structure
follows specific patterns. Such patterns were created artificially
using reconfigurable antennas in [5] for the broadcast channel
(BC). However, the channel temporal correlation structurethat
achieves the DoF of theK-user interference channel cannot
arise in nature [4], and cannot be created using reconfigurable
antennas [5].
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Recently in [6], Wang presented the first characterization
for the sum DoF when using BIA over the 3-user interference
channel. It was shown that BIA can achieve a sum DoF of6

5 ,
which is greater than the unity sum DoF achieved by naive
orthogonal schemes. Besides, it was also shown that6

5 is the
upper bound on the DoF achieved by linear BIA schemes.
However, this result is specific for the 3-user channel, and
the DoF of the genericK-user interference channel with BIA
remains an open issue. In this work, we extend the analysis
in [6], and show that when using BIA with staggered antenna
switching over aK-user interference channel, a sum DoF of
2K
K+2 is achievable. A key insight behind this result is that
any signal vector can be aligned with interference atK − 2
unintended receivers, which corresponds to the alignment
scheme considered in this paper. Such result suggests that BIA
can achieve double the rate achieved by orthogonal schemes
for largeK. This result is novel as it is the first characterization
for the DoF of theK-user interference channel with BIA.
Moreover, we propose a systematic algorithm for generating
the transmit beamforming vectors and the receive antennas
switching patterns in order to achieve the2K

K+2 DoF. Finally,
we apply this algorithm to the 4-user SISO interference
channel showing that43 sum DoF are achievable almost surely.

It is worth mentioning that several works have characterized
the DoF of the interference channel with delayed CSIT. For
example, in [7], it was shown that the DoF of theK-user
interference channel with IA and outdated CSIT approach the
limiting value 4/(6 ln(2)− 1) ≈ 1.266 asK →∞. Also, the
sum DoF of two ergodic IA techniques with delayed CSIT
presented in [8] was shown to be2K

K+2 . It is important to note
here that our work departs from these works as BIA does
not require any CSIT. Other BIA schemes, such as the relay-
assisted scheme in [9], requires the presence of several relays
between transmitters and receivers, which may not be the case
in many practical scenarios. Contrarily, BIA using staggered
antenna switching only requires the usage of reconfigurable
antennas at the receivers, which does not entail significant
hardware complexity as reconfigurable antennas use a single
RF chain [5].

The rest of the paper is organized as follows. In Section
II, we present the system model. Next, in Section III, we
derive the sum DoF of theK-user SISO interference channel
with BIA using staggered antenna switching at the receiver.A
systematic algorithm to generate the beamforming vectors and
the antenna switching patterns is presented in Section IV. This
algorithm is applied for the 4-user SISO Interference Channel,
and we show that43 sum DoF is achievable. Finally, we draw
our conclusion in Section V.

http://arxiv.org/abs/1408.6427v3
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II. SYSTEM MODEL

We consider a fully connectedK-user SISO interference
channel where each transmitter is equipped with one con-
ventional antenna, and each receiver is equipped with a
reconfigurable (multi-mode) antenna that can switch among
M distinct modes. The received signal at thekth receiver over
m channel uses is given by

yk =

K∑

i=1

Hkixi + nk, k, i ∈ {1, 2, ...,K} (1)

where yk ∈ Cm×1 represents the received signal overm
channel uses (time or frequency slots),xi ∈ Cm×1 is the
transmitted signal vector by theith user,nk ∈ Cm×1 is an
additive noise vector where the noise sample at thejth channel
use isnk(j) ∼ CN (0, 1), andHki ∈ Cm×m is the channel
matrix between theith transmitter and thekth receiver. The
channel matrix can be written as

Hki = diag([hki(pk(1)) hki(pk(2)) ... hki(pk(m))]), (2)

wherepk is the reconfigurable antenna switching pattern at
the kth receiver. We assume an antenna withM possible
modes, thuspk(j) ∈ {1, 2, ...,M} is the selected antenna
mode at thejth channel use. Each mode corresponds to
a distinct channel realization, which means that at thejth

channel use, the channel between theith transmitter and the
kth receiver belongs to the set{hki(1), hki(2), ..., hki(M)},
depending on the switching patternpk. We assume that all
channel coefficients are drawn i.i.d. and are constant form
channel uses. The transmitted signal vectorxi is given by

xi =

di∑

d=1

s
[i]
d u

[i]
d (3)

where di is the number of symbols transmitted by theith

user overm channel uses,s[i]d is thedth transmitted symbol,
andu[i]

d is anm× 1 transmit beamforming vector for thedth

symbol, whereu[i]
d = [u

[i]
d (1) u

[i]
d (2) ... u

[i]
d (m)]T , andu[i]

d (j)
is an arbitrary complex-valued weight.

