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Abstract—The number of electric vehicles (EVs) is expected
to increase significantly in the future to combat air pollution
and reduce reliance on fossil fuels. This will impact on the
power system. However, appropriate charging and discharging
of EVs through vehicle-to-grid operations could also provide
support for the power system and benefits for the EV owners.
This raises the questions of when and how EV battery storage
should be dispatched, taking into account both vehicle users’
and power system’s requirements and priorities, as well as the
constraints of the battery system. This paper proposes a novel
decentralized dispatch strategy based on the Analytic Hierarchy
Process (AHP) taking into account the relative importance of the
different criteria including cost, battery state of charge, power
system contingency and load levelling. The proposed AHP-based
dispatch strategy was tested on an IEEE Reliability Test System
with different EV numbers and capacities to investigate the
efficacy of such an approach. The simulation results demonstrate
the feasibility and benefits of this dispatch strategy.

Index Terms—Vehicle-to-grid, Battery, Dispatch, Analytic Hi-
erarchy Process

I. INTRODUCTION

GROWING concerns over energy cost and emissions
and the desire to reduce reliance on fossil fuels have

resulted in ambitious plans for expanding the use of electric
vehicles (EVs) [1], [2], [3]. Currently the global EV market
is forecast to grow from 1.7 million units in 2012 to 5.3
million units in 2020 [4]. The large-scale penetration of EVs
will challenge the power system as an additional load due
to the substantial need for battery charging, but it will help
to increase the penetration of intermittent renewable energy
sources by absorbing the extra electricity they generate [5], [6],
[7]. When parked and connected to the grid, EVs are capable
of feeding stored electricity back into the grid to provide grid
operational support such as load levelling, spinning reserves
and voltage and frequency regulation. This is the key point
of the Vehicle-to-Grid (V2G) concept, which requires the EV
to have a bidirectional grid-connected battery charger with
metering and communication capabilities [8].

Numerous applications using battery storage to support
power systems have been discussed in [9], [10], [11], [12],
[13]. These functions of battery storage, including voltage
and frequency control and thermal overload relief, can also
be performed by EV batteries if V2G is enabled, because of
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the significant storage/generation capacity they can offer to the
grid.

Recent research has investigated and developed dispatch
strategies for EV batteries when they are connected to the
grid. An algorithm was proposed in [14] for optimal charging
of EVs formulated as a stochastic dynamic programming
problem taking into account the intrinsic uncertainty. The
algorithm considers electricity procurement cost with an added
inconvenience cost penalty term set by the EV owner to control
the availability of the EV. However, the algorithm does not
take into account investment or maintenance cost, nor does it
take into account the geographical location of the vehicle and
associated local network constraints.

A charging optimization approach was proposed in [15] to
maximize the total electric energy that all EVs absorb from
the grid while avoiding violations of the limits of voltage and
components’ loading, but vehicle-to-grid power flow was not
considered. In [16], fuzzy logic control was used to dispatch
EVs participating in the V2G scheme, so that power grid’s
load levelling and voltage stability were achieved. Both the
state of charge of the vehicles’ batteries and the voltage at the
connection node were used by the controllers to determine
the dispatch action. However, the cost to EV users was not
considered. Lopes et al. [8] proposed a smart centralized
EV charging approach to maximize the EV integration ca-
pacity of the grid. Their proposed EV grid interface control
strategy allows the provision of local frequency control in
an isolated system. However, the benefit for EV users were
not mentioned. Risk-aware day-ahead scheduling and real-
time dispatch algorithms were developed for EV charging by
Yang et al. [17] to minimize the overall charging costs, but
they did not consider V2G operation. An optimal charging
scheduling of EV was discussed by Zhang et al. [18] to
minimize the mean waiting time of EVs at a renewable-
power-aided charging station under cost constraint. However,
vehicle-to-grid operation was not considered. Damavandi et al.
[19] proposed an energy hub model of a multi-energy system
(MES) to dispatch an aggregation of EVs in parking lots in
both G2V and V2G modes and considered EVs’ participation
in the reserve market. However, this model mainly focuses on
the MES operator’s benefits without considering the interests
of EV owners. A collaboration of demand response strategies
based on dynamic pricing and peak power limiting is investi-
gated in [20] for home-based EV dispatch using mixed-integer
linear programming (MILP), which is applied to the day-
ahead scheduling and the energy requirement of EV’s driving
activities is not considered. MILP is also used by Hua et al.
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[21] to optimize EV charging scheduling in an on-line way for
both cost saving and grid stability. However, the possibility
of selling energy back to the grid to increase the economic
benefits was neglected in [21]. A rule-based EV battery
dispatch strategy consisting of three rule sets was demonstrated
by Ma et al. [22], where the battery characteristics, SOC
and electricity buying/selling prices were considered when
determining the dispatch action (i.e. charge/discharge) and the
rate of dispatch (i.e. charging/discharging current), but grid
operational support was not considered.

In all the literatures mentioned above, a comprehensive
charging/discharging dispatch strategy for EV batteries is yet
to be developed. Such a strategy needs to consider both EV
users interests and grid operational requirements. Focusing
on the different requirements of users and the grid will
inevitably result in different dispatch patterns of EV batteries.
Therefore, every requirement needs to be weighed according
to its relative importance when determining the dispatch mode
of EV batteries.

In this work, a novel dispatch strategy for EV batteries is
developed based on the Analytic Hierarchy Process (AHP)
[23]. The AHP is a multi-criteria decision-making tool that
can be used to determine the priorities of different criteria
(i.e. different requirements of users and grid) that can have a
bearing on battery dispatch. It helps to quantify the qualitative
relationship between different elements so that they can be
weighed with respect to a given objective and criteria. The
AHP has been applied to many decision-making related prob-
lems in power systems [24], [25], [26]. An incentive-based
demand response program was proposed in [24], using the
AHP to enable customers to prioritize the different criteria of
load reduction that could affect their incentive payments. In
[25] it was used to weigh different objective functions and
the resulting weighted combination of these functions became
the final objective function for combined active and reactive
power dispatch. In [26] the locations of VAR sources were
selected and ranked taking into account the different benefit-
to-cost ratios and other relevant factors, which are weighed
using the AHP according to their relative importance to VAR
placement.

