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3-D Target Localization in Wireless Sensor Networks
Using RSS and AoA Measurements
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Abstract—This paper addresses target localization problems in
both noncooperative and cooperative 3-D wireless sensor networks
(WSNs), for both cases of known and unknown sensor transmit
power, i.e., PT . We employ a hybrid system that fuses distance and
angle measurements, extracted from the received signal strength
and angle-of-arrival information, respectively. Based on range and
angle measurement models, we derive a novel nonconvex estima-
tor based on the least squares criterion. The derived nonconvex
estimator tightly approximates the maximum-likelihood estimator
for small noise. We then show that the developed estimator can
be transformed into a generalized trust region subproblem frame-
work, by following the squared range approach, for noncoopera-
tive WSNs. For cooperative WSNs, we show that the estimator can
be transformed into a convex problem by applying appropriate
semidefinite programming relaxation techniques. Moreover, we
show that the generalization of the proposed estimators for known
PT is straightforward to the case where PT is not known. Our
simulation results show that the new estimators have excellent
performance and are robust to not knowing PT . The new estima-
tors for noncooperative localization significantly outperform the
existing estimators, and our estimators for cooperative localization
show exceptional performance in all considered settings.

Index Terms—Angle-of-arrival (AoA), generalized trust region
subproblem (GTRS), received signal strength (RSS), semidefinite
programming (SDP), wireless localization, wireless sensor net-
work (WSN).

Manuscript received July 17, 2015; revised December 6, 2015 and April 8,
2016; accepted July 6, 2016. Date of publication July 11, 2016; date of current
version April 14, 2017. This work supported in part by Fundação para a Ciência
e a Tecnologia under Projects PEst-OE/EEI/UI0066/2014 (UNINOVA) and
UID/EEA/50008/2013 (Instituto de Telecomunicações), project PTDC/EEI-
TEL/6308/2014-HAMLeT, Program Investigador FCT (IF/00325/2015), as
well as the grants SFRH/BPD/108232/2015, SFRH/BD/91126/2012, and Ciên-
cia 2008 Post-Doctoral Research grant. The review of this paper was coordi-
nated by Dr. Y. Gao.

S. Tomic is with the Laboratory of Robotics and Systems in Engineering
and Science (LARSyS), Instituto Superior Técnico, Institute for Systems and
Robotics (ISR/IST), 1049-001 Lisboa, Portugal (e-mail: stomic@isr.ist.utl.pt).

M. Beko is with Universidade Lusófona de Humanidades e Tecnologias,
1749-024 Lisboa, Portugal, and also with the Centre of Technology and Sys-
tems (CTS), Instituto Desenvolvimento De Novas Tecnologias (UNINOVA),
2829-516 Caparica, Portugal (e-mail: beko.marko@ulusofona.pt; mbeko@
uninova.pt).

R. Dinis is with Instituto de Telecomunicações, 1049-001 Lisboa, Portugal,
and also with the Departamento de Engenharia Electrotécnica, Faculdade de
Ciências e Tecnologia (FCT), 2829-516 Caparica, Portugal (e-mail: rdinis@
fct.unl.pt).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVT.2016.2589923

I. INTRODUCTION

W IRELESS sensor networks (WSNs) generally refer to
a wireless communication network that is composed of

a number of devices, which are called sensors, allocated over a
monitored region to measure some local quantity of interest [1].
Due to their autonomy in terms of human interaction and low
device costs, WSNs find application in various areas such as
event detection (fires, floods, and hailstorms) [2], monitoring
(industrial, agricultural, health care, and environmental) [3],
[4], energy-efficient routing [5], exploration (deep water, un-
derground, and outer space) [6], and surveillance [7], to name
a few. In many practical applications, data gathered by sensors
are only relevant if they are associated with accurate sensors’
locations; hence, the estimation of sensors’ locations is a key
requirement for a majority of practical applications [1].

