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Abstract—A nonlinear model predictive control (NMPC)
for the thermal management (TM) of Plug-in Hybrid
Electric Vehicles (PHEVs) is presented. TM in PHEVs
is crucial to ensure good components performance and
durability in all possible climate scenarios. A drawback of
accurate TM solutions is the higher electrical consumption
due to the increasing number of low voltage (LV) actuators
used in the cooling circuits. Hence, more complex control
strategies are needed for minimizing components thermal
stress and at the same time electrical consumption. In this
context, NMPC arises as a powerful method for achieving
multiple objectives in Multiple input- Multiple output
systems.

This paper proposes an NMPC for the TM of the
High Voltage (HV) battery and the power electronics (PE)
cooling circuit in a PHEV. It distinguishes itself from the
previously NMPC reported methods in the automotive
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sector by the complexity of its controlled plant which is
highly nonlinear and controlled by numerous variables.
The implemented model of the plant, which is based on
experimental data and multi- domain physical equations,
has been validated using six different driving cycles logged
in a real vehicle, obtaining a maximum error, in compar-
ison with the real temperatures, of 2°C.

For one of the six cycles, an NMPC software-in-the loop
(SIL) is presented, where the models inside the controller
and for the controlled plant are the same. This simulation
is compared to the finite-state machine-based strategy
performed in the real vehicle. The results show that NMPC
keeps the battery at healthier temperatures and in addition
reduces the cooling electrical consumption by more than
5%. In terms of the objective function, an accumulated
and weighted sum of the two goals, this improvement
amounts 30%. Finally, the online SIL presented in this
paper, suggests that the used optimizer is fast enough for
a future implementation in the vehicle.

Index Terms—nonlinear model predictive control
(NMPC), thermal management, plug-in hybrid electric
vehicles (PHEV), Li-ion battery cooling.

I. INTRODUCTION

Electromobility is a necessary step for car manufacturers
to fulfill the increasing stringent emissions legislation.
Although some pure electric vehicles (EV) are already
available in the market, Plug-in Hybrid Electric Vehi-
cles (PHEVs) seem to be the middle-term solution till
infrastructure and costumers’ demand grows [1].

Electrification involves several technical challenges.
Among them, the Thermal Management (TM) of the
electric components is crucial for assuring safety, perfor-
mance and durability requirements [2]. In this context,
the high voltage (HV) battery pack is of first interest due
to its high cost. Li-ion batteries, which are the state of the
art and future technology in electromobility [3], [4], have
to operate within a certain temperature range for safety,
optimum performance and service life. The range rec-
ommended by the battery manufacturer (typically 20°C-
30°C) is usually narrower than the vehicle operation
range, which has to assure extreme hot (= 60°C) and
cold (= —25°C) climates. To fix this temperature offset,



several TM approaches exist in literature which can be
divided according to the heat transfer medium used: air
[5], [6], liquid or phase change material (PCM) [7],
[2], [8]. The choice of the transfer medium depends on
the vehicle topology and is finally a trade-off between
performance, durability and costs.

In the case of PHEVs, using only PCM may not be
applicable [9] and most automakers face the decision of
either using air or liquid cooling. While air systems are,
in general, simpler and more economic, liquid solutions
offer more effectiveness in heat transfer and more
accuracy in the temperature control [10]. However, a
better temperature regulation is at the prize of higher
costs and a more complex design and control. Given
a complex design of intricate pipes architecture, the
challenge in the liquid TM control strategy is to use the
numerous electrical actuators such as pumps, valves and
fans to keep the battery within the optimal operation
range consuming as less electrical energy as possible.
This task can be especially complex, since liquid T™M
systems have usually:

o multiple inputs and multiple outputs
e high nonlinear behavior
« to fulfill multiple and often contradictory goals

At present, these complex battery TM systems are
commonly controlled with finite-state-machines and PID
controllers which use a set of rules learned from experi-
ence [11], [12]. However despite these methods are valid
for vehicle operation within the current specifications,
they are normally oversized and far away from optimum,
particularly in the case of hybrid and electric vehicles
where few experience is available.

Motivated by all the above, the aim of this paper is to
propose a new control method to make liquid TM of
the HV battery more attractive reducing its costs and
complexity. The method presented here, Model Predic-
tive Control (MPC), belongs to the family of methods
based on optimal control and is especially suitable for
finding solutions closed to the optimum in complex
multi-objective controlled plants.

The main idea behind MPC is to combine a model of
the controlled plant with an optimization algorithm. The
model is used to predict the future state of the plant
within a time horizon and the optimization algorithm to
find the best possible control set inside this prediction
horizon. Additionally to the model and the algorithm,
an objective function for the numerical evaluation of the
multiple goals to be optimized has to be provided. If the
model used to describe the behavior of the controlled
plant and/or the objective function are described by

means of nonlinear functions, as is the case of this work,
the method can be sub-categorized as Nonlinear Model
Predictive Control (NMPC). Through the combination
of the model and the optimization algorithm, MPC
provides not only the best possible controls, but the
following advantages compared to the conventional
control methods:

o Constraints direct specification: in addition to the
objective function, constraints which will fulfilled
in the final solution can be specified quite straight-
forward.

e No curse of dimensionality: the complexity in the
multiple feedback controllers design is similar as of
single variable ones [13].

o Future information exploitation: given future
information of the vehicle, e.g the driving profile
that will be performed, the model can be painless
modified to improve the quality of the predictions
and hence of the final solution.

