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Abstract—We investigate the fading cognitive multiple access
wiretap channel (CMAC-WT), in which two secondary-user
transmitters (STs) send secure messages to a secondary-user
receiver (SR) in the presence of an eavesdropper (ED) and
subject to interference threshold constraints at multiple primary-
user receivers (PRs). We design linear precoders to maximize
the average secrecy sum rate for multiple-input multiple-output
(MIMO) fading CMAC-WT under finite-alphabet inputs and
statistical channel state information (CSI) at STs. For this non-
deterministic polynomial time (NP)-hard problem, we utilize an
accurate approximation of the average secrecy sum rate to reduce
the computational complexity, and then present a two-layer
algorithm by embedding the convex-concave procedure into an
outer approximation framework. The idea behind this algorithm
is to reformulate the approximated average secrecy sum rate as
a difference of convex functions, and then generate a sequence
of simpler relaxed sets to approach the non-convex feasible set.
Subsequently, we maximize the approximated average secrecy
sum rate over the sequence of relaxed sets by using the convex-
concave procedure. Numerical results indicate that our proposed
precoding algorithm is superior to the conventional Gaussian
precoding method in the medium and high signal-to-noise ratio
(SNR) regimes.

Index Terms—Finite-alphabet inputs, linear precoding, MIMO,
statistical CSI, physical-layer security, cognitive multiple access
wiretap channel.

I. INTRODUCTION

Spectrum sharing has been widely recognized as a promis-

ing technology to improve the utilization efficiency of the

limited spectrum resources in cognitive radio networks [1].

In a spectrum sharing cognitive radio network, unlicensed
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secondary users are allowed to communicate concurrently with

licensed primary users over the same bandwidth as long as

the interference power at primary-user receivers is kept below

a given threshold. Related works in [2], [3] considered the

weighted sum rate optimization in cognitive radio networks

with interference threshold constraints.

Meanwhile, due to the open and broadcast nature of radio

propagation, such a spectrum sharing may cause security

problems because all kinds of wireless equipments are able

to overhear the licensed spectrum. Therefore, security is a

critical issue in cognitive radio networks. Traditionally, se-

curity of a network has been entrusted in the network layer

through cryptography and authentication, which often require

additional system complexity for key generation and complex

encryption/decryption algorithms [4].

In recent years, there has been growing interest in physical-

layer security that enables secure communication over the

physical layer. Physical-layer security or information-theoretic

security originated from Shannon’s notion of perfect secrecy

[5]. It was first studied in wiretap channel by Wyner [6]

and later in broadcast channel with confidential messages by

Csiszár and Körner [7]. The study of physical-layer security is

then extended to several multiuser communication scenarios.

In [8], the authors introduced the degraded Gaussian multiple

access wiretap channel, where an additional eavesdropper

is able to access to the multiple access channel output via

a degraded wiretap channel. In [9], an achievable secrecy

rate region with Gaussian inputs was proposed for the non-

degraded Gaussian multiple access wiretap channel, and the

power allocations maximizing the corresponding secrecy sum

rate were also determined. Related works in [10]–[14] fur-

ther investigated linear precoding designs that maximize the

secrecy (sum) rate in other multiple-input multiple-output

(MIMO) multiuser channels.

The precoding designs in [10]–[14] require instantaneous

channel state information (CSI) of both legitimate receivers

and eavesdroppers. However, such a requirement is over-

optimistic for fast fading channels, of which the channel

coherence time may be shorter than the feedback delay caused

by channel estimation. In this case, when the instantaneous

CSI is arrived at transmitters, the channel state has already

changed. Therefore, it is more realistic to exploit channel

statistics at transmitters for precoding design, due to its much

slower changes compared with instantaneous CSI.

Furthermore, the results in [10]–[14] rely on the ideal

assumption of Gaussian inputs. Although Gaussian inputs are

proven to be capacity achieving in a variety of Gaussian chan-
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nels, they are hardly implemented in practice. It is well known

that practical inputs are drawn from finite constellation sets

such as phase-shift keying (PSK), pulse-amplitude modulation

(PAM), or quadrature amplitude modulation (QAM). More

importantly, the common approach that designs linear precoder

in a MIMO system under Gaussian inputs and then apply it to

the practical system may lead to significant performance loss

[15], [16]. Therefore, the precoding design with finite-alphabet

inputs has drawn increasing research interest in recent years

[17]–[28].

As illustrated in Fig. 1, we consider the underlay cog-

nitive multiple access wiretap channel (CMAC-WT), where

two secondary-user transmitters (STs) communicate with one

secondary-user receiver (SR) in the presence of an eaves-

dropper (ED) and subject to interference threshold constraints

at primary-user receivers (PRs). Each node in the system is

equipped with multiple antennas. To the best of our knowl-

edge, this is a general model that has not been addressed yet.

We design linear precoding matrices to achieve the maximum

average secrecy sum rate under finite-alphabet inputs and

statistical CSI at STs. The problem setting is much closer

to practical systems because it targets finite-alphabet inputs

directly and exploits statistical CSI of fading channels. How-

ever, this problem is extremely difficult to solve due to two

reasons: First, the computational complexity for evaluating

the average secrecy sum rate is prohibitively high. Second,

and more importantly, the optimization problem itself is a

non-convex and non-deterministic polynomial time (NP)-hard

problem.

A subset of non-convex optimization, which is called the

difference of convex functions (DC) optimization, has been

studied extensively by exploiting its underlying structure [29]–

[31]. DC optimization aims to maximize a DC function under

some DC constraints. In [29], a basic outer approximation

framework was proposed for solving DC problems. In [30], a

new DC algorithm was introduced by exploiting the duality

theory of DC optimization. In [31], the authors presented

the convex-concave procedure, which can be regarded as

a special case of the algorithm in [30]. Since any twice

continuously differentiable function is a DC function [29],

our linear precoding problem is a DC optimization problem.

However, no practical algorithm is known to construct a DC

decomposition for arbitrary twice continuously differentiable

function. Moreover, if we do not carefully design the DC

representation of the average secrecy sum rate, the algorithms

in [29]–[31] suffer from very slow convergence [32]. There-

fore, the DC representation is a main factor that affect the

performance of DC algorithms.

We solve our problem efficiently by combining the convex-

concave procedure with an outer approximation framework.