Sensors are small, low-cost, and low-power nodes commonly
deployed in a large number over a region of interest with limited
to nonexisting control of their location in space, e.g., thrown
out of an aeroplane for sensing in hostile environments [8].
Installing a global positioning system (GPS) receiver in each
sensor would severely augment the network costs and restrict
its applicability [9]. To maintain low implementation costs, only
a small fraction of sensors are equipped with GPS receivers
(called anchors), whereas the remaining sensors (called tar-
gets) determine their locations by using a kind of localization
scheme that takes advantage of the known anchor locations
[10]. Since the sensors have minimal processing capabilities,
the key requirement is to develop localization algorithms that
are fast, scalable, and abstemious in their computational and
communication requirements.

Wireless localization schemes typically rely on range (dis-
tance) measurements [11], [12]. Depending on the available
hardware, range measurements can be extracted from the dif-
ferent characteristics of radio signal, such as time of arrival
(ToA) [13], time difference of arrival [14], round-trip time
[15], angle of arrival (AoA) [16], or received signal strength
(RSS) [17]–[21]. Recently, hybrid systems that fuse two mea-
surements of the radio signal have been investigated [22]–[30].
Hybrid systems profit by exploiting the benefits of combined
measurements, i.e., more available information. On the other
hand, the price to pay for using such systems is the increased
complexity of network devices, which increases the network
implementation costs [1], [9].

The approaches in [17]–[21] and [31] consider the noncoop-
erative and cooperative target localization problem, but the es-
timators are founded on RSS and distance measurements only.
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The approaches in [22]–[24] are based on the fusion of RSS
and ToA measurements. A hybrid system that merges range
and angle measurements was investigated in [25]. Yu in [25]
proposed two estimators for solving the noncooperative target
localization problem in a 3-D scenario: linear least squares
(LS) and optimization based. The LS estimator is a relatively
simple and well-known estimator, whereas the optimization-
based estimator was solved by the Davidson–Fletcher–Powell
algorithm [32]. In [26], Wang et al. derived an LS and a
maximum likelihood (ML) estimator for a hybrid scheme that
combines RSS difference (RSSD) and AoA measurements.
Nonlinear constrained optimization was used to estimate the
target’s location from multiple RSS and AoA measurements.
Both LS and ML estimators in [26] are λ-dependent, where λ
is a nonnegative weight assigned to regulate the contribution
from RSS and AoA measurements. A selective weighted LS
(WLS) estimator for the RSS/AoA localization problem was
proposed in [28]. Gazzah et al. determined the target location
by exploiting weighted ranges from the two nearest anchor
measurements, which were combined with the serving base sta-
tion AoA measurement. In [26]–[28], the authors investigated
the noncooperative hybrid RSS/AoA localization problem for
a 2-D scenario only. A WLS estimator for a 3-D RSSD/AoA
noncooperative localization problem when the transmit power
is unknown was presented in [29]. However, Chan et al. in
[29] only investigated a small-scale WSN, with extremely low
noise power. An estimator based on the semidefinite program-
ming (SDP) relaxation technique for the cooperative target
localization problem was proposed in [30]. Biswas et al. in
[30] extended their previous SDP algorithm for pure range
information into a hybrid one by adding angle information for
triplets of points. However, due to the consideration of triplets
of points, the computational complexity of the SDP approach
increases rather substantially with the network size.

In this paper, we investigate the target localization problem in
both noncooperative and cooperative 3-D WSNs. In the case of
noncooperative WSNs, we assume that all targets exclusively
communicate with anchors and that a single target is located
at a time. In the case of cooperative WSNs, we assume that
all targets communicate with any sensor within their commu-
nication range (whether it is an anchor or a target) and that
all targets are simultaneously located. For both cases, a hybrid
system that fuses distance and angle measurements, extracted
from RSS and AoA information, respectively, is employed. By
using the RSS propagation model and simple geometry, we
derive a novel objective function based on the LS criterion. For
the case of noncooperative WSNs, based on the squared range
(SR) approach, we show that the derived nonconvex objective
function can be transformed into a generalized trust region
subproblem (GTRS) framework, which can be solved exactly
by a bisection procedure [28]. For the case of cooperative
localization, we show that the derived objective function can
be transformed into a convex function by applying the SDP
relaxation technique. Finally, we show that the generalization
of the proposed estimators to the case where, alongside the
targets’ locations, the transmit power, i.e., PT , is also unknown
is straightforward for both noncooperative and cooperative
localization.