Due to the several advantages mentioned, considerable
interest in this method has been shown in the automotive
sector leading to MPC applications in several fields such
as Internal Combustion Engines (ICEs) [14], [15], [16],
autonomous vehicles [17], stability [18], idle speed [19]
and energy management [20] among others.

In the TM branch most MPC efforts have been put in
the cabin comfort [21] and the ICE cooling [22], in
order to reduce consumption and emissions. Neverthe-
less, despite the HV battery is the core of the electrified
vehicles, less attention has been put in MPC methods to
improve its TM. To fill this gap we propose an NMPC
control method which reduces the complexity and costs
associated to the liquid TM in the HV battery (BAT)
and power electronics (PE) cooling circuit in a real
PHEV prototype. The method is used to improve the
TM of the mentioned system with two different goals: 1)
minimize the thermal stress of the BAT and 2) minimize
the electrical consumption of the actuators in the cooling
circuitl.

To perform these tasks, the robust optimization software
package MUSCODII [23] is used and combined with
a suitable modeling strategy and appropriate objectives
and constraints specifications it achieves online perfor-
mance. Experimental results with a hybrid Golf GTE
are presented, demonstrating the validity of the proposed
methodology. The validation is based on the comparison
of the NMPC with the current implemented finite-state
machine TM in the vehicle. The aim is to proof that high
nonlinear systems with several goals and constrains find



in NMPC a more powerful control method in contrast to
classical approaches.

This paper is structured as follows. Sections II and
IIT present the controlled plant and the corresponding
developed model; the next sections (IV, V and VI)
deal with the mathematical and control backgrounds of
the NMPC technique; afterwards, the used vehicle data
acquisition system is described in VIII and the model
is validated with the help of measurements logged in
several real driving cycles. Finally, in section IX, the
potential of the optimizer will be addressed by means of
an online optimization followed by conclusive remarks.

II. DESCRIPTION OF THE THERMAL SYSTEM

PHEVs can be powered by an internal combustion engine
(ICE), by an electric machine (EM) or by a combination
of both. Conventional traction components (ICE, clutch,
gearbox) have different temperature operating ranges
compared to the high sensible electrical ones: EM, power
electronics (PE), HV battery and charger. This leads to
complicated designs as in the case of the studied PHEV
[24], which contains three separated cooling circuits:

e A high temperature circuit (HT) for the ICE, gear-
box and cabin heaters with operating points above
90°C.

e A low temperature circuit (LT1) for the EM, tur-
bocharger and the charge air cooler with maximal
operating temperatures between 75 and 90°C.

e A second low temperature circuit (LT2) for the Li-
Ion HV Battery, PE and Charger, with temperatures
below 60°C.

In this research we study the LT2 circuit whose aim is
to dissipate the generated heat in three sources: Charger,
Battery and PE. Nevertheless notice that during driving,
the charger is not a heat source, since no electric current
flows through it.

In order to dissipate the generated heat, two heat sinks
are present: the cooler and the chiller. The cooler is an
U-form tubular heat exchanger located on the front of
the vehicle (in front of three other heat exchangers: the
HT-, LT1 coolers and the condenser). It allows the heat
transfer to the air. The chiller is a heat exchanger that
performs heat transfer to the vehicle Air Conditioning
(AC) circuit.

The transfer medium is a water/glycol mixture and works
depending on six electrical actuators, as shown in Fig. 1
in gray clockwise: cooler valve, Fan, BAT pump, chiller
valve, circuit valve and PE pump.

The solenoid valves are electromechanically operated
and have only two possible positions. The pumps and
fan are regulated by means of a pulse width modulated
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Fig. 1. LT2 Circuit with two possible operation modes.

(PWM) signal. The cooler valve is used to force the
coolant flow through the cooler or bypass it. The Fan,
which is shared by the three circuits, is used to assure
enough air mass flow through the cooler when the
vehicle speed is low. The chiller valve allows the coolant
flow to transfer heat to the AC. Finally, the pumps and
the circuit valve, as shown in Fig. 1, are responsible for
two possible configurations:

e Two-circuit mode: The circuit valve disables the
flow through the black tube outlet and enables the
flow through the blue one, thus separating both
circuits. The resulting independent battery circuit
can be seen in the dotted rectangle in Fig. 1.

e One-circuit mode: The circuit valve disables the
flow through the blue tube outlet in Fig. 1 and
enables it through the black one, connecting this
way the PE and Battery circuits.

The pumps guarantee that the coolant flows as needed
in every circuit configuration. It is important to remark
that in both modes, the coolant can flow through the blue
horizontal tube above the battery circuit. This can only
be done in one direction, thanks to a non-return valve as
shown in Fig. 1. Finally, a compensation tank works as
hydraulic protection.

The basic idea behind the LT2 design is to ensure that
the Li-Ion battery operates at healthy temperatures. In the
one-circuit-mode, the BAT can be warmed up or cooled
down, while in the two-circuits-mode, it can be only
drastically cooled down by means of the chiller. This
last mode is only desirable at extreme cases, since the
heat dissipation to the AC implies an overload to the
HV electrical compressor in the refrigeration cycle. In
the two-circuits-mode it is also possible to balance the



battery cells.