We first exploit an accurate approximation of the average se-

crecy sum rate to reduce the complexity, and then reformulate

the approximated average secrecy sum rate as a DC function.

Subsequently, we generate a sequence of relaxed sets, which

can be expressed explicitly as the union of convex sets, to

approach the non-convex feasible set. In this way, near opti-

mal precoders are obtained by maximizing the approximated

average secrecy sum rate over these convex sets. Numerical
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Fig. 1: System model of the fading cognitive multiple access wiretap channel.

results show that when considering finite-alphabet inputs, our

proposed algorithm significantly outperforms the conventional

Gaussian precoding method, which designs precoding matrices

to maximize the average secrecy sum rate under Gaussian

inputs, in the medium and high signal-to-noise ratio (SNR)

regimes.

The rest of this paper is organized as follows. Section

II introduces the system model and formulates the linear

precoding problem, Section III develops a numerical algorithm

to maximize the average secrecy sum rate under finite-alphabet

inputs and statistical CSI, Section IV presents several numer-

ical results and Section V draws the conclusion.

Notations: Boldface lowercase letters, boldface uppercase

letters, and calligraphic letters are used to denote vectors,

matrices and sets, respectively. The superscripts (·)T and (·)H
represent transpose and Hermitian operations, respectively.

[·]+ denotes max(·, 0); diag(·) represents a block diagonal

matrix whose diagonal elements are matrices. tr(·) is the trace

of a matrix; vec(·) is a column vector formed by stacking the

columns of a matrix; ‖ · ‖ denotes the Euclidean norm of a

vector; A⊗B is the Kronecker product of two matrices A and

B; E(·) represents the statistical expectation; ℜ(·) and ℑ(·)
denote the real and image parts of a complex vector or matrix;

≥ and ≤ are defined component-wise. I and 0 denote an iden-

tity matrix and a zero matrix, respectively, with appropriate

dimensions; A � 0 denotes the positive semidefiniteness of A.

The symbol I(·) represents the mutual information; log(·) and

ln(·) are used for the base two logarithm and natural logarithm,

respectively.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider the fading CMAC-WT depicted in Fig. 1. The

i-th ST has NTi
antennas, i = 1, 2, the SR has NR antennas,

the ED has NE antennas, and the j-th PR has Nj antennas,

j = 1, 2, ..., J . The channel output at the SR, the ED and the

j-th PR are, respectively, given by

yR = H1P1s1 +H2P2s2 + nR

zE = G1P1s1 +G2P2s2 + nE

wj = F1,jP1s1 + F2,jP2s2 + nj , j = 1, 2, ..., J (1)

where Hi, Gi and Fi,j are complex channel matrices from the

i-th ST to the SR, the ED, and the j-th PR, respectively; Pi

is the linear precoding matrix at the i-th ST, i = 1, 2; si is the
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input data vector at the i-th ST with zero-mean and covariance

Esi [sis
H
i ] = I, i = 1, 2; nR, nE and nj are independent and

identically distributed (i.i.d.) zero-mean circularly symmetric

complex Gaussian noises with covariance matrix σ2
R
I, σ2

E
I and

σ2
j I, respectively.

The channel matrices considered in this paper are modeled

as [33]

Hi = Φ
1

2

h H̃iΨ
1

2

hi
, i = 1, 2

Gi = Φ
1

2

g G̃iΨ
1

2

gi , i = 1, 2

Fi,j = Φ
1

2

fj
F̃i,jΨ

1

2

fi,j
, ∀(i, j) (2)

where H̃i, G̃i and F̃i,j are random matrices with i.i.d. zero-

mean unit variance complex Gaussian entries; Φh, Φg and Φfj

are positive semidefinite receive correlation matrices of Hi,

Gi and Fi,j , respectively; Ψhi
, Ψgi and Ψfi,j are positive

semidefinite transmit correlation matrices of Hi, Gi and Fi,j ,

respectively.

We assume that the SR has instantaneous channel realiza-

tions of {H1,H2}, the ED has instantaneous channel realiza-

tions of {G1,G2}, and STs only know the transmit and re-

ceive correlation matrices of {H1,H2,G1,G2,Fi,j , ∀(i, j)}
as well as the distributions of {H̃1, H̃2, G̃1, G̃2, F̃i,j , ∀(i, j)}.

Under these assumptions, the following secrecy sum rate is

achievable [9]:
[

I(s1, s2;yR|H)− I(s1, s2; zE|G)
]+

=
[

EHI(s1, s2;yR|H=H̄)−EGI(s1, s2; zE |G=Ḡ)
]+

where H = [H1,H2], G = [G1,G2]; H̄ and Ḡ represent the

instantaneous channel realizations of H and G, respectively.

For notational simplicity, we omit the given channel realization

condition in mutual information expressions and then the

average secrecy sum rate can be expressed as

Ravg(P1,P2) =
[

EHI(s1, s2;yR)− EGI(s1, s2; zE)
]+

. (3)

We maximize Ravg(P1,P2) subject to power constraints at

STs and interference threshold constraints at PRs. The average

transmit power conforms to the power constraint βi:

Esi
tr
(

Pisis
H
i PH

i

)

= tr
(

PH
i Pi

)

≤ βi, i = 1, 2 (4)

and the average interference power at the j-th PR is limited

by γj :

2
∑

i=1

Esi,Fi,j

[

tr
(

Fi,jPisis
H
i PH

i FH
i,j

)

]

=

2
∑

i=1

EF̃i,j

[

tr
(

PH
i (Ψ

1

2

fi,j
)HF̃H

i,jΦfj F̃i,jΨ
1

2

fi,j
Pi

)

]

= tr(Φfj ) ·
2

∑

i=1

tr
(

PH
i Ψfi,jPi

)

≤ γj , ∀j. (5)

The second equality in (5) holds because each element of

F̃i,j is i.i.d. complex Gaussian variable with zero-mean and

unit variance, and F̃i,j is independent to si. Then the average

secrecy sum rate maximization problem is formulated as

maximize
P1,P2

Ravg(P1,P2)

subject to (4) and (5).
(6)

III. LINEAR PRECODING UNDER FINITE-ALPHABET

INPUTS

In this section, we solve problem (6) under finite-alphabet

inputs. We assume that each symbol of the input data vec-

tor si is taken independently from an equiprobable discrete

constellation with cardinality Mi, i = 1, 2. The average

constellation-constrained mutual informations EHI(s1, s2;yR)
and EGI(s1, s2; zE) can then be expressed respectively as [19]

EHI(s;yR) = logN − 1

N

N
∑

m=1

EH,nR

{

log

N
∑

k=1

exp
(−‖HPemk + nR‖2 + ‖nR‖2

σ2
R

)

}

(7)

EGI(s; zE) = logN − 1

N

N
∑

m=1

EG,nE

{

log

N
∑

k=1

exp
(−‖GPemk + nE‖2 + ‖nE‖2

σ2
E

)

}

(8)

where s=[sT1 , s
T
2 ]

T ; N is a constant, equals to M
NT1

1 M
NT2

2 ;

P = diag(P1,P2); emk is the difference between dm and

dk, with dm and dk representing two possible distinct signal

vectors from s.