Thus, the main contribution of our work is threefold. First,
by using RSS and AoA measurement models, we derive a
novel nonconvex objective function based on the LS criterion,
which tightly approximates the ML criterion for small noise.
In the case of noncooperative localization, we propose two
novel estimators that significantly reduce the estimation error,
compared with the state of the art. Finally, in the case of
cooperative localization, we present the first hybrid RSS/AoA
estimators for target localization in a 3-D cooperative WSN.

Throughout this paper, uppercase bold type, lowercase bold
type, and regular type are used for matrices, vectors, and
scalars, respectively.Rn denotes the n-dimensional real Euclid-
ean space. The operators ⊗ and (•)T denote the Kronecker
product and transpose, respectively. The normal (Gaussian) dis-
tribution with mean μ and variance σ2 is denoted by N (μ, σ2).
diag(x) denotes a square diagonal matrix in which the elements
of vector x form the main diagonal of the matrix, and the ele-
ments outside the main diagonal are zero. The N -dimensional
identity matrix is denoted by IN and the M ×N matrix of all
zeros by 0M×N (if no ambiguity can occur, subscripts are omit-
ted). ‖x‖ denotes the vector norm defined by ‖x‖ =

√
xTx,

where x ∈ R
n is a column vector. For Hermitian matrices A

and B, A � B means that A−B is positive semidefinite.
The remainder of this work is organized as follows. In

Section II, the RSS and AoA measurement models are in-
troduced, and the target localization problem is formulated.
Section III presents the development of the proposed estimators
in the case of noncooperative localization for both known and
unknown PT values. In Section IV, we describe the derivation
of the proposed estimators in the case of cooperative localiza-
tion for both known and unknown PT values. In Sections V
and VI, complexity and performance analyses are presented,
respectively, together with the relevant results to compare the
performance of the newly presented estimators to the state of
the art. Finally, Section VII summarizes the main conclusions.

II. PROBLEM FORMULATION

We consider a WSN with N anchors and M targets, where
the known locations of anchors are denoted, respectively, by
a1,a2, . . . ,aN , and the unknown locations of targets are de-
noted by x1,x2, . . . ,xM (xi,aj ∈ R

3, i = 1, . . . ,M and j =
1, . . . , N ). For ease of expression, let us define a vector x =

[xT
1 ,x

T
2 , . . . ,x

T
M ]

T
(x ∈ R

3M×1) as the vector of all unknown
target locations, such that xi = ET

i x, where Ei = ei ⊗ I3,
and ei is the ith column of the identity matrix IM . We deter-
mine these locations by using a hybrid system that fuses range
and angle measurements. Combining two measurements of the
radio signal provides more information to the user, and it is
likely to enhance the estimation accuracy, as shown in Fig. 1.

Fig. 1 shows how (a) a range-based, (b) an angle-based,
and (c) a hybrid (range and angle) system operates for the
case where M = 1 and N = 4. In range-based localization,
each range measurement, i.e., d̂i, defines a circle as a possible
location of the unknown target. Thus, a set of range mea-
surements, i.e., {d̂1, d̂2, . . . , d̂N}, defines multiple circles, and
the area determined by their intersection accommodates the
target [see Fig. 1(a)]. Similarly, with angle-based localization,
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Fig. 1. Illustration of different localization systems in 2-D space. (a) Range-based localization. (b) Angle-based localization. (c) Hybrid localization.

each angle measurement, i.e., φi, defines a line as the set of
possible locations of the unknown target [see Fig. 1(b)]. In
Fig. 1(c), one can see that when the two measurements of the
radio signal are integrated, the set of all possible solutions (the
area determined by the intersection) is significantly reduced;
hence, hybrid systems are more likely to improve the estimation
accuracy.

