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Abstract— We consider cooperative communications with 

energy harvesting (EH) relays, and develop a distributed power 

control mechanism for the relaying terminals. Unlike prior art 

which mainly deal with single-relay systems with saturated traffic 

flow, we address the case of bursty data arrival at the source 

cooperatively forwarded by multiple half-duplex EH relays. We 

aim at optimizing the long-run average delay of the source 

packets under the energy neutrality constraint on power 

consumption of each relay. While EH relay systems have been 

predominantly optimized using either offline or online 

methodologies, we take on a more realistic learning-theoretic 

approach. Hence, our scheme can be deployed for real-time 

operation without assuming acausal information on channel 

realizations, data/energy arrivals as required by offline 

optimization, nor does it rely on precise statistics of the system 

processes as is the case with online optimization. We formulate 

the problem as a partially observable identical payoff stochastic 

game (PO-IPSG) with factored controllers, in which the power 

control policy of each relay is adaptive to its channel and energy 

states as well as to the state of the source buffer. We equip each 

relay with a reinforcement learning procedure, and prove that 

the parallel execution of this procedure is convergent to (at least) 

a locally optimal solution of the formulated PO-IPSG. The 

proposed algorithm operates without explicit message exchange 

between the relays, while inducing only little source-relay 

signaling overhead. By simulation, we contrast the delay 

performance of the proposed method against existing heuristics 

for throughput maximization. It is shown that compared with 

these heuristics, the systematic approach adopted in this paper 

has a smaller sub-optimality gap once evaluated against a 

centralized optimal policy armed with perfect statistics.  

 
Index Terms— bursty traffic, cooperative relaying, energy 

harvesting, power control, reinforcement learning, stochastic 

game, wireless communication.  
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I. INTRODUCTION 

OOPERATIVE relaying is a promising paradigm which 

results in broader coverage and in combating the wireless 

channel impairments. Relay-assisted transmission mitigates 

the need to use a high power at the transmitter, leading to 

prolonged battery life and lower level of interference [1]. 

Relays in wireless networks can be classified as decode-and-

forward (DaF) relays, which decode and possibly re-encode 

the information before forwarding it, and amplify-and-forward 

(AaF) relays, which forward an amplified version of the signal 

without hard decoding. AaF relays compared with other types 

which require signal detection, are less complicated, have 

lower implementation cost, and are thus utilizable widely [4]. 

While cooperative relaying results in higher network capacity, 

in forwarding to the destination a representation of the signal 

it has received from the source, a relay consumes its own 

energy. Since replacing batteries for such devices is either 

impracticable or costly in several scenarios, recent advances in 

energy harvesting devices [5] have paved the way for self-

sustainable relays [6] that power themselves from theoretically 

unlimited energy sources that are present in their surrounding 

environment (e.g., in the form of solar, vibration, 

thermoelectricity, etc.). However, the harvested energy rates 

are typically quite low with sporadic arrivals in random 

limited amounts, and it is thus desirable to accumulate the 

harvested energy by storing it in a buffer such as a 

rechargeable battery for subsequent usage. In practice, the 

energy buffer is restricted in size, and thus EH relays may face 

power outage whenever the energy consumption rate is higher 

than the harvesting rate. Hence, there is a need for novel 

power-use policies which exploit available information on the 

energy, channel and data arrival processes to efficiently utilize 

the harvested power for meeting application-specific demands.  

A. Literature Review 

Exploiting both energy harvesting and cooperative 

communications has received a considerable interest recently 

[7-20]. The use of EH relays in cooperative communication 

was first introduced in [8], where a comprehensive 

performance analysis was conducted for relay selection and 

transmission power setting in an AaF network in terms of 

symbol error probability by using a probabilistic energy 

model. However, the results in [8] are mostly of analytical 
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interest rather than proposing a practical optimization scheme. 

More recently, several studies have come up with transmission 

control strategies (e.g., power allocation, relay selection, etc.) 

to optimize different network utility functions in EH relay 

systems [7,9,10,11,13,14,15,17,18,19,20,35]. These schemes 

can be categorized based on two main distinguishing features: 

 Optimization method (offline/online/learning-theoretic): In 

offline optimization, it is assumed that all the future 

realizations of data/energy arrivals as well as the channel 

variations are known acausally before the system starts. In 

general, offline optimization problems are modeled as a 

mathematical program and the solution obtained can be 

considered as an upper bound on the performance of the 

actually stochastic system. In contrast, online optimization is 

much more realistic in the sense that only statistical 

knowledge but causal information on the realizations of the 

system states is assumed. A systematic way to approach 

online optimization is to formulate the problem as a 

stochastic dynamic program (DP) [21], and optimize the 

expected value of the long-run system performance. 

Nonetheless, in many practical scenarios either the 

characteristics of the channel variations and energy/data 

arrival processes change over time, or it is not possible to 

have reliable statistical information about these processes 

before node deployments. For example, in a sensor field 

with solar EH nodes distributed over a forest, each node’s 

solar EH profile will depend on its location, and is subject to 

change based on the time of the day or the day of the week. 

To adapt the transmission scheme in real time, one should 

resort to learning-theoretic schemes as they are capable of 

converging to optimal transmission policy over time in the 

absence of prior knowledge on the statistics of the processes 

governing the communication system. 

 Traffic type assumption (saturated/bursty): Under saturated 

traffic assumption, there are infinite data backlogs at the 

source, and the optimization objective is to improve the 

physical layer performance (e.g., throughput, outage 

probability or symbol error rate), by only accounting for 

channel and energy state processes. When traffic is bursty, 

however, there is a need for a buffer where packets can be 

queued. The "emptying" rate of the buffer becomes then the 

"service" rate. A physical-layer model that only captures the 

variation of the channel and energy completely disregards 

this issue, and it can result in arbitrary long average waiting 

time of the packets at the source buffer. When the end-to-

end delay is of interest, we need to track the source queue 

size that develop under bursty traffic generation, and the 

allocation of power at relays should control the service rate 

to achieve delay optimization at the source data link layer.  

The majority of the studies on EH relay systems lie within 

the offline optimization framework, and assume non-bursty 

source traffic type [7,9,10,13,14,15,18,19,20]. In [10], the 

problem of optimal power control for throughput 

maximization in an SRD network (one source-destination pair 

and one relay) is formulated as a nonlinear program in an 

offline setting. Both source and relay are harvesting entities, 

and the relay operates in half-duplex mode using AaF 

protocol. A similar setup is considered in [7], but for the case 

that both source and relay nodes have their own data to 

transmit to the destination, and the optimization objective is to 

maximize the total throughput. Also, in [9], the transmit power 

is jointly optimized with relay selection to handle the case of 

multiple relays. In [13], source and relay power allocation is 

optimized for an SRD system with a full-duplex relay using 

DaF protocol. Half-duplex DaF relaying is considered in [14], 

where it is assumed that only the source node can harvest 

energy. The case where both source and relay are EH nodes is 

handled in [15,18], while [20] considers two parallel EH 

relays (the so called diamond relay channel [22]). It is also 

worth noting that technically, the multi-relay case can be 

deemed equivalent to the OFDM relay with individual power 

constraint in each subcarrier. Accordingly, the studies in [38] 

and [39] have proposed optimization schemes for data and 

energy cooperation in relay-enhanced OFDM systems. 

Some studies [9,10,19] propose online throughput 

maximization for the case of saturated source traffic. In [19], 

for instance, a stochastic DP formulation is given for optimal 

online power allocation in the case of DaF relaying. In [10], 

the online power allocation problem is formulated as a 

Markov decision process (MDP) [23] and a computationally 

simple scheme is provided for the special case where power 

control at the nodes is limited to on-off switching. Again, 

within the context of saturated source traffic type, there has 

also been a recent study which utilizes a solar-data-driven 

stochastic energy harvesting model in an MDP-based design, 

and obtains the optimal DaF relay power control policy to 

minimize the long-term average symbol error rate [35]. Under 

a bursty on-off Markovian traffic assumption, the study in [11] 

addresses online relay scheduling for EH wireless sensor 

networks. The problem is formulated as a partially observable 

MDP (POMDP) [24] in which the source node has to choose 

between direct or cooperative transmission modes depending 

on its own available energy, the states of its energy harvesting 

and event generation processes, and using only partial 

knowledge of the relay’s state.  

Finally, in [17], a multi-source, single relay cooperative 

network is considered where the traffic at the source nodes is 

assumed to be bursty and the forwarding protocol used by the 

relay is DaF. The transmit power of all nodes is assumed to be 

contributed by both the conventional AC utility power and the 

renewable energy. A distributed learning algorithm is 

proposed to minimize the sum of the average delay of the data 

flows by dynamic power, rate and link selection control. 

B. Motivation, Contributions and Outline 

Most prior art in optimizing the performance of EH relay 

systems belong to the realm of offline optimization, and 

primarily deal with the didactic single relay scenario 

[7,10,11,13,14,15,18,19]. Also, the existing online schemes 

require explicit knowledge of the statistics of the system 

processes [9,10,11,19] and do not address the case of bursty 

traffic in general where the optimization of the queueing delay 

is necessary. Unlike [17], in this paper, we consider an EH 

cooperative relay system consisting of multiple AaF relays 



0018-9545 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVT.2016.2610444, IEEE
Transactions on Vehicular Technology

IEEE Transactions on Vehicular Technology 

 

3 

which are powered solely by an energy harvesting storage 

with limited capacity. The source node, on the other hand, has 

a continuous power supply and maintains a data buffer for the 

bursty traffic flow towards the destination.  