Obviously, the evaluation and optimization of the above av-

erage mutual informations is a difficult task. In order to obtain

EHI(s;yR) and EGI(s; zE), we need to calculate expectations

over H and G as well as nR and nE . Unfortunately, these

expectations have no closed-form expressions. Although we

can use Monte Carlo method to estimate these expectations,

the computational complexity is prohibitively high especially

when the dimensions of H and G are large.

This difficulty can be mitigated by employing accurate

approximations of (7) and (8). Based on [21], EHI(s;yR) and

EGI(s; zE) can be approximated respectively as

IA(s;yR) = logN − 1

N

N
∑

m=1

log

N
∑

k=1
∏

q

(

1 +
hq

2σ2
R

eHmkP
HΨhPemk

)−1

(9)

IA(s; zE) = logN − 1

N

N
∑

m=1

log

N
∑

k=1
∏

q

(

1 +
gq
2σ2

E

eHmkP
HΨgPemk

)−1

(10)

where Ψh = diag(Ψh1
,Ψh2

) and Ψg = diag(Ψg1 ,Ψg2);
hq and gq represent the q-th eigenvalue of Φh and Φg,

respectively. Approximations (9) and (10) are very accurate for

arbitrary correlation matrices and precoders, and the computa-

tional complexity of (9) and (10) is several orders of magnitude

lower than that of the original average mutual informations

[21].

By replacing Ravg(P1,P2) with [IA(s;yR) − IA(s; zE)]
+,

problem (6) can be approximated as

maximize
P1,P2

[

IA(s;yR)− IA(s; zE)
]+

subject to (4) and (5).
(11)



4

A. Precoder vectorization

We reformulate problem (11) into a vectorized form by

employing the precoder vectorization technique [28], [34].

This reformulation can better exploit the inherent structure

of (11). For convenience, we first reformulate IA(s;yR) by

precoder vectorization, and then the same procedure can be

applied for IA(s; zE) and the constraints of problem (11).

We start by rewriting eHmkP
HΨhPemk as

eHmkP
HΨhPemk =

2
∑

i=1

eHmk,iP
H
i Ψhi

Piemk,i (12)

where emk = [eTmk,1, e
T
mk,2]

T . Using the following matrix

equation [35]:

tr(ATBAC) = vec(A)T · (CT ⊗B) · vec(A) (13)

eHmk,iP
H
i Ψhi

Piemk,i can be rewritten as

eHmk,iP
H
i Ψhi

Piemk,i = tr
(

PH
i Ψhi

PiE
T
mk,i

)

= vec(Pi)
H · (Emk,i ⊗Ψhi

) · vec(Pi) (14)

where Emk,i = (emk,ie
H
mk,i)

T . By letting

p̂ =

[

vec(P1)
vec(P2)

]

, p =

[

ℜ{p̂}
ℑ{p̂}

]

(15)

and

Âmk =
1

2
· diag

(

Emk,1 ⊗Ψh1
,Emk,2 ⊗Ψh2

)

(16)

Amk =

[

ℜ{Âmk} −ℑ{Âmk}
ℑ{Âmk} ℜ{Âmk}

]

(17)

IA(s;yR) can be expressed alternatively as

IA(s;yR) = logN − 1

N

N
∑

m=1

log

N
∑

k=1
∏

q

(

1 +
hq

σ2
R

· pTAmkp
)−1

. (18)

Here Amk � 0 because pTAmkp is equal to ‖Ψ
1

2

h Pemk‖2,

which is non-negative.

Similarly, we define B̂mk and Bmk as

B̂mk =
1

2
· diag

(

Emk,1 ⊗Ψg1 ,Emk,2 ⊗Ψg2

)

(19)

Bmk =

[

ℜ{B̂mk} −ℑ{B̂mk}
ℑ{B̂mk} ℜ{B̂mk}

]

� 0 (20)

Ĉi and Ci as

Ĉi = diag
(

I⊗ (2− i)I, I⊗ (i− 1)I
)

(21)

Ci =

[

ℜ{Ĉi} −ℑ{Ĉi}
ℑ{Ĉi} ℜ{Ĉi}

]

� 0 (22)

D̂j and Dj as

D̂j = tr(Φfj ) · diag
(

I⊗Ψf1,j , I⊗Ψf2,j

)

(23)

Dj =

[

ℜ{D̂j} −ℑ{D̂j}
ℑ{D̂j} ℜ{D̂j}

]

� 0. (24)

Then problem (11) is converted into a vectorized form

maximize
p∈P

[

f(p)− g(p)
]+

(25)

where f(p) and g(p) are given below

f(p) =
1

N

N
∑

m=1

log

N
∑

k=1

∏

q

(

1 +
gq
σ2
E

· pTBmkp
)−1

(26)

g(p) =
1

N

N
∑

m=1

log

N
∑

k=1

∏

q

(

1 +
hq

σ2
R

· pTAmkp
)−1

(27)

and P is the feasible set

P =
{

p
∣

∣pTCip ≤ βi, i = 1, 2,pTDjp ≤ γj , ∀j
}

. (28)

The feasible set P is convex and compact because it can be

interpreted geometrically as the intersection of multiple ellip-

soids. The objective function
[

f(p) − g(p)
]+

is continuous

over P because both f(p) and g(p) are continuous functions.

