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Abstract—Data replication and in-network storage are two
basic principles of the Information Centric Networking (ICN)
framework in which caches spread out in the network can be
used to store the most popular contents. This work shows how one
of the ICN architectures, the Named Data Networking (NDN),
with content pre-fetching can maximize the probability that a
user retrieves the desired content in a Vehicle-to-Infrastructure
scenario. We give an ILP formulation of the problem of optimally
distributing content in the network nodes while accounting for
the available storage capacity and the available link capacity.
The optimization framework is then leveraged to evaluate the
impact on content retrievability of topology- and network-related
parameters as the number and mobility models of moving users,
the size of the content catalog and the location of the available
caches. Moreover, we show how the proposed model can be
modified to find the minimum storage occupancy to achieve a
given content retrievability level. The results obtained from the
optimization model are finally validated against a Name Data
Networking architecture through simulations in ndnSIM.

Index Terms—Information Centric Networking, Named Data
Networking, Vehicular Network, Integer Linear Programming,
Content Store, ndnSIM

I. INTRODUCTION

Today’s Internet is focused on content retrieval instead of
point to point communication. In addition, users are mostly
mobile, continuously changing their location. One of the main
problem of user mobility is the intermittent connectivity that
causes loss of packets. An Information Centric Networking
(ICN) framework is the solution to the previous problems.
Indeed, the communication is based on a request/response
model where the focus is on the content. This is the basis of
all the ICN frameworks, where the communication paradigm
shifts from retrieving the content from a given location to
retrieving the content from the network.

The user does not care any longer where the packets come
from, but rather wants them as soon as possible. Thus, an end
node that wants a given content issues an INTEREST message
with the name of the desired content. Then, the network is
responsible for choosing the best node to fetch the content
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from by means of a DATA packet. In particular, in the NDN
paradigm, every node can be potentially the best source of a
given content for a given user (content consumer). Indeed, the
widespread use of caching into the network nodes is one of
the foundations of the NDN protocol.

This paradigm blends well with specific issues of user mo-
bility, such as intermittent connectivity and changing topolo-
gies. Let us consider what happens during a handover and
a user is downloading a video from You Tube in a moving
car. As the car moves, the Access Point (AP), to which the
user is connected, is no longer available and a new connection
should be established seamlessly. Thus, handover procedures
are used to keep track where the user is, that is, which mobile
base station or access point she is currently attached, in order
to re-route the video chunks to the proper access network
device. Differently, in an NDN scenario, when a consumer
moves from one location to another, a seamless handover is
easily achieved by reissuing the interest messages from the
new location for the subsequent video chunks, and the network
can then deliver the content from the best source for the new
location. This means that the DATA packet can be sent from
whichever network node that has the content in its local cache.

We focus here on exploiting the NDN paradigm in the con-
text of vehicular networks. Namely, we analyze the beneficial
effects of pre-fetching contents at static network nodes on the
performance of Vehicular-to-Infrastructure (V2I) communica-
tion paradigms. In our setting, vehicular users move along
pre-defined paths and get in touch with several Access Points
(APs) along their travel. The users entering the area served by
the NDN network ask for a content from a content catalog.
Each content is segmented in chunks, so the vehicular user can
retrieve different parts of the content from different Access
Points. A content is successfully retrieved if the user moves
out of the area with all the chunks of a content.

We define the problem of optimally pre-fetching the content
chunks in the network nodes in order to maximize the average
content retrieval probability. We show that the problem can be
formulated as an Integer Linear Programming (ILP) problem
which can be extended/modified to encompass the case where
the minimum retrieval proabability (out of all the mobile users)
is maximized. The proposed formulations are then leveraged
to study the impact of several parameters on the retrieval
probability, such as the number of users in the system, the
AP available bandwidth, the propagation latency, and the size
of the available caches which are called throughout the paper
Content Stores. We also introduce another model that returns
the optimal storage size of the whole network in order to
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reach a desired retrieval probability. Then, we also compare
our results with theoretical results and we show the efficiency
of our solution. Finally, we compare the performance of
the optimal pre-fetching solution against the popular Least
Recency Used (LRU) reactive caching policy, by means of
simulations with ndnSIM.

Thus, the main contributions of this work are:
• We demonstrate the advantages in using a pre-fetching

policy in a V2I scenario with respect to a dynamic policy.
• We evaluate various network topologies and we study the

impact of several network parameters.
• We consider also the optimal storage size of the whole

network.
• We validate our model assumptions and complexity by

means of real vehicular traces.
The paper is structured as follows: Section II provides an

overall view of the related work. The Section III reviews
some of the basic concepts of the Name Data Networking
(NDN) architecture which is taken as reference in this work.
Section IV explains the scenario considered in this paper and
the behavior of the NDN-enabled nodes. The optimization
models for content placement are presented in Section V. The
numerical results are shown in Section VI. Conclusions are
left for the last Section VIII.

