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Abstract—A design methodology based on the minimum error proba-8
bility (MEP) framework is proposed for a nonregenerative multiple-input9
multiple-output relay-aided system. We consider the associated cognitive,10
the parallel, and the multihop source–relay-destination link design based11
on this MEP framework, including the transmit precoder, the amplify-and-12
forward relay matrix, and the receiver equalizer matrix of our system. It13
has been shown in the literature that MEP-based communication systems14
are capable of improving the error probability of other linear counter-15
parts. Our simulation results demonstrate that the proposed scheme in-16
deed achieves a significant bit-error-ratio reduction over the existing linear17
schemes.18

Index Terms—Cognitive, linear minimum mean square error (LMMSE),19
maximization of the capacity (MC), minimum error probability (MEP),20
multiple-input multiple-output (MIMO), relay.21

I. INTRODUCTION22

Multiple-input multiple-output (MIMO) relaying is becoming an23

eminent and integral part of advanced wireless communication sys-24

tems [1], owing to its capability of enhancing the received signal. The25

joint design of the transmitter of the relay and of the destination re-26

ceiver along with the MIMO benefits has attracted tremendous research27

attention [1], [2]. New MIMO-aided relay configurations, namely mul-28

tihop relays, parallel relays, and a relay-aided cognitive, have been29

considered by numerous researchers for tackling a range of challenges,30

including the coverage range extension [3], [4] and the careful choice31

of the best links from the entire set of legitimate links [5].32

Numerous design criteria, such as the mean square error (MSE), the33

maximization of the capacity (MC), and various others, have been used34

for MIMO-aided relaying in the literature. For example, multihop relay-35

ing, which is capable of substantially extending the cellular coverage,36

has been designed relying on the MSE criterion [3], [4]. On the other37

hand, the so-called parallel relay configuration [5], which allows the38

best relay link to be selected from a set of parallel relay links, used the39

MSE criterion for designing the relaying weights. Cognitive communi-40

cations, where the bandwidth is judiciously shared between the primary41

and secondary users, has also been extended to the family of MIMO42

relay-aided systems [6], [7] using the MC criterion. However, a funda-43

mental limitation of these criteria is that they are unable to achieve the44

minimum error probability (MEP), i.e., the lowest bit error ratio (BER)45

in a linear detection framework [8]. Hence, the MEP-based transceiver46
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Fig. 1. Cognitive MIMO-relay system.

design criterion, also known as the minimum BER (MBER) method, 47

is a more pertinent design criterion as far as the BER performance is 48

concerned. Although the benefits of the MEP-based MIMO-relaying 49

system have already been demonstrated in [9] in terms of an SNR gain 50

of up to 3–4 dB, in this treatise, our holistic CF is conceived in the 51

above mentioned scenarios equipped with MIMO configurations for 52

the first time. 53

Against this background, the contributions of this treatise are as 54

follows. We propose to invoke the MEP optimization criterion as our 55

objective function for jointly optimizing the transmit precoder (TPC) at 56

the source, the amplify-and-forward (AF) MIMO weights at the relays, 57

and the equalizer weights at the destination of three different relaying 58

topologies—namely the multihop, the parallel, and the cognitive relay- 59

ing regimes. We develop the MEP-based cost function (CF) for these 60

three network topologies based on the classic quadrature phase-shift 61

keying (QPSK) signal constellation. We opted for the projected steep- 62

est descent (PSD) [10] optimization tool for finding the minimum of 63

the CF. Our numerical simulations demonstrate that this criterion leads 64

to significantly lower BER than its counterparts. 65

Our system model is presented in Section II, followed by the for- 66

mulation of the MEP CF in Section III and by our numerical results in 67

Section IV, before concluding in Section V. 68

II. SYSTEM MODEL 69

In the following, we present the system model of the above- 70

mentioned three topologies, namely the cognitive, parallel, and multi- 71

hop relay configurations separately. 72

A. Cognitive MIMO-Relay Model 73

For the cognitive MIMO relay, we consider a single-hop relaying 74

system consisting of a source node (SN), a relay node (RN), and a 75

destination node (DN) having Ns , Nr , and Nd antennas, respectively, 76

as shown in Fig. 1. Let us assume that the primary user (PU), sharing 77

the same bandwidth and having Np receiver antenna, suffers from 78

interference from RN [6]. Let us denote that Nx is the length of the 79

input vector x ∈ CN x ×1 before the TPC operation at the SN, where 80

As ∈ CN s ×N x is the TPC matrix. We denote Hsr ∈ CN r ×N s , Hr d ∈ 81

CN d ×N r , and Hr p ∈ CN d ×N r as the SN-RN, RN-DN, and SN-PU 82

channel gain matrices, respectively. Let us denote the independent and 83

identically distributed (i.i.d) additive white Gaussian noise vectors at 84

the RN and DN as vr ∈ CN r ×1 and vd ∈ CN d ×1, with the variance of 85

σ2
r and σ2

d for each component, respectively. Thus, the vector received 86

at the RN is given by 87

rr = Hsr AS x + vr . (1)

0018-9545 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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Fig. 2. Parallel MIMO-relay system.

Fig. 3. Multihop MIMO-relay system.

Let us denote the AF matrix by AF ∈ CN r ×N r . The power constraint88

at the RN is calculated as89

Tr
[
AF

(
σ2

xHsr AS AH
S HH