III. THE MODEL FOR THERMAL MANAGEMENT

Modelling is the real bottleneck for NMPC to become
a standard control design method for the automotive
industry [25]. Suitable models should describe the
real dynamics accurately while being fast enough
for computation. To obtain an accurate and efficient
system model, a combination of physical and data-
based methods was developed using the commercial
environment Dymola [26]. This is a software tool
based on the object-oriented language Modelica. The
model consists of a set of explicit ordinary differential
equations (ODEs) describing the dynamic behaviour of
the LT2 circuit in terms of thermodynamic, electrical
and flow balances. This multi-disciplinary approach can
be seen in Fig. 2, where the hydraulic, thermal, LV,
HV and mechanical paths of the developed model are
represented in different colors. The red dotted line in
the chiller and the BAT represents the connection of
these two components, that for clarity was not done
with a solid line. The same applies to the currents of
the actuators where the orange dotted lines would end
all in the drain 1 4ctuators-

A key aspect when modelling for NMPC is to avoid
discontinuities from where the optimization algorithm
cannot continue. To solve this, the object-oriented com-
ponent model library TIL was used. TIL was developed
within the scope of the thesis [27] and in its "Utilities”
package, there are several smooth transition functions
provided. For this research, the smooth transition with
n = 1 was selected.
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Fig. 2. Multi-domain model of the LT2 Circuit with mechanical
(grey), LV (orange), HV (red), thermal (blue) and hydraulic repre-
sentative variables (green).

In the next subsections, the model underlaying physics
will be described according to the different domains.

A. Thermal domain

The thermal behavior of the components (PE, BAT
and charger) is described by means of the first law of
thermodynamics:

dUu

e (D
where the heat flows are described by means of Eq.
(2), being m, ¢, A, ¢ the component mass, specific heat
capacity, surface and emissivity respectively, o is the
Boltzmann constant and « is the convection coefficient
for the component-air heat transfer calculated with the
empirical Nusselt correlations for forced air convection
in flat plates [28]. The emissivity € was taken constant
0.8 and finally the heat capacity m - c and A of the com-
ponent were calibrated with experimental measurements.
The fluid heat capacity ¢, and other properties such
as the density are calculated by means of TILMedia®
(TLK Thermo GmbH), a library optimised for stable and
quick dynamic simulations of this kind of systems [27].
The induced heat flow in the components is caused by
ohmic heating and according to Eq. (1) is dissipated
in the air, the coolant and the thermal mass of the
components. The conduction losses were considered
negligible compared to the other losses. The heat transfer
to the coolant is done by means of cooling plates. The
equations in the T junction pipes shown in Fig. 2 are
also a thermal balance as Eq. (1),neglecting losses to
the environment and with no heat induction.

Similarly to the heat sources, the heat sinks (cooler and
chiller) balances are:

chm = Qinduced - Qambient - Qcoolcmta

chm + Qdissipated + Qambiem‘ + Qcoolant =0 (3)

The dissipated heat flow through the cooler is determined
with the Number of Transfer Units (NTU) Method:

“

where the heat capacity rate (h) was observed experi-
mentally and stored in a look-up table with the air mass
and the coolant volume flow rate as inputs. The inlet
temperature of the air was assumed to be the ambient
and its mass flow was determined with a polynomial that
depends on the Puwmpan signal and the vehicle speed:

&)

In the chiller, the dissipated heat to the AC system is the
experimental constant value of 1.2kW when active and
0 when disabled.

Qdissipated = h(V’ mair) : (Tinlet - Tambient)

Mair = f(v, Pumpan)



chomponent (t)

chm (t) = MM Ccomponent dt (Za)
Qambient (t) = Oé(t) A (Tcomponent (t) - Tambient (t) +Aeo (T(?omponent (t) - Tc%mbient (t)) (2b)
Qcoolant (t) = m(t) cp(t) (Toutlet (t) - T’inlet(t)) (2¢)
Furthermore, it was assumed that the coolant is incom- The HV power is calculated as:
ressible and that the surface in contact between the
P Pyyv =Ugv - Igv )

refrigeration pipes and the heat source in the component
is enough large to ensure a fast equilibrium and thus
Toutiet = Teomponent- With all this, the temperature in
every point of the circuit (blue variables in Fig. 2) can
be calculated.

B. Hydraulic domain

The aim of the hydraulic part of the model was to
calculate the coolant flow through the different pipes of
the circuit represented in green in Fig. 2. For a better
accuracy/simplicity trade-off, no pressure states were
modeled. Instead, look-up tables generated with a high-
fidelity hydraulic model in GT-SUITE software (Gamma
Technologies, Inc.) were used. The look-up tables are
contained in the pumps and in the cooler valve models
and depend on the coolant temperature and the controls:

V(t) = f(T(t),Valvecoorer(t), ValvecurLrer(t),
VaerCIRCUIT(t), PW Mpgan (t),

PW Mpg(t), PW Mpar(t)). (6)

The coolant volume flow rate read in the look-up tables
is passed along the circuit through the T junctions repre-
sented in Fig. 2 using simple flux continuity equations.