III. BIA USING STAGGEREDANTENNA SWITCHING: DOF
CHARACTERIZATION

In this section, we derive an achievable sum DoF of the
interference channel with BIA using staggered antenna switch-
ing at the receivers. In the next theorem, we assume no CSIT,
each receiver is equipped with a reconfigurable antenna with
an arbitrary number of antenna modes, and each transmitter
has a conventional antenna.

Theorem 1: In theK-user SISO interference channel with
BIA using staggered antenna switching, a sum DoF of2K

K+2
is achievable almost surely.

Proof Assume that useri sendsdi symbols overm channel
uses. That is,xi =

∑di

d=1 s
[i]
d u

[i]
d . Letv[i]

d = s
[i]
d u

[i]
d be thedth

dimension transmitted by useri, andV[i] = [v
[i]
1 v

[i]
2 ...v

[i]
di
]

be anm× di matrix containing all dimensions transmitted by
user i. Now assume the following alignment scheme which
we will use to prove the achievability result:v[i]

d aligns with

l− 1 dimensions from a set ofl− 1 distinct transmitters, e.g.,
{1, 2, ..., i−1, i+1, ..., l} at the remaining(K− l) receivers1,
e.g., {l + 1, l + 2, ...,K − 1,K}. In the rest of the proof,
we obtain the optimal value forl. Note that the following
condition is satisfied

at receiverj: Hjiv
[i]
d ∈ span(HjkV

[k]), (4)

∀j ∈ {l + 1, l + 2, ...,K − 1,K}, and ∀k ∈ {1, 2, ..., i −
1, i + 1, ..., l − 1, l}. Now assume thatv[i]

d also aligns with
anotherl dimensions from a set ofl distinct transmitters that
include the transmitterl + 1 instead ofl, i.e., {1, 2, ..., i −
1, i + 1, ..., l − 1, l + 1} at the remaining(K − l) receivers,
i.e., {l, l+ 2, l + 3, ...,K − 1,K}. In this case, the following
condition is satisfied

at receiverj: Hjiv
[i]
d ∈ span(HjkV

[k]), (5)

∀j ∈ {l, l + 2, l + 3, ...,K − 1,K}, and ∀k ∈ {1, 2, ..., i −
1, i+ 1, ..., l− 1, l+ 1}. Given that all channel matricesHji,
∀i, have the same changing pattern dictated by the predefined
antenna mode switching pattern at receiverj, we directly apply
Lemma 2 in [6] to (4) and (5) to obtain

v
[i]
d ∈ span(V[k]), (6)

∀k ∈ {1, 2, ..., i− 1, i+1, ..., l− 1, l, l+1}. Now, consider re-
ceiverl+1. From (4) we haveHl+1,i v

[i]
d ∈ span(Hl+1,kV

[k]),
which can be written as

Hl+1,i v
[i]
d ∈ span(Hl+1,l+1H

−1
l+1,l+1Hl+1,kV

[k]). (7)

Thus, we havev[i]
d ∈ span(H−1

l+1,l+1Hl+1,kV
[k]), ∀k ∈

{1, 2, ..., i − 1, i + 1, ..., l − 1, l}. From (6), we know
that v

[i]
d ∈ span(V[l+1]). Therefore, span(V[l+1]) and

span(H−1
l+1,l+1Hl+1,kV

[k]) have at least one-dimensional
common subspace, and dim(V[l+1]

⋂
H−1

l+1,l+1Hl+1,kV
[k]) >

0, which implies thatHl+1,l+1 V
[l+1] andHl+1,k V

[k] have a
non-zero intersection∀k ∈ {1, 2, ..., i−1, i+1, ..., l−1, l}. Be-
causeHl+1,l+1 V

[l+1] is the desired signal, receiverl+1 will
have its signal polluted with interference ifv[i]

d is aligned with
distinct dimensions from the set of transmitters{1, 2, ..., i −
1, i+ 1, ..., l− 1, l + 1} and{1, 2, ..., i− 1, i+ 1, ..., l− 1, l}
simultaneously. Therefore, we reach the following conclusion.
Given the adopted alignment scheme, if any dimension from
one transmitter aligns with interference froml − 1 distinct
transmitters at the remainingK− l unintended receivers, then
it cannot be aligned with any other set of transmitters at
another set of unintended receivers.