We aim at proposing a learning-theoretic scheme to control 

the relays’ power consumption for optimizing the long-run 

average delay experienced by the source packets. Ideally, the 

learning mechanism should be able to dynamically control the 

transmit power at the relays in adaptation to the source buffer 

state information (SBSI) as well as the global channel state 

information (CSI) and energy state information (ESI) of the 

relays. This calls for a principled design based on a centralized 

stochastic DP formulation. However, such scheme is already 

doomed by the curse of dimensionality due to the huge space 

of global CSI, global ESI, as well as the exponential growth of 

the number of joint action combinations with the number of 

relays involved. Moreover to gain access to the global state of 

the system, a centralized controller would induce heavy 

signaling overhead. Hence, it is way more practical to 

empower the relays with decentralized autonomy to make 

their own decisions based on immediate local feedbacks and 

partial observability of the system state (i.e., local CSI (LCSI) 

and local ESI (LESI)). These decisions are not trivial since 

each relay faces the uncertainty of the system state (channel, 

buffer, energy) and of the other relays’ actions and 

observations. To tackle these complications, we come up with 

a decentralized low overhead solution by making the 

following contributions: 

 We rigorously formulate the delay-optimal multi-relay 

power control problem as a partially observable identical 

payoff stochastic game (PO-IPSG) [25] that considers the 

abovementioned properties of the EH relay system. PO-

IPSG is a stochastic process that is collectively controlled by 

a group of independent agents who lack a central view of the 

global system state. Nevertheless, these agents have a shared 

objective; i.e., they are all interested in optimizing the utility 

of the team as a whole. The process is decentralized because 

none of the agents can control the whole process, and neither 

of the agents has a full view of the global state. This readily 

corresponds to our setting in that we also assume all relays 

in the network collectively aim at minimizing the average 

number of packets waiting in the source buffer. Also, by 

making each relay’s power control policy adaptive to a 

partial view of the system consisting of SBSI, its LCSI, and 

LESI, the formulated PO-IPSG can systematically trade off 

long-term energy-efficiency and delay performance.  

 Given our PO-IPSG formulation, we propose a distributed 

learning-theoretic power control (DLTPC) algorithm that 

can be used by the relays to learn their power control play 

strategies in the absence of statistical knowledge regarding 

the dynamics of channel, traffic, and energy processes. We 

construct DLTPC by building on and extending the classical 

results for gradient-based optimization of MDPs [27,28] and 

PO-IPSGs [25]. We show that our algorithm harmonizes the 

relays’ policies so that their collective behavior is provably 

convergent to (at least) a locally optimal solution of PO-

IPSG. As it turns out, DLTPC is a particularly lightweight 

algorithm, and its updates on the control policy induce only 

little source-relay signaling overhead with no explicit 

message exchange between the relays.  

 By simulation, we show the sub-optimality gap between 

DLTPC and an MDP-based optimal policy that is armed 

with perfect statistics. It is evidenced that DLTPC has a 

smaller performance margin with the centralized controller 

compared to existing suboptimal throughput-maximizers for 

EH AaF multi-relay systems (e.g., [9]). 

The rest of the paper is organized as follows: In Section II, 

we present the system model along with the general 

characteristics of the channel, traffic, and energy harvesting 

processes we assume in this paper. In Section III, we give our 

PO-IPSG-based formulation of the multi-relay delay 

optimization problem. In Section IV, the DLTPC algorithm is 

proposed for convergence to a locally optimal solution of the 

formulated PO-IPSG. Section V is dedicated to the 

comparative evaluation of the DLTPC algorithm. The paper 

ends with a concluding epilogue.  

II. SYSTEM MODEL 

In this section, we describe the two-hop relay 

communication system, as well as the channel, traffic, and 

energy harvesting models. As a notational convention, the 

time index appears as a subscript, while a relay’s index is 

always a superscript. Bold symbols are used for non-scalars 

(i.e., vectors or sets) at the social level, collecting quantities 

across all relays. A symbol associated with an individual relay 

(be it a scalar, a vector, or a set) is never in bold.  

 
Fig. 1.  A two-hop energy-harvesting cooperative relaying network. 

A. Energy-Harvesting Relay Communication System  

The system under consideration is a two-hop relay network 

with one source node 𝑠, 𝐾 energy-harvesting relay terminals 

(each denoted by 𝑅𝑘, 𝑘 ∈ 𝒦 ≜ {1,… , 𝐾}) and one destination 

node 𝑑, as illustrated in Fig. 1. It is assumed that the source 

node’s signal cannot reach the destination directly due to its 

limited transmission radius, and instead relies on the relays’ 

assistance to transmit to d. We assume that all relays operate 

in half-duplex mode. A two-phase AaF protocol is used for 𝑠-
to-𝑑 packet delivery; more specifically, each time slot 𝑛 is 

split into two sub-slots, each with duration 𝜏/2. In the first 

sub-slot, the source broadcasts its own data with full 

transmission power 𝑎𝑠 to relay nodes. In the second sub-slot, 

according to the power control policy (defined in Section III.A 

and calculated by Algorithm 1), each relay decides whether to 
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remain silent or to amplify the signal it has received from the 

source and forwards it to 𝑑. It is further assumed that the 

second hop transmissions by the relays are over orthogonal 

channels (e.g., using frequency division multiple access).  

B. Channel and Physical Layer Model 

We consider a frequency non-selective block fading model, 

where 𝑐𝑠,𝑘 ∈ 𝒞𝑠,𝑘 denotes the channel fading gain from node 𝑠 

to relay 𝑅𝑘. We use 𝒞𝑠,𝑘 to refer to the local source-to-relay 

channel state information (LSR-CSI) space; similarly, 𝑐𝑘,𝑑 ∈

𝒞𝑘,𝑑 is used to denote the channel gain on the 𝑅𝑘-𝑑 link, and 

𝒞𝑘,𝑑 represents the local relay-to-destination CSI (LRD-CSI) 

space. We define the local CSI (LCSI) space for the 𝑘-th relay 

as 𝒞𝑘 = 𝒞𝑠,𝑘 × 𝒞𝑘,𝑑, where 𝑐𝑛
𝑘 = ⟨𝑐𝑛

𝑠,𝑘 , 𝑐𝑛
𝑘,𝑑⟩ ∈ 𝒞𝑘 is referred 

to as relay 𝑅𝑘’s LCSI at the 𝑛-th time slot. Also, we use 𝓒 =

×𝑘=1
𝐾 𝒞𝑘 to denote the space of the global CSI, collecting the 

channel gains across all the relays 𝑅𝑘 , 𝑘 ∈ 𝒦.  

Assumption 1. The global CSI 𝒄𝑛 = ⟨𝑐𝑛
𝑘⟩𝑘∈𝒦 ∈ 𝓒 is quasi-

static in each time slot. Furthermore, the process {𝒄𝑛}𝑛∈ℕ is 

i.i.d. between slots with distribution ℙ{𝒄}. It is assumed that 

ℙ{𝒄} is unknown and that each relay 𝑅𝑘 is only aware of its 

local CSI 𝑐𝑛
𝑘 at time 𝑛, which can be estimated using channel 

reciprocity, assuming a time-division duplexing (TDD) system. 

 
Let 𝑥 represent the broadcast information symbol with unit 

energy from node 𝑠. The signal received by 𝑅𝑘 is given by: 

𝑦𝑛
𝑠,𝑘 = √𝑎𝑠𝑐𝑛

𝑠,𝑘  𝑥 + 𝜂, 

where 𝜂 is the additive white Gaussian noise (AWGN). 

Without loss of generality, we assume that the noise power is 

the same over all links, denoted by 𝜎2. In phase 2, relay 𝑅𝑘 

amplifies 𝑦𝑛
𝑠,𝑘

, and forwards it to node 𝑑 with the chosen 

power 𝑎𝑛
𝑘 ∈ 𝒜𝑘. The received signal 𝑦𝑛

𝑘,𝑑
 at 𝑑 is as follows: 

𝑦𝑛
𝑘,𝑑 = √𝑎𝑛

𝑘𝑐𝑛
𝑘,𝑑 𝑥𝑛

𝑘,𝑑 + 𝜂, 

where, 𝑥𝑘,𝑑 is the signal sent from 𝑅𝑘 to 𝑑, normalized to have 

unit energy; i.e., 𝑥𝑛
𝑘,𝑑 =

𝑦𝑛
𝑠,𝑘

|𝑦𝑛
𝑠,𝑘|

 .  

Given the power profile 𝒂𝑛 = 〈𝑎𝑛
𝑘〉𝑘∈𝒦, the end-to-end AaF 

cooperative service rate is as [34]: 

𝑟𝑛
𝑠,𝒦,𝑑 = 𝛾𝐿𝑊 log2 (1 +

∑ Γ𝑛
𝑠,𝒦,𝑑

𝑘∈𝒦

Υ
), (1) 

where, 𝑊 is the bandwidth for transmission, 𝛾𝐿 denotes a 

bandwidth factor which is set to 1 for energy-constrained 

settings,  Υ is a constant denoting the capacity gap, and: 

Γ𝑛
𝑠,𝒦,𝑑 =

𝑎𝑛
𝑘𝑎𝑠𝑐𝑛

𝑠,𝑘𝑐𝑛
𝑘,𝑑

𝜎2(𝑎𝑠𝑐𝑛
𝑠,𝑘 + 𝑎𝑛

𝑘𝑐𝑛
𝑘,𝑑 + 𝜎2)

, (2) 

is the relayed signal-to-noise ratio (SNR) for source node 𝑠, 

which is helped by relay node 𝑅𝑘. 

C. Traffic Model and Source Buffer Dynamics 

We assume there is one buffer at the source for the storage 

of packets. Let 𝑙 be the size of each packet and 𝐴𝑛 be the 

random new packet arrival at the n-th slot.  

Assumption 2. The arrival process {𝐴𝑛}𝑛∈ℕ is i.i.d. with 

distribution ℙ{𝐴} and mean 𝜆 = 𝔼[𝐴]. Also, packet arrivals 

occur at the end of each time slot. It is further assumed that 

the specific form of ℙ{𝐴} is unknown a priori.  