C. Electric domain

The electric domain consists of the LV and HV grids as
shown in Fig. 2 in orange and red, respectively. The goal
of the HV model is to describe the electrical losses in
the components that are transformed in heat, Q;nduceds
due to the Joule effect. The PE module consists of the
Inverter and the DC/DC converter. The LV is assumed
to be constant 14V and the HV is defined as the open-
circuit voltage stored in look up tables:

Unv = f(SOC,T) (7

Where T is the BAT temperature and SOC is the state
of charge relating the actual energy with the maximum:

Epar

SOC =
EBATMAX

-100 ®)

The HV power increases or decreases the BAT energy
and the Joule’s first law determines the heat flow gener-
ated in this process:

dE t
B(;;T() = Ppv(t) + Plosspar (1)

QinducedBAT (t) = Plosspar (t) = Ri(t) Ilzfv(t)a (10b)
Rz(t) = f(SOC(t)v T(t))¢ (10c)

(10a)

Where R; was measured in charging and discharging
tests.
The HV power depends on different demands:

Pyv = Pepitier + Pear + Py + Plosspg, (11a)
Quissipated

Poniter = = 005 (11b)

Pcar:f(Man)a (110)

Py =Upv Ipy. (11d)

Equation (11b) stands for the extra power demand to
the HV compressor of the AC circuit when the chiller
enables a dissipation of 1.2kW. A coefficient of perfor-
mance (COP) of 3 was taken. Equation (11c) corresponds
to the electrical energy needed for the vehicle traction
and it depends on the torque and rotational speed of the
electric machine. The LV electrical demand, Eq. (11d),
depends on the current of the LT2 circuit actuators and
the average of all other LV consumers in the vehicle

given by Iaum'liary:

Iy (1) =Ipw Mpar () + IpwnMps (1) +
IPWMFAN (t) + IVG«IUECHILLER (t)+

(12)

IVGZU@COOLER (t) + IVaerchCUIT (t)+

Iaum’liary .

Finally, the heat losses in the PE module are calculated
with Eq. (13):

Qinducedpg (t) = PZOSSPE (t)
= PlossPEHV (t) + ]DlossPELv (t)a

where the HV losses in the inverter are calculated with

(13)



TABLE I
SIMULATION TIME.

Cycle Duration(s) Simulation(s) Factor(-)
EMPA B 2024 4,89 >400
EMPA Bschl 963 2,97 >300
EMPA BAB 1000 1,05 >900

Eq. (14a) and the LV losses in the DC/DC converter are
calculated with Eq. (14b) using a constant efficiency of
n = 90%:

-PZOSSPEHV = f(M,’I’L, UHV) (14&)
Prv - (1—
Prossrs, . = W;’” (14b)

D. Mechanical domain

The mechanical part of the model is just an interface
to the real vehicle: rotational speed (n)-, torque (M) of
the electric machine and vehicle speed (v) are read from
several CAN buses and used as inputs for the calculations
shown in the thermal and electric domains.

The resulting model contains around 500 equations, 1300
variables, 6 controls and 9 differentiated state variables,
being hundreds of times faster than real time. This can be
seen in Table I, where the average time of 5 simulations
in three different driving cycles taken from [29] is shown.
To transcript the hundreds of equations in the model to
the optimization tool with no errors and in the shortest
possible time, the automated methodology proposed in
[30] is used.

All in all, it can be said that the developed model is
suitable for a posterior control, since it is simple enough
but still captures the essential dynamics.

IV. OpTIMAL CONTROL PROBLEM

As explained before, the dynamic behavior of the thermal
system is described as a set of ODEs:

d(x)

T = f(z(t),u(t), p),

where x(-)eR™ are the differential states, u(-)eR™ are
the control functions and p the time-invariant model
parameters for a certain time horizon 7 = [0,t¢]. An
example of invariant parameter is the constant radiation
emissivity e. The goal of the optimal control problem
(OCP) is to find the control trajectory u(-) in the time
horizon 7 = [to,ts] that minimizes a certain objective
function or cost function P.

15)

tert,

In this case, the objective function contains only a
Lagrange-type term L defined as the accumulated value:

Ly
O(x(4),u(-),p) = / L(x(t),u(t),p)dt, ter.
’ (16)
Where L consists of two penalty terms weighted by the
constant factors wy and wo:

L(z(t),u(t),p) = wi-cr(T)+ws-cp(Power), tet.
a7
The first penalty term is cp(7) with T = Ty, 0. @

polynomial which defines the costs associated to the loss
of performance and ageing of the HV battery at tempera-
tures outside the optimal range. The second penalty term

. . L .
is cp(Power) with Power = v Pchitier, @ linear

function that penalizes the electrical power of the LT2
actuators. The weighting factors w; and ws are used to
calibrate the multiple goals achievement, as it will be
discussed in the Section IX.

In Fig. 3 the combination of the two penalty terms with
the weighting factors w; = 100 and wy = 2 is shown
from different views. In the bottom plot on the right
of Fig. 3, it can be seen that ~ 28°C is the optimal
temperature for the battery. Colder are less punished
than hotter temperatures (slope left to 28°C is smaller
than the slope on the right), emphasizing that the aging
mechanism is stronger at this range. In the top right
plot of Fig. 3 the influence of the power term for a
constant temperature is shown. This is the linear function
described before. The HV battery temperature has an
exponential influence on the costs while the electrical
power of the actuators in the LT2 cooling circuit has a
linear one.

Additionally to find the minimum of the goal function
using the set of ODEs to calculate future states (15), the
OCP solution can fulfill some constraints of different
types. Taking all this into account, an OCP of the
controlled plant can be formulated as:

Ly P
min / w1 - 7 (Toutyar (1)) + w2 - CP(% + Pchitter)dt
0

subject to
M) po), () o). e
0 < c(2(t), u(t), p), ter,
0 =x(0) — xo.