II. RELATED WORK

Mobile ICNs have recently attracted much attention within
the research community. The works [1] and [2] provide
comprehensive surveys on ongoing research in mobile ICN.
Both papers highlight the benefits that different ICN designs
(e.g. DONA [3], CCN [4], NetInf [5], NDN [6]) provide to
content and producer mobility. In details, the first work mainly
focuses on open challenges that should be addressed, whereas
the second explains how to exploit the named-data paradigm
for making the mobility management easier. In particular,
[1] addresses the issues of producer mobility and dynamic
routing, further considering the benefits in the management of
user multihoming and handover. Differently, [2] evaluates the
performance improvement due to in-network caching and the
adaptability to various scenarios. Whilst the aforementioned
work is not scenario-specific, the ICN paradigm is applied to
specific VANET scenarios in [7], and [8]. The latter proposes
a geo-based forwarding strategy and studies caching to avoid
redundancy problem. Three heuristic strategies have been
suggested and evaluated showing an improvement in network
performance. While, the paper [7] shows how the adoption
of NDN could bring benefits to vehicular communications by
implementing a prototype of Vanet NDN.

In the field of Vehicular Networks, also the paper [9]
raises the question whether CCN could be the solution for
vehicular networks. The authors provide evidence that CCVN
(Content Centric Vehicular Networking) performs better than
the legacy TCP/IP-based architecture. Also this paper con-
siders the advantages of using ICN for mobility support.
The paper [10] proposes a mobility management scheme for
CCN that confirms the previous conjectures. It evaluates the
routing update latency and the delivery latency depending

on the number of nodes. The results show that the mobile
CCN scheme achieves better performance than the basic CCN
protocol. Nonetheless, the work does not evaluate how to
optimize content distribution in order to lower the perceived
latency and to guarantee content retrievability.

Several papers present solutions to optimize content dis-
tribution by exploiting content prefetching for both ICN and
non-ICN scenarios. A proactive caching algorithm for NDN is
proposed in [11], where the main idea is to proactively ask and
cache contents before the user moves from one access point
to another. The simulations show that the proposed approach
has better performance than the original NDN: lower handover
cost, higher delivery ratio, and shorter handover latency. The
solution is implemented modifying the INTEREST packet
and the basic communication protocol. Differently than our
work, no optimization model is given for content prefetching,
but rather the proposed scheme is evaluated mainly through
simulations.

The problem of optimizing content prefetching in “ classi-
cal” network scenarios has been largely debated in the past
years. As an example, the paper [12] aims at reducing the
content retrieval in the World Wide Web by predicting and
prefetching those files that are most likely to be requested.
The prefetching is done based on server advices to the client,
who can choose to prefetch or not the suggested files; the
model makes probabilistic predictions for prefetching based
on received requests.

A predictive prefetching method is also presented in [13]
for Wi-Fi networks. The paper develops new handoffs and
data transfer strategies in order to reduce the connection setup
latency and the download latency. The results show that the
performance of the vehicular WiFi network could be improved
using the proposed strategies. However, the authors leave some
open challenges, for example how to implement the estimation
mechanism for prefetching. Our work does not consider the
handoff strategy because the ICN context does not need to
establish end-to-end connections. Both the previous papers do
not present an optimization model for content prefetching, but
show that prefetching can help in performance improvement
for fixed and mobile scenarios, while our paper considers a
new optimization strategy for content prefetching in ICN.

Then, the paper [14] models the vehicular mobility using a
fog-of-war probabilistic representation. The model is used to
build a graph to formulate a non-integer linear programming
optimization problem. The problem is to decide the amount
of traffic to offload to the vehicular network. The output of
the problem is used to take the content pre-fetching decisions.
A speculation-based pre-fetching scheme is proposed in [15]
to ensure the users’ quality of experience. Moreover, it guar-
antees, together with a new grouping-based storage strategy,
a good data delivery efficiency and high lookup success rate.
While, an interesting mobility similarity model is presented
in [16] to enhance the data delivery efficiency. Users are
grouped in a mobile community based on similar playback
and movement. These three works provide an overview of the
current research trend for content pre-fetching in V2I network
scenario.

Finally, the authors of [17] analyze the optimal caching
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policy for file servers co-located with the APs in a WiFi-
based content distribution community infrastructure. They
formulate the content management problem as mixed integer
programming with the aim of maximizing the file retrieval
probability within a time interval. The model considers 100
content files whose popularity follows the Zipf’s law with
different skew parameters. Moreover, it uses 50 access points
with a coverage of 250 meters. Our paper shares the same
objective function of the aforementioned work but on the
other hand, our optimization framework considers additional
constraints which are specific to a multi-hop Named Data
Networking (NDN) scenario.

III. BACKGROUND ON NAMED DATA NETWORKING

This section briefly reviews the core components of Named
Data Networking [6] which constitute the reference network-
ing paradigm for the present work.

NDN Packet Model

The request is contained in a INTEREST packet, while
the response is in a DATA packet. An INTEREST packet
carries the Content Name, the Selector and a Nonce. The DATA
packet is composed of the Content Name, the Signature, the
Signed Info and the Data. A DATA packet is the corresponding
response of an INTEREST only if the Content Name in
the INTEREST matches the prefix of the Content Name
in the DATA packet. The names are typically hierarchical,
so matching a prefix means that the Content Name in the
DATA is in the subtree specified by the Content Name in the
INTEREST.

NDN Node Model

Each node has three main data sets: the Content Store
(CS), the Pending Interest Table (PIT) and the Forwarding
Information Base (FIB). The Content Store is an associative
container of data. Which data is stored in a node at a given
time is decided by means of a CS management policy. The PIT
stores the name prefixes that correspond to the INTEREST that
the node could not satisfy and that it has sent to some other
nodes; moreover, the node keeps track of the requesting nodes
asking for the content, to send downstream the returned data.
Finally, the FIB registers the prefixes and the corresponding
list of neighbors to forward INTEREST packets.