We use 𝑏𝑛 ∈ ℬ to denote the source buffer state 

information (SBSI), which is the number of packets in the 

source buffer at the beginning of the 𝑛-th time slot. 𝑁𝐵 

denotes the maximum buffer size. When the buffer is full 

(𝑏𝑛 = 𝑁𝐵), new arrivals will be dropped. Finally, the buffer 

dynamics follow Lindley’s equation (3): 

𝑏𝑛+1 = min ((𝑏𝑛 −
𝜏𝑟𝑛
𝑠,𝒦,𝑑

2𝑙
)

+

+ 𝐴𝑛, 𝑁𝐵), (3) 

where (. )+ stands for max(. ,0). 

D. Energy Harvesting and Relay Energy Storage Dynamics 

The energy harvesting process at each relay is modeled as a 

packet arrival process (e.g., see [37]) such that each energy 

packet is an integer multiple of a fundamental energy unit 

(EU). The relay 𝑅𝑘 is capable of harvesting a random number 

𝐻𝑛
𝑘  of energy packets from the environment at each time slot. 

The relay stores its harvested energy in its battery or a super-

capacitor [26] with a finite capacity denoted by 𝑁𝐸
𝑘 (energy 

packets), and all the energy harvested when the battery is full 

is lost. Also, the leakage within the battery or super-capacitor 

and the inefficiency in storing harvested energy are assumed 

to be negligible. Let 𝑒𝑛
𝑘 ∈ ℰ𝑘  be the amount of renewable 

energy in relay 𝑅𝑘’s energy storage at the beginning of the 𝑛-

th time slot. We refer to 𝑒𝑛
𝑘 as local energy state information 

(LESI). Also, we use 𝓔 =×𝑘=1
𝐾 ℰ𝑘 to denote the space of the 

global ESI, collecting all possible LESI combinations across 

all the relays. Similarly, 𝒆𝑛 = ⟨𝑒𝑛
𝑘⟩𝑘∈𝒦 ∈ 𝓔 is referred to as 

the system’s global ESI at the 𝑛-th time slot.  

Assumption 3. The arrival process {𝐻𝑛
𝑘}𝑛∈ℕ, ∀𝑘 ∈ 𝒦 is 

i.i.d. with respect to 𝑛, and has distribution ℙ{𝐻𝑘} and mean 

𝜇𝑘 = 𝔼[𝐻𝑘]. We assume that the new energy arrivals are 

observed after the control actions are performed at each slot. 

It is assumed that ℙ{𝐻𝑘} and 𝔼[𝐻𝑘] are unknown and each 

relay 𝑅𝑘 is only aware of its LESI 𝑒𝑛
𝑘 at each time slot.  

Let 𝑎𝑛
𝑘 denote the chosen power level by relay 𝑅𝑘 at time 𝑛. 

The LESI dynamics for each relay 𝑅𝑘 is as follows: 

𝑒𝑛+1
𝑘 = min (𝑒𝑛

𝑘 − 𝑎𝑛
𝑘
𝜏

2
+ 𝐻𝑛

𝑘 , 𝑁𝐸
𝑘). (4) 

where 𝑎𝑛
𝑘 must satisfy the following energy availability 

constraint:  

𝑎𝑛
𝑘
𝜏

2
≤ 𝑒𝑛

𝑘, ∀𝑘 ∈ 𝒦. (5) 

Finally, it is implicitly assumed that 𝑎𝑛
𝑘 = 0 means that 

relay 𝑅𝑘 remains inactive in time 𝑛. 

III. PROBLEM FORMULATION 

In this section, we formulate a decentralized power control 

policy for the relays to cooperatively optimize the average 

delay incurred by the source packets. In our system model, the 

dynamics of the source buffer depends, in part, on the packet 

arrival intensity 𝜆, but it also depends on the cooperative 



0018-9545 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVT.2016.2610444, IEEE
Transactions on Vehicular Technology

IEEE Transactions on Vehicular Technology 

 

5 

service rate 𝑟𝑠,𝒦,𝑑  it receives from the relays, which is affected 

by their channel states as well as their energy harvesting 

profile. Accordingly, we define the power control policy at 

each relay to be adaptive to SBSI, as well as its LCSI and 

LESI. In particular, adaptation to LCSI is needed to 

opportunistically exploit the channel dynamics and gain more 

value for the power invested. SBSI-adaptability is needed to 

make the policy delay-aware under the conditions of 

unsaturated traffic and finite-length buffer at the source. 

Finally, given that the relays rely on energy harvesting for 

their operation, their control policies are subject to 

instantaneous energy availability constraints. An LESI-

adaptive policy avoids inadvertent consumption of the 

harvested energy, and increases the odds that on urgent 

occasions a larger number of relays are available for rendering 

their service (i.e., higher diversity order), and they have more 

feasible power options at their disposal.  

Our formulation is founded on the assumption that the 

relays would be working towards a common goal, i.e., the 

optimization of the incurred delay by the source packets. 

Altogether, our setup comes down to the coupled interaction 

of a number of agents with identical interest in a Markovian 

environment based on partial knowledge of the system state 

information and without explicit awareness of the action 

choices of the other agents. A systematic way to formulate this 

problem is to cast the system as a partially observable 

identical payoff stochastic game (PO-IPSG) [25]. We denote 

the PO-IPSG as a quintuple 𝒢 = ⟨𝒦, 𝓢,𝓐, Τ, 𝑟⟩. 𝓢 = ℬ × 𝓒 ×
𝓔 is the global system state space, where each 𝒔𝑛 ∈ 𝓢 denotes 

the global system state at the 𝑛-th time slot, i.e.,  𝒔𝑛 =
⟨𝑏𝑛 ,𝒄𝑛, 𝒆𝑛⟩ consists of the SBSI, global CSI, and global ESI; 

likewise, we use 𝒮𝑘 = ℬ × 𝒞𝑘 × ℰ𝑘 to represent the space of 

partially observed system states from the viewpoint of relay 

𝑅𝑘 , 𝑘 ∈ 𝒦. Similarly, 𝑠𝑛
𝑘 = ⟨𝑏𝑛 ,𝑐𝑛

𝑘 , 𝑒𝑛
𝑘⟩ denotes the 𝑘-th 

relay’s observed state at the 𝑛-th time slot. 𝓐(𝒆) =
×𝑘=1
𝐾 𝒜𝑘(𝑒𝑘), ∀𝒆 ∈ 𝓔 is the battery state-dependent joint 

action space, i.e., different combinations of feasible power 

levels which can be chosen by the relays (see (5)). The 

mapping Τ: 𝓢 ×𝓐 × 𝓢 → [0,1] denotes the global state 

transition probabilities, and is discussed in more detail in 

III.B. Finally, 𝑟: 𝓢 ×𝓐 × 𝓢 → ℝ is the instantaneous reward 

function which is defined to be identical across all relays. 

More specifically, we define 𝑟 as a function of the number of 

vacant places in the source buffer; i.e., 

𝑟(𝒔𝑛, 𝒂𝑛, 𝒔𝑛+1) = 𝜈(𝑁𝐵 − 𝑏𝑛+1), (6) 

where 𝜈 is a positive constant. The dynamics of the game 𝒢 

proceeds as follows: at each time slot 𝑛, each relay 𝑅𝑘 

observes its local state 𝑠𝑛
𝑘 and selects an action 𝑎𝑛

𝑘 according 

to its power control policy 𝑢𝑘 (to be specified in III.A). A 

composite action profile 𝒂𝑛 = 〈𝑎𝑛
𝑘〉𝑘∈𝒦 from the joint action 

space 𝓐 is executed, the system probabilistically transitions to 

the next state 𝒔𝑛+1 according to the law T(𝒔𝑛+1|𝒔𝑛, 𝒂𝑛), and 

all relays receive the identical reward 𝑟(𝒔𝑛, 𝒂𝑛, 𝒔𝑛+1). The 

system-wide objective is to maximize the value of the game, 

i.e., the long-run average of the received rewards. 

A. Factored Control Policy 

We assume that the system is controlled by stationary 

policies. The stationarity of a policy implies that it depends on 

the history of the game only through the current state. 

Moreover, we parameterize the policy space by a set of 

continuous parameters 𝚯 ∈ ℝ𝒟 of some dimension 𝒟. In 

particular, as we are interested in decentralized optimization 

with partial state observability by the relays, we restrict 

ourselves to the space of factored joint controllers 𝓤𝚯, where 

each 𝓾𝚯 ∈ 𝓤𝚯 is a probabilistic mapping of the form 𝓾𝚯: 𝓢 ×

𝓐 → [0,1] and it holds that 𝓾𝚯 = ∏ 𝑢𝜃
𝑘𝐾

𝑘=1 . Basically, 𝚯 is 

defined to be the concatenation of individual relay policy 

parameters, i.e., 𝚯 = ⟨𝜃1,… , 𝜃𝐾⟩, and 𝑢𝜃
𝑘
: 𝒮𝑘 ×𝒜𝑘 → [0,1] 

is relay 𝑅𝑘’s individual power control policy. 𝜃𝑘 is taken to be 

a 𝒟𝑘 ≜ |𝒮𝑘 ×𝒜𝑘|-dimensional vector of the form 𝜃𝑘 =
〈𝜃𝑠,𝑎
𝑘 〉𝑠∈𝒮𝑘,𝑎∈𝒜𝑘; i.e., the joint policy space is of dimension 

𝒟 = ∑ 𝒟𝑘𝐾
𝑘=1 .  

Remark 1: The factorization of action choice allows for 

parallel computation of the control policy by the relays as 

stated in Theorem 2 (Section IV). It also helps overcome the 

curse of dimensionality associated with the huge size of the 

joint state-action space 𝓢 ×𝓐; however, as argued in [25], a 

side-effect is that only a subset of policies from the full space 

of joint policies (corresponding to e.g., a central non-factored 

controller) can be represented. Hence, we can at best yield the 

best set of policies from within the restricted space 𝓤𝚯.    