Throughout this work, it is assumed that the range mea-
surements are obtained from the RSS information exclusively,
since ranging based on RSS requires the lowest implementation
costs [1]. However, the RSS measurement model can be re-
placed with the path-loss model by using the relationshipLij =
10 log10(PT /Pij) (dB), where Lij and Pij are, respectively,
the path loss and received power between two sensors i and j,
which are within the communication range of each other (from
the transmitting sensor), and PT is the transmission power of a
sensor [35], [36]. Thus

LA
ij =L0+10γ log10

‖xi−aj‖
d0

+ nij , for (i, j) ∈ A (1a)

LB
ik =L0+10γ log10

‖xi−xk‖
d0

+ nik, for (i, k) ∈ B (1b)

where L0 denotes the path-loss value at a short reference
distance d0 (‖xi − aj‖ ≥ d0, ‖xi − xk‖ ≥ d0); γ is the path-
loss exponent (PLE) between two sensors, which indicates the
rate at which the path loss increases with distance; and nij

and nik are the lognormal shadowing terms modeled as nij ∼
N (0, σ2

nik
) and nik ∼ N (0, σ2

nik
). Furthermore, the sets A =

{(i, j) : ‖xi − aj‖ ≤ R, for i = 1, . . . ,M, j = 1, . . . , N} and
B = {(i, k) : ‖xi − xk‖ ≤ R, for i, k = 1, . . . ,M, i 
= k},
where R is the communication range of a sensor, denote
the existence of target/anchor and target/target connections,
respectively.

To obtain the AoA measurements (both azimuth and ele-
vation angles), we assume that either multiple antennas or a
directional antenna is implemented at anchors [25], [34]. To
make use of the AoA measurements from different sensors,
the orientation information is required, which can be obtained
by implementing a digital compass at each sensor [25], [34].
However, a digital compass introduces an error in the AoA mea-
surements due to its static accuracy. For the sake of simplicity

Fig. 2. Illustration of a target and anchor locations in 3-D space.

and without loss of generality, we model the angle measurement
error and the orientation error as one random variable in the rest
of this paper.

Fig. 2 illustrates a target and anchor locations in 3-D
space. As shown in Fig. 2, xi = [xi1, xi2, xi3]

T and aj =
[aj1, aj2, aj3]

T are, respectively, the unknown coordinates of the
ith target and the known coordinates of the jth anchor, whereas
dAij , φA

ij , and αA
ij represent the distance, azimuth angle, and

elevation angle between the ith target and the jth anchor, re-
spectively. The ML estimate of the distance between two sen-
sors can be obtained from the RSS measurement model (1) as
follows [1]:

d̂Aij = d010
LA
ij−L0

10γ , for (i, j) ∈ A (2a)

d̂Bik = d010
LB
ik−L0

10γ , for (i, k) ∈ B. (2b)

Applying simple geometry, azimuth and elevation angle mea-
surements can be modeled as [25]

φA
ij = arctan

(
xi2 − aj2
xi1 − aj1

)
+mij , for (i, j) ∈ A (3a)

φB
ik = arctan

(
xi2 − xk2

xi1 − xk1

)
+mik, for (i, k) ∈ B (3b)

αA
ij = arccos

(
xi3 − aj3
‖xi − aj‖

)
+ vij , for (i, j) ∈ A (4a)

αB
ik = arccos

(
xi3 − xk3

‖xi − xk‖

)
+ vik, for (i, k) ∈ B (4b)
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respectively, where mij , mik and vij , vik are, respectively, the
measurement errors of azimuth and elevation angles, which are
modeled as mij ∼ N (0, σ2

mij
), mik ∼ N (0, σ2

mik
) and vij ∼

N (0, σ2
vij

), vik ∼ N (0, σ2
vik

).

Given the observation vector θ = [LT ,φT ,αT ]
T

(θ ∈
R

3(|A|+|B|)), where L = [LA
ij , L

B
ik]

T
, φ = [φA

ij , φ
B
ik]

T
, α =

[αA
ij , α

B
ik]

T
, and | • | denotes the cardinality of a set (the number

of elements in a set), the conditional probability density func-
tion (pdf) is given as

p(θ|x) =
3(|A|+|B|)∏

i=1

1√
2πσ2

i

exp

{
− (θi − fi(x))

2

2σ2
i

}
(5)

where

f(x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...