NDN Communication Model

A node asks for a content by sending an INTEREST packet
to all neighbors listed in the FIB for the matching prefix.
After hearing the request, any node with the content responds
with a DATA packet. When a node receives an INTEREST,
it checks if there is a correspondence into its tables, i.e.
CS, PIT and FIB. If the Content Store caches the requested
DATA packet, the node sends out the content and drops the
satisfied INTEREST. Otherwise, if the match is in the PIT, the
corresponding entry is updated adding the requesting node and
the INTEREST is discarded. If the match is in the FIB, the
INTEREST is sent out to the next hop(s) and it is created
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AP 
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Fig. 1. The reference network scenario.

a new entry in the PIT. Finally, if there is no match, the
INTEREST is discarded because the node does not know how
to find any matching DATA.

The DATA packet processing is quite similar, the node does
a longest match lookup of the DATA packet Content Name, if
there is a match in the Content Store, the node throws it away
because it is a copy. Otherwise, the node looks in the PIT and
if there is a match, it sends the data to the requesting nodes.
In case of a reactive CS policy, the node adds the packet to
the CS, possibly dropping some other content. A FIB match
means an unrequested DATA, so the node drops the packet.

IV. A VEHICLE-TO-INFRASTRUCTURE SCENARIO FOR
NDN

This paper considers a Vehicle to Infrastructure (V2I) sce-
nario composed of a set of Access Points (APs) to provide
connectivity to moving vehicles, and a backbone network
which interconnects the APs. See Figure 1.

The set of network nodes is identified by N where I ⊂ N is
the set of Access Points. Each node in the network (vehicles,
APs, backbone nodes) runs a simple version of the NDN pro-
tocol [6]. Namely, when a vehicle enters the area and connects
to the first AP along its path, it issues an INTEREST message
for the first chunk of content j from the content catalog, which
is composed of Sj chunks, each of size D(ck). Each AP has
a Content Store, capable of holding CS chunks. If the AP
receiving the INTEREST message has the requested chunk
of the object j, then it delivers it to the vehicle, otherwise it
issues an INTEREST message upstream in order to retrieve the
requested chunks. The same procedure is repeated by any node
in the backbone. If they have the requested chunks, they send
them downstream, otherwise they propagate the INTEREST
upstream. The Producer node is a special node in the backbone
which is assumed to have all the chunks of all the contents
and always satisfies the requests. A vehicle keeps sending
INTEREST messages as long as it receives chunks or it moves
outside of the AP coverage area. When the vehicle connects
to a new AP, it starts reissuing requests for the missing chunks
until the content is fully received.

The reference scenario includes Utot users moving at av-
erage speed s which may also change along the user’s path.
The overall mobility pattern is modeled as follows: each user
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Fig. 2. Path frequency (log-log graph) in the considered area using real
vehicular traces. The dashed line represents the Zipf’s distribution with ∼
Zipf(1).

is randomly assigned to one moving path out of V possible
paths. The v-th path has a probability βv of being chosen that
follows a Zipf’s law with exponent αp:

βv ∼ Zipf(αp)

To evaluate the feasibility of such path-assignment model
and to verify the previous assumption in a practical case,
we have analyzed real-life mobility traces of a medium/large
urban environment available described in [18]. Namely, we
have measured the path occurrence as a function of the path
rank for the reference data set. As shown in Figure 2, the
probability to choose a path (path occurrence) obey to the
Zipf’s law, since the log-log plot of the path occurrence is a
function in the path rank.

Each moving path then determines the set and sequence
of APs visited by the moving user along its way. The APs
are assumed to have a transmission diameter d; consequently,
the connection time available to one user at a given AP is
defined as Tcon = d/s. For the sake of presentation, the time
needed to discover and associate to the APs is not considered;
however, the model/scenario can be trivially extended by
scaling down the Tcon parameter by a factor which depends
on the discovery/association time.

The binary parameter miv represents if a user is connected
with the AP i along the path v. By letting miv be equal to 1
if a user along path v connects to AP i, and 0 otherwise, the
number of users on each path can be written as Uv = Utot ·βv ,
while the average number of users connected to the ith AP per
path v is:

Ui =
∑V

v=1 Uvmiv/
∑V

v=1miv

The content catalog is composed of C content objects. The
j-th content has a probability of being requested that follows
the Zipf’s distribution with exponent αr, as mostly assumed
by the literature [19], [20]. The probability that the jth content
is requested is:

σj ∼ Zipf(αr)

Let us define the set of links in the reference network E ;
the available link bandwidth is ce with e ∈ E . While the radio
channel has a bandwidth cR. We further assume a generic
but known routing pattern in the reference scenario, that is,
for every node in the network it is known the set of edges
(and ordered nodes) which constitute the shortest path to/from
the reference node. Namely, it is defined the set SPij which
includes the sequence of edges which belong to the shortest
path from node i to node j.