A common way to express parametric policies in the 

literature (e.g., see [27]) is to assume a Gibbs-like distribution 

for the shape of 𝑢𝜃
𝑘
(. ); more precisely, the probability of 

choosing power level 𝑎 ∈ 𝒜𝑘(𝑒) by relay 𝑅𝑘 in state 𝑠 =
〈𝑏, 𝑐, 𝑒〉 ∈ 𝒮𝑘 is expressed as follows: 

𝑢𝜃
𝑘
(𝑎|𝑠) =

exp(𝜃𝑠,𝑎)

∑ exp(𝜃𝑠,�́�)�́�∈𝒜𝑘(𝑒)

, (7) 

Note that the denominator in (7) is ensured to be non-zero 

by always having 𝑎 = 0 as the feasible choice. 

B. State Transition Laws 

Assume a joint parametric control policy 𝓾𝚯 ∈ 𝓤𝚯 is given. 

The probabilistic dynamics of the system state can be 

characterized in terms of 𝓾𝚯 and the mapping Τ, which 

denotes the controlled transition probabilities; more 

specifically, we have: 

ℙ{𝒔𝑛+1|𝒔𝑛, 𝓾
𝚯(𝒂𝑛|𝒔𝑛)}

= T(𝒔𝑛+1|𝒔𝑛, 𝒂𝑛)𝓾
𝚯(𝒂𝑛|𝒔𝑛), 

(8) 

where (recalling Assumption 1 on i.i.d. channels), we have: 

T(𝒔𝑛+1|𝒔𝑛, 𝒂𝑛)

= ℙ{𝒄𝑛+1}. T(𝑏𝑛+1|𝒔𝑛, 𝒂𝑛)T(𝒆𝑛+1|𝒆𝑛, 𝒂𝑛), 
(9) 

and the source buffer state transition is as follows: 

T(𝑏𝑛+1|𝒔𝑛, 𝒂𝑛) = 

{
 
 
 

 
 
 ℙ {𝐴𝑛 = 𝑏𝑛+1 − (𝑏𝑛 −

𝜏𝑟𝑛
𝑠,𝒦,𝑑

2𝑙
)

+

} ,    𝑏𝑛+1 < 𝑁𝐵

∑ ℙ{𝐴𝑛 = 𝐴}

∞

𝐴=𝑁𝐵−(𝑏𝑛−
𝜏𝑟𝑛
𝑠,𝒦,𝑑

2𝑙
)

+

,           𝑏𝑛+1 = 𝑁𝐵
 

(10) 

For the probabilistic transition of the global ESI, we have: 
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T(𝒆𝑛+1|𝒆𝑛, 𝒂𝑛) = ∏T𝑘(𝑒𝑛+1
𝑘 |𝑒𝑛

𝑘, 𝑎𝑛
𝑘)

𝒦

𝑘=1

, 

where, 

T𝑘(𝑒𝑛+1
𝑘 |𝑒𝑛

𝑘, 𝑎𝑛
𝑘)

=

{
  
 

  
 ℙ{𝐸𝑛

𝑘 = 𝑒𝑘
𝑛+1 − (𝑒𝑛

𝑘 −
𝜏𝑎𝑛
𝑘

2
)} ,    𝑒𝑛+1

𝑘 < 𝑁𝐸
𝑘

∑ ℙ{𝐸𝑛
𝑘 = 𝐸}

∞

𝐸=𝑁𝐸
𝑘−(𝑒𝑛

𝑘−
𝜏𝑎𝑛
𝑘

2
)

,             𝑒𝑛+1
𝑘 = 𝑁𝐸

𝑘
 

(11) 

C. System-Wide Objective 

As is common in infinite-horizon stochastic DP problems 

[21], we may seek policies that choose actions to optimize 

either the expected total discounted reward or the expected 

average-reward per step criterion. In this work, we opt for the 

time-averaged metric due to the following reasons:  

 The average reward criterion puts more emphasis on the 

long-run performance of the system and does not discount 

its future behavior; without prior knowledge, each byte of 

a file or voice packet is of equal significance and it is 

hardly justified to discount later packets as inherently less 

important.  

 Moreover, even if a formulation based on discounted-

reward maximization is employed to trade off the delay 

experienced by recent and later packets, the discount 

factor needs to be chosen heuristically, which affects the 

performance of the derived power control policy.  

 Finally, we set the goal in PO-IPSG 𝒢 to be the 

maximization of the long-run average number of empty 

slots in the source buffer. As we clarify in the sequel (see 

Remark 3), this time-averaged metric in our problem is 

naturally related to the mean waiting time in the source 

buffer, and correlates well with an objective judgment of 

the system performance.  

Now that we have stated our rationale for choosing a time-

averaged criterion, in Remark 2, we impose a mild assumption 

on the set of admissible policies in order to ensure that the 

time-average criterion is well-defined: 

Remark 2: Similar to other literature in MDP [12][28], we 

restrict our consideration to unichain policies in this paper. 

The stationary policy 𝓾𝚯 is said to be unichain if the 

controlled Markov chain {𝒔𝑛}𝑛∈ℕ under 𝓾𝚯 is ergodic [33]. In 

this case, {𝒔𝑛}𝑛∈ℕ has a unique steady state probability 

distribution 𝝅, where for all 𝒔 ∈ 𝓢, 𝜋(𝒔) = lim
𝑛→∞

ℙ(𝒔𝑛 = 𝒔) 

[28]. Now, we may define the optimization objective as (12): 

max
𝚯
ℛ̅(𝓾𝚯) ≜ lim

𝑁→∞

1

𝑁
∑𝔼𝓾

𝚯
{𝑟𝑛}

𝑁−1

𝑛=0

= 𝔼𝝅{𝜈(𝑁𝐵 − 𝑏)}. (12) 

where the 𝔼𝝅 denotes expectation w.r.t. the underlying 

probability 𝝅.    

Remark 3: We have from the extended Little’s law (c.f., 

Lemma 1, [30]) that the long-run average delay �̅�(𝓾𝚯) of the 

source packets under the (unichain) policy 𝓾𝚯 verifies the 

following inequality:  

�̅�(𝓾𝚯) ≤ lim
𝑁→∞

1

𝑁
∑

𝔼𝓾
𝚯
{𝑏𝑛}

(1 − ℙ𝑑𝑟𝑜𝑝)𝜆

𝑁−1

𝑛=0

, 

where 𝔼𝓾
𝚯
 is the expectation under stationary policy 𝓾𝚯 and 

ℙ𝑑𝑟𝑜𝑝 is the packet drop rate due to source buffer overflow. 

Here, we argue that since in practice, we target reasonable 

(e.g., 0.1%) drop rates, it holds that ℙ𝑑𝑟𝑜𝑝 ≪ 1, and therefore 

the following is a good approximation for the average delay: 

�̅�(𝓾𝚯) ≈ lim
𝑁→∞

1

𝑁
∑

𝔼𝓾
𝚯
{𝑏𝑛}

𝜆

𝑁−1

𝑛=0

. 

Furthermore, this approximation is asymptotically tight as 

the data buffer size increases. Therefore, for sufficiently large 

buffer size and low load regime, maximizing ℛ̅(𝓾𝚯) is a valid 

alternative to minimizing the average delay.  

Definition 1 (Local Optimal of PO-IPSG 𝒢). A profile of 

power control policies 𝓾𝚯
∗
= 〈𝑢𝜃1

∗
, … , 𝑢𝜃𝐾

∗
〉 ∈ 𝓤𝚯 is the local 

optimal of the game 𝒢 if it satisfies the following condition: 

∇𝚯ℛ̅(𝓾
𝚯∗) = �⃗⃗� .    

Theorem 1. The gradient in Definition 1 can be computed as 

(13):  

∇𝚯ℛ̅(𝓾
𝚯)

= lim
𝑁→∞

1

𝑁
∑

∇𝚯ℙ{𝒔𝑛+1|𝒔𝑛 , 𝓾
𝚯(𝒂𝑛|𝒔𝑛)}

ℙ{𝒔𝑛+1|𝒔𝑛, 𝓾
𝚯(𝒂𝑛|𝒔𝑛)}

𝑄(𝒔𝑛 , 𝒂𝑛)

𝑁−1

𝑛=0

, 
(13) 

where the function 𝑄(. , . ) is the so-called differential reward 

function defined as follows:  

𝑄(𝒙, 𝒚)

= lim
𝑁→∞

𝔼𝓾
𝚯
{∑ (𝑟𝑛 − ℛ̅(𝓾

𝚯))𝑁−1
𝑛=0 |𝒔0 = 𝒙, 𝒂0 = 𝒚}. 

(14) 

Proof. The proof follows immediately from the derivation in 

[28, Section 3.2].        

Note that (13) can be written in a more convenient form by 

realizing that: 

∇𝚯ℙ{𝒔𝑛+1|𝒔𝑛, 𝓾
𝚯(𝒂𝑛|𝒔𝑛)}

ℙ{𝒔𝑛+1|𝒔𝑛, 𝓾
𝚯(𝒂𝑛|𝒔𝑛)}

= ∇𝚯 ln[ℙ{𝒔𝑛+1|𝒔𝑛, 𝓾
𝚯(𝒂𝑛|𝒔𝑛)}]

= ∇𝚯 ln[𝓾
𝚯(𝒂𝑛|𝒔𝑛)]. 

(15) 

It is worth noting that a function such as ∇𝚯 ln[𝓾
𝚯(𝒂𝑛|𝒔𝑛)], 

which is the gradient of a log-likelihood, is also known as a 

score function in classical statistics [31]. Finally, 

∇𝚯ℛ̅(𝓾
𝚯)

= lim
𝑁→∞

1

𝑁
∑ ∇𝚯 ln[𝓾

𝚯(𝒂𝑛|𝒔𝑛)] 𝑄(𝒔𝑛, 𝒂𝑛)

𝑁−1

𝑛=0

, 
(16) 

In what follows, we present a distributed learning-theoretic 

procedure to steer the relays’ behavior towards a delay-

optimal power control policy 𝓾𝚯
∗
 in the sense of Definition 1. 