Therefore, the existence of a globally optimal solution is

guaranteed by the Weierstrass extreme value theorem [36]. In

addition, the operator [·]+ has no effect on the optimal value

of problem (25) and thus can be removed from the objective

function because p = 0 always belongs to P . However, it

is extremely difficult to solve problem (25) due to the fol-

lowing reasons: First, both f(p) and g(p) are neither convex

nor concave, thus (25) is a purely non-convex optimization

problem. Second, problem (25) is a NP-hard problem because

a specialized problem with particular parameters Amk and

Bmk is NP-hard [37].

Although f(p)− g(p) is non-concave, it can be expressed

as a DC function by adding a convex term

σ(p) = k · pTp, k > 0. (29)

We can prove that both f(p) + σ(p) and g(p) + σ(p) are

convex functions if

k ≥ α ·max
(

tr(Φh)·λmax(Ψh), tr(Φg)·λmax(Ψg)
)

(30)

where α =
∑

m,k ‖emk‖2, λmax(·) represents the maximum

eigenvalue of a matrix. Then [f(p) + σ(p)] − [g(p) + σ(p)]
is an explicit DC function, and problem (25) can be solved

by DC algorithms. However, this DC representation is not

efficient because k is too large [32]. Through extensive

simulations, we observe that even when each node in the

system is only equipped with two antennas, the DC algorithm

with this representation cannot converge within hundreds of

thousands of iterations. Therefore, a computationally efficient

DC representation of the approximated average secrecy sum

rate is crucial for designing our algorithm.

B. Outer Approximation of the Feasible Set

We first rewrite (25) with an additional hyperrectangle Binit

maximize
p∈P∩Binit

f(p)− g(p) (31)

in which the hyperrectangle Binit is given by

Binit =
{

p
∣

∣l(Binit) ≤ p ≤ u(Binit)
}

. (32)
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To ensure that problems (31) and (25) are equivalent, the

hyperrectangle Binit should contain the feasible set P , i.e.,

P ⊆ Binit. Let ui and li denote the i-th component of u(Binit)
and l(Binit), respectively. Binit can be obtained via solving the

following concave maximization problem

ui = maximize
p∈P

pi (33)

where pi is the i-th component of p. Due to the symmetry of

problem (33), li can be set as −ui.

By introducing a new variable Q = ppT , we define a

set function ϕ(F) as the optimal value of the following

optimization problem

ϕ(F) , maximize
(Q,p)∈F

F (Q)−G(Q) (34)

where F (Q) and G(Q) are given below

F (Q) =
1

N

N
∑

m=1

log

N
∑

k=1

∏

q

(

1 +
gq
σ2
E

· tr(BmkQ)
)−1

(35)

G(Q) =
1

N

N
∑

m=1

log

N
∑

k=1

∏

q

(

1 +
hq

σ2
R

· tr(AmkQ)
)−1

. (36)

Note that F (Q) and G(Q) are convex functions because

1) log
∑

k

∏

qf
−1
q,k can be written as log

∑

kexp(−
∑

q lnfq,k);
2) log

∑

k exp(gk) is convex whenever gk are convex [38].

Therefore, F (Q)−G(Q) is a DC function. Furthermore, when

Finit, given by

Finit=

{

(Q,p)

∣

∣

∣

∣

∣

Q = ppT , tr(DjQ) ≤ γj , ∀j,
p ∈ Binit, tr(CiQ) ≤ βi, i = 1, 2

}

(37)

is equivalent to the feasible set P , ϕ(Finit) serves as the

optimal value of problem (31). However, it is very difficult

to obtain ϕ(Finit) directly because Finit is a non-convex

set. Although we can use semidefinite relaxation (SDR) to

relax Finit into a convex set by relaxing the non-convex part

Q = ppT , the solution obtained by SDR is not optimal

and cannot be improved iteratively. Hence we need tighter

relaxations to overcome the shortcomings of SDR.

The key idea of our proposed precoding algorithm is to

generate a sequence of asymptotically tight sets {Fk} to ap-

proach Finit, and then ϕ(Finit) can be approached iteratively

from above by solving a sequence of optimization problems

{ϕ(Fk)}. The sequence {Fk} should satisfy the following

three properties:

F1 ⊇ F2 ⊇ ... ⊇ Finit

lim
k→∞

ϕ(Fk) = ϕ(Finit)

Fk =

k
⋃

i=1

C(Bi), ∀k (38)

where C(Bi) is a convex set to be defined in (40). The first

property implies that {ϕ(Fk)} is a monotonically decreasing

sequence bounded below by ϕ(Finit). The second property

guarantees that ϕ(Finit) can be readily obtained by the se-

quence {ϕ(Fk)}. The last property provides a trackable way

to compute {ϕ(Fk)}, that is,

ϕ(Fk) = max
1≤i≤k

ϕ(C(Bi)). (39)

Based on (38), achieving ϕ(Finit) may need a sufficiently

large number of iterations, which is not practical when the

computational time is concerned. In order to address this issue,

we also generate a lower bound of ϕ(Finit) in each iteration.

Denote the optimal solution for ϕ(Fk) at the k-th iteration

by (Qopt
k ,popt

k ). We extract a feasible solution of problem

(31) from Q
opt
k , and the corresponding approximated average

secrecy sum rate is denoted by ϕL(Fk), which serves as a

lower bound of ϕ(Finit).
In the remaining part of this subsection, we construct

{Fk} explicitly as the union of convex sets {C(Bi)}. The

approximated average secrecy sum rate maximization problem

over C(Bi) and an efficient method to generate the lower bound

ϕL(Fk) are investigated in the next subsection.

For ease of exposition, we first define a convex set C(B) as

C(B),
{

(Q,p)

∣

∣

∣

∣

∣

Q � ppT , tr(CiQ) ≤ βi, i = 1, 2,

(Q,p) ∈ S(B), tr(DjQ) ≤ γj , ∀j

}

(40)

where S(B) is another convex set given by

S(B),























(Q,p)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Q−Lp−LT
p+l(B)·l(B)T ≥0,

Q−Up−UT
p+u(B)·u(B)T ≥0,

Q−Lp−UT
p+l(B)·u(B)T ≥0,

l(B) ≤ p ≤ u(B)























(41)

with Lp = l(B) ·pT and Up = u(B) ·pT . The following two

propositions are the foundation for constructing {Fk}.