The maximum number of content chunks which can be
transferred over link e downstream towards the ith AP for the
users in the vth path is called the Maximum Downloadable
Burst (MDB), Beiv , and depends on the available bandwidth,
which must be shared among all the requests from the down-
stream nodes. Assuming that the bandwidth of the link is
equally shared by all the users connected to the same AP i
along the path v, we have:

Beiv =
ce · Tiv
D(ck)

( ∑
i∈I:e∈SPt(e)i

Ui

)−1
(1)

where Tiv = Tcon · miv is the duration of the connection
between AP i and the user along the path v, Tcon is the
total duration of the connection between the user and the APs
and SPt(e)i ⊂ E is the subset of links which belong to the
shortest path towards access point i. The function t(e) returns
the tail of the edge e. Thus, given an edge e that is the directed
link from node a to b, the function t(e) returns the node a.
While the Maximum Downloadable Burst associated to the
radio channel, BR

iv , towards the ith AP for users in the vth
path is computed as follows:

BR
iv =

cR · Tiv
D(ck) · Ui

(2)

It is also worth noting that retrieving chunks from a
backbone node “closer” to the Producer node incurs in a
transmission and processing overhead. The parameter ηeiv ≥ 1
represents the ratio between the time needed to retrieve at AP
i a content chunk for a user along path v through a backbone
link e and the time to retrieve the same chunk if the Content
Store is available at AP i. This factor can be computed as:

ηeiv =

∑
f∈SPit(e)

T
(ck)
ifv + 2τ · |SPit(e)|

T
(ck)R
iv + 2τ

+ 1.

where T (ck)
iev = D(ck)/Beiv is the transmission time for a sin-

gle chunk using the available Maximum Downloadable Burst
through link e and T (ck)R

iv = D(ck)/BR
iv is the corresponding

Maximum Downloadable Burst through radio channel. A
transmission latency τ accounts for the processing cost of the
messages.

V. OPTIMAL CONTENT PLACEMENT

This section provides the Integer Linear Programming (ILP)
formulation for the problem of content placement. Differently
than the reference NDN protocol, we make the following
assumptions:

1) The chunks in the Content Stores of the network nodes
do not change over time according to a caching policy,
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but are pre-fetched according to the decisions of an off-
line management platform;

2) The content objects are protected with a Forward Error
Correction code, which encodes a file of size Sj chunks
in H chunks. The jth content can be fully reconstructed
if the consumer obtains any Sj chunks. Therefore,
the Consumer does not issue INTEREST messages for
specific chunks, but issues general INTERESTs for
additional chunks.

A. Maximizing the Content Retrievability

The optimization objective is to distribute content chunks
into the Content Stores in order to maximize their availability
for the retrieval to a user that moves around the network. Let
us define the following sets:

• Access Points: i ∈ I = {1, . . . , I}
• Contents: j ∈ J = {1, . . . , C}
• Content Stores: k ∈ K = {1, . . . ,K}
• Paths: v ∈ V = {1, . . . , V }
• Links: e ∈ E = {1, . . . , E}
• Shortest Paths: s ∈ SPij = {1, . . . , N ×N}

For the sake of presentation, we assume in the following that
N = K, that is, all the nodes in the network (access points
and backbone nodes) can cache contents. Moreover, we further
assume that the content Producer is assigned index 0.

The proposed formulation leverages the decision variables
and parameters resumed in the following Table I:

TABLE I
MODEL VARIABLES AND PARAMETERS

Variables

xjk ∈ Z number of chunks of content j cached into the
content store k

Ajv ∈ {0, 1} boolean variable that is 1 if the content j is retriev-
able along the path v, 0 otherwise

yeivj ∈ Z number of chunks of content j retrieved through link
e and meant for users associated to AP i along the
path v

zivj ∈ Z number of chunks of content j retrieved through
radio channel and meant for users associated to AP
i along the path v

Parameters

σj ∈ [0, 1] probability of requesting content j
βv ∈ [0, 1] probability of choosing path v
Sj ∈ Z size of content j
Beiv ∈ Z available MDB over link e towards the AP i for the

users in the path v
BR

iv ∈ Z available MDB over the radio channel toward the AP
i for the users in the path v

ηeiv ∈ Z the highest cost in retrieving chunks from the furthest
content store in the backbone network

CSk ∈ Z capacity of content store k, measured in number of
chunks

The problem of pre-fetching content at network content
stores such that the probability of retrieving contents is max-
imized can be formalized as follows:

max:
∑
j∈J

σj

∑
v∈V

βvAjv (3)

s.t.∑
i∈I

zivj +
∑
i∈I

∑
e∈E

yeivjmiv ≥ AjvSj ∀j ∈ J ,∀v ∈ V

(4)

zivj +
∑

f∈SPi0

(ηfiv · yfivj) ≤ BR
iv ∀i ∈ I,∀v ∈ V, ∀j ∈ J

(5)∑
f∈SPt(e)0

yfivj ≤ Beiv ∀i ∈ I,∀v ∈ V, ∀e ∈ E , ∀j ∈ J (6)

yeivj ≤ xjt(e) ∀i ∈ I,∀v ∈ V, ∀e ∈ E , ∀j ∈ J (7)
zivj ≤ xji ∀i ∈ I, ∀v ∈ V, ∀j ∈ J (8)∑

j

xjk ≤ CSk ∀k ∈ K (9)

yeivj = 0 ∀i ∈ I,∀v ∈ V, ∀j ∈ J ,∀e ∈ E : e /∈ SPi0

(10)
xjk ≥ 0, yeivj ≥ 0, zivj ≥ 0, Ajv ∈ {0, 1} (11)