IV. A MULTI-AGENT REINFORCEMENT LEARNING SOLUTION 

In our PO-IPSG formulation, it is desired that the relays 

make coordinated decisions despite their independence of one 

another and despite their lack of omniscience (i.e., each single 
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relay is unaware of the other relays’ local states, and the 

policies they are pursuing). In order to harmonize the relays’ 

behavior, in this section, we present a distributed learning-

theoretic power control (DLTPC) algorithm to be executed in 

parallel by each relay involved.  

In fully observable IPSGs, value function-based learning 

methods (e.g., [32]) have been proposed for discounted reward 

problems, which are convergent to the optimal Nash 

equilibrium. As for our PO-IPSG problem, however, we resort 

to policy search methods which have been shown to be a 

reasonable alternative to value-based methods for partially 

observable environments [36]. In particular, we follow the 

lead of Peshkin et al. in [25], which introduce a general 

method for using gradient ascent in multi-agent policy spaces 

to guarantee convergence to local optima (i.e., gradient zero 

operating points) of the game. Through a sketchy analysis, it 

has been shown in [25] that: when the search space is 

restricted to factored social policies 𝓤𝚯, joint gradient ascent 

performed by a central controller (with access to observation 

histories of the whole system) is equivalent to parallel gradient 

ascent performed by individual agents (with access only to 

their own partial view of the system history). Key to the 

argument in [25] is to show that:  

I) The parallel algorithm samples gradients ∇𝚯ℛ̅ from the 

correct distribution, and  

II) The update increments used in gradient ascent are the 

same in the parallel algorithm as in the joint one.  

Moreover, to satisfy these two conditions, an underlying 

requirement is that the agents perform synchronized updates 

on the estimates of their own components of the global 

gradient vector. Although the study in [25] is conducted in the 

context of discounted reward PO-IPSGs, but as we show in 

this paper, their line of argument can be extended to average-

reward settings as well. However, the discussion in [25] is 

more of an outline lacking most details on the machinery of 

gradient estimation. We thus turn to standard techniques for 

estimation of the gradient of the average-reward in MDP 

literature [27][28]. These algorithms typically exploit the 

regenerative structure of the system’ underlying Markov 

process to obtain unbiased gradient estimates based on the 

observations made in between regeneration times (i.e., 

between visits to a certain recurrent state). Applied to our PO-

IPSG formulation, corresponding to every global regenerative 

cycle, we may define a local cycle for each relay during which 

it collects local observations to form an estimate of its own 

component of the global gradient vector. We show that at the 

expense of a very low signaling overhead, it can be arranged 

for the relays to agree on the termination of global 

regenerative cycles, thus satisfying the underlying requirement 

of synchronized updates in [25]. We then rigorously apply the 

line of argument in [25] to show that conditions I and II will 

be satisfied by our derivation (see Theorem 2 in Section IV). 

Based on this result, in Section IV.B, we discuss the update 

rules to be executed iteratively by each relay, and present 

DLTPC’s pseudo code. 

A. Decentralized Computation of the Performance Gradient  

Assume that the relay communication system is controlled 

via some factored joint parametric control policy 𝓾𝚯 ∈ 𝓤𝚯 

(c.f., Section III.A). The global system history is realized as an 

infinite-length trajectory of the form: 

𝒉∞ = [𝒔0, 𝒂0, 𝑟0, 𝒔1, … , 𝒔𝑛−1, 𝒂𝑛−1, 𝑟𝑛−1, 𝒔𝑛, … ]

∈ 𝓗∞ ≜ (𝓢 ×𝓐 × ℝ)
∞. 

Now, fix some 𝑒∗ ∈ ℰ𝑘 , ∀𝑘 and let 𝒆∗ ∈ 𝓔 be the global ESI 

where 𝑒𝑛
𝑘 = 𝑒∗, ∀𝑘; likewise, fix some 𝑏∗ ∈ ℬ. Finally, let 

𝓢∗ ≜ {⟨𝑏∗, 𝒄, 𝒆∗⟩, ∀𝒄 ∈ 𝓒}. With {𝒔𝑛}𝑛∈ℕ being ergodic, 

elements of 𝓢∗ recur infinitely often within any realization of 

the global system history. Let 𝑡𝑚 be the time of the 𝑚-th visit 

to 𝓢∗. We refer to the following portion of history: 

𝒉𝑚
∗

= [𝒔𝑡𝑚, 𝒂𝑡𝑚 , 𝑟𝑡𝑚 , 𝒔𝑡𝑚+1, … , 𝒔𝑡𝑚+1−1, 𝒂𝑡𝑚+1−1, 𝑟𝑡𝑚+1−1, 𝒔𝑡𝑚+1] 

as the 𝑚-th global renewal cycle (𝑚 ≥ 1).  Under Assumption 

1 for CSI and by regenerative property (e.g., see [29]), these 

pieces of system trajectory are i.i.d. We denote by ℓ(𝒉𝑚
∗ ) the 

length of 𝒉𝑚
∗  that is equal to ∆𝑡𝑚 = 𝑡𝑚+1 − 𝑡𝑚.  It is also 

convenient to introduce local versions of a renewal cycle 

observed through the prism of each relay 𝑅𝑘. In fact, 

corresponding to the 𝑚-th global renewal cycle 𝒉𝑚
∗ , the relay 

𝑅𝑘’s local renewal cycle is realized as follows: 

ℎ𝑚
∗,𝑘

= [𝑠𝑡𝑚
𝑘 , 𝑎𝑡𝑚

𝑘 , 𝑟𝑡𝑚 , 𝑠𝑡𝑚+1
𝑘 , … , 𝑠𝑡𝑚+1−1

𝑘 , 𝑎𝑡𝑚+1−1
𝑘 , 𝑟𝑡𝑚+1−1, 𝑠𝑡𝑚+1

𝑘 ], 

where, by definition of 𝑡𝑚, it holds that for all 𝑘 ∈ 𝒦: 

𝑠𝑡𝑚
𝑘 , 𝑠𝑡𝑚+1

𝑘 ∈ 𝒮𝑘
∗ ≜ {⟨𝑏∗, 𝑐𝑘 ,𝑒∗⟩, ∀𝑐𝑘 ∈ 𝒞𝑘}; i.e., ℎ𝑚

∗,𝑘
 is of the 

same length as 𝒉𝑚
∗ . Now, more generally, define 𝓗∗ to be the 

space of all global renewal cycles; accordingly, ℋ∗,𝑘 is used 

to refer to the space of all local renewal cycles for relay 𝑅𝑘. 

For 𝒉∗ ∈ 𝓗∗, it holds that:  

ℙ(𝒉∗|𝚯) = 

∏ 𝛵(𝒔[𝑛+1,𝒉∗]|𝒔[𝑛,𝒉∗], 𝒂[𝑛,𝒉∗])𝓾
𝚯(𝒂[𝑛,𝒉∗]|𝒔[𝑛,𝒉∗]).

ℓ(𝒉∗)−1

𝑛=0

 
(17) 

where the notation 𝑥[𝑛,𝒉∗] is used to refer to the component of 

𝑥 realized at time 0 ≤ 𝑛 ≤ ℓ(𝒉∗) within 𝒉∗. Now, by renewal-

reward theorem (e.g., see [29]), the performance gradient 

∇𝚯ℛ̅(𝓾
𝚯) defined in (16) can be calculated as follows: 

∇𝚯ℛ̅(𝓾
𝚯) = 

𝔼𝓾
𝚯
{∑ ∇𝚯 ln[𝓾

𝚯(𝒂[𝑛,𝒉∗]|𝒔[𝑛,𝒉∗])]𝑄(𝒔[𝑛,𝒉∗], 𝒂[𝑛,𝒉∗])
ℓ(𝒉∗)−1
𝑛=0 }

𝔼𝓾
𝚯{ℓ(𝒉∗)}

, 

(18) 

i.e., the expected total quantity earned during one cycle, 

normalized by the expected cycle duration. Similarly, the 

differential reward for 0 ≤ 𝑛 < ℓ(𝒉∗) can be written as (19):  

𝑄(𝒙, 𝒚) = 

𝔼𝓾
𝚯
{∑ (𝑟[𝑗,𝒉∗] − ℛ̅(𝓾

𝚯))ℓ(𝒉∗)−1
𝑗=𝑛 |𝒔[𝑛,𝒉∗] = 𝒙, 𝒂[𝑛,𝒉∗] = 𝒚}. 

 

 

(19) 

Replacing 𝑄 with its estimate �̂�(𝒔[𝑛,𝒉∗], 𝒂[𝑛,𝒉∗]) ≜
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∑ (𝑟[𝑗,𝒉∗] − ℛ̅(𝓾
𝚯))ℓ(𝒉∗)−1

𝑗=𝑛  in (18), we have: 

∇𝚯
ℛ̅⃗⃗⃗⃗  ⃗≜ 𝔼𝓾

𝚯
[ℓ(𝒉∗)]∇𝚯ℛ̅(𝓾

𝚯) = ∑ ℙ(𝒉∗|𝚯)

𝒉∗∈𝓗∗

× 

{ ∑ ∇𝚯 ln[𝓾
𝚯(𝒂[𝑛,𝒉∗]|𝒔[𝑛,𝒉∗])]�̂�(𝒔[𝑛,𝒉∗], 𝒂[𝑛,𝒉∗])

ℓ(𝒉∗)−1

𝑛=0

}, 

(20) 

where given that 𝔼𝓾
𝚯
[ℓ(𝒉∗)] is a positive number, 

𝔼𝓾
𝚯
[ℓ(𝒉∗)]∇𝚯ℛ̅(𝓾

𝚯) can be viewed as the expected gradient 

direction, and the zeroes of  ∇𝚯
ℛ̅⃗⃗⃗⃗  ⃗ are the same as those of 

∇𝚯ℛ̅(𝓾
𝚯).  