(18)
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Fig. 3. Different views of the cost function used in the OCP.

where differential states and controls are:

ETLPE—PUIWP
EHBAT—PUJWP
ToutJUNCTION
T,
TOUtCHILLER ValUGCHILLER
OUlCHARGER VCLZUGC[RCUIT
Toutp Pumpan
- BAT ValvecoorLer
outpar Pwmpar
Tout
COOLER Puwm
o PE
M
n
Tambient

It must be noted that the differential states v, M, n and
Toumbient are just inputs from the vehicle, that are kept

constant (— = 0) inside the optimization horizon.

This will be discussed later, in Section VI. Additionally,
the path constraints, c(x(t),u(t),p), used to fix the
maximum and minimum acceptable values for the states
and controls can be seen in Eq.(19).

—-10°C < T <60°C
1EWh < Egar < 8kWh
—10km/h < v < 200km/h
—500Nm < M < 500Nm
—10000rpms < n < 10000rpms
0 <Valvecyrrrer <1 (19)
0 < Valvecrrevrr <1
10% < Pumpany < 90%
0 < ValvecoorLer <1
0% < Pumpar < 100%

30% < Pumpg < 100%

where it must be highlighted that 7" stands for every
temperature state and that the possible values for the
valves are O (chiller inactive, cooler not bypassed and
Two-circuit-mode) and 1 (chiller active, cooler bypassed
and One-circuit-mode). Pumps and fan are inactive for
the minimum PWM value of 0% and 10% respectively
and rotate with full power at 90% and 100%. To avoid
unexpected temperature peaks in the PE module, a
minimal coolant flow is assured with the PWM constraint
of 30%.
Finally, the last constraint in (18) serves to initialize the
states:
T(0) =20°C  Epar(0) =6.9kWh v(0) =0km/h
M(0) =0Nm n(0) = Orpms

(20)
Once the constrained OCP for the dynamic process is
formulated (goal function, equations and constraints),
the next step is to obtain the corresponding numerical
solution. Notice that the time investment of modeling a
system and defining the control problem constrains and
goals, is rewarded with the ease of reusability. While for
a classical control method changes in the real plant imply
the need of a new tuning and analysis of the implemented
code, with the NMPC approach it is conceptually easy
and fast to modify the Dymola model or the goals,
constrains formulated for MUSCODII.

V. DIRECT MULTIPLE SHOOTING

For solving an OCP, several methods are available in the
literature [31]. The chosen algorithm in this research is
the Direct Multiple Shooting Method [32], a numerical
method implemented in the robust optimization package
MUSCODII. The aim of this method is to transform the
infinite optimal control problem of Eq. (18) into a fi-
nite dimensional nonlinear programming (NLP) problem.
This is done by discretization of the control functions and
path constraints and by the parameterization of the state
trajectories with the help of a multiple shooting grid:

O=mo<m < - <7TN =7y 201

Inside a grid interval, the controls wu(t) are approximated
by piecewise constant functions:

for t1=0,1.N—-1

(22)
The state parameterization is done by introducing multi-
ple shooting state variables s;, that are used as initial
values for an embedded initial value problem (IVP)
solver that computes the state trajectories independently

on N shooting intervals:

d(xi)(t)
dt

u(t) := g T€[Ti, Tiv1),

= f(xiaqivp)7 Te[TiaTi-f—l) (23)



(24)

zi(T) = 8

Since the N trajectories resulting from the solution of
the IVP will not match in the shooting points, to assure
continuity between intervals, the following matching
conditions have to be satisfied:

Sit1 = Xi(Tit15 Ti» Si» Gis D) (25)

thus requiring that each differential node value s;41
should equal to the final value of the preceding trajectory
Zi+1. The result of this discretization and parameteriza-
tion is the highly structured NLP problem of Eq. (26),
where the path constraints were discretized for readabil-
ity and the point constraints grid was chosen to coincide
with the shooting grid. The searched unknowns vector &
consist of the constant control and the initial node value
of every interval £ := (s, S1...SN, G0, q1---GN)-

N
méin Zli(Tiasi7qi7p)
=0

st. Siy1 = xi(Tig1; Ti, Siy Gin D), 0<i<N
OSC(Ti7$i7Qi7p)7 OSZSN
0=s9— x9.
(26)

Eq. (26) is solved by MUSCODII using a tailored
sequential quadratic programming (SQP) method that
exploits the particular arising structures, using block-
wise highrank updates of the Hessian approximation
and condensing techniques, to reduce the size of the
SQP only to the dimensions of the initial values sg and
controls ug, u1...uny_1, [23], [32].

VI. MODEL PREDICTIVE CONTROL

The open loop OCP formulation and numerical solution
explained in the previous sections would be sufficient
to find the controls for the plant to fulfill constraints
and minimize the objective function, if no model-plant
mismatches and no system disturbances existed. Since
this is not the case in the real world, the loop has to be
closed as it can be seen in Fig. 4 [33].

NMPC Controller
u*
Optimizer — ' Plant >
L f
Objective Plant
Function and [  Model §
Constraints
ODE Solver <

Fig. 4. NMPC control loop scheme.

At each sampling time, the NMPC controller receives the
actual state x of the system from the sensors and solves
a new OCP to find the best possible control action u*
for that state.

To achieve real time operation and respond quickly to
possible disturbances, MUSCODII uses effective strate-
gies presented in [34].