The objective is to maximize the retrievability of the content
j, Ajv, that is the probability of satisfying the request of
the vehicular user. The objective function (3) depends on
the probability of requesting the content j, σj and on the
probability of choosing the path v, βv . The first constraints
(4) define the retrievability of a content. A content is retrieved
if the overall number of chunks which are retrieved from any
network node (AP and backbone node) is above the required
threshold. Constraints (5) and (6) impose a limit on retrievabil-
ity that depends on the maximum downloadable burst (MDB).
In short, the overall number of chunks retrieved from network
nodes closer to the Producer cannot exceed the capacity of the
network links used to deliver them downwards. The parameter
ηeiv emphasizes the fact that the further the chunks are in the
network, the higher is the cost to retrieve them. The number of
chunks cached in each content store constrains the maximum
number of retrievable chunks, as enforced by constraints (7)
and (8). Equations (9) introduce budget-type constraints on the
maximum number of contents/chunks stored at any network
node. Then, equations (10) impose to not retrieve chunks from
links that are not comprised in the set of the shortest path
between the considered access point and the producer node.
Finally, the equations (11) define the decision variables of the
formulation.

B. Maximizing the Worst Content Retrievability

The model introduced in the previous section maximizes the
average content retrievability, thus fairness among different
paths/users may be low. In this context, it is also worth
enforcing a more fair solution by maximizing the “worst”,
i.e. the minimum, content retrievability out of all the mobile
users. We introduce a new variable, ε, that we would like to
maximize in our objective function. The value of this variable
is determined from the first set of constraints (13), where the
parameter βv has been removed with respect to (3) in the
original formulation in order to guarantee a fair comparison
among the paths. This allow us to study the impact of caching
on paths with different popularity.
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Objective function:

max: ε (12)

Constraints: ∑
j

σjAjv ≥ ε ∀v ∈ V (13)

xjk ≥ 0, yeivj ≥ 0, zivj ≥ 0, Ajv ∈ {0, 1}, ε ∈ [0, 1] (14)

The constraints from (4) to (10) are unchanged. The vari-
ables and the indexes remain the same, as in Section V-A.

The objective function (12) maximizes ε that represents a
probability; indeed, ε is the smallest success probability within
the success probability associated to the different paths v in
the network, deduced from the constraints (13). Equation (14)
adds the information that ε should be within 0 and 1.

C. Minimizing the Total Size of Content Stores

The previous two formulations target the maximization of
the content retrievability metric under a given budget in terms
of available Content Store size. Here, our aim is to minimize
the total size of content store in order to guarantee a desired
success probability. We introduce a new parameter that is the
minimum content retrievability Psucc.

Objective function:

min:
∑
j,k

xjk (15)

Constraints: ∑
j,v

σjβvAjv ≥ Psucc (16)

The constraints from (4) to (11) are unchanged, except for
constraint (9) that is deleted. The variables and the indices
remain the same, as in Section V-A.

The objective function (15) minimizes the sum of all the
xjk that represents the number of chunks stored in the network
content stores. The new constraint (16) imposes a lower bound
on the content retrievability.

D. On the Problem Size

For the sake of completeness, we provide the asymptotic
complexity of the problem formulation expressed as a function
of the number of variables and constraints. The complexity is
similar for all the three models. The number of variables of
the first model V-A is:

O(C · I · V · E + C ·K)

While the number of constraints is:

O(K + I · V · C · E)

Producer 
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Routers 
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Consumer 

1st level 

2nd level 

3rd level 

4th level 

Fig. 3. The reference V2I scenario: the tree topology.

Producer 

APs 

Routers 

Consumer 

Fig. 4. The reference V2I scenario: the circle topology.

The second model V-B has an additional variable and O(V )
additional constraints. Finally, the third model V-C has the
same number of variables and O(K) fewer constraints.

In practical network scenarios, the largest term in the above
expression is likely the number of possible paths followed by
the vehicular users. To this extent, we discuss in Section VI-D
how the number of paths actually used does not grow fast
with the size of the reference mobility arena, thus extending
the usability of the proposed model formulation in real-life
environments.

VI. PERFORMANCE EVALUATION

In this section, we show the results obtained by solving the
ILP model by means of AMPL (A Mathematical Programming
Language) with the solver IBM ILOG CPLEX Optimization
Studio. We start off by focusing on a tree-structured network
topology , as this is one of the most widespread solutions
for the backbone implementation (Figure 3). Routing to/from
the APs happens along a shortest-path tree as represented
in the figure. Later on in this section we further apply our
optimization problem to more general network topologies,
namely ring topologies and meshed ones. Table II further
summarizes the scenario parameters and the values used in
the optimization, except if stated otherwise. It is worth noting
that the IEEE standard 802.11p for vehicular communications
provides a peak capacity of 27 Mbit/s. However, the authors
of [21] show that lower data rates maximize the data volume
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Fig. 5. The reference V2I scenario: the mesh topology.

that can be delivered, therefore we set the link capacity to
9 Mbit/s.

TABLE II
SCENARIO PARAMETERS

Parameter Description Value

τ link latency 0.25 ms
cR radio channel capacity 9 Mbit/s
ce backbone link capacity 1 Gbit/s
L tree depth 4
E number of links 28/30/36
I number of access points 8
K number of content stores 14
C size of the content catalog 50
αr exponent of content popularity 1
V number of paths 5
αp exponent of path popularity 1
Utot total number of users 700
Sj content size 1000 chunk

D(ck) chunk size 1000 byte
CSk content store size 2000 chunk
d diameter of AP coverage 250 m
s vehicle speed 90 km/h

Tcon total duration of connection 10 s
miv connection indicator 1

Throughout this section, we are mainly interested in eval-
uating how network-related parameters impact the content
retrievability and the cost for caching. We define the success
probability Psucc as:

Psucc =
∑
j∈J

σj
∑
v∈V

βvAjv.