The dispatch strategy presented in this paper takes into
account the concerns and requirements of both EV users and
the grid, including cost, sufficient SOC for the next journey,
load levelling and alleviation of thermal overload caused
by N-1 contingency (i.e. due to maintenance or accident,
one component of the transmission system consisting of N
components is in outage, implying that the remaining N-1
components are still working). Using the proposed strategy,
the EV aggregator, in charge of a cluster of EVs, sends the
dispatch command to each participating EV at the beginning
of each time interval, depending on real-time data (such as
real-time pricing data), situations and requirements of the EV
and grid. The proposed dispatch strategy was tested on an
IEEE Reliability Test System for its effectiveness at satisfying
the requirements of both EV users and the grid. Comparisons
with a rule-based (RB) dispatch strategy [22] are made to
demonstrate the potential benefits of the proposed AHP-based
dispatch strategy over previous approaches.

In summary, the contributions of this paper are as follows:

• A novel decentralized dispatch strategy using AHP is
developed for V2G batteries, which takes into account
multiple concerns of both EV users and the grid — see
page 6–15, Section IV.

• The proposed dispatch strategy is evaluated using his-
torical data (see page 15–22, Section V). The simulation
results show that the proposed dispatch strategy saves the
EV user charging costs while ensuring at least that the
SOC of the battery does not fall below 33% (see page
19, Table IV). Meanwhile, the proposed dispatch strategy
reacts to severe nearby overloads correctly and performs
better in load levelling than uncontrolled dispatch and a
rule-based algorithm proposed in [22] (see page 20–22,
Figure 9 and 10, Table V).

• The proposed dispatch strategy is verified to be stable by
running simulations on a typical system for a period of
7 consecutive days (see page 21, Figure 9).

The rest of this paper is organized as follows. The Analytic
Hierarchy Process is concisely introduced in Section II, fol-
lowed by a description of typical EV battery characteristics in
Section III. In Section IV, the proposed dispatch strategy of EV
battery storage is presented in detail. The results of simulations
using MATLAB to verify its feasibility and efficacy, are
presented and discussed in Section V. This is followed by
a presentation and discussion of the results of parameter
sensitivity analysis in Section VI. Finally, the conclusions of
the work are presented in Section VII.

II. PRINCIPLES OF THE ANALYTIC HIERARCHY PROCESS
(AHP)

The AHP is a multi-criteria decision-making method devel-
oped by Saaty [23], which has been widely used in various
areas including power systems as mentioned earlier. The main
steps of the AHP methodology can be summarized as follows:

Step 1: A hierarchy model is established based on an
analysis of the problem.

Step 2: Pairwise comparison matrices A are formed at each
level of the hierarchy model. Each element A(i, j) in the
pairwise comparison matrix A depicts an expert’s judgement
of the relative importance between the pair of ith and jth
factors using the ratio scale method [23], [26]— ratio scales
[ 19 ,

1
8 ,

1
7 , . . . ,

1
2 , 1, 2, . . . , 7, 8, 9] are used to demonstrate the

relative importance, from overwhelmingly less important (i.e.,
1
9 ) to equally important (i.e., 1) and to overwhelmingly more
important (i.e., 9), between any pair of elements. A(i, j) is the
reciprocal of A(j, i).

Step 3: For each pairwise comparison matrix, the maximum
eigenvalue and the corresponding eigenvector are calculated.
The normalization of the calculated eigenvector gives the
normalized principle eigenvector with elements equal to the
priority scales (weightings) of the factors.

Step 4: The consistency of judgements is checked. The
Consistency Index (CI) and Consistency Ratio (CR) are
measured for each pairwise comparison matrix. The CI is
defined as
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CI =
λmax − n
n− 1

(1)

where λmax and n are the maximum eigenvalue and the
dimension of the corresponding pairwise comparison matrix,
respectively. The CR is defined as

CR =
CI

RI
(2)

where RI is a set of given average random consistency indices
which can be obtained using statistical calculations [25]. If
CR is no larger than 10%, the inconsistency of judgements is
acceptable. Otherwise, the judgements need to be revised.

In our case, in this paper, the AHP is used to determine
the dispatch action based on priorities of both users and the
grid; the priorities are set based on experience and common
sense. The AHP is therefore subjective in nature and different
users, who may or may not be experts, may have different
judgements resulting in different dispatch decisions. This
subjective nature and inconsistency of decision making may
on the one hand be viewed as a disadvantage. But on the
other hand it presents an opportunity, an advantage that allows
the dispatch system to be personalised by enabling the users,
whether they are aggregators, grid owners or vehicle drivers,
to set their preferences and priorities.

Fuzzy logic [16] would be an interesting alternative to the
AHP as it can deal with linguistic preferences and hence it
may be more intuitive for some users. It is also inherently
tolerant of uncertainty. But further research is needed to
further evaluate efficacy and performance of fuzzy logic in
this application.

Another alternative would be to use an operational research
approach that searches for an optimal decision [20], [21] to
say maximize profit for the aggregator while satisfying the
grid and user constraints. Such an approach could have the
advantage of finding a global minimum of a cost function,
which is not guaranteed by the AHP. It may also be perceived
to have the advantage of being more objective than the AHP.
But fundamentally the decision can be skewed by the users,
e.g., vehicle owners who could change their priorities and
hence the constraints.

III. BATTERY CHARACTERISTICS

The relationship between the discharging time of a battery
and the corresponding discharging current can be modelled
based on the Peukert equation [27], [28], as follows:

Cp = IkT = IknTr = constant (3)

where Cp is the Peukert Capacity, k is the Peukert Coefficient,
I is the constant discharging current in Amperes and T is the
corresponding time the battery will last in hours. The nominal
discharging current is In and the rated discharging time is Tr.

Therefore, given a constant discharging current id in Am-
peres, the corresponding available capacity Ca of a battery in
Ampere-hours (Ah) can be obtained as:

Ca =
idCp

ikd
=
idI

k
nTr
ikd

(4)

The state of charge (SOC) of a battery after being discharged
for t hours at a constant discharging current id is calculated
as:

SOC(t) = 1− idt

Ca
(5)

The characteristics of a typical EV battery is shown in Table
I.