Theorem 2 in the sequel establishes that the calculation of 

the direction of the performance gradient ∇𝚯
ℛ̅⃗⃗⃗⃗  ⃗ can be done in a 

decentralized manner across the relays; i.e., each relay can 

independently calculate its individual gradient direction ∇
𝜃𝑘
ℛ̅⃗⃗ ⃗⃗ ⃗⃗   

based on local information contained within its local renewal 

cycles ℎ∗,𝑘 ∈ ℋ∗,𝑘, and yet the ensemble of individual 

gradient directions recover the whole vector ∇𝚯
ℛ̅⃗⃗⃗⃗  ⃗.  

Theorem 2. Assume 𝓾𝚯 ∈ 𝓤𝚯. The gradient direction ∇𝚯
ℛ̅⃗⃗⃗⃗  ⃗ can 

be expressed as the vector: 

∇𝚯
ℛ̅⃗⃗⃗⃗  ⃗= ⟨∇𝜃1

ℛ̅⃗⃗ ⃗⃗ ⃗⃗  , … , ∇𝜃𝐾
ℛ̅⃗⃗ ⃗⃗ ⃗⃗  ⃗⟩, 

in which each component ∇
𝜃𝑘
ℛ̅⃗⃗ ⃗⃗ ⃗⃗  , 𝑘 ∈ 𝒦 is calculated as: 

∇
𝜃𝑘
ℛ̅⃗⃗ ⃗⃗ ⃗⃗  ≜ 𝔼𝓾

𝚯
[ℓ(𝒉∗)]∇𝜃𝑘ℛ̅(𝓾

𝚯) = ∑ ℙ(ℎ∗,𝑘|𝚯)

ℎ∗,𝑘∈ℋ∗,𝑘

× 

{ ∑ ∇𝜃𝑘 ln [𝑢
𝜃𝑘 (𝑎[𝑛,ℎ∗,𝑘]|𝑠[𝑛,ℎ∗,𝑘])] �̂� (𝑠[𝑛,ℎ∗,𝑘], 𝑎[𝑛,ℎ∗,𝑘])

ℓ(ℎ∗,𝑘)−1

𝑛=0

}, 

(21) 

and, 

�̂� (𝑠[𝑛,ℎ∗,𝑘], 𝑎[𝑛,ℎ∗,𝑘]) ≜ ∑ (𝑟[𝑗,ℎ∗,𝑘] − ℛ̅(𝓾
𝚯))

ℓ(ℎ∗,𝑘)−1

𝑗=𝑛

.  (22) 

Proof. Please see Appendix A.     

In essence, Theorem 2 states that: If at each renewal cycle, 

all relays 𝑅𝑘 , 𝑘 ∈ 𝒦 update their policy parameters 𝜃𝑘 along 

the gradient direction sampled from their distribution 

ℙ(ℎ∗,𝑘|𝚯) in parallel, the parameter vector 𝚯 gets updated 

along the gradient direction sampled 

fromℙ(𝒉∗ = 〈ℎ∗,1, . . , ℎ∗,𝐾〉|𝚯); i.e., the distributed algorithm 

is sampling from the correct distribution. Also, due to 

factorization, the update increments ∇
𝜃𝑘
ℛ̅⃗⃗ ⃗⃗ ⃗⃗   to be used in relay 

𝑅𝑘’s gradient ascent are independent of the parameters in 

other relays’ policies. Hence, the policy learning and control 

can be distributed among relays without requiring that they be 

informed of each others’ states and choices of actions. 

B. Distributed Learning-Theoretic Power Control (DLTPC)  

In this section, we present DLTPC (Algorithm 1), our 

distributed learning-theoretic power control scheme, which 

can lead the relays’ collective behavior to a locally optimal 

delay performance. DLTPC relies on sample estimates of the 

performance gradient obtained during the actual system run-

time to perform gradient-ascent in policy space. Hence, our 

algorithm does not need the explicit knowledge of the CSI, 

SBSI, and ESI statistics, and is an instance of model-free 

learning. This is as opposed to doing exact gradient-ascent, 

which requires the explicit knowledge of the transition laws T 

to analytically compute the gradient direction. In DLTPC, 

each relay updates its policy parameter 𝜃𝑚
𝑘  at the end of each 

renewal cycle, i.e., between visits to 𝓢∗ (see (27) in Algorithm 

1). To understand (27), note that according to (21) and (22), 

we can use:  

𝐹𝑚
𝑘 ≜ 

∑
𝜕 ln [𝑢𝜃

𝑘
(𝑎𝑛
𝑘|𝑠𝑛

𝑘)]

𝜕𝜃𝑘
|

𝜃𝑘=𝜃𝑚
𝑘

∑ (𝑟𝑗 − ℛ̅(𝓾
𝚯))

𝑡𝑚+1−1

𝑗=𝑛

𝑡𝑚+1−1

𝑛=𝑡𝑚

, 
(23) 

as the 𝑚-th cycle estimate of ∇
𝜃𝑘
ℛ̅⃗⃗ ⃗⃗ ⃗⃗  , which is obtained by each 

relay 𝑅𝑘 from the sample renewal cycle ℎ𝑚
∗,𝑘

. Now, to allow 

for more efficient recursive implementation of the summation 

(23) in Algorithm 1, we rewrite 𝐹𝑚
𝑘 as follows: 

𝐹𝑚
𝑘 = 

∑ (𝑟𝑛 − ℛ̅(𝓾
𝚯))

𝑡𝑚+1−1

𝑛=𝑡𝑚

∑
𝜕 ln [𝑢𝜃

𝑘
(𝑎𝑛
𝑘|𝑠𝑛

𝑘)]

𝜕𝜃𝑘
|

𝜃𝑘=𝜃𝑚
𝑘

𝑛

𝑗=𝑡𝑚

, 
(24) 

which makes it possible to incrementally construct 𝐹𝑚
𝑘 using 

transient quantities 𝑧𝑛
𝑘 and 𝑔𝑛

𝑘 before reaching the end of each 

cycle. Accordingly, equation (27) in the pseudo-code is 

basically the standard rule for stochastic gradient–ascent in 

which the parameter 𝛼𝑚 ∈ ℝ
+ denotes a learning rate. Also, 

similarly to [27], ℛ̅(𝓾𝚯) in (24) is replaced via its estimate 

ℛ̂𝑚, which is also updated at each renewal cycle via the 

recursion (25): 

ℛ̂𝑚+1: = ℛ̂𝑚 + 𝛼𝑚 ∑ (𝑟𝑛 − ℛ̂𝑚)

𝑡𝑚+1−1

𝑛=𝑡𝑚

. (25) 

Equation (25) is a stochastic approximation of the average 

reward ℛ̅(𝓾𝚯), and is consistent with the observation that for 

the 𝑚-th cycle, it holds: 

ℛ̅𝚯𝑚(≈ ℛ̂𝑚) =
𝔼𝓾

𝚯
{∑ 𝑟𝑛

𝑡𝑚+1−1
𝑛=𝑡𝑚

}

𝔼𝓾
𝚯{∆𝑡𝑚}

. (26) 

Theorem 3. Choose 𝛼𝑚 such that the sequence {𝛼𝑚} be 

diminishing (i.e., 𝛼𝑚
𝑚↑∞
→  0), un-summable (i.e., ∑ 𝛼𝑚 = ∞𝑚 ), 

but square summable (i.e., ∑ 𝛼𝑚
2 < ∞𝑚 ). Also, consider the 

sequence of parameters {𝚯𝑚} generated by Algorithm 1. Then, 

{ℛ̂𝑚} converges (with probability 1), and the profile of power 

control policies {𝓾𝚯𝑚} converges to the local optimal of PO-

IPSG 𝒢; i.e.,  ∇𝚯ℛ̅(𝓾
𝚯𝑚)

𝑚↑∞
→  0(𝑤. 𝑝. 1). 

Proof. With this setup, DLTPC’s update equations in (27) 
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and (28) are exactly along the lines of the single-agent iterates 

in ([27], Eqs. (15) and (16)); hence, the convergence of the 

gradient components (with respect to 𝜃𝑘, ∀𝑘) of the 

performance measure ℛ̅(𝓾𝚯𝑚) to zero can be established via 

the same arguments made in ([27], Proposition 3). Combine 

this with Theorem 2 to conclude.     

Algorithm 1. Distributed Learning-Theoretic Power Control 

Initialization: Set iteration index 𝑛 ∶= 0, renewal cycle index 𝑚 ∶= 0, 

initial transient differential reward �̂�0 ∶= 0, initial estimate for the 

average reward ℛ̂0 ∶= 0;Initialize parameter vector 𝜃0
𝑘 randomly and 

set 𝑧0
𝑘 ∶= �⃗⃗� , 𝑔0

𝑘 ∶= �⃗⃗� , ∀𝑘 ∈ 𝒦;  

Source 𝑠 broadcasts data and its buffer state 𝑏0; 

while (TRUE) 

for each relay 𝑘 ∈ 𝒦 do 

1) Choose power 𝑎𝑛
𝑘~𝑢𝑘

𝜃𝑚
𝑘

(. |𝑠𝑛
𝑘); 

2) Transmit data to destination 𝑑 with power 𝑎𝑛
𝑘; 

3) Inform 𝑠 only if battery level 𝑒𝑛+1
𝑘  has reached 𝑒∗ ; 

4) Receive data from 𝑠 along with the next buffer state 𝑏𝑛+1, 
and the cycle termination signal 𝜎𝑛 ≝

{
1, 𝒆𝑛+1 = 𝒆

∗𝑎𝑛𝑑𝑏𝑛+1 = 𝑏
∗

0, 𝑑𝑒𝑓𝑎𝑢𝑙𝑡
; 

5) Update transient quantities for gradient and differential 

reward: 

// Calculate immediate reward: 

𝑟𝑛 ∶= 𝜈(𝑁𝐵 − 𝑏𝑛+1); 
// Update the transient differential reward estimate: 

�̂�𝑛+1 ∶= �̂�𝑛 + (𝑟𝑛 − ℛ̂𝑚); 