Let di1,i2,...,il denote the number of dimensions of
the common subspace projected from thel transmitters
{i1, i2, ..., il} ⊂ {1, 2, ...,K} at the remainingK− l receivers.
Then we can generalize conditions (21) and (22) in [6] as

dj1,j2,...,jl = du1,u2,...,ul
, (8)

1Note that a set ofl dimensions froml transmitters can be aligned, at most,
at (K− l) receivers. Otherwise, some receivers will have their desired signals
aligned with interference. Besides, we cannot align multiple dimensions from
the same transmitter at any unintended receiver, because ifwe did so, those
dimensions will align at their desired receiver and will notbe decodable.
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∀j1 6= j2 6= ... 6= jl, u1 6= u2 6= ... 6= ul, and
j1, j2, ..., jl, u1, u2, ..., ul ∈ {i1, i2, ..., il}, and

K∑

k1=1
k1 6=i

K∑

k2=k1+1
k2 6=i

. . .

K∑

kl−1=kl−2+1
kl−1 6=i

di,k1,...,kl−1
≤ di, (9)

wherei ∈ {1, 2, ...,K}. Now, consider receiverk. Because the
desired signal vectors must be linearly independent from each
other and from interference, they occupydk dimensions. In
addition, the interfering signals from every set ofl interfering
transmitters{i1, i2, ..., il} ⊂ {1, 2, ..., k − 1, k + 1, ...K}
overlap in di1,i2,...,il dimensions. Because the total number
of dimensions is equal to the number of channel usesm, we
have

K∑

i=1

di −
K∑

k1=1
k1 6=k

K∑

k2=k1+1
k2 6=k

. . .

K∑

kl=kl−1+1
kl 6=k

dk1,k2,...,kl
≤ m. (10)

By summing the inequality in (10) overk, we have

K

K∑

i=1

di − (K − l)

K∑

k1=1

K∑

k2=k1+1

. . .

K∑

kl=kl−1+1

dk1,k2,...,kl
≤ Km,

(11)

where the factor (K − l) arises from the fact
that each dimensiondk1,k2,...,kl

aligns at (K − l)
receivers. Next, we sum (9) over i to get
∑K

i=1

∑K
k1=1
k1 6=i

∑K
k2=k1+1

k2 6=i

. . .
∑K

kl−1=kl−2+1
kl−1 6=i

di,k1,...,kl−1
. It

can be shown that this series will containdi,k1,...,kl−1
,

{i, k1, ..., kl−1} ∈ {1, 2, ...,K} with all possible
permutations of {i, k1, ..., kl−1}. For instance, at
K = 5 and l = 3, the summation reduces to
d123+d124+d125+d134+d135+d145+d213+d214+d215+
d234+d235+d245+d312+d314+d315+d324+d325. From (8),
we know thatd123 = d132 = d321 = ... = d213, then we have
∑K

i=1

∑K
k1=1
k1 6=i

∑K
k2=k1+1

k2 6=i

. . .
∑K

kl−1=kl−2+1
kl−1 6=i

di,k1,...,kl−1
=

l!
∑K

k1=1

∑K

k2=k1+1 . . .
∑K

kl=kl−1+1 dk1,k2,...,kl
.

Substituting with inequality (9), we have
l!
∑K

k1=1

∑K

k2=k1+1 . . .
∑K

kl=kl−1+1 dk1,k2,...,kl
≤

∑K

i=1 di.
Thus, from (11), we get

K

K∑

i=1

di −
(K − l)

l!

K∑

i=1

di ≤ Km. (12)

Note that l is a design parameter, so we are interested in
selectingl that maximizes the sum DoF1

m

∑K

i=1 di. We can
rearrange (12) as

1

m

K∑

i=1

di ≤ sup
l≥2

Kl!

Kl!−K + l
=

2K

K + 2
, (13)

which is achieved atl = 2.