TABLE I
CHARACTERISTICS OF A TYPICAL EV BATTERY (240V, 100AH) [22]

Rated
Capacity

(Ah)

Nominal
Current

(A)

Nominal
Voltage

(V)

Peukert
Capacity

(Ah)

Charge/
Discharge
Current

(A)

Effective
Available
Capacity

(Ah)

100 20 240 182.06
2 158.5

10 114.87
30 92.21

IV. DISPATCH STRATEGY OF ELECTRIC VEHICLE
BATTERY STORAGE

As discussed above, by running the proposed V2G dispatch
strategy for each EV, its dispatch action (i.e. whether charge or
discharge and at what dispatch current) is determined by the
EV aggregator (EVA) at the beginning of each time interval. In
preparation for that, the aggregator gathers real-time data, such
as real-time pricing data, network fixed load demand (i.e. load
without EVs) and overload information, a couple of minutes
prior to the beginning of each time interval. In this work, the
AHP-based dispatch strategy is designed for V2G batteries to
support power grid operations including load levelling and the
alleviation of thermal overload caused by N-1 contingency, and
to reduce cost to users while ensuring that the battery SOC is
sufficient for the next journey. In order to jointly consider the
different requirements of EV users and the grid, they should be
weighed depending on their relative importance in determining
how and when EV batteries should be dispatched and thus a
hierarchy model is developed first.

A. AHP Hierarchy Model

A five-level hierarchy model for the dispatch of an EV
battery is as shown in Figure 1.

Figure 1. AHP Hierarchy Model for Dispatch of EV Battery

The top level is the objective: dispatch of the EV battery,
which should take into account the requirements and concerns
of both EV users and the grid (Second level criteria) as
discussed earlier. EV users’ main concerns are the SOC of
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the EV batteries and the cost to dispatch them (Third level
sub-criteria). The grid might utilize the EVs to support system
load levelling (i.e. valley filling and peak shaving) or to relieve
thermal overload after an N-1 contingency while allowing for
the costs of employing the storage/generation capacity of EV
batteries (Third level sub-criteria). Several factors need to be
considered regarding the support that an EV can provide in an
N-1 contingency such as the sensitivity of the bus to which
the EV is connected in alleviating thermal overload of the
overloaded lines, the severity of the overload and the potential
consequence if the contingency is not dealt with in 15 minutes
(Fourth level sub-criteria). Furthermore, both current system
demand and potential consequence of discharging/not charging
the EV battery (Fourth level sub-criteria) should be taken into
account when determining the preferred support that an EV
can provide for load levelling. Finally, the battery can be either
charged or discharged (alternatives of dispatch actions) as a
result of this decision making process.

It is important to note, as mentioned earlier, that the dispatch
system is owned by the aggregator, not the EV owner. Aggre-
gators may adjust the priorities to maximize their profit, which
may change the weighting towards the grid or vice versa. Here,
the concerns of EV users and the grid are considered as equally
important and thus both weighed 50%. SOC and electricity
buying/selling price are also weighed equally with 50% each.
Among the three sub-criteria under grid’s concerns, the cost
to the grid is considered to be more important than the other
two (i.e. twice as important as the other two), because the
power grid can choose other kinds of energy storage for grid
operational support if it is more expensive to use EV batteries.
The overload alleviation under N-1 contingency and load
levelling are two different kinds of grid support and thus are
deemed to be equally important. A pairwise comparison matrix
Ag is thus constructed as follows to derive the weightings
of the three sub-criteria (N-1 contingency (NC), cost to grid
(CG) and load levelling (LL)) under grid’s concerns:

Ag =


NC CG LL

NC 1 1
2 1

CG 2 1 2
LL 1 1

2 1

 (6)

By calculating the principle eigenvector of Ag , the weightings
of NC, CG and LL, namely wNC , wCG and wLL, are
25%, 50% and 25%, respectively. Among the three sub-criteria
under N-1 contingency, sensitivity is considered to be the most
important, because there is no need for the EV battery to deal
with the contingency that occurs far from the bus to which it is
connected, no matter how severe the overload and the potential
consequence. Potential consequence of the N-1 contingency is
considered to be a bit more important than severity, because
a contingency that does not cause severe overload but has
a severe potential consequence is surely more important and
needs more attention than one that causes severe overload
but no severe potential consequence. Therefore, sensitivity
is determined to be 4 times as important as severity and 3
times as important as potential consequence, with potential
consequence twice as important as severity. The pairwise

comparison matrix ANC for weighing the three sub-criteria
(Sensitivity (Sen), Severity (Sev) and Potential consequence
(PoC)) under N-1 contingency is thus:

ANC =


Sen Sev PoC

Sen 1 4 3
Sev 1

4 1 1
2

PoC 1
3 2 1

 (7)

Calculating the principal eigenvector of ANC gives the weight-
ings of Sen, Sev and PoC, namely wSen, wSev and wPoC ,
which are 62.5%, 13.7% and 23.9%, respectively. Moreover,
the two sub-criteria under load levelling, viz. total load de-
mand and potential consequence, are weighed 60% and 40%,
respectively with total load demand considered more important
than potential consequence.

The factors that can be included in the AHP hierarchy
model are not limited to those in Figure 1. Other factors
such as battery degradation, voltage constraints and integration
of renewables can be readily included. For example voltage
limits, related to the distribution system for example by adding
that as another grid concern in Figure 1. Indeed, additional
sub-criteria specific to the distribution system can be added.
But increasing the number of factors would increase complex-
ity and implementation cost. Additionally, some factors may
encompass others indirectly. For example, what an EV owner
cares about most are the vehicle’s basic function (i.e. driving)
and the direct cost of utilizing this function (i.e. charging cost).
But she or he implicitly understands (or should be told by the
aggregator as part of their duty of care) that participating in a
V2G will accelerate battery degradation. If he or she decides
to participate in the V2G scheme, then he or she would need
to be convinced that the savings of charging cost, or even
better getting some payment, is an adequate compensation
for battery accelerated degradation. An aggregator may also
offer some incentives such as paying a battery degradation
charge to convince the driver that participating in V2G is worth
doing. In other words, the cost model includes some elements
related to battery degradation. Similarly, the criteria which
set a minimum and a maximum state of charge indirectly
reduces the rate of battery degradation; battery life is known
to improve if the depth of discharge is reduced [29], [30], for
example it is well known that the cycle life of some lithium-
ion batteries improves from 2000 deep cycles to more than
15,000 shallow cycles (from 30%–70% state of charge). The
driver can have the option to limit the depth of discharge (by
setting the minimum and maximum SOC), to reduce battery
degradation.