// Update the transient gradient estimate: 

𝑧𝑛+1
𝑘 ∶= 𝑧𝑛

𝑘 +
𝜕 ln[𝑢𝜃

𝑘
(𝑎𝑛
𝑘|𝑠𝑛

𝑘)]

𝜕𝜃𝑘
|

𝜃𝑘=𝜃𝑚
𝑘

; 

𝑔𝑛+1
𝑘 ∶= 𝑔𝑛

𝑘 + (𝑟𝑛 − ℛ̂𝑚)𝑧𝑛+1
𝑘 ; 

6) if (𝜎𝑛 == 1) // The end of the 𝑚-th renewal cycle  

   // Update policy parameter: 

   𝜃𝑚+1
𝑘 ∶= 𝜃𝑚

𝑘 + 𝛼𝑚𝑔𝑛+1
𝑘 ; 

 

(27) 
 

   // Update the average reward estimate: 

ℛ̂𝑚+1 ∶= ℛ̂𝑚 + 𝛼𝑚�̂�𝑛+1; 

 

(28) 
 

// Reset transient quantities: 

𝑔𝑛+1
𝑘 = �⃗⃗� , �̂�𝑛+1 ∶= 0, 𝑧𝑛+1

𝑘 = �⃗⃗� ; 
 

   // Update the cycle index: 

𝑚 ∶= 𝑚 + 1; 
 

end if 

 end for 

𝑛 ∶= 𝑛 + 1; //  Update the time index. 

end while 

C. Discussion and Directions for Future Research  

In this section, we give a few remarks about the underlying 

assumptions in this paper, and discuss how relaxing these 

assumptions can serve as a basis for future research. 

The first issue has to do with our assumption on altruistic 

participation of the relays in forwarding the source signal. In 

fact, a relay’s willingness to cooperate is taken for granted and 

our game-theoretic formulation is only a means to perform 

decentralized coordination and control and not a means of 

cooperation stimulation. A potential future direction, thus, 

includes extensions to systems with self-interested relaying 

terminals, where acquiring service from the relays requires an 

incentive mechanism.  

The second issue is regarding the extension of our system 

model to the case where the source node also uses a state-

dependent law to control its transmit power for minimizing the 

delay at its queue. While ideally, the source power should be 

treated as yet another “degree of freedom”, we argue, 

however, that such extension is non-trivial as an adaptive 

source would induce non-stationary dynamics on the power 

adjustment procedure performed by the relays. In fact, 

proposing a systematic mechanism for jointly controlling the 

source and relays’ power is beyond the scope of this paper 

since we cannot naively consider the source node as another 

player in our PO-IPSG formulation. Therefore, in Section II, 

we have explicitly restricted our system model to the case 

where the source is transmitting with a constant power supply 

(e.g., maximum allowed power). That being said, there exists, 

however, some fair justifications in support of our simplifying 

assumption: the source node in our system model does not rely 

on harvested energy but is instead connected to a fixed power 

supply. Also, no direct communication link is assumed 

between the source and the destination node. As such, it is 

fairly reasonable that the source can tap into its energy supply 

to power its transmission with little concern for replenishment 

of its energy budget. When the source node is a non-

harvesting entity, there are several works in the context of EH 

relay systems where the source power is assumed fixed [8]. 

Finally, we need to discuss the case of buffer-aided relaying 

where the relay nodes have data queues as well. Cooperative 

networks with buffer-aided relays have the advantage that 

their achievable diversity is not bottlenecked by transmission 

order (unlike the stream-like communication in the 

conventional case where at each time slot, signal transmission 

starts from source and is then relayed to the destination) [41]. 

However, these relays may also incur larger packet delays 

which can be quite diverse for different packets. Hence, from 

the application point of view, the lack of a data buffer at the 

relays in our work can be justified by arguing that it is to 

advocate a simple relay design while also minimizing packet 

delay which is desirable in certain applications. There are also 

some technical complications in the way of extending the 

proposed approach to the case of relays with buffers: 

Reasonably enough, in buffer-aided relaying, it is typically the 

case that at each slot, only one relay is selected for either 

transmission or reception. This necessitates an explicit link 

selection mechanism which does not fit well with the 

collaborative all-playing nature of our PO-IPSG formulation 

and its identical-payoff structure. The systematic way to 

account for buffer-aided relaying is again a formulation based 

on stochastic dynamic programming; however, in order to 

come up with a realistic scalable solution, we need to take on a 

different approach for problem decomposition. There are some 

studies along this line (e.g., see [17]) which address delay 

optimization in the context of buffer-aided relaying by 

exploiting the structural properties inherent to the problem. 
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The setup considered in [17], however, only consists of a 

single relay which gives the problem a nice weakly coupled 

structure amenable to decomposition into sub-problems. 

V. PERFORMANCE EVALUATION 

In this section, we evaluate the performance of our 

proposed DLTPC algorithm for decentralized power control in 

EH multi-relay systems. We compare DLTPC’s performance 

with three other power control schemes: 

(a) Centralized MDP with perfect statistics: we assume that 

an MDP controller exists which is aware of the probability 

distributions of the channel fading ℙ{𝒄}, traffic arrival ℙ{𝐴}, 

as well as the energy arrival processes ℙ{𝐻𝑘} for all relays 

𝑘 ∈ 𝒦. Armed with this knowledge, one can use standard 

solution methods (e.g., relative value iteration [23]) to solve 

for an optimal joint power control policy 𝓾: 𝓢 → 𝓐, which 

maximizes an average reward measure defined similarly as 

(12). While in principle, this method can obtain superior 

performance compared to DLTPC, it suffers from both curses 

of dimensionality and modeling, and therefore has no practical 

relevance. However, the reward measure obtained using this 

procedure can serve as an upper bound against which to 

compare the DLTPC’s performance.  

(b) Harvesting rate (HR) assisted scheme [9]: The online-

HR scheme proposed in [9] is a centralized online 

(suboptimal) algorithm for joint relay selection and power 

allocation in multi-relay AaF EH cooperative communication 

systems. However, unlike DLTPC, online-HR assumes infinite 

backlog at the source (saturated traffic assumption), and aims 

at maximizing the throughput. In order to make online 

decisions, the approach in [9] uses the causal information of 

ESI and CSI, but also needs the statistics of the harvesting and 

channel processes. The setup in [9] considers the case where 

the source node is also an EH entity; therefore, in our 

simulation, we remove this restriction and assume a 

continuous power supply for the source to make it comparable 

with DLTPC. At each slot, using the knowledge of mean 

harvesting rate and average channel SNRs, online-HR first 

determines the transmit power of the relays via a closed-form 

formula, and then a simple (centralized) optimization is solved 

to determine the relay with the maximum throughput.  

(c) Naive scheme [9]: This algorithm is also centralized and 

online; however, it does not require the statistics of the 

harvesting and channel processes. At each time slot, the relays 

use their stored energies as their transmit powers. Using these 

transmit powers, the equivalent SNRs for all links are 

calculated. Then, the relay with the maximum equivalent SNR 

among all is selected to forward the signal to destination. 

In what follows, we first compare the computational 

complexity of DLTPC with Online-HR and Online-Naive, and 

then present our numerical results in Section V.B.  

A. Comparison of Computational Complexity  

At each time step, the Online-HR algorithm [9] has to 

compute the maximum system throughput achievable by every 

relay and then select the relay with the best value. Hence, its 

complexity is (𝐾) in each time step (i.e., linear in the number 

of relays). The Online-Naive algorithm has also the 

complexity of 𝑂(𝐾) per time step as it needs to select the relay 

which provides the maximum equivalent SNR among all the 

relays. Both these algorithms are centralized and need to 

gather global information from the whole network for their 

operations. On the other hand, our DLTPC is a particularly 

lightweight algorithm, working with minimal message 

signaling overhead between source and relays (see steps 3 and 

4 in Algorithm 1). The algorithm’s update rules are written in 

terms of efficient recursive formulae, which lead to negligible 

complexity. Also, if the policy function for each relay is 

chosen to have the convenient form in (7), the score function 

at step 5 can simply be calculated as: 

𝜕 ln [𝑢𝜃
𝑘
(𝑎𝑛
𝑘|𝑠𝑛

𝑘)]

𝜕𝜃𝑘
|

𝜃𝑘=𝜃𝑚
𝑘

= 

{
 
 

 
 1 − 𝑢

𝜃𝑘(𝑎|𝑠)|
𝜃𝑘=𝜃𝑚

𝑘
, 𝑎 = 𝑎𝑛

𝑘 , 𝑠 = 𝑠𝑛
𝑘 

−𝑢𝜃
𝑘
(𝑎|𝑠)|

𝜃𝑘=𝜃𝑚
𝑘
,𝑎 ≠ 𝑎𝑛

𝑘 , 𝑠 = 𝑠𝑛
𝑘 

0,𝑠 ≠ 𝑠𝑛
𝑘 

. 

Therefore, at each time step, DLTPC needs just a few 

standard algebraic operations, along with one random number 

generation to calculate the next action. 

B. Numerical Evaluation 

We consider a setup with a total of 𝐾 = 8 relays. The time 

slot duration is 𝜏 = 2ms. We assume Poisson packet arrival 

with mean rate 𝜆 pkt/ms, and the packet size is 1024 bytes. 