The main idea of these strategies is to exploit the
fact that subsequent OCPs differ only in the real-world
process state xg to reorder the classical SQP scheme
advantageously. This new reordered scheme, called real
iteration scheme (RTI), consists of the following phases:

o Preparation phase: During some process duration
¢ all steps that do not require knowledge of z( are
performed. This includes the solution of the IVP,
the computation of the Hessian and Jacobians and
the linearization of the constrains. The steps of this
phase, represent the major computational burden.

o Feedback response phase: As soon as a new
measurement xg is available, the SQP step is
computed with the precalculated data in the
Preparation Phase to give a fast feedback control
to the plant. These control values are maintained
during ¢, the time needed for the preparation of
the next OCP.

Since the feedback phase itself is typically orders of
magnitude shorter than the preparation phase the algo-
rithm can be interpreted as the successive generation
of immediate feedback laws that take state and con-
trol inequality constraints on the complete horizon into
account. These calculations are done with computable
upper bounds on the loss of optimality [34].

It must be taken into account that the presented NMPC
approach, as shown in Section IV, assumes that the
inputs v, M,n and Typiens remain constant inside the
optimization horizon. While this assumption is generally
acceptable for Ty, ,piens Within a driving cycle, the good-
ness of the model prediction and thus of the optimiza-
tion, could be further improved if future information of
the mechanical variables v, M,n were available in the
vehicle.

Although the prediction of the driving cycle, v profile,
with the help of traffic, GPS information has gained
attention in recent years [35], at present its implemen-
tation has not spread yet. Nevertheless, as soon as a
v prediction for the next kilometers is available, the
presented model in this paper can be easily extended, to
include a mechanical submodel of the traction behavior
to calculate the future M and n profiles.



Test vehicle instrumentation: Coolant flow meters and

Fig. 5.
thermocouples in the motor compartment (left) and air thermocouples
on the roof (top right) and in front of the cooler (bottom right).

VII. REAL VEHICLE INSTRUMENTATION

The PHEV prototype used in this research is a Volkswa-
gen Golf GTE, a parallel hybrid electric vehicle with a
1.4 liters 110kW TSI ICE and a 75kW EM. The HV
battery with 8.8 kWh provides an electric autonomy of
50 km with a maximum speed in electric mode of 130
km/h.During this study, the vehicle was equipped with
extra sensors placed in the LT?2 circuit to read all relevant
information. In total, 17 K- thermocouples with accuracy
of £1°C were used to measure 15 coolant temperatures,
the air temperature in front of the cooler and the air
temperature on the roof of the vehicle. In addition, three
turbine flow meters with a linearity of 0.1% were used to
measure the coolant volume flow rate. They were placed
in three different points of the cooling circuit to log the
flow rates shown in green in Fig. 1. The outputs of these
20 sensors were put together in a single CAN bus by
means of several measurement modules. Fig. 5 shows the
described instrumentation for this project. Additionally,
other available variables in the powertrain- and in the
hybrid CAN buses of the vehicle were logged to facilitate
the validation by means of a rapid prototyping (RP)
module and the INCA environment, both products of
ETAS®.

VIII. VALIDATION

To validate the model, different driving cycles were
driven. It is important to remark that the LT2 model
developed during this research is only valid for the pure
electric driving mode, which is the operating mode in
daily PHEV use. This condition restricts the total range
of a trip to 50km and forces that the trip start point is
always the charge station. In Fig. 6, the six different
driving cycles chosen to validate the model can be
observed.

Cycle 1

Cycle 2

Cycle 3

Cycle 4

Speed in km/h

Cycle 5
100F T T T T
potmatun Sedan VN g
0 A L | |
Cycle 6

I L ! ! ! L
0 500 1000 1500 2000 2500 3000 3500 4000

timeins

Fig. 6. Driving cycles set chosen for model validation.

Table II summarizes the main features of these trips,
where the second column (Type/Road) is a classification
in similar term as in [36]. The idea of the driving cycles
set of Table II is to grasp a range of possible trips for
a driver living in Martorell, a city located at 32km from
Barcelona and 10km from the Montserrat mountain. For
each cycle in Table II the controls and inputs of the LT2
model were logged.

After driving, this information could be used to simu-
late the model and compare the measurement/simulation
temperature trajectory for the main components of the
circuit: battery and power electronics. This error can be
defined as:

ex =T, — TxXpours Xe{BAT,PE} (27)

The mean (u) and standard deviation (o) for this error
can be seen in the last 4 columns of Table II. The battery
average error and standard deviation never exceed 1°C,
while the power electronics presents an average error
always below 2°C with a deviation below 3°C. As stated
before, the goal of the model in a predictive control is to
grasp the behavior being, at the same time, fast enough
for computation. From this point of view, the obtained
results are quite satisfactory.

In the rest of this paper, the focus will be mainly
on Cycle 4 due to its considerable slope (about 7%).
High slopes represent a heavy mechanical load to the
powertrain and in an electric powered vehicle this is
a synonym with high currents and indirectly a heavy
thermal load in the electrical components.

Fig. 7 shows the goodness of the model for the chosen



TABLE I

VALIDATION RESULTS FOR DIFFERENT CYCLES.
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Name  Type/Road Gspeeakm/h)  o7(° C)  pepy(C C) 0y (C C) pepar(® C) 0epurn(° O)
Cycle 1  Urban, free-flowing 35,5 16,7 1,0 0,8 -0,2 0,6
Cycle 2 Motorway + urban unsteady* 39,4 15,0 0,8 24 -0,9 0,5
Cycle 3  Urban, unsteady 26,8 24,1 1,2 0,0 -0,5 0,5
Cycle 4 Rural road + slope 41,8 22,5 1,1 -1,1 -0,8 0,5
Cycle 5 Motorway + secondary rural roads 41,1 20,4 1,2 2.8 -0,4 0,3
Cycle 6 Main road, steady speed 80,9 22,8 1,8 0,0 0,0 0,7

*cycle with more frequent acceleration and deceleration
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Fig. 7. The model captures the LT2 circuit behavior.

driving cycle, since it captures the transient dynamics of
the components temperatures reliably.