Thus, for a large number of users, the achievable sum DoF
of BIA in the K-user interference channel approaches2. This
means that the best we can do using the proposed scheme
when the CSIT is not available is to offer double the DoF
achievable by orthogonal multiple access schemes. Note that

unlike Theorem 7 in [10], which assumes a very specific
channel coherence structure, our result holds for any (general)
coherence structure. In the following section, we propose an
algorithm to systematically generate the antenna switching
patterns and the beamforming vectors such that the2K

K+2 sum
DoF is achieved.

IV. BIA A LGORITHM

A. Antenna switching patterns and beamforming vectors gen-
eration

For the proposed algorithm, we assume that each reconfig-
urable antenna has only two modes, i.e.,pk(j) ∈ {1, 2} is the
selected antenna mode at thejth channel use. The channel
between theith transmitter and thekth receiver belongs to
the set{hki(1), hki(2)}, depending on the switching pattern
pk. We also assume that the elements of the beamforming
vectors are binary, thusu[i]

d (j) ∈ {0, 1}, i.e., we either
activate or deactivate a certain symbol at a certain channel
use based on its beamforming vector. Later in this section,
we show that imposing these assumptions, in addition to the
algorithm presented in this subsection, the2K

K+2 sum DoF
can be achieved. Such assumptions have important hardware
implications. For instance, the proposed algorithm operates
with low cost reconfigurable antennas that have only two
modes. Besides, beamforming is very simple and applied by
activating or deactivating certain symbols at the transmitter.
The idea behind the algorithm and the insights based on which
it was constructed can be found in the proof of Theorem 2.

In order to achieve the DoF presented in Theorem 1, we
need to satisfy the bounds in (9) and (12). It is obvious that the
bound in (9) is achieved if every dimension transmitted by user
i aligns with some other dimension from another user. Thus,
each user needs to sendK − 1 symbols perm channel uses.
Moreover, the bound in (12) is satisfied if we use the minimal
number of channel uses that keeps the desired signals and the
interference linearly independent. This is simply satisfied by
settingm = 1

2 (K + 2)(K − 1), which is the division of the
total number of symbolsK(K−1) by the maximum sum DoF.
The following algorithm can be used to generate the transmit
beamforming vectors and the antenna switching patterns for
all users.

1: procedure BIA(K)
2: Generate a matrixP̃ = [p̃1, p̃2, ..., p̃K ] ∈

B
1

2
(K+2)(K−1)×K , whereB = {0, 1}, such that all the

column vectors that are the Hadamard product of all the
combinations ofK − 2 column vectors iñP are linearly
independent.

3: ConstructP = P̃ + 1 1

2
(K+2)(K−1)×K , where1n×m

is ann×m matrix with all elements = 1.
4: x← 1
5: while x ≤

(
K

K−2

)
do

6: Pick a new pair of distinct usersi and j, and a
new pair of dimensionski andkj .

7: Setu[i]
ki

= u
[j]
kj
← p̃1 ◦ p̃2 ◦ ... ◦ p̃i−1 ◦ p̃i+1 ◦ ... ◦

p̃j−1 ◦ p̃j+1 ◦ ... ◦ p̃K , where◦ is the Hadamard product
(element-wise product).

8: x← x+ 1.
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9: end while
10: return P andu[1]

1 , ...,u
[1]
K−1,u

[2]
1 , ...,u

[2]
K−1, ...,

11: u
[K]
1 , ...,u

[K]
K−1.

12: end procedure
The algorithm returnsP, whose column vectors represent the
antenna switching patterns for all users, andu

[i]
k , which is the

beamforming vector for thekth dimension (symbol) sent by
the ith user. In the next subsection, we investigate the DoF
achieved by the proposed algorithm.

B. DoF achievability by the proposed BIA algorithm

Before investigating the achievable DoF by the proposed
algorithm, we prove a useful lemma.

Lemma 1: For anyK, there always exists a matrix̃P ∈
B

1

2
(K+2)(K−1)×K , such that the matrixU comprising column

vectors that are the Hadamard product of all the combinations
of K − 2 column vectors iñP has full column rank.