Proposition 1: If we split the initial hyperrectangle Binit

into K smaller hyperrectangles such that Binit = B1∪...∪BK ,

then Finit ⊆ C(B1) ∪ ... ∪ C(BK).
Proof: See Appendix A.

Proposition 2: If we split a hyperrectangle B into two

smaller hyperrectangles B1 and B2 such that B = B1 ∪ B2

and B1 ∩ B2 = ∅, then C(B1) ∪ C(B2) ⊆ C(B).
Proof: See Appendix A.

With the help of Proposition 1, the first relaxed set F1 is

obtained

F1 = C(Binit). (42)

Similarly, in the second iteration, we generate F2 by partition-

ing the initial hyperrectangle Binit into two non-intersection

hyperrectangles B1 and B2

F2 = C(B1) ∪ C(B2) ⊆ F1. (43)

We continue this process to generate a sequence of relaxed

sets {Fk} satisfying (38). At the k-th iteration, Binit is split

into k non-intersection hyperrectanglesB1,B2, ...,Bk such that

Fk = C(B1) ∪ ... ∪ C(Bk). (44)

The outer approximation algorithm is summarized in Algo-

rithm 1.

The convergence of Algorithm 1 is presented by the follow-

ing proposition.
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Algorithm 1 : The outer approximation algorithm

1) Initialization: Set the maximum number of iterations

Kmax, k = 1, B = {Binit}, F1 = C(Binit), U1 = ϕ(F1)
and L1 = ϕL(F1).

2) Stopping criterion: if k ≤ Kmax go to the next step, oth-

erwise STOP.

3) Partition criterion:

a) select Bg = argmaxB∈B

{

ϕ(C(B))
}

.

b) split Bg along any of its longest edge into two small

hyperrectangles, BI and BII , with equal volume.

c) remove Bg from B, and add BI and BII into B.

d) compute the upper and lower bounds of ϕ(Finit)

Fk+1 =
⋃

B∈B

C(B)

Uk+1 = ϕ(Fk+1) = max
B∈B

{

ϕ(C(B))
}

Lk+1 = ϕL(Fk+1).

4) Set k := k + 1 and go to step 2).

Proposition 3: The sequence {ϕ(Fk)} converges to

ϕ(Finit), i.e., ∀ε > 0, ∃K > 0, such that k > K implies

ϕ(Finit) < ϕ(Fk) < ϕ(Finit) + ε.

Proof: See Appendix B.

It is worth remarking that each relaxed set Fk is tighter

than the set relaxed by SDR. We denote Fsdr =
{

Q|Q �
0, tr(CiQ) ≤ βi, i = 1, 2, tr(DjQ) ≤ γj , ∀j

}

. Since ppT �
0, we have

{

Q|(Q,p) ∈ Fk

}

⊆ Fsdr for any k. Thus the

solution obtained by Algorithm 1 is better than that of the

SDR method.

C. DC Optimization Over the Convex Set

In this subsection, we maximize the approximated average

sum rate over the convex set C(B) by employing the convex-

concave procedure [31]. The convex-concave procedure is a

general polynomial time algorithm for solving DC problems,

and it works quite well in practice [39]–[41]. We first rewrite

the optimization problem as follows

ϕ(C(B)) = maximize
(Q,p)∈C(B)

F (Q)−G(Q). (45)

The objective function of problem (45) is a DC function, and

the convex part F (Q) can be lower bounded by its tangent at

any point Qc � 0

F (Q) ≥ F (Qc) + tr
{

∇F (Qc)
T (Q−Qc)

}

(46)

where ∇F (Qc) is the gradient of F (Q) at Qc

∇F (Qc) = − 1

N

∑

m,k

wmk

∑

q

gq ·BT
mk

σ2
E
+ gq ·tr(BmkQc)

(47)

with

wmk =
1

ln(2)
· exp

{

σ2
E
+ gq · tr(BmkQc)

}

∑

k exp
{

σ2
E
+ gq · tr(BmkQc)

} . (48)

Therefore, by replacing F (Q)−G(Q) with a concave lower

bound

F̂ (Q;Qc)=F (Qc)+tr
{

∇F (Qc)
T (Q−Qc)

}

−G(Q) (49)

we obtain the following concave maximization problem

maximize
(Q,p)∈C(B)

F̂ (Q;Qc). (50)

The convex-concave procedure obtains a locally optimal

solution of problem (45) by solving a sequence of concave

maximization problems (50) with different Qc. Once the

optimal solution of (50) in the first iteration is found at

initial Qc, denoted as Q∗
1, the algorithm replaces Qc with Q∗

1

and then solve (50) again. At the n-th iteration, the optimal

solution of (50) is obtained by replacing Qc with Q∗
n−1, which

is the optimal solution at the (n− 1)-th iteration. The convex-

concave procedure for solving problem (45) is summarized in

Algorithm 2.

Algorithm 2 : The convex-concave procedure

1) Initialization: Given tolerance ǫ > 0, choose a random

initial point Q0 � 0, set N = 1, s0 = F (Q0)−G(Q0),

s1 = F (Q∗
1)−G(Q∗

1). Let Q∗
n represent the optimal

solution of (50) at the n-th iteration.

2) Stopping criterion: if |sn−sn−1| > ǫ go to the next step,

otherwise STOP.

3) Convex approximation:

a) set Qc = Q∗
n and solve problem (50) to obtain Q∗

n+1.

b) set sn+1 = F (Q∗
n+1)−G(Q∗

n+1) and Qopt = Q∗
n+1.

4) Set n := n+ 1 and go to step 2).

5) Output: Qopt and sn.

The stopping criterion in Algorithm 2 is guaranteed to be

satisfied due to the following proposition.

Proposition 4: The sequence {sn} generated by Algorithm

2 is monotonically increasing, i.e., sn+1 ≥ sn.

Proof: Since the feasible set of (50) does not change in

each iteration, the optimal solution in the n-th iteration Q∗
n is

a feasible point in the (n+ 1)-th iteration. Thus we have

F̂ (Q∗
n+1;Q

∗
n) ≥ F̂ (Q∗

n;Q
∗
n) = sn. (51)

According to (46), it follows that

sn+1 = F̂ (Q∗
n+1;Q

∗
n+1) ≥ F̂ (Q∗

n+1;Q
∗
n). (52)

Therefore {sn} is monotonically increasing.