IX. RESULTS

A necessary step before implementing the control
in the real vehicle is to validate the NMPC in a
simulation environment. With this aim, Cycle 2 and
Cycle 4 were performed on the road to measure the
vehicle speed, electric machine torque and rotational
speed, ambient temperature and the LT2 controls. With
this data, the two following simulations were performed:

o Standard simulation: where the TM controls and
the other variables logged in the vehicle are used in
the Dymola model of Section III as control signals
and inputs stored in look-up tables, respectively, to
simulate the cycle.

o« NMPC simulation: where the software in the loop
(SIL) in Fig. 8 is performed. Here, the look-up
tables containing the mechanical inputs and am-
bient temperature acquired on the road together
with the Dymola model of Section III, built the
controlled plant that is connected to MUSCODII.
Controller and plant communicate by means of the

co-simulation environment TISC Suite from TLK
Thermo GmbH [37].

Controller
MUSCODII
* Controlled Plant
:
Optimizer Plant
Model
i ! FAYIEEN
- 1 ';
| i
Objective PladntI « : Look-up tables :
Function and [+ Rlece < e ettt
Constraints T p
ODE Solver
Fig. 8. Software in the loop.
It must be added that the co-simulation tool

TISC Suite performs the data transfer and the
synchronization between Dymola and MUSCODII with
a synchronization rate of 2.5 seconds, which is a valid
number for the inertia of the studied thermal system.
Notice that since in this simulation evaluation model
and controlled plant match exactly, disturbance effects
are neglected.

On the other hand, it is important to say that the
”standard” control is based on a finite-state machine
with 4 possible states: heating, maintaining temperature,
mild cooling and maximal cooling. Depending on the
current BAT temperature and some sensors describing
the availability of the heat exchangers to dissipate
the heat, it fixes the current state where the 6 control
variables are given certain constant values.

Additionally, as shown in the "Rounding” box in Fig.
8, although more suitable strategies to deal with integer
control variables exist, [38], [39], here the simple
approach of solving the original OCP and rounding
the values of the binary variables was taken given the
already high system complexity. Hence, the valves



controls sent by MUSCOD that are equal or greater
than 0.5 are taken as 1, and O otherwise.

A. NMPC calibration process

Prior to analyzing the NMPC control strategy, it is
interesting to highlight the process of calibrating the
weighting factors, w; and wo, in the objective function.
With this aim, Cycle 2 due to its transient behavior was
chosen to study the effect of these factors in the TM
results.

In the top plot in Fig. 9, the black solid line shows the
vehicle speed which was performed in a highway road
followed by a traffic jam in the entrance of Barcelona.
The red solid line in the middle plot in Fig. 9 shows
the BAT temperature profile obtained in a simulation
where the standard controls measured in the vehicle
were used as inputs. The colored areas in the plot
represent the goodness of the temperature region for the
BAT, being the dark green area the optimal range. The
other two solid lines stand for the temperature response
obtained with the NMPC control strategy using a power
consumption weighting factor of wy = 0, black line, and
wy = 2, blue line. The temperature weighting factor is
taken constant and equal to 100.

As it can be seen in the middle plot, the NMPC control
strategy achieves, with the two different calibrations, a
better temperature regulation than the standard control
strategy, since the temperatures obtained are closer to
the optimal range. Furthermore, it must be noticed that
the NMPC with no power consumption costs, wy = 0,
black line, achieves the best temperature performance.
In the bottom plot in Fig. 9, the electrical consumption
of the actuators can be seen where the NMPC with no
consumption costs presents the largest value at the end of
the cycle. The reason for this behavior is that using a zero
weighting factor for the consumption, the NMPC control
strategy does not penalize this term and concentrates
only on improving the temperature regulation, goal that
achieves successfully, as mentioned before.

Comparing the standard control results, red line, with the
NMPC with non-zero consumption weighting factor, it
can be said that, besides the commented improvement
in the temperature regulation, a reduction of 7.6% in the
electrical consumption can be observed in the bottom
plot in Fig. 9. Therefore, it can be assured that the
wp; = 100 and ws = 2 NMPC configuration leads
to a better TM improving significantly the two control
goals. Furthermore, it must be highlighted that the tuning
process of an NMPC controller is quite intuitive and
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Fig. 11. NMPC controls (in blue) vs Standard controls (in red).

straightforward, since varying the weighting factor as-
sociated to an objective, leads to a cosnequent change in
the objectives trade-off.

B. Standard vs NMPC results analysis

Figure 10 shows Cycle 4, which consists of a rural road
followed by a considerable slope (dotted line in the top
plot of Fig. 10) in which the vehicle is driven uphill and
downhill at nearly constant speeds (solid line in the top
plot of Fig. 10). The initial state of the BAT is fully
charged and the data acquisition system is stopped as
soon as the electric mode is no more available and the
vehicle turns on the ICE at time 3488s.