L0 + 10γ log10
‖xi−aj‖

d0

...
L0 + 10γ log10

‖xi−xk‖
d0

...

arctan
(

xi2−aj2

xi1−aj1

)
...

arctan
(

xi2−xk2

xi1−xk1

)
...

arccos
(

xi3−aj3

‖xi−aj‖

)
...

arccos
(

xi3−xk3

‖xi−xk‖

)
...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
σnij

...
σnik

...
σmij

...
σmik

...
σvij

...
σvik

...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The most common estimator used in practice is the ML
estimator, since it has the property of being asymptotically
efficient (for large enough data records) [37], [38]. The ML es-
timator forms its estimate as the vector x̂, which maximizes the
conditional pdf in (5); hence, the ML estimator is obtained as

x̂ = argmin
x

3(|A|+|B|)∑
i=1

1
σ2
i

[θi − fi(x)]
2 . (6)

Although the ML estimator is approximately the minimum-
variance unbiased estimator [37], the LS problem in (6) is
nonconvex and has no closed-form solution. In the remainder
of this work, we will show that the LS problem in (6) can be
efficiently solved by applying certain approximations. More
precisely, for noncooperative WSNs, we propose a suboptimal
estimator based on the GTRS framework leading to an SR-
WLS estimator, which can be solved exactly by a bisection
procedure [33]. For the case of cooperative WSNs, we propose
a convex relaxation technique leading to an SDP estimator that
can be efficiently solved by interior-point algorithms [39]. Not

only that the new approaches efficiently solve the traditional
RSS/AoA localization problem, but they can also be used to
solve the localization problem when PT is not known, with
straightforward generalization.

A. Assumptions

We outline here some assumptions for the WSN (made for
the sake of simplicity and without loss of generality).

1) The network is connected, and it does not change during
the computation time.

2) Measurement errors for the RSS and AoA models are
independent, and σnij

= σn, σmij
= σm, and σvij =

σv ∀ (i, j) ∈ A ∪ B.
3) The range measurements are extracted from the RSS

information exclusively, and all target/target measure-
ments are symmetric.

4) All sensors have identical PT values.
5) All sensors are equipped with either multiple antennas

or a directional antenna, and they can measure the AoA
information.

In assumption (1), we assume that the sensors are static and
that there is no node/link failure during the computation period,
and all sensors can convey their measurements to a central
processor. Assumptions (2) and (4) are made for the sake of
simplicity. Assumption (3) is made without loss of generality;
it is readily seen that if LB

ik 
= LB
ki, then it serves to replace

LB
ik ← (LB

ik + LB
ki)/2 and LB

ki ← (LB
ik + LB

ki)/2 when solving
the localization problem. Assumption (4) implies that L0 and R
are identical for all sensors. Finally, assumption (5) is made for
the case of cooperative localization, where only some targets
are able to directly connect to anchors; thus, they are forced to
cooperate with other targets within their communication range.

III. NONCOOPERATIVE LOCALIZATION

By noncooperative WSN, we imply a network comprising a
number of targets and anchors, where each target is allowed to
communicate with anchors exclusively, and a single target is
localized at a time. For such a setting, we can assume that the
targets are passive nodes that only emit radio signals and that
all radio measurements are collected by anchors.

In the remainder of this section, we develop a suboptimal
estimator to solve the noncooperative localization problem
in (6), whose exact solution can be obtained by a bisection
procedure. We then show that its generalization for the case
where PT is not known is straightforward.

A. Noncooperative Localization With Known PT

Note that the targets communicate with anchors exclusively
in a noncooperative network; hence, the set B in path-loss
model (1) is empty. Therefore, when the noise power is suffi-
ciently small, from (1a), we have

λA
ij‖xi − aj‖ ≈ d0 for (i, j) ∈ A (7)



TOMIC et al.: TARGET LOCALIZATION IN WIRELESS SENSOR NETWORKS USING RSS AND AoA MEASUREMENTS 3201

Fig. 3. Illustration of azimuth angle measurements: short-range versus long-
range.

where λA
ij = 10(L0−LA

ij)/10γ . Similarly, from (3a) and (4a),
respectively, we get

cTij(xi − aj) ≈ 0 (8)

kT
ij(xi − aj) ≈ ‖xi − aj‖ cos

(
αA
ij

)
(9)

where cij = [− sin(φA
ij), cos(φ

A
ij), 0]

T
, and kij = [0, 0, 1]T .