B. Determination of the Dispatch Action

The priorities of alternatives are determined by evaluating
how suitable it is to charge/discharge the EV battery with
respect to every sub-criterion as follows:

State of Charge (SOC): The upper limit of SOC Smax is
selected to avoid overcharge, while the lower limit Smin is
set to ensure that sufficient electric energy remains within the
battery for the next journey and for the protection of the health
of the battery. In V2G mode, Smax is set to be 0.8 and Smin =
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0.4 + Sn where Sn represents the per-unit capacity that is
going to be consumed on the road to the next destination. It
is clear that the lower the SOC the more favourable it is to
charge the battery. The higher the SOC the more favourable
it is to discharge it. Therefore, the priorities of charging and
discharging with respect to SOC are defined as follows:

Charge:

P c
SOC =

{
1 SOC 6 Smin

1− SOC−Smin

Smax−Smin
SOC > Smin

(8)

Discharge:

P d
SOC =

{
1 SOC > Smax

1− Smax−SOC
Smax−Smin

SOC < Smax
(9)

Electricity Buying/Selling Price: In order to reduce cost, it
is better to charge the battery when the buying price is low
and discharge it when the selling price is high. Therefore, the
priorities of charging and discharging in terms of electricity
price are determined as follows:

Charge:

P c
EP =

{
1 bp 6 hbp

1− bp−hbp
0.1×mbp bp > hbp

(10)

Discharge:

P d
EP =

{
1 sp > hsp

1− hsp−sp
0.6×msp sp < hsp

(11)

where bp and sp are the electricity buying and selling prices
determined by the real-time pricing information. hbp and hsp
are the high buying and selling prices, respectively. hbp is
defined as 90% of the maximum buying price mbp, while
hsp is defined as 60% of the maximum selling price msp
[22]. These four price values (hbp, hsp, mbp and msp) can
be determined by using the day-ahead pricing information. In
this work, real pricing data recorded in [31] are used to define
these four values.

N-1 Contingency: The priority of charging is zero with
respect to an N-1 contingency that requires discharging correc-
tive action at the bus to which the EV is connected. Similarly,
the priority of discharging is zero if the contingency requires
a charging corrective action. The priorities of these actions are
determined as follows:

Sensitivity: The sensitivity of load flow through a
branch b overloaded by an N-1 contingency C to changes of
power injection at a particular bus j can be evaluated using
the sensitivity factor defined in [13]:

Sj
C =

∆Fb

∆Pj
(12)

where ∆Fb is the change of power flow through the branch b
resulting from the change in power injection at bus j (∆Pj).
As certain buses have relatively higher sensitivity factors with
respect to the overloaded branch than others, the same power
injections at these buses could make a more obvious difference
to the alleviation of the overload. Thus, an EV connected to
a bus with a high sensitivity factor will have a high priority
of dispatch during an N-1 contingency, while the dispatch of
an EV connected to a bus with a very low sensitivity factor is

not recommended due to the little contribution it can make. By
comparing the sensitivity of a bus to the bus with the highest
sensitivity factor, the priority of charging/discharging an EV at
a specific bus with respect to sensitivity Psen can be defined
as:

Psen =

∣∣∣Sj
C

∣∣∣
max

{
|S1

C | , |S2
C | . . .

∣∣Snb
C

∣∣} (13)

where nb is the total number of buses in the system.
Severity: The severity of overload can be quantified as

a percentage of the Long Term Emergency (LTE) rating of the
overloaded line, as follows:

Severity =
Load F low − LTE

LTE
× 100%, (14)

where LTE rating can be derived from [32], while
Load F low is obtained by carrying out the power flow
analysis for the network under an N-1 contingency. The
priority of charging/discharging with respect to overloading
severity Psev is determined as:

Psev =
SevC
Sevmax

(15)

where SevC is the severity of overloading caused by contin-
gency C and Sevmax is the severity of the severest overload
caused by the severest contingency, which is derived by
running the simulation of power flow analysis for all possible
N-1 contingencies within the network, calculating the severity
of overload they caused using (14) and then selecting the
maximum.

Potential Consequence: Potential consequence of an
N-1 contingency is determined by the number of overloaded
lines, assuming that the branch overloaded by the contingency
is broken due to the absence of an in-time measure. The prior-
ity of charging/discharging in terms of potential consequence
PPoC is calculated as follows:

PPoC =
PocC
Pocmax

(16)

where PocC is the potential consequence of contingency C
and Pocmax is the severest potential consequence.

Cost to Grid: When charging the EV battery, the cost to the
grid is Cc. However, when discharging it, the cost is Cd. From
the grid’s perspective, the lower the cost the better. Therefore,
the priorities of charging and discharging in terms of the cost
to grid are evaluated as follows:

Charge:

P c
CG =

{
1 Cc 6 HCC
0 Cc > HCC

(17)

Discharge:

P d
CG =


1 Cd 6 LDC

HDC−Cd

HDC−LDC LDC < Cd < HDC

0 Cd > HDC

(18)

where HCC is the high cost to the grid for charging an EV
and is set to be zero in this paper because the cost to the grid
to charge an EV is negative and the cost to discharge an EV
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is positive in this paper. HDC and LDC are respectively the
high and low costs to grid for discharging an EV and are set
to be £0.02/KWh and £0.01/KWh respectively in this paper
[31].

Load Levelling:
Total Load Demand: In order for load levelling (i.e.

peak shaving and valley filling) to be effective, it is better
for EVs to be charged when the network’s original load
demand (i.e. the system load without EV integration) is low,
so that EVs can store energy for the driving activities and
grid operational support that might happen afterwards, while
discharged to provide energy to the grid when the network’s
original load demand is high. Therefore, the priorities of
charging and discharging in this case are defined as:

Charge:

P c
LD =


1 d 6 LD

1− d−LD
0.25(dmax−dmin)

LD < d < MD

0 d >MD

(19)

Discharge:

P d
LD =


1 d > HD

1− HD−d
0.25(dmax−dmin)

MD < d < HD

0 d 6MD

(20)

where dmax and dmin are the maximum and minimum system
demand during a day which can be determined using day-
ahead load forecasting data or the historical data. In this work,
real load demand data [31] are used to define these two values.
MD is the mid-level system demand, calculated as

MD = 0.5× (dmax + dmin) (21)