The bottom plot in Fig. 10 summarizes the advantages
of using NMPC, in blue, instead of the standard control
strategy, in red. From the temperatures point of view,
it can be clearly seen, that drawing from a suboptimal
temperature in the BAT (20°C), NMPC achieves a faster
heating to the optimal range, green area in Fig. 10.This
objective is achieved consuming 15.6 Wh or 5.56% less
electrical energy in the actuators as it can be seen in the
black line of Fig. 10. Thus it can be said that NMPC
succeeded in the multiple objective achievement for the
studied TM. How this was achieved, can be understood
if we analyze the controls in both strategies shown in
Fig. 11.

Given that Cycle 4 is a moderate-intense cooling scenario
(temperatures around 20 - 30 °C) but not extreme, both
methods agree in the decision of avoiding the usage of
the most consuming actuators: the chiller and the fan
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(top and bottom plots on the right in Fig. 11) in order plots on the left of Fig. 11 where while the standard

to decrease electrical consumption. However, the main control strategy presents two clear different operating
differences of both strategies can be seen in the four points (First 300s: Two-circuits-mode, cooler bypassed,
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Fig. 12. NMPC control of the valves (top) and coolant temperature
in different points.

Pwmpg = 57% and Pwmpar = 0%; 300s-end:
Two-circuits-mode, cooler active, Pwmpg = 95% and
Pwmpar = 0%), the NMPC shows a dynamic behavior
using different circuit configurations to minimize the
goals contained in the objective function.

The advantage of such dynamic behavior is a more effi-
cient use of the available resources. This can be clearly
seen in Fig. 12, where during the short period between
30 and 260s (black dotted rectangle in the bottom) in
which the ambient temperature is higher than the coolant,
the valves are set to the one circuit mode/ cooler active
configuration (Valvecrrcurr = 1, Valvecoorer =0
in red and blue in the top plot, respectively) to enable
the heat transfer between the hot air and the BAT. This
way, the components are warmed up. Once the coolant
is warmer than the ambient air, the cooler is bypassed
(Valvecoorer = 1) and the battery remains coupled to
the big circuit to be heated solely by the PE, which has a
lower thermal mass. As soon as the optimum temperature
of the battery is reached (around t = 1700s), the circuits
are separated (Valvecrroyrr = 0). From this moment,
the goal is to minimize consumption as it can be seen
in the Fig. 13, where the cost related to the electrical
consumption cp decreases from second 1700.

This multi-objective character of NMPC can be seen with
more details in Table III, where the numerical results in
objective function and total consumption terms for the
standard, the NMPC and the NMPC without rounding
control strategies are shown. The fourth column shows
that NMPC achieves an improvement in the overall
costs associated to the TM around 31% which split in
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the different goals, implies a reduction in the electrical
consumption of 5% together with a more suitable control
of the BAT temperature.

Furthermore, Table III indicates that the prize to pay for
the rounding of the control valves is not so significant in
terms of the goal function: An improvement of 30.98% is
achieved without rounding, while the improvement with
rounding is 30.08%. Additionally, it has a positive effect
in the power consumption term (5.23% improvement
compared to standard rounding against 5.56% without
rounding). Even if the rounding approach is dangerous
from the optimality criteria scope, the experience in this
case shows a suitable behavior doing this simplification.
What can be assured is that the decision of replacing
the solenoid valves of the LT2 cooling circuit with pro-
portional valves would lead to better results in general,
since in the NMPC without rounding the optimizer can
choose between possible values €[0, 1] and as it could be
seen here, the optimal solution often uses values that are
between these limits.

Finally, besides the successful results it must be added
that with the configuration used, horizon of 200s, 2
shooting points and the weighting factors w; and wo
100 and 2 for the studied cycle, it was observed that
in average MUSCOD-II needs only 1.5 seconds for
calculating the controls, which are transmitted every 2.5
seconds. These NMPC results suggest that the system
could be suitable for real-time performance in the real
vehicle.

X. CONCLUSIONS

A nonlinear model predictive control (NMPC) for
the thermal management (TM) of Plug-in Hybrid



TABLE III
OPTIMIZATION RESULTS.
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Standard NMPC not round NMPC round
Total Total Improvement to Standard Total Improvement to Standard
¢ Objective function 2,196 1,516 30,98 % 1,535 30,08 %
Consumption 0,280 kWh 0,266 kWh 5,23 % 0,265 kWh 5,56 %

Electric Vehicles (PHEV) is presented. Compared to a
non-predictive standard control based on a finite-state
machine, the proposed NMPC application has shown a
reduction of 30% in the costs associated to the PHEVs
thermal management. Furthermore, it has been shown
that a further advantage of the proposed method is its
quite simple tuning process.

The proposed NMPC has been tested in a PHEV
carrying out six different driving cycles, and its results
materialize in healthier temperatures of the HV Battery
along the cycle, fast warm up and more time in
good temperature range, consuming, at the same time,
5% less electrical energy.Furthermore, the SIL test
performed has shown that the proposed application can
be used to identify and test potential measures for the
cooling circuit, such as the conclusion that replacing
the solenoid valves with proportional valves would lead
to slightly better results for the treated cooling circuit.
With the SIL test it has also been checked that real
time implementation with the proposed configuration is
possible, making this work a necessary first step for the
online NMPC implementation of the analyzed system.
Currently, the online coupling of MUSCODII with the
real vehicle by means of a rapid prototyping module
is being studied together with the use of driving cycle
future information.

Another advantage of the proposed application is its
reusable structure. The model and the optimization for-
mulation developed permit straight ahead modifications
to easily implement NMPC in other cooling circuit
architectures.
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