The network costs depend on the content store size, the
available bandwidth and the number of access points per
path. In order to study how these design choices impact on
the success probability under different network and mobility
conditions, we use three slightly different models so as to
expose different points of view. A model striking a balance
among the different objectives according to some policy can
be easily obtained.
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Fig. 6. Success probability, Psucc, in content retrieval depending on Content
Store size, CS, assuming storage at different levels of the network.

A. Maximizing the Content Retrievability

Then, we evaluate the importance that storage has at the dif-
ferent levels of the tree. Figure 6 shows the success probability
in content retrieval depending on Content Store size assuming
that storage is available only at the APs, at the APs plus the
second level of nodes, or at all the levels. As the Content Store
size increases, the success probability also increases. Having
storage only at the APs however does not allow the network to
achieve its full potential. Adding storage to the nodes of the
second level increases the success probability. However, as
stated in [22], the performance improvement is at most 17%
relative to the first level. Adding storage also to the third level
nodes slightly increases the success probability, but only to a
limited extent, which becomes null as the storage in the outer
nodes grows.

Figure 7 shows the success probability Psucc in content
retrieval depending on the contact time ratio. We define the
Contact Time Ratio, CTR, as the ratio between the longest
and the shortest contact between the user and each AP. We
assume that the user moves with different speeds along its path
but the total time the user is connected with the APs in the
network is 80 s. We notice that as the ratio grows, the success
probability lowers. This happens because the connection with
the APs is more intermittent: the user alternates very long and
short connections. Moreover, also in this case, we show that
the gain provided by the additional level of content stores is
at most 17% relative to the first level.

The results reported in Figures 6 and 7 lead us to the same
conclusions of [22]. Indeed, by using a sensitivity analysis,
the paper [22] shows that an NDN architecture with pervasive
caching and nearest-replica routing can provide at most 17% of
best-case improvement in network performance over a simple
edge-based caching architecture. Moreover, it proves that if
the edge caches are doubled, an edge-caching architecture
performs even better than NDN. Thus, as concluded in [22],
we can state that making pervasive use of content stores does
not provide substantial advantages that could justify to add
additional complexity to the network. While, we can think
that the gain given from use of caching can be achieved in an
incrementally deployable fashion.
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Fig. 7. Success probability, Psucc, in content retrieval depending on contact
time ratio, CTR, assuming storage at different levels of the network.
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Fig. 8. Success probability, Psucc, in content retrieval depending on content
catalog size, C, assuming different storage sizes.

Figure 8 depicts the success probability Psucc in content
retrieval depending on content catalog size. We assume dif-
ferent sizes for the content stores. It can be noticed that the
success probability is almost 1 for a catalog size ranging from
50 to 100 contents with CSs of 3000 chunks. Then, the success
probability is more than 90% if the content stores can store
2000 chunks. The success probability is smaller as smaller is
the content store size and as bigger is the catalog.

The results reported so far show that large Content Stores,
high link capacity, non intermittent connections, and small
content catalog, all increase the success probability, but the
effect is different depending on the other system parameters.
In particular, increasing the wireless capacity and avoiding
intermittent connections have a beneficial impact, but at the
same time are unlikely to be controlled and changed. The size
of the Content Store, on the other hand, is likely to be effortless
to improve and can partly compensate a less dense network
or a network with less capacity. However, we should take into
account that spreading the content stores over a big network
is far from being an easy task. Finally, we should consider
that the bigger is the variety of content, the more important
becomes the size of the content stores.

Figure 9 shows the number of users in the network versus
the user speed. The continuous line represents the upper
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Fig. 9. Success probability, Psucc = 1, in content retrieval depending on
user’s speed and number of users in the network varying the content store
size CS.

bound for the tradeoff between the number of users in the
network and their speed to get a success probability equal to
1, assuming that all the contents chunks are stored in all the
content stores of the first level.

The values are computed using the following equation:

Utot ≤
cR · d · I ·

∑I
i=1mi1

Sj ·D(ck) · s
where s and Utot are the changing variables to get the chosen
success probability. Note that mi1 represents the number of
contacts with the access points along the first path. The value
is the same for all the paths.

The dots in the Figure represents the number of users
versus their speed to achieve 100% success probability, if it is
exploited the solution given by our model. We depict values
varying the content store sizes CSk, that is the same in all the
tree levels. The bigger are the content stores, the nearest are
the values obtained from our model to the bound value.

Thus, this Figure highlights that the results provided by our
model are comparable to the optimal bound. Moreover, also
small content stores can reach 100% of success probability
paying only a small price in terms of decreased speed and
diminished number of users.

Then, we also consider the two more general topologies
depicted in Figures 4 and 5 with the same number of APs,
backbone nodes and one content Producer. Routing to/from
APs along the shortest path is pre-computed with respect to
the topology.