LD is the low-level system demand, determined by

LD = dmin + 0.25× (dmax − dmin) (22)

HD is the high-level system demand, determined by

HD = dmax − 0.25× (dmax − dmin) (23)

Potential Consequence: The potential consequence if
discharging/not charging the battery is evaluated based on its
SOC. If the EV battery is discharged/not charged at a given
time, there might not be enough electric energy within the
battery to be discharged during high load periods. Therefore,
the priorities of charging and discharging are determined as
follows:

Charge:

P c
LPoC =

{
1 SOC 6 Sgmin

1− SOC−Sgmin

Sgmax−Sgmin
SOC > Sgmin

(24)

Discharge:

P d
LPoC =

{
1 SOC > Sgmax

1− Sgmax−SOC
Sgmax−Sgmin

SOC < Sgmax
(25)

where Sgmin and Sgmax are low and high SOC from the
perspective of grid and selected to be 0.4 and 0.8, respectively,
for the normal operation of EV batteries.

The final priorities Pf of charging and discharging an EV
are calculated in the same way, that is:

Pf =(PSOC × wSOC + PEP × wEP )× wEV

+ ((Psen × wsen + Psev × wsev + PPoC

× wPoC)× wNC + PCG × wCG + (PLD

× wLD + PLPoC × wLPoC)× wLL)× wG

(26)

where PSOC , PEP , Psen, Psev , PPoC , PCG, PLD, PLPoC

are the priorities of charge/discharge with respect to SOC,
electricity price, sensitivity, severity, potential consequence of
N-1 contingency, cost to grid, total load demand and potential
consequence of load levelling, respectively. wSOC , wEP ,
wsen, wsev , wPoC , wCG, wLD, wLPoC are the corresponding
weighting factors. wNC and wLL are the weightings of N-1
contingency and load levelling with respect to grid’s concerns.
wEV and wG are respectively the weightings of EV users’ and
grid’s concerns in terms of the objective.

The above forms the main part of the decision making
process for the dispatch of an EV’s battery. It is important
to note that the information about the next journey Sn is
assumed to be available. The SOC of an EV battery is checked
at the beginning of each time interval. If the SOC is less than
Smin, the battery is charged during the current time interval.
Otherwise, if the SOC is larger than Smax, it is discharged.
The dispatch action is determined as the one that has the
highest final priority if the SOC is between Smin and Smax.
How fast the battery is charged/discharged depends on the
final priority Pf of charge/discharge. If Pf is no less than
0.9, the EV is charged/discharged at the high current level
set here to be 30A. If Pf is between 0.7 and 0.9, the EV
is charged/discharged at the middle-level current of 10A. If
Pf is between 0.4 and 0.7, the EV is charged/discharged
at a low-level current of 2A. Otherwise, when Pf is lower
than 0.4, the EV battery is idle during this time interval. The
overall AHP-based dispatch strategy is shown in Figure 2,
which is implemented at the beginning of each time interval
for each EV by the EV aggregator using the real-time data
gathered a couple of minutes beforehand. The detailed data
communication chart is illustrated in Figure 3, which describes
the procedure of real-time data collection from EVs and
system operators, the working process of the aggregator and
the transmission of dispatch action commands to EVs. The
aggregator collects data from the EVs, DSO and TSO and
sends dispatch commands to the EVs. For comparison, the
flow chart of the rule-based dispatch strategy described in [22]
is given in Figure 4. The key parameters of the two dispatch
strategies are set to be the same for the fair comparison, as
shown in Table II.

V. SIMULATION TEST

The proposed AHP-based dispatch strategy was tested on
an IEEE Reliability Test System (RTS) [32], which is formed
of 24 buses and 38 branches as shown in Figure 5, and
implemented using MATLAB and MATPOWER 4.1 [33].
The reason why RTS is used for simulation test is because
this paper mainly focuses on the application of V2G in the
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Figure 2. AHP-based Dispatch Strategy for an EV Battery

Figure 3. Data Communication Chart

Figure 4. Rule-based Dispatch Strategy for an EV Battery [22]

TABLE II
KEY PARAMETER SETTINGS FOR AHP-BASED AND RULE-BASED

DISPATCH STRATEGIES

Dispatch
Strategy SOCmin SOCmax

High Buying
Price hbp
(£/KWh)

High Selling
Price hsp
(£/KWh)

AHP-
based 0.4 0.8 0.15 0.11

Rule-
based 0.4 0.8 0.15 0.11

Dispatch
Strategy

High
Dispatch
Current

Medium
Dispatch
Current

Low
Dispatch
Current

On-road
Discharging

Current

AHP-
based 30 10 2 20

Rule-
based 30 10 2 20

transmission system in terms of load levelling and overload
alleviation under N-1 contingency. The EVs that are distributed
within the local distribution network are aggregated and con-
nected at a bus of transmission system that this local network
is connected to, under the assumption that the integration of
EVs will not overload the local distribution network.

Figure 5. Diagram of IEEE Reliability Test System [32]

The total load demand and system selling/buying price of
electricity during a day was taken from [31]. The total load
demand is scaled down so that the peak demand during a day
is 3300 MW, which approximately represents the daily load
demand in a large UK city, as shown in Figure 6. Due to a
scarcity of information on the payments by/to EV users when
the EVs are charged/discharged, the system selling/buying
price [31], is adjusted based on domestic tariffs using the
method proposed in [22] to represent EV users’ selling/buying
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Figure 6. Total Load Demand During A Day without EV Load

price of electricity. The adjusted system selling/buying price
is derived by adding the difference between the average tariff
value and the average system selling/buying price to the
corresponding system selling/buying price, as shown in Figure
7. The average ASSP and average ASBP become the same and
equal to the average of domestic tariff, therefore ASBP can
be either higher or lower than ASSP. Therefore, the ASSP
(i.e. adjusted system selling price) and ASBP (i.e. adjusted
system buying price) in Figure 7 are used as the EV charging
and discharging prices respectively, namely the bp in (10)
and sp in (11) respectively. Cc in (17) is defined as the
difference between system buying price and system selling
price in Figure 7, namely Cc = SSP − SBP . Cd in (18)
is set to be the difference between EV discharging price and
charging price, that is, Cd = ASBP −ASSP . The time step
is set to be 30 minutes. The dispatch actions are determined
by the dispatch strategy at the beginning of every time interval
and lasts for the entire time interval of 30 minutes.