Since problem (45) is non-convex, Algorithm 2 is not

guaranteed to converge to the globally optimal value ϕ(C(B)).
Therefore, by embedding Algorithm 2 into Algorithm 1, we

obtain a near optimal solution Q
opt
k and the corresponding

approximated upper bound of ϕ(Finit) at the k-th iteration of

Algorithm 1. Simulation results show that the gap between

the approximated upper bound and the actual upper bound is

usually very small because Algorithm 2 is insensitive to the

initial point Q0.
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After obtaining Q
opt
k at the k-th iteration, we need to get a

feasible precoder pair (P1,P2) and the corresponding lower

bound ϕL(Fk). The feasible precoders can be obtained by

extracting a feasible solution of (31) from Q
opt
k . There are

several rank one approximation methods to do this, and we

adopt the Gaussian randomization procedure [42], which is

summarized in Algorithm 3.

Algorithm 3 : Gaussian randomization procedure

1) Given a number of randomizations L, and set l = 1.

2) If l ≤ L go to the next step, otherwise STOP.

3) Generate ξl ∼ N(0,Qopt
k ), and construct a feasible point

p̃l

p̃l =
ξl

√

max
{

{ ξT
l
Ciξl

βi
}i=1,2, { ξT

l
Djξl

γj
}∀j

}

.

4) Set l := l+ 1 and go to step 2).

5) Choose p̃ = argmax1≤l≤L f(p̃l)− g(p̃l).
6) Set ϕL(Fk) = f(p̃)− g(p̃).
7) Recover (P1,P2) from p̃.

D. Complexity Analysis

The computational complexity of Algorithm 1 is analyzed

as follows. In each iteration, Algorithm 1 invokes Algorithms

2 and 3 twice to calculate the approximated upper bound

and the lower bound. Since the complexity of Algorithm 3

is negligible, the complexity order for Algorithm 1 is given

by

2Kmax · C (53)

where Kmax is the maximum number of iterations, and C is

the complexity order for Algorithm 2. Algorithm 2 obtains

a local maxima of problem (45) by solving a sequence of

concave maximization problems (50). Each concave maxi-

mization problem (50) can be solved by the interior point

method, and the complexity order is about O(N3) [38], where

N = 4(N2
T1

+ N2
T2
)2 + 2(N2

T1
+ N2

T2
) is the total number

of optimization variables in problem (50). Assuming that

Algorithm 2 solves problems (50) T times, the complexity

order for Algorithm 2 is given by O(T · N3). Based on

(53), the overall complexity order for Algorithm 1 is then

O(2KmaxT ·N3).

IV. NUMERICAL RESULTS

In this section, we provide numerical results to demonstrate

the efficacy of our proposed algorithm for the fading CMAC-

WT under finite-alphabet inputs. For illustration purpose, we

adopt the exponential correlation model:

[C(ρ)]i,j = ρ|i−j|, ∀(i, j) (54)

where the scalar ρ ∈ [0, 1) depicts the interference coupling

between different antennas.

A. Convergence and Complexity Analysis

The convergence behavior of the proposed algorithm is

demonstrated by considering a two-user fading CMAC-WT

with two STs, one SR, one ED, and one PR. Each node in the

system has two antennas. The correlation matrices are given

by

Φh = C(0.3),Ψh1
= C(0.95),Ψh2

= C(0.85)

Φg = C(0.6),Ψg1 = C(0.4),Ψg2 = C(0.95)

Φf = C(0.5),Ψf1 = C(0.3),Ψf2 = C(0.5). (55)

The maximum transmit power is constrained by β1 = β2 =
2. The interference threshold is given as γ = 0.2. The input

data vectors s1 and s2 are drawn independently from BPSK

constellation, and the noise power is set as σ2
R
= σ2

E
= 0.1.
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Fig. 2: Empirical cumulative distribution of the output sn of Algorithm 2 from 3000

random initial points.

The empirical cumulative distribution of the output sn of

Algorithm 2 from 3000 random initial points is shown in

Fig. 2. The tolerance ε in Algorithm 2 is set as 0.002. l(B)
and u(B) are given as l(B) = −

√
2 ·1, u(B) =

√
2 ·1. The

empirical cumulative distribution illustrates that Algorithm 2

is insensitive to the initial point. Therefore, although problem

(45) is non-convex, the approximated upper bound obtained

by Algorithm 2 is accurate.
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Fig. 3: Evolution of the objective function in (31) with BPSK inputs.

Fig. 3 illustrates the evolution of the approximated upper

bound and the lower bound of ϕ(Finit). In order to guarantee

that the approximated upper bound is accurate enough, the
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tolerance ε in Algorithm 2 is set as 0.001. In each iteration

of Algorithm 1, we invoke Algorithm 2 to generate the

approximated upper bound, which can be seen as the actual

upper bound of ϕ(Finit) according to the result in Fig. 2.

We also invoke Algorithm 3 to generate feasible precoding

matrices and the corresponding lower bound ϕL(Finit). Note

that when all hyperrectangles in B shrink down to a point, we

can ensure that the approximated upper bound serves exactly

as the actual upper bound. From the figure, we can see that

after 10 iterations, the gap between the approximated upper

bound and the lower bound is less than 0.005. Moreover, near-

optimal precoders within 0.002 tolerance is obtained through

Algorithm 1 after 30 iterations.

B. Comparison with Other Possible Methods

In this subsection, we consider a secure cognitive radio

system that has two STs, one SR, one ED, and one PR. Each

node in the system has two antennas. The correlation matrices

are given by

Φh = C(0.25),Ψh1
= C(0.95),Ψh2

= C(0.9)

Φg = C(0.75),Ψg1 = C(0.5),Ψg2 = C(0.3)

Φf = C(0.5),Ψf1 = C(0.8),Ψf2 = C(0.5). (56)

The transmit power constraint is set as β1 = β2 = β = 2. The

interference thresholds γ1 = 0.2 and γ1 = 0.02 are considered.

The modulation is QPSK and the noise variance σ2
R
= σ2

E
=

σ2. Then the SNR can be defined as SNR = β/σ2.