Proof We can easily prove this by providing an example for a
matrix that always satisfies this condition. LetP̃ = [1K×K −
IK×K ,A( 1

2
K−1)×(K+1)×K ], whereA( 1

2
K−1)×(K+1)×K has

distinct rows, with each row containing exactlyK − 2 ones.
For instance, forK = 4, the matrixP̃ is

P̃T =








0 1 1 1 0 0 1 1 0

1 0 1 1 0 1 0 1 1

1 1 0 1 1 0 0 0 1

1 1 1 0 1 1 1 0 0







.

Now focus on the matrixU = [u1u2...u( K

K−2
)], where each

column vectorui is the Hadamard product of a distinct subset
of K − 2 column vectors iñP. It can be easily shown that all
columns inU are independent, which directly follows from the
fact that the last(12K−1)× (K+1) elements in each column
in U have a single non-zero elements in unique positions.
Thus, no set of scalars{α1, α2, ..., α( K

K−2
)} that are not all

zero exists such thatα1u1 + α2u2 + ... + α( K

K−2)
u( K

K−2)
=

0 1

2
(K+2)(K−1). Since matrixP̃ can be generated for anyK,

the lemma follows.

In the next theorem, we prove that the proposed scheme
achieves the2K

K+2 sum DoF.
Theorem 2: Applying BIA using the switching patterns and

beamforming vectors generated by the algorithm in Section
IV-A, the sum DoF of 2K

K+2 is achieved almost surely for any
K.

Proof We focus on an arbitrary receiverj. From (1), we
know that the received signal at such receiver is given by
yj =

∑K

i=1 Hjixi. Based on the algorithm in Section IV-
A, we know that each transmitter sendsK − 1 symbols over
1
2 (K + 2)(K − 1) channel uses. Given the antenna switch-
ing patterns matrixP

1

2
(K+2)(K−1)×K and the beamforming

vectors for all transmitters, we need to prove the following:

1) At receiverj, the signal space does not collapse, i.e., all
desired signal vectors are independent.

2) The interference at receiverj always resides in a dimen-
sion of 1

2K(K − 1).

3) The interference space and the desired signal space
do not intersect, i.e., all desired signal vectors are
independent to all interfering signal vectors.

Condition (1) implies that theK − 1 desired signal vec-
tors must reside inK − 1 independent dimensions. Since
the total number of dimensions is equal to the number of
channel usesm = 1

2 (K + 2)(K − 1), then condition (2)
follows, i.e., the interference should reside in the remaining
1
2 (K + 2)(K − 1) − (K − 1) = 1

2K(K − 1) dimensions.
Condition (3) implies that no interference vector aligns with
any signal vector. If all these conditions are satisfied, then
the DoF of a userj is the ratio between the number of its
interference-free signal dimensions to the total channel uses,
i.e.,DoFj =

K−1
1

2
(K+2)(K−1)

= 2
K+2 . Thus, the sum DoF for all

users is 2K
K+2 , which is the achievable DoF stated in Theorem

1. We start by proving condition (1). From lemma 1, we know
that all the distinct beamforming vectorsu[j]

k , ∀ 1 ≤ k ≤ K−1
are linearly independent, which means that the signal space
will not collapse as it resides inK − 1 dimensions. Thus,
condition (1) is satisfied. Now, we prove that condition (2)
is also satisfied. Note that each of theK − 1 interferers on
receiverj sendsK−1 symbols. From step 7 in the algorithm,
we know that any beamforming vectorki for interferer i is
the same as some beamforming vectorkw of interfererw, i.e.,
u
[i]
ki

= u
[w]
kw
← p̃1 ◦ p̃2 ◦ ... ◦ p̃i−1 ◦ p̃i+1 ◦ ... ◦ p̃w−1 ◦ p̃w+1 ◦

...◦ p̃K . Thus, the beamforming weights in bothu[i]
ki

andu[w]
kw

are non-zero only if̃pj = 1, i.e., when receiverj activates
mode 2 of the reconfigurable antenna. Thus, the interfering
dimensionski andkw will always be aligned along the vector
u
[i]
ki

= u
[w]
kw

at receiverj since all their non-zero weights
perceive the same antenna mode, and will be independet from
all other vectors as shown in lemma 1. Note that for interferer
i, there also exists some beamforming vectork