Figure 7. Daily Electricity Price

To test the AHP-based dispatch strategy, an EV is connected
to bus 6 when it is parked and plugged into the grid. When
the EV is on the road, the battery electric energy is assumed
to be consumed at the nominal discharging current (20A)
as assumed in [22]. The EV’s travel pattern and electric
capacity requirements for the next journey, Sn, during a day
are described in Table III. It is important to note that the travel
pattern used here was randomly generated and utilized as an
example. The EV can have any kind of travel pattern, which
will not affect the feasibility of the proposed dispatch strategy.
The simulation results of the EV’s SOC and net cost to EV
users (i.e. charging cost–discharging payment) during a day are
shown in Table IV, compared with those generated by applying
the rule-based dispatch strategy that has been developed in

[22].

TABLE III
EV’S TRAVEL PATTERN AND Sn DURING A DAY

Time Travel Pattern Sn

23:00–7:00 Parked 0.2

7:00–8:00 on road n/a

8:00–12:00 Parked 0.1

12:00–12:30 on road n/a

12:30–13:30 Parked 0.1

13:30–14:00 on road n/a

14:00–18:00 Parked 0.2

18:00–19:00 on road n/a

19:00–23:00 Parked 0.2

TABLE IV
SOC AND DAILY COST OF AN EV – COMPARISONS BETWEEN THE

PROPOSED AHP-BASED DISPATCH STRATEGY AND THE RULE-BASED
STRATEGY

Dispatch
Strategy

Lowest
SOC

Highest
SOC

Costs
(£)

AHP-
based 0.331 0.694 2.25

Rule-
based 0.194 0.657 1.39

In Table IV, it is shown that under the same travel pattern the
AHP-based dispatch strategy results in better SOC conditions
of the EV though costing £0.86 more per day than the rule-
based strategy. The improved SOC condition produced by
the AHP-based dispatch strategy with the SOC remaining
in the main within the desired range [0.4, 0.8]. The lowest
SOC is just below 0.4, which implies a more reliable driving
experience, compared to the lowest SOC of 0.194 when using
rule-based strategy. This could justify the higher daily cost
of the AHP-based strategy. Furthermore, if the EV battery,
without V2G service, is quickly fully charged after every use
(i.e. using 30A charging current) to recover the electricity
consumed on the road, the daily cost per vehicle will be £3.08
under the same travel pattern as shown in Table III, which
demonstrates the capability of AHP-based dispatch strategy to
save costs while ensuring sufficient SOC in the battery for
reliable driving.

As for the effectiveness of the AHP-based dispatch strategy
in dealing with an N-1 contingency, the EV battery dispatch
action can be affected by the occurrence of a severe N-1
contingency and the overloading it causes can be efficiently
relieved by power injection/absorption at the bus to which the
EV is connected. The simulation results using the AHP-based
dispatch strategy show that a car’s battery is charged at 479 W
from 9:00 am to 9:30 am if no contingency occurred. However,
if branch 10 is broken (N-1 contingency) at 9 am, which
results in the overloading of branch 5, power injection will
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be required at bus 6 meaning that the connected EV battery
is preferably discharged. By applying the AHP-based dispatch
strategy, the EV is set to be discharged at 479 W. The rule-
based dispatch strategy that was proposed in [22] does not
take N-1 contingency into account and thus makes the same
decision on the dispatch action of the EV battery regardless
of the contingency — using this strategy an EV battery will
in fact be charged at 468 W at 9:00 am, which will aggravate
the overloading caused by the outage of branch 10.

The highest charging/discharging power of an EV is 7731
W, which is negligible compared to the total load demand
of the system. Therefore, in order to test the efficacy of the
proposed AHP-based dispatch strategy on load levelling, a
total number of 625000 EVs are assumed to be in the system.
This is a predicted number of EVs in a large UK city after 2035
(EVs are predicted to comprise 25% of the total car population
after 2035, and there are about 2.5 million cars in a large UK
city). These EVs are randomly allocated in the system while
power flow analysis is used to make sure that no overload
occurs. The initial SOC of EVs are randomly assigned with
a normal probability distribution (µ = 0.6, σ = 0.1). A
probability curve, illustrated in Figure 8, is used to determine
the total number of parked EVs at each time interval. But EVs
that leave or arrive at the parking lot are randomly selected.
Therefore, for each EV, the departure and arrival times are
totally stochastic.

Figure 8. Probability of cars that are parked during a weekday [22]

In order to measure the total load demand and system
transmission loss, the power injected at the slack bus of the
test system (bus 13) is evaluated for all the cases including
the cases where EVs are charged in an uncontrolled fashion
(i.e. EVs are fast charged at a high current level (30A) after
each journey) and where EVs are dispatched by the AHP-
based strategy and the rule-based strategy. The power injection
at the slack bus represents the power exchange between the
power system under investigation and the rest of the grid.
Simulation results for the power injections at the slack bus
during 7 days are presented in Figure 9. The choppy transient
response during the first day is due to the random assignment
of the SOC of the EVs at the start of the simulation. The
following days start with the SOC of EV batteries that have
settled to a steady state value, hence the repeatable steady
pattern of the power injected at the slack bus during the rest of
the days, which confirms the stability of the dispatch strategies.
Figure 10 shows power injections into the slack bus during the
seventh day with the original curve of power injected at the
slack bus when the grid is operated without EVs. Certain key
data in Figure 10 is given in Table V.

Figure 9. Power injections at the slack bus for all three cases during a week

Figure 10. Power injections at the slack bus for all three cases during a day

TABLE V
NUMERICAL ANALYSIS OF THE EFFICACY OF AHP-BASED DISPATCH

STRATEGY IN LOAD LEVELLING COMPARED WITH THAT OF RULE-BASED
DISPATCH STRATEGY AND UNCONTROLLED CHARGING

Dispatch Strategy
Lowest Power Injection

(MW)
Highest Power Injection

(MW)
AHP-based -626.3 673.4
Rule-based -706.5 969.5

Uncontrolled -630.5 877.5

As shown in Table V, the rule-based dispatch strategy and
uncontrolled charging result in very high peaks of power
injections, which are respectively about 200 and 300 MW
higher than the peak power injection when using AHP-based
strategy. Therefore, AHP-based dispatch strategy has better
performance in peak shaving compared to the two other
strategies in the sense of creating much lower peak power
injection from the main grid. During the off-peak period, the
AHP-based dispatch strategy results in at most 626.3 MW
power to be transferred to the main grid, while uncontrolled
charging results in about 4 MW more power being absorbed
by the main grid. The rule-based strategy results in 80 MW
more power being injected into the main grid. Thus, AHP-
based strategy performs better in valley filling than rule-based
strategy and uncontrolled charging.