Figs. 4 and 5 depict the comparison results among the Gaus-

sian precoding method and no precoding case. The Gaussian

precoding method is to design transmit covariance matrices

that maximize the average secrecy sum rate under Gaussian

signaling, i.e.,

maximize
Q1,Q2

EH1,H2
(R1)− EG1,G2

(R2)

subject to tr(Qi) ≤ βi, i = 1, 2

tr(Φfj )·tr(Q1Ψf1,j +Q2Ψf2,j ) ≤ γj , ∀j
(57)

where Qi is the transmit covariance matrix of the i-th ST,

i = 1, 2; R1 and R2 are given by

R1 = log det(I+
1

σ2
R

H1Q1H
H
1 +

1

σ2
R

H2Q2H
H
2 ) (58)

R2 = log det(I+
1

σ2
E

G1Q1G
H
1 +

1

σ2
E

G2Q2G
H
2 ). (59)

Problem (57) is a DC optimization problem, thus it can be

solved efficiently by DC algorithms proposed in [41]. After

obtaining the optimal transmit covariance matrices (Q̄1, Q̄2),
we can evaluate the finite-alphabet based average secrecy sum

rate under the corresponding optimal precoders (Q̄
1

2

1 , Q̄
1

2

2 ). In

the no precoding case, we set precoding matrices as Pi =
βi

NTi

I, i = 1, 2, and then scale them down to meet interference

threshold constraints:

P̄i=

[

max
1≤j≤J

{

tr(Φfj )

γj
·

2
∑

i=1

tr
(

PH
i Ψfi,jPi

)

}]− 1

2

·Pi. (60)

Based on the results in Figs. 4 and 5, we have the following

remarks:

1) In the low SNR regime, our proposed precoding al-

gorithm and the Gaussian precoding method have the same

performance. According to [17], the low-SNR expansion of

the mutual information is irrelevant to the input distribution,

thus the optimal precoders designed under Gaussian inputs are

also optimal for finite-alphabet inputs case.

2) In the medium and high SNR regime, our proposed

precoding algorithm offers much higher average secrecy sum

rate than the Gaussian precoding method. In Fig. 4, the

normalized optimal precoders designed by our proposed pre-

coding algorithm in the high SNR regime are given by

1

σ
P

opt
1 =

[

0.663 + 0.008i −1.188 + 0.277i
0.663 + 0.008i −1.188 + 0.277i

]

(61)

1

σ
P

opt
2 =

[

−0.578 + 0.399i 1.209− 0.459i
−0.578 + 0.399i 1.209− 0.459i

]

. (62)

Equations (61) and (62) imply that when the noise power σ2

is decreased, we should reduce the optimal transmit power

tr
(

(Popt
1 )HP

opt
1

)

and tr
(

(Popt
2 )HP

opt
2

)

such that the average

secrecy sum rate is kept at the maximum value 1.0265 bpz/Hz

in the high SNR regime. Furthermore, the performance of

the Gaussian precoding method degrades severely with the

increasing SNR in the high SNR regime. The reason is that

both EHI(s;yR) and EGI(s; zE) in (7) and (8) will saturate

at logN in the high SNR regime. Therefore, if we do not

carefully control the transmit power, the average secrecy

sum rate with finite-alphabet inputs EHI(s;yR)−EGI(s; zE)
approaches zero in the high SNR regime. Since the Gaussian

precoding method ignores the saturation property of finite-

alphabet inputs systems, the corresponding average secrecy

sum rate with finite-alphabet inputs degrades severely in the

high SNR regime.

3) Since the average secrecy sum rate for the Gaussian

precoding method decreases with the increasing SNR in the

high SNR regime, we can use a portion of the available

transmit power to make sure that the SNR is maintained at a

certain level. The average secrecy sum rate is then kept at its

maximum value. This simple power control method has been

used in [11], [12] to improve the secrecy sum-rate performance

at the high SNR regime.

4) The interference threshold constraints have a huge impact

on the system performance. For example, when SNR is 20 dB,

the average secrecy sum rate is 0.90 bps/Hz and 0.31 bps/Hz

for γ1 = 0.2 and γ1 = 0.02, respectively. More specifically,

given the set of all feasible precoding matrices

P=











(P1,P2)

∣

∣

∣

∣

∣

∣

∣

tr
(

PH
i Pi

)

≤ βi, i = 1, 2,

tr(Φfj )·
2

∑

i=1

tr
(

PH
i Ψfi,jPi

)

≤γj , ∀j











(63)

we define the following parameters

β̄i = min

{

min
1≤j≤J

{ γj
tr(Φfj )·λmin(Ψfi,j )

}

, βi

}

(64)

where λmin(A) represents the smallest eigenvalue of A. Then

for all (P1,P2) ∈ P , we can easily prove that

tr
(

PH
i Pi

)

≤ β̄i, i = 1, 2. (65)
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Fig. 4: The interference threshold at the PR is 10 dB less than the transmit

power (γ1 = 0.2).
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Fig. 5: The interference threshold at the PR is 20 dB less than the transmit

power (γ1 = 0.02).

Equation (65) implies that when β̄i < βi, i = 1, 2, the

power constraints in P are inactive, i.e., only a portion of

the available transmit power can be used in order to meet all

interference threshold constraints. In the case of Figs. 4 and

5, (β̄1, β̄2) is calculated as

(β̄1, β̄2) =

{

(0.5, 0.2) γ1 = 0.2

(0.05, 0.02) γ1 = 0.02
(66)

Since (β1, β2) = (2, 2), the sum rate performance in Figs. 4

and 5 is only constrained by interference threshold constraints.

5) The performance of no precoding case is very poor

because we do not exploit any statistical CSI from STs to

the SR and the ED.

C. Comparison of Different Modulations

Finally, we investigate the average secrecy sum rate with

different modulations. We consider a secure cognitive radio

system with two STs, one SR, one ED and two PRs. Each

node is equipped with two antennas. The correlation matrices

are given by

Φh = C(0.3),Ψh1
= C(0.9),Ψh2

= C(0.95)

Φg = C(0.6),Ψg1 = C(0.7),Ψg2 = C(0.2)

Φf1 = C(0.4),Ψf1,1 = C(0.6),Ψf2,1 = C(0.4)

Φf2 = C(0.5),Ψf1,2 = C(0.3),Ψf2,2 = C(0.5). (67)

The maximum transmission power at the i-th ST is given as

β1 = β2 = 2. The interference threshold at the j-th PR is set

as γ1 = γ2 = 0.2. The noise variance is σ2
R
= σ2

E
= σ2.