′

i, which is
the same as some beamforming vectork

′

j of the desired user
j (we will show that they will not align while proving that
condition (3) is satisfied). Thus, each interferer sendsK − 1
signal vectors, and hasK−2 signal vectors each aligned with
a distinct signal vector from another interferer, leading to a
total of (K − 1)(K − 2)/2 interference dimensions. Besides,
each interferer has a signal vector that does not align with
any other interferer. Thus, the total number of interference
dimensions is(K − 1)(K − 2)/2 + (K − 1) = 1

2K(K − 1).
Thus, condition (2) is satisfied. Finally, we focus on condition
(3). Recall that at receiverj, each interfereri 6= j has
some beamforming vectork

′

i, which is the same as some
beamforming vectork

′

j of the desired userj, i.e.u[i]

k
′

i

= u
[j]

k
′

j

←

p̃1 ◦ p̃2 ◦ ... ◦ p̃i−1 ◦ p̃i+1 ◦ ... ◦ p̃j−1 ◦ p̃j+1 ◦ ... ◦ p̃K . Since
both p̃i and p̃j are excluded from the Hadamard product,
there exists channel uses at which the beamforming vectors
of i and j are activated and the selected antenna mode is
1, and other channel uses at which the beamforming vectors
of i and j are activated and the selected antenna mode is 2.
Thus, althoughu[i]

k
′

i

= u
[j]

k
′

j

, the received desired signal vector

and the interference vector do not align since the antenna
pattern changes over the non-zero entries of the beamforming
vectors, i.e. they are linearly independent almost surely.Hence,
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all signal vectors are independent on all interference vectors
almost surely. Since conditions (1), (2), and (3) are satisfied,
then the DoF of userj is 2/(K + 2). By symmetry, the sum
DoF is given by2K/(K+2). Thus, the sum DoF in Theorem
1 is achieved.

C. Application to the 4-user SISO Interference Channel

Consider a fully connected 4-user SISO Interference Chan-
nel. It follows from the discussion in the previous section
that each user can send 3 symbols over 9 channel uses. One
possible choice for the matrixP is given by

PT =








1 2 1 2 1 2 2 2 1

2 1 1 2 2 1 2 2 2

2 2 2 1 1 1 1 2 2

2 2 2 2 2 2 1 1 1








(14)

where it can be seen thatP satisfies the conditions in lemma
1. The algorithm starts by picking any distinct pair of users,
e.g., users 3 and 4, and selects any of their symbols, say
the first symbol of each. These symbols can be aligned
at receivers 1 and 2. We let the beamforming vectorsu

[3]
1

and u
[4]
1 for both symbols be equal and set their values to

p̃1 ◦ p̃2. From (14), we havẽp1 = [0 1 0 1 0 1 1 1 0]T , and
p̃2 = [1 0 0 1 1 0 1 1 1]T . Thus, we haveu[3]

1 = u
[4]
1 =

[0 0 0 1 0 0 1 1 0]T . Similarly, we can align every pair of
2 symbols from 2 distinct users at theK − 2 receivers of
the remaining users by choosing the beamforming vectors as
follows:

u
[2]
1 = u

[4]
2 = p̃1 ◦ p̃3 = [0 1 0 0 0 0 0 1 0]T , (15)

u
[2]
2 = u

[3]
2 = p̃1 ◦ p̃4 = [0 1 0 1 0 1 0 0 0]T , (16)

u
[1]
1 = u

[4]
3 = p̃2 ◦ p̃3 = [1 0 0 0 0 0 0 1 1]T , (17)

u
[1]
2 = u

[3]
3 = p̃2 ◦ p̃4 = [1 0 0 1 1 0 0 0 0]T , (18)

u
[1]
3 = u

[2]
3 = p̃3 ◦ p̃4 = [1 1 1 0 0 0 0 0 0]T , (19)

u
[3]
1 = u

[4]
1 = p̃1 ◦ p̃2 = [0 0 0 1 0 0 1 1 0]T . (20)

Now, we focus on receiver 1. The antenna switching pattern
of receiver 1 isp1 = [1 2 1 2 1 2 2 2 1]T . Thus, the equiva-
lent channel between transmitterk and receiver 1 is given by
(21), and the received signal at receiver 1 is given by (22),
where we drop the additive noise term for convenience. From
(22), we see that the desired symbolss