The total bandwidth is 𝑊 = 2.5MHz. The source buffer is 

quantized to have 10 states (i.e., 𝑁𝐵 = 9 pkts). Moreover, we 

assume that all relays harvest energy according to a Poisson 

energy arrival with mean rate 𝜇𝑘 = 0.25 energy pkt/ms, ∀𝑘, 

and the renewable energy is stored in a battery with maximum 

capacity 𝑁𝐸
𝑘 = 4 (energy pkts). The source transmission 

power is fixed at 5 (energy pkt/ms). Although our algorithm 

does not use the knowledge of the channel model, for the 

purpose of experiments, we simulate Rayleigh fading for each 

link. In this model, the channel states 𝑐𝑠,𝑘 and 𝑐𝑘,𝑑 (∀𝑘) are 

exponentially distributed random variables. However, as we 

consider a finite number of possible states, digital quantization 

is used to discretize the channel states. In particular, all the 

channel states are quantized into six probability bins with the 

boundaries specified as: {(-∞,-5.41 dB), [-5.41 dB,-1.59 dB), 

[-1.59 dB,-0.08 dB), [-0.08 dB,1.42 dB),   [1.42 dB,3.18 dB), 

[3.18 dB,∞)}. Over these bins, the stochastic evolution of 

channel states is i.i.d. across time and independent across 

users. This discretization of channel states have been justified 

in [40]. We choose ⟨𝑏∗, 𝒄, 𝒆∗⟩ = 〈𝑁𝐵 , . , (𝑁𝐸
𝑘)𝑘〉 as the recurrent 

state marking the renewal cycles for DLTPC. Also, the initial 

learning rate is taken to be 𝛼0 = 2.5 × 10
−4, and is 

diminished every 100 renewal cycles by a factor of 0.9.  

Fig. 2 plots the progression of the average source buffer 

length over time under DLTPC along with the two other 
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suboptimal policies. The mean data arrival rate is fixed at 2.0 

pkt/ms. As can be seen, both the online-HR and online-naive 

schemes converge much more quickly, but are outperformed 

by DLTPC in the limit. In Fig. 3, we plot the policy of all 

relays (for one particular state-action pair) as the joint policy 

is driven towards the local optimal of the PO-IPSG. 

 
Fig. 2.  Progression of average source buffer length. 

 
Fig. 3.  Progression of power control policies. 

Fig. 4 illustrates the average number of occupied slots in 

source buffer under various traffic intensities (𝜆 is varied from 

1 pkt/ms to 2 pkt/ms). As a general trend, the source buffer 

gets more occupied as packet arrival rate increases. As 

expected, the MDP controller has the best performance gain 

among the four schemes. However, compared to the other two 

suboptimal policies, our SBSI-adaptive DLTPC algorithm 

maintains a smaller sub-optimality gap. 

 
Fig. 4.  The impact of input traffic intensity on delay performance. 

Next, we investigate the impact of the relays’ harvesting 

rate 𝜇𝑘 and battery capacity 𝑁𝐸
𝑘 on delay performance. The 

mean Poisson data packet arrival rate is assumed to be 2.0 

pkt/ms. In Fig. 5, we assume that the mean Poisson energy 

arrival rate for all relays is 0.25 energy pkt/ms, and plot the 

average number of occupied slots in source buffer for different 

values of battery size 𝑁𝐸
𝑘 (from 4 to 8 energy pkts). The delay 

performance generally improves as battery capacity increases. 

However, DLTPC and online-HR can better exploit the 

enlarged energy storage with respect to the naive policy.  

 
Fig. 5.  The impact of energy storage capacity on delay performance. 

 
Fig. 6.  The impact of energy harvesting rate on delay performance. 

In Fig. 6, we fix the battery size 𝑁𝐸
𝑘 to 4 energy packets, 

and instead vary the mean Poisson energy arrival rate for all 

relays from 0. 25 to 0.45 energy pkt/ms. As expected, the 

source buffer receives a higher service rate as the relays’ 

harvesting rate increases. In both plots, it is observed that our 

DLTPC algorithm maintains a better performance margin with 

respect to the centralized MDP controller. 

VI. CONCLUSION 

The design of new protocols for cooperative networks with 

energy harvesting (EH) nodes is a promising research 

direction that incorporates cooperative benefits (diversity, 

capacity, etc.) with the energy harvesting concept. In pure EH 

relay systems, the nodes run on the energy harvested from the 

environment, and so are limited by their generation and 

storage capacities. This together with the stochastic nature of 

the profile of the harvested energy calls for the design of novel 

control policies which optimally utilize the power for meeting 



0018-9545 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVT.2016.2610444, IEEE
Transactions on Vehicular Technology

IEEE Transactions on Vehicular Technology 

 

12 

the application demands. However, the majority of the 

existing schemes have considered the case of single-relay 

SRD systems, and have focused on the optimization of the 

physical layer throughput by assuming non-bursty traffic 

arrival at the source. Also, the dominant methodologies for the 

optimization of these systems have been either offline 

optimizations assuming the availability of acausal information 

on the exact energy arrival instants and amounts, or online 

optimizations which rely on precise statistical knowledge of 

the system. In this paper, we considered an EH relaying 

system consisting of a bursty source with finite data buffer 

size whose transmission is cooperatively assisted by multiple 

EH relays. In order to optimize the average delay experienced 

by the source packets, we proposed a learning-theoretic 

solution which operates in the absence of prior knowledge of 

the statistics of the channel variation, traffic arrival and energy 

harvesting processes. The proposed method is highly 

decentralized and induces very low control overhead. 

Numerical evaluations demonstrated the superior delay 

performance of our solution compared to existing heuristics.  

APPENDIX A 

PROOF OF THEOREM 2 

First, note that:  

�̂�(𝒔[𝑛,𝒉∗], 𝒂[𝑛,𝒉∗]) = �̂� (𝑠[𝑛,ℎ∗,𝑘], 𝑎[𝑛,ℎ∗,𝑘]). (29) 

Now, by substituting 𝓾𝚯 = ∏ 𝑢𝜃
𝑖𝐾

𝑖=1  in (20), it holds that: 

𝔼𝓾
𝚯
[ℓ(𝒉∗)]∇𝜃𝑘ℛ̅(𝓾

𝚯) = ∑ ℙ(𝒉∗|𝚯) ×

𝒉∗∈𝓗∗

 

{ ∑ ∇𝜃𝑘 ln [∏𝑢𝜃
𝑖

𝐾

𝑖=1

(𝑎[𝑛,ℎ∗,𝑖]|𝑠[𝑛,ℎ∗,𝑖])] �̂� (𝑠[𝑛,ℎ∗,𝑘], 𝑎[𝑛,ℎ∗,𝑘])

ℓ(ℎ∗,𝑘)−1

𝑛=0

} 

(30) 

= ∑ ℙ(𝒉∗|𝚯) ×

𝒉∗∈𝓗∗

 

{ ∑ [∑∇𝜃𝑘 ln [𝑢
𝜃𝑖 (𝑎[𝑛,ℎ∗,𝑖]|𝑠[𝑛,ℎ∗,𝑖])]

𝐾

𝑖=1

] �̂� (𝑠[𝑛,ℎ∗,𝑘], 𝑎[𝑛,ℎ∗,𝑘])

ℓ(ℎ∗,𝑘)−1

𝑛=0

} 

(31) 

= ∑ ℙ(𝒉∗|𝚯)

𝒉∗∈𝓗∗

× 

{ ∑ ∇𝜃𝑘 ln [𝑢
𝜃𝑘 (𝑎[𝑛,ℎ∗,𝑘]|𝑠[𝑛,ℎ∗,𝑘])] �̂� (𝑠[𝑛,ℎ∗,𝑘], 𝑎[𝑛,ℎ∗,𝑘])

ℓ(ℎ∗,𝑘)−1

𝑛=0

}, 

(32) 

Where the last equality is due to 

∇𝜃𝑘 ln [𝑢
𝜃𝑖 (𝑎[𝑛,ℎ∗,𝑖]|𝑠[𝑛,ℎ∗,𝑖])] = 0 for all 𝑖 ≠ 𝑘. Now, the 

entire term within the curly brackets in (32) can be written as a 

function 𝜙(. ) of relay 𝑘’s local renewal cycle ℎ∗,𝑘; i.e., 

𝜙(ℎ∗,𝑘) ≜

{∑ ∇𝜃𝑘 ln [𝑢
𝜃𝑘 (𝑎[𝑛,ℎ∗,𝑘]|𝑠[𝑛,ℎ∗,𝑘])] �̂� (𝑠[𝑛,ℎ∗,𝑘], 𝑎[𝑛,ℎ∗,𝑘])

ℓ(ℎ∗,𝑘)−1

𝑛=0 }.  

Also, given that the global renewal cycle 𝒉∗ can be described 

as the collection 〈ℎ∗,1, . . , ℎ∗,𝐾〉 of local renewal cycles across 

all relays, we have:  

∑ ℙ(𝒉∗|𝚯)𝜙(ℎ∗,𝑘)

𝒉∗∈𝓗∗

 

= ∑ ℙ(〈ℎ∗,1, … , ℎ∗,𝐾〉|𝚯)𝜙(ℎ∗,𝑘)

〈ℎ1
∗ ,..,ℎ𝐾

∗ 〉∈𝓗∗

 

= ∑ [ ∑ ℙ(〈ℎ∗,1, . . , ℎ∗,𝐾〉|𝚯)

〈ℎ∗,1,…ℎ∗,𝑘−1,ℎ∗,𝑘+1,…,ℎ∗,𝐾〉

] 𝜙(ℎ∗,𝑘)

ℎ𝑘
∗∈ℋ𝑘

∗

 



= ∑ ℙ(ℎ∗,𝑘|𝚯)𝜙(ℎ∗,𝑘)

ℎ∗,𝑘∈ℋ∗,𝑘

. (33) 

Hence, it follows that: 

∇
𝜃𝑘
ℛ̅⃗⃗ ⃗⃗ ⃗⃗  = ∑ ℙ(ℎ∗,𝑘|𝚯) ×

ℎ∗,𝑘∈ℋ∗,𝑘

 

{ ∑ ∇𝜃𝑘 ln [𝑢
𝜃𝑘 (𝑎[𝑛,ℎ∗,𝑘]|𝑠[𝑛,ℎ∗,𝑘])] �̂� (𝑠[𝑛,ℎ∗,𝑘], 𝑎[𝑛,ℎ∗,𝑘])

ℓ(ℎ∗,𝑘)−1

𝑛=0

}. 

(34) 
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