Figure 10 compares the success probability values under
different backbone network topologies. Namely, the chart re-
ports the success probability, Psucc as a function of the content
store size, CS, and parametrized with respect to link latency
τ (and, consequently, to ηeiv). To make the comparison fair
among the different topologies, the ring and meshed topologies
share the very same number of APs as the tree topology, and
the very same routing paradigm, that is, routes to/from APs
adhere to the shortest path paradigm. The figure highlights
the influence of the overall network latency, showing that the
success probability is larger with smaller τ . Therefore, if the
links have a larger latency, the storage size must be increased
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Fig. 10. Success probability, Psucc, in content retrieval depending on Content
Store Size, CS, with different values of link latency, τ , in tree topology, T ,
circle topology, C, and mesh topology, M .

in order to achieve the same success probability. Moreover, as
can be expected, the storage size has a big effect: the bigger are
the content stores, the higher is the success probability. It can
be noticed that the tree topology provides an higher success
probability than the circle and mesh topologies with small τ .
While, with bigger values of τ , the backbone topology does
not influence the success probability because the contents are
only retrieved from the access points.

B. Maximizing the Worst Content Retrievability

The second model tries to maximize the worst success
probability among the possible paths. Thus, ε represents this
success probability in content retrieval relative to the path with
the smaller probability of being chosen. We assume that there
are 480 users that connect with only six over the eight possible
APs. The Figure 11 represents the values of ε as a function
of the Contact Time Ratio assuming storage at different levels
of the network. It can be noticed that the success probability
lowers if the users move faster. Moreover, differently from
Figure 7, the values of content retrievability are very close
for all the three considered situations, this is due to the new
minmax model that tries to balance the success probability of
all the paths. Thus, we can say that adding levels of caching
does not provide advantages in content retrievability among
different paths. However, we have to pay the price of decreased
performance.

C. Minimizing the Total Size of Content Stores

The third proposed model allows us to evaluate the size of
the content stores to install in the network in order to guarantee
a chosen success probability, that we fixed at Psucc = 0.95.
The total content store size in the network is represented as
CStot =

∑C
j=1

∑K
k=1 xjk. We study the number of users
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Fig. 11. Worst Content Retrievability, ε, versus the contact time ratio, CTR,
assuming storage at different levels of the network. Number of contacts with
the APs: 6; number of users in the network: 480.
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Fig. 12. Total content store size to achieve a success probability of 95% in
content retrieval depending on number of users in the network, Utot, assuming
storage at different levels of the network.

that our network with different content store sizes can serve
in Figure 12. Moreover, we assume that content stores are
available at different levels of the tree. We note that the
content stores are useless with less then 660 users because the
network can afford the load and retrieve the contents from the
repository at the root of the tree. While, ranging from 660 to
720 users, it is possible to raise the content store sizes in order
to achieve the fixed success probability. Then, if the users are
more then 720, the network can not supply the requests due to
lack of bandwidth. Thus, content stores cannot overcome the
limit imposed by the link access availability. Considering the
case with content stores in all the tree levels, we noticed that,
as the number of users grows, the content stores are pushed
down towards the access network. On the contrary, the content
stores in the upper levels are more effective when there are
fewer users.

Figure 13 shows the total content store size as a function
of the exponent of the path popularity to achieve a success
probability of 95% in content retrieval. We assume that there
are 480 users that connect with only six out of the eight
possible APs. It can be noticed that when the users distribution
across the available paths is more skewed, that is, when the
congestion level of the more congested path increases, the
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Fig. 13. Total content store size to achieve a success probability of 95% in
content retrieval depending on the exponent of path popularity, αp, assuming
storage at different levels of the network. Number of contacts with the APs:
6; number of users in the network: 480.
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Fig. 14. Total content store size to achieve a chosen success probability in
content retrieval, assuming storage at different levels of the network.

size of the deployed content stores increases. Moreover, as it
could be expected, if only the first level in the topology is
available, it is necessary to install bigger content stores than
the cases with also the second and the third level. This Figure
also confirms that the third level of content stores is less useful
for the scenarios considered.

Figure 14 represents the total content store size as a function
of the chosen success probability in content retrieval. As it can
be expected, the higher is the desired success probability, the
bigger the content stores size. Furthermore, moving from 80%
of success probability to 100%, we should more than double
the total content store capacity. Thus, if we would like to
guarantee an higher probability in content retrieval, we should
evaluate whether to invest more in content store is worth the
costs. Moreover, it can be noticed that by installing content
stores not only in the Access Points, it is possible to reduce
the total content store size and so to save in costs.

Finally, Figure 15 depicts the total content store size needed
to achieve a chosen success probability, considering variable
users’ speed. The succession of long and short connections
with the APs brings to install bigger content stores in the
network. However, the investment for the storage to guarantee
the same chosen success probability in case of different CTRs
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Fig. 15. Total content stores size to achieve a chosen success probability in
content retrieval, assuming variable users’ speed.
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Fig. 16. Number of paths, V , depending on the area, considering all the
paths, 100%, or only the most probable 50% of them.

is reasonable and provides an infrastructure that is more
suitable for heterogeneous scenarios.