[1]
1 , s[1]2 , ands[1]3 occupy

a 3-dimensional space. For the interfering symbols, we observe
that s[2]1 and s

[4]
2 align along the vector[0 1 0 0 0 0 0 1 0]T ,

s
[2]
2 ands[3]2 align along the vector[0 1 0 1 0 1 0 0 0]T , while
s
[3]
1 ands[4]1 align along the vector[0 0 0 1 0 0 1 1 0]T . This

is due to the fact that every pair of these symbols have a
non-zero entry in the their beamforming vectors only when
the receiver selects mode 2, which is guaranteed by step 7
in the BIA algorithm. Thus, the interfering signal occupiesa
6-dimensional space. To make sure that all desired symbols
are decodable, we need to prove that all vectors carrying
the desired symbols are linearly independent and the 3-
dimensional subspace carrying the desired symbols does not
intersect with the 6-dimensional interference subspace. This

can be easily proved by showing that the 9× 9 matrix R

defined in (23), which contains all the received desired and
interference vectors, is full rank, which follows from the fact
that all rows and columns inR are linearly independent almost
surely. Thus, receiver 1 achieves13 DoF almost surely. The
same analysis can be applied to receivers 2, 3, and 4. At
every receiver, the interference will occupy a 6-dimensional
space while the desired signal occupies a 3-dimensional space.
Hence, the achieved sum DoF is43 . Note that forK = 3, each
two symbols can be aligned at one unintended receiver, and
the proposed algorithm reduces to the scheme in [6] achieving
a sum DoF of65 . ForK = 5, each two symbols can be aligned
at 3 unintended receivers, and the achieved sum DoF is10

7 .

V. CONCLUSION

In this paper, we have shown that linear Blind Interference
Alignment (BIA) using staggered antenna mode switching can
achieve a sum DoF of2K

K+2 in the K-user SISO interference
channel. A key insight is that each signal dimension from
one user can be aligned with a single set of distinct users at
the receivers of the remaining users. This result suggests that
we can double the unity DoF of orthogonal multiple access
schemes without channel state information at the transmitters.
Moreover, we proposed an algorithm to generate the transmit
beamforming vectors and antenna switching patterns utilized
in BIA. We showed that the proposed algorithm can achieve
the 2K

K+2 sum DoF for anyK. By applying this algorithm to
the 4-user Interference Channel, it was shown that a sum DoF
of 4

3 is achievable.
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H1k = diag([h1k(1) h1k(2) h1k(1) h1k(2) h1k(1) h1k(2) h1k(2) h1k(2) h1k(1)]). (21)

y1 =

















h11(1) h11(1) h11(1)
0 0 h11(2)
0 0 h11(1)
0 h11(2) 0
0 h11(1) 0
0 0 0
0 0 0

h11(2) 0 0
h11(1) 0 0

















︸ ︷︷ ︸

Rank = 3






s
[1]
1

s
[1]
2

s
[1]
3




+

















0 0 h12(1) 0 0 h13(1) 0 0 h14(1)
h12(2) h12(2) h12(2) 0 h13(2) 0 0 h14(2) 0

0 0 h12(1) 0 0 0 0 0 0
0 h12(2) 0 h13(2) h13(2) h13(2) h14(2) 0 0
0 0 0 0 0 h13(1) 0 0 0
0 h12(2) 0 0 h13(2) 0 0 0 0
0 0 0 h13(2) 0 0 h14(2) 0 0

h12(2) 0 0 h13(2) 0 0 h14(2) h14(2) h14(2)
0 0 0 0 0 0 0 0 h14(1)

















︸ ︷︷ ︸

Rank = 6




















s
[2]
1

s
[2]
2

s
[2]
3

s
[3]
1

s
[3]
2

s
[3]
3

s
[4]
1

s
[4]
2

s
[4]
3




















(22)

R ≡

















h11(1) h11(1) h11(1) 0 0 h12(1) 0 h13(1) h14(1)
0 0 h11(2) h12(2) h12(2) h12(2) 0 0 0
0 0 h11(1) 0 0 h12(1) 0 0 0
0 h11(2) 0 0 h12(2) 0 h13(2) h13(2) 0
0 h11(1) 0 0 0 0 0 h13(1) 0
0 0 0 0 h12(2) 0 0 0 0
0 0 0 0 0 0 h13(2) 0 0

h11(2) 0 0 h12(2) 0 0 h13(2) 0 h14(2)
h11(1) 0 0 0 0 0 0 0 h14(1)

















(23)
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