Fig. 6 plots the average secrecy sum rate with BPSK, QPSK

and 8PSK modulations. Results in Fig. 6 show that the average

secrecy sum rate is an increasing function with respect to

the order of modulation. They also indicate that our proposed

precoding design can achieve robust performances for a large

range of SNR with different modulations.

V. CONCLUSION

In this paper, we have considered the precoding design for

the fading CMAC-WT with finite-alphabet inputs. We have
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Fig. 6: Average secrecy sum rate for the fading CMAC-WT with different modulations.

presented a two-layer precoding algorithm, which exploits sta-

tistical CSI of fading channels, to maximize the approximated

average secrecy sum rate. The key idea of our algorithm

is to find a computationally efficient DC representation of

the approximated average secrecy sum rate. By introducing a

new matrix variable, we have reformulated the approximated

average secrecy sum rate as a DC function, and then generated

a sequence of relaxed sets to approach the non-convex feasible

set. Each relaxed set can be expressed as the union of con-

vex sets. Finally, near optimal precoding matrices have been

obtained iteratively by maximizing the approximated average

secrecy sum rate over a sequence of relaxed sets.

Several numerical results have been provided to demonstrate

the efficacy of our proposed precoding algorithm. They have

also shown that the proposed precoding algorithm is superior

to the conventional Gaussian precoding method and no pre-

coding case in the medium and high SNR regimes.

APPENDIX A

PROOFS OF PROPOSITIONS 1-2

Proof of Proposition 1: We rewrite Finit as the union of

K subsets

Finit =

K
⋃

i=1

F̄i (68)
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where F̄i is given by

F̄i =
{

(Q,p)|(Q,p) ∈ Finit,p ∈ Bi

}

. (69)

For any (Q,p) ∈ F̄i, the following inequalities hold

(p− l(Bi)) · (p− l(Bi))
T ≥ 0 (70)

(p− u(Bi)) · (p− u(Bi))
T ≥ 0 (71)

(p− l(Bi)) · (p− u(Bi))
T ≤ 0 (72)

Q = ppT , l(Bi) ≤ p ≤ u(Bi). (73)

Thus, F̄i can be rewritten as

F̄i =
{

(Q,p)|(Q,p) ∈ Finit,p ∈ Bi

}

∩ S(Bi). (74)

By relaxing Q = ppT in F̄i into Q � ppT , one can easily

obtain the following

F̄i ⊆ C(Bi), ∀i. (75)

Therefore, Finit ⊆ C(B1) ∪ ... ∪ C(BK). This completes the

proof.

Proof of Proposition 2: We divide S(B) into two subsets

S(B) = S1(B) ∪ S2(B) (76)

where S1(B) and S2(B) are given by

S1(B) =
{

(Q,p)|(Q,p) ∈ S(B),p ∈ B1

}

S2(B) =
{

(Q,p)|(Q,p) ∈ S(B),p ∈ B2

}

. (77)

It is obvious that if we can prove

S(B1) ⊆ S1(B)
S(B2) ⊆ S2(B) (78)

then C(B1) ∪ C(B2) ⊆ C(B). We will restrict our attention to

show S(B1) ⊆ S1(B), and S(B2) ⊆ S2(B) can be proved in

the same way.

Since B1 ⊆ B, we have

l(B) ≤ l(B1) ≤ u(B1) ≤ u(B). (79)

Therefore, the following inequalities hold for any l(B1) ≤ p ≤
u(B1):

[l(B1)−l(B)][p−l(B1)]
T +[p−l(B)][l(B1)−l(B)]T ≥0

[u(B1)−u(B)][p−u(B1)]
T+[p−u(B)][u(B1)−u(B)]T ≥0

[l(B1)−l(B)][p−u(B)]T+[p−l(B1)][u(B1)−u(B)]T ≤0.

The above inequalities can be rewritten respectively as

Q−Lp(B)−Lp(B)T+l(B) · l(B)T ≥
Q−Lp(B1)−Lp(B1)

T +l(B1) · l(B1)
T

Q−Up(B)−Up(B)T+u(B) · u(B)T ≥
Q−Up(B1)−Up(B1)

T +u(B1) · u(B1)
T

Q−Lp(B)−Up(B)T+l(B) · u(B)T ≤
Q−Lp(B1)−Up(B1)

T +l(B1) · u(B1)
T (80)

where Lp(B) = l(B) · pT , and Up(B) = u(B) · pT . Inequal-

ities (80) provide a sufficient condition for S(B1) ⊆ S1(B).
Therefore, C(B1) ∪ C(B2) ⊆ C(B). This completes the proof.

APPENDIX B

PROOF OF PROPOSITION 3

Proof: Since {ϕ(Fk)} is a monotonically decreasing

sequence lower bounded by ϕ(Finit), the limit of {ϕ(Fk)}
exists [36]. Suppose that

lim
k→∞

ϕ(Fk) = v > ϕ(Finit) (81)

then for any ε > 0, there exists K > 0 such that for any

k > K ,

v < ϕ(C(Bg)) < v + ε. (82)

Let r(B) denote the length of the longest edge of a hyperrect-

angle B satisfying B ⊆ Binit. In each iteration of Algorithm 1,

we divide Bg along r(Bg) into two hyperrectangles. Therefore,

r(Bg) should satisfy the following condition:

lim
k→∞

r(Bg) = 0. (83)

We further denote the center of Bg by pg , i.e., pg = (l(Bg)+
u(Bg))/2. When r(Bg) → 0, we have

S(Bg) → {(Q,p)|Q = pgp
T
g ,p = pg}. (84)

Therefore, C(Bg) converges to a point when pg belongs to the

feasible set P , otherwise C(Bg) is an empty set. Thus we have

lim
r(Bg)→0

ϕ(C(Bg)) = f(pg)− g(pg), pg ∈ P . (85)

Combining (83) and (85), we conclude that

lim
k→∞

ϕ(C(Bg)) = f(pg)− g(pg) < v (86)

which is contradictory to (82). Therefore, {ϕ(Fk)} converges

to ϕ(Finit). This completes the proof.
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