D. Discussion on the usability of the proposed approach

As already observed in Section V-D, the cardinality of the
set of possible paths V may increase exponentially in real-
life mobility environments, which would make the solution of
the optimization problem impractical, or, in the best case, too
slow. To assess the scalability of the proposed approach, we
have considered real-life vehicular traces of the city of Zurich
[18] which provide detailed information on users mobility in
a area of 18,4 square kilometers; leveraging these traces, we
have evaluated the total number of distinct paths which can
be observed in such vehicular realization when varying the
size of the observation area. Namely, Figure 16 reports the
total number of paths and the number of the most popular
paths as a function of the size of the geographical region of
observation (up to the complete Zurich area). Interestingly, the
total number of paths and the number of most popular 50%
paths are not exponential in the size of the area, but rather
feature a linear growth.

Figure 17 shows the success probability when applying the
optimization model considering a growing number of paths
in the model parameter space starting from the most popular
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Fig. 18. Time, in seconds, to find the success probability in content retrieval
obtained by running the model with a growing number of paths, V , in a 3,24
square kilometer area.

ones till all the paths are considered in the model. It is worth
noting that by considering only the number of paths that cover
50% of probability, i.e. about 20 paths, instead of the total of
paths, i.e. 330, the quality of the achieved solution is within
15% with respect to the optimum. Figure 18 depicts the time
to solve the problems with a growing number of paths. We
can notice that the time required to solve the problem with
20 paths is in the order of seconds, while it is in the order
of hours if all the paths are considered. This type of analysis
suggests that the proposed optimization-based approach can
be of practical use to plan the content placement in realistic
network scenarios.

VII. OPTIMAL CONTENT PRE-FETCHING VS DYNAMIC
CACHE MANAGEMENT

In this section, we compare the results given by our mathe-
matical model which returns the optimal content pre-fetching
strategy against dynamic caching policies. To this extent, we
leverage the ndnSIM simulator [23] which implements a Least
Recently Used (LRU) caching policy. In short, whilst the
optimal solution statically design the caching strategy given
a priori information on the reference network/scenario, in the

dynamic case the caches are filled in and managed in reactive
ways depending on the the observed NDN traffic pattern.

In order to have a fair comparison, we compute the number
of active users in the network using the Little’s law, i.e. U =
λ ·W , where U is the mean number of users in the system,
λ is the mean number of entering users per unit time and,
W is the mean time spent in the system by a user. Then, we
evaluate the following:

Utot = fin[PsuccTm + (1− Psucc)Tp]

where fin is the frequency of user entering the system, Tm is
the mean time to retrieve a content and, Tp is the time spent in
the system. Finally, Psucc is the success probability in content
retrieval, that we have previously defined

Figure 19 displays the probability of content retrieval versus
the number of users in the system, Utot. This Figure compares
the results obtained from the solution of our model and the
same scenario implemented by means of ndnSIM. The results
of the dynamic cache management (labeled ”LRU”) have been
obtained for each number of users by averaging across 10
instances each one representing a different realization of the
random processes representing the users arrival/departure and
content popularity. The output results have been tested accord-
ing to the t-student statistical test resulting in a confidence
interval below 5%, given a confidence level of 95%.

It can be noticed that the success probability Psucc is 1
with less than 200 users and is 0 with more than 800 users in
both cases. While, the gain in using the optimization model
instead of the classical LRU policy ranges from 50% with
about 400 users to a really big gain when the users are 700.
Thus, we can say that the proactive placement of content into
the content stores can provide big advantages over a reactive
caching policy.

It is worth pointing out that proactive placement requires to
have full knowledge on the content popularity and the users’
mobility patterns. To this extent, the observed gain of the
proactive content placement with respect to dynamic cache
management can be interpreted as an upper bound of the actual
gain; on the other hand, there is evidence in the literature that
content popularity is fairly stable over time. As an example,
the authors of [24] show that near-future popularity can be
predicted with relatively high accuracy (close to 90%), while
popularity after 90 days can be predicted with an accuracy
around 85%; this results support the fact that the gap between
proactive content placement and dynamic cache management
observed in our simulation is indeed representative of realistic
network conditions.

VIII. CONCLUSION

This paper exploits the in-network memory, foundation of
the NDN framework, to simplify the delivery of the contents
in a vehicular network. Two are the critical aspects for the
success of NDN: content placement and caching policy. Our
work provides a modeling framework that is a starting point
for solving these issues. We define a model that aims to
maximize the probability that a vehicular node can obtain
the requested content during its stay in the network. We
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proposed optimal content placement and ndnSIM with the LRU caching policy
varying the number of users in the system.

evaluate the system in terms of success probability in content
retrieval and investment on storage capacity in the network.
By assuming that the Content Stores of the network nodes
can be populated in advance, we provide an ILP formulation
of the problem of optimally placing the content chunks in
the network. The proposed optimization framework is then
applied to realistic NDN scenarios to assess the impact of
several network parameters onto the content retrievability.
Such analysis provides insightful views on where to place
content stores and which size of content store to place in ICNs.
The following general guidelines/outcomes are sample results
of the analysis carried out in this work:

• increasing the storage capacity at the nodes can improve
the success probability especially when the APs are
sparse, when the content catalog is bigger or when there
are a lot of users in the network;

• the maximum gain is achieved by investing in storage
capacity in the APs, that is, in the access network closer
to the end-users;

• investing in storage capacity in the second level of
network nodes also improves the performance of about
17%, especially if the link latency is low;

• the access link capacity is often the bottleneck on content
retrievability, even if infinite content store size is avail-
able;

• the mobility pattern of the users has an impact on the
content store allocation; namely, when users move with
heterogeneous speed values, in general, bigger content
stores are needed and adding levels of storage helps in
performance improvement.
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