Next, we can rewrite (7) as

λA
ij

2‖xi − aj‖2 ≈ d20. (10)

Introduce weights, w = [
√
wij ], where each wij is defined as

wij = 1 −
d̂Aij∑

(i,j)∈A d̂Aij

such that more importance is given to nearby links. The reason
for defining the weights in this manner is because both RSS
and AoA short-range measurements are trusted more than long-
range measurements. The RSS measurements have relatively
constant standard deviation with distance [1]. This implies that
multiplicative factors of RSS measurements are constant with
range. For example, for a multiplicative factor of 1.5, at a range of
1 m, the measured range would be 1.5 m, and at an actual range
of 10 m, the measured range would be 15 m, which is a factor
ten times greater [1]. In the case of AoA measurements, the rea-
son is more intuitive, and we call the reader’s attention to Fig. 3.

In Fig. 3, an azimuth angle measurement made between an
anchor and two targets located along the same line but with
different distances from the anchor is illustrated. The true and
measured azimuth angles between the anchor and the targets are
denoted by φi and φ̂i, respectively. Our goal is to determine the
locations of the two targets. Based on the available information,
the location estimates of the two targets are at points x̂1 and x̂2.
However, in Fig. 3, it is shown that the estimated location of the
target physically closer to the anchor (x̂1) is much closer to its
true location than that further away. In other words, for a given
angle, the more two sensors are physically further apart, the
greater the set of all possible solutions will be (more likely to
impair the localization accuracy).

Replace ‖xi − aj‖ in (9) with d̂Aij described in (2a), to obtain
the following WLS problem according to (8)–(10):

x̂i = argmin
xi

∑
(i,j):(i,j)∈A

wij

(
λA
ij

2‖xi − aj‖2 − d20

)2

+
∑

(i,j):(i,j)∈A
wij

(
cTij(xi − aj)

)2
+

∑
(i,j):(i,j)∈A

wij

(
kT
ij(xi− aj)− d̂Aij cos(α

A
ij)

)2

. (11)

The given WLS estimator is nonconvex and has no closed-
form solution. However, we can express (11) as a quadratic
programming problem whose global solution can be efficiently
computed [33]. Using the substitution yi = [xT

i , ‖xi‖2]T , the
problem in (11) can be rewritten as

minimize
yi

‖W (Ayi − b)‖2

subject to

yT
i Dyi + 2lTyi = 0 (12)

where W = I3 ⊗ diag(w)

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
...

−2λA
ij

2
aT
j λA

ij
2

...
...

cTij 0
...

...
kT
ij 0
...

...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, b =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
d20 − λA

ij
2‖aj‖2

...
cTijaj

...
kT
ijaj + d̂Aij cos(α

A
ij)

...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
D =

[
I3 03×1

01×3 0

]
, l =

[
03×1

−1/2

]
i.e., A ∈ R

3|A|×4, b ∈ R
3|A|×1, and W ∈ R

3|A|×3|A|.
The objective function and the constraint in (12) are both

quadratic. This type of problem is known as GTRS [33], [40],
and it can be solved exactly by a bisection procedure [33]. We
denote (12) as “SR-WLS1” in the remaining text.

B. Noncooperative Localization With Unknown PT

To maintain low implementation costs, testing and calibra-
tion are not the priority in practice. Thus, sensors’ transmit
power values are often not calibrated, i.e., not known. Not
knowing PT in the RSS measurement model corresponds to
not knowing L0 in the path-loss model (1) (see [9], [12], and
the references therein).

The generalization of the proposed estimators for known L0

is straightforward for the case where L0 is not known. Notice
that (7) can be rewritten as

βA
ij‖xi − aj‖ ≈ ηd0, for (i, j) ∈ A (13)

where βA
ij = 10−(LA

ij/10γ), and η = 10−(L0/10γ) is an unknown
parameter that needs to be estimated.

Substitute ‖xi − aj‖ with d̂Aij in (9). Then, we can rewrite
(9) as

βA
ijk

T
ij (xi − aj) ≈ ηd0 cos(α

A
ij). (14)

To assign more importance to nearby links, introduce weights
w̃ = [

√
w̃ij ], where

w̃ij = 1 −
LA
ij∑

(i,j)∈A LA
ij

.