VI. SENSITIVITY ANALYSIS

In order to further investigate and understand the character-
istics of the proposed AHP-based dispatch strategy, sensitivity
analysis is carried out for many different scenarios. First of all,
the effects of changing the weightings of EV users’ and grid’s
concerns (i.e.wEV and wG respectively) on the EV daily SOC
and cost are investigated, as well as the impacts of the relative
importance between SOC wSOC and electricity price wEP .

As shown in Table VI, when the weighting of EV users’
concerns wEV increases, more attentions are paid to the EV
user’s benefits, hence the daily SOC condition of EV improves,
as illustrated in Figure 11 (the corresponding current levels and
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final priorities of dispatch decisions are presented in Figure 12
and Figure 13, respectively), normally leading to an increasing
charging cost. That is not hard to understand, because a better
SOC condition implies more electric energy to be charged
or less to be discharged, which increases the daily cost to
EV users. However, when the EV’s SOC condition is already
good enough within the 40% and 80%, the increase of wEV

does not improve the daily SOC condition of the EV but
reduces the daily cost for the EV (e.g. when wSOC = 80%,
wEP = 20% with wEV = 50% and 80% respectively, as can
be seen in Figure 11). That is because when the EV’s daily
SOC condition is already good enough, due to having a high
priority, the improvement space becomes very limited. Thus,
increasing wEV to continually increase its composite priority
will not make significant improvement to the SOC condition.
But, the increase of the composite priority of cost due to
increasing wEV will tend to charge the EV at the low buying
price instead of scattering the charging process over a wide
period to avoid increasing the peak load demand. Moreover,
when keeping the weightings of EV user and grid concerns
unchanged but adjusting the relative importance between the
two criteria, SOC and electricity price, the results change as
well, as demonstrated in Figure 14 (the corresponding current
levels and final priorities of dispatch decisions are presented
in Figure 15 and Figure 16, respectively). With a higher
weighting given to electricity price (i.e. wEP is higher but
wSOC is lower), it will be better to discharge an EV battery
due to the high selling price, in order to save costs, than to
charge it due to the low SOC. Thus, discharging might be
chosen as the current dispatch action and the daily cost to the
EV user, unsurprisingly, decreases as SOC condition worsens.
However, with higher wSOC but lower wEP , the dispatch
action recommended for ensuring that sufficient electricity
remains in the battery will have a higher priority to be chosen
as the current EV dispatch action than that recommended
according to electricity price to save cost. The SOC condition
is therefore, as expected, better with increasing daily cost.

TABLE VI
SENSITIVITY ANALYSIS: THE EFFECTS OF CHANGING THE WEIGHTINGS

OF CRITERIA ON THE EV DAILY SOC AND COST

wEV
wG

wSOC = 20%
wEP = 80%

wSOC = 50%
wEP = 50%

wSOC = 80%
wEP = 20%

SOC Cost
(£) SOC Cost

(£) SOC Cost
(£)

20%
80%

[0.16,
0.69] 0.66 [0.18,

0.69] 0.82 [0.19,
0.69] 0.89

50%
50%

[0.19,
0.70] 1.59 [0.33,

0.69] 2.25 [0.47,
0.70] 2.62

80%
20%

[0.28,
0.75] 1.87 [0.36,

0.71] 2.35 [0.47,
0.70] 2.44

As for the impact of different settings of wG and wEV

on the network, similar sensitivity analysis is carried out
and the result is shown in Figure 17. The corresponding
accumulated energy injections are presented in Table VII. It
is clear in Figure 17 that the network load demand curve
is improved, in terms of decreasing peak load demand, with
higher weighting assigned to grid’s concerns, which is just as
expected and easy to understand. It is evident from Table VII

Figure 11. Daily SOC conditions of an EV battery under different settings
of wG and wEV but constant wSOC (80%) and wEP (20%)

Figure 12. Charging/discharging currents of an EV battery under different
settings of wG and wEV but constant wSOC (80%) and wEP (20%)

Figure 13. Final priorities of dispatch decisions of an EV battery under
different settings of wG and wEV but constant wSOC (80%) and wEP

(20%), which decide the dispatch current levels in Figure 12 and hence SOC
conditions in Figure 11

Figure 14. Daily SOC conditions of an EV battery under different settings
of wSOC and wEP but constant wG (20%) and wEV (80%)

that when the weighting of grid concerns (wG) becomes high
at 80% the amount of energy injected at the slack bus reduces
significantly. This is expected as load levelling takes priority
as can be seen in Figure 17.

As mentioned earlier, the setting of weightings of the AHP
model is based mainly on expert experience and common
sense. In practice we envisage that the initial weighting
determined based on common sense will be refined based
on simulation results at the design stage or over time during
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Figure 15. Charging/discharging currents of an EV battery under different
settings of wSOC and wEP but constant wG (20%) and wEV (80%)

Figure 16. Final priorities of dispatch decisions of an EV battery under
different settings of wSOC and wEP but constant wG (20%) and wEV

(80%), which decide the dispatch current levels in Figure 15 and hence SOC
conditions in Figure 14

Figure 17. Daily power injections at the slack bus under different settings of
wG and wEV

TABLE VII
ACCUMULATED ENERGY INJECTIONS AT THE SLACK BUS UNDER

DIFFERENT SETTINGS OF wG AND wEV IN 24 HOUR PERIOD

wG wEV
Accumulated Energy in 24 hour period

(MWh)

20% 80% 3878.99
50% 50% 3795.71
80% 20% 3426.39

the operation stage to produce sensible results. This may
require some negotiations between the parties involved who
may accept a compromise once they are informed about the
implications of their choices and perhaps after their fears are
allayed. Indeed the weighting of the factors and even the
factors themselves may need to be changed with time as the
system evolves.

Furthermore, the impact of increasing the percentage of
V2G-enabled EVs on load levelling is illustrated in Figure
18 and 19. Figure 18 shows the power injected at the slack
bus during a 24-hour period. As the percentage of V2G-

enabled EVs increases, the peak shaving increases. In Figure
19, the total accumulated energy injected into the slack bus
during a 24-hour period is plotted against the percentage of
V2G-enabled EVs. This graph was obtained by repeating the
simulation 40 times for each percentage of V2G-enabled EVs;
each simulation starts with a randomly assigned travel pattern;
the mean and standard deviation of injected energy at the slack
bus during a 24-hour period are calculated for each percentage
of V2G-enabled EVs from the results of the 40 simulations.
The accumulated energy injection reduces when more EVs
participate in the V2G operation. That is just as expected and
can be easily understood; increasing the percentage of V2G-
enabled EVs raises the available battery capacity that can be
used to meet the power system demand.

Figure 18. Power injections at the slack bus under different percentage of
V2G-enabled EVs

Figure 19. Average accumulated energy injections at the slack bus under
different percentage of V2G-enabled EVs (Error bars represent ± standard
deviation)

It is important to note that this work presents the proposed
AHP-based dispatch strategy using an example setting of the
criteria weightings in the AHP hierarchy model and the per-
centage of V2G batteries. However, the settings of weightings
can be adjusted by the EV aggregator (EVA) to accommodate
its requirements and the actual situation of the network and EV
cluster. The proportion of V2G batteries in practice depends
on the EV users’ willingness and/or EV chargers’ hardware.

Moreover, an estimate about the EV user’s next journey is
necessary for the proposed technique to carry out effective
and customized dispatch. This information is expected to be
supplied to the aggregator either when the vehicle is plugged
into the charging point or through the internet. This does not
need to be a burden to the EV user. For example, users could
have an App (a software agent) supplied by the aggregator
installed on their smart phones or computers that estimates
the energy required for the next journey based on information
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in their calendar about their future activities (and the time
and distance of the next journey), traffic conditions, weather,
etc. They can send the energy requirement information (could
be simply minimum SOC) to the aggregator automatically
through the internet or wireless communication channels,
without revealing any of their activities and without impacting
their privacy. Forecasting tools can also be employed, based
on historical records of the EV’s previous driving activities,
to provide a forecast of EV user’s travel pattern including an
estimate of the next journey’s energy usage. Further research
is needed on how this may be implemented in practice.

Furthermore, the AHP-based dispatch strategy is proposed
for practical application, therefore the computational efficiency
is an important factor. It takes only 0.3s on average to make
dispatch decisions for the total EV fleet of 625000 EVs at each
time step if using a computer with a Quad Core 3.4GHz CPU
and 16GB RAM as an example, which provides an insight into
the computation time required by the proposed algorithm.

Some information is needed to implement the proposed
dispatch strategy, apart from the EV user’s driving activities,
such as the real-time pricing, network’s load demand and N-
1 contingency information. These are supposed to be notified
a short while ahead of the beginning of every time interval,
via wireless communication for example. However, if the
communication is suspended due to a sudden accident, e.g.
hacker attack, and some or all of the required information
for the next time interval cannot be obtained in time, then
an estimate or a forecast of the missing information will be
used to dispatch the EVs. In more detail, if the exact pricing
data is unknown, the aggregator can either use the available
day-ahead electricity price or use forecasting tools, which can
be embedded into the proposed model, to predict the price
for the next time interval. The uncertain load demand for
the next time interval can be dealt with in a similar way,
that is, the day-ahead network load demand forecast can be
used to implement the proposed dispatch strategy. Besides,
if N-1 contingency occurs without being able to inform the
aggregator, then EVs will be dispatched as if no contingency
occurred. Due to the inherent redundancy of V2G and other
energy storage that are in communication, this may not have a
large impact as other EV clusters or stationary energy storage
systems can participate in the alleviation of overload caused
by the N-1 contingency. Note that it will be better to use exact
real-time data in order for the proposed strategy to provide an
accurate dispatch of EVs, however using well-estimated data
for a certain time interval (when the communication breaks
off) will not affect the dispatch decision of the proposed AHP-
based strategy due to its robustness and inherent tolerance of
uncertainty. One could envisage that the AHP priority factors
may be adjusted depending on the level of confidence in the
information, which in turn depends on whether they were
based on actual information or estimated one, which could add
further robustness. This matter deserves further investigation
in the future.

VII. CONCLUSIONS

This paper has proposed a novel decentralized dispatch
strategy for the V2G batteries using the AHP methodology

taking into account the requirements of both EV users and
the grid, such that the EV batteries can be dispatched to save
cost while ensuring reliable driving experience with sufficient
SOC left in the battery and help to support the grid for load
levelling or under N-1 contingency. The proposed dispatch
strategy was tested on an IEEE Reliability Test System. The
simulation results demonstrated the feasibility and efficacy
of the proposed AHP-based dispatch strategy in satisfying
the requirements of both EV users and the grid. Moreover,
this strategy has proved to be generally better than the rule-
based one proposed in [22]. Compared to the rule-based
dispatch approach, it costs £0.86 more a day, per vehicle, but it
improves the EV battery’s SOC condition and performs better
in terms of load levelling. Under the severe N-1 contingency
that overloads the branch close to the bus to which the EV is
connected, the AHP-based dispatch strategy correctly selects
the dispatch action of the EV battery that can help to alleviate
the overloading.

In the application of V2G batteries using the proposed
AHP-based dispatch strategy, the EV aggregator gathers the
real-time data a short while (e.g. 5 minutes) prior to the
beginning of each time interval, as discussed earlier. Real-
time pricing (RTP) data need to be downloaded from the
electricity market on a half-hourly basis (i.e. before the start
of every time interval of 30 minutes). RTP can be affected by
the real-time demand and supply conditions, which include
the dispatch of V2G batteries, i.e. the charging as a load or
discharging as a source. Moreover, as the electricity price is
considered in the V2G battery dispatch, RTP will have impact
on the determination of battery dispatch actions. Hence, there
is interactive effect between V2G battery dispatch and RTP,
which will be investigated in the future. Furthermore, the
proposed AHP-based dispatch strategy is actually utilized by
the V2G aggregators, not by the EV users, as discussed earlier.
In order to encourage the V2G operation, incentive payments
will be given to the EV users if they agree to let their vehicles
participate in the grid operational support when needed. The
settings of incentive payments and the relevant policy requires
further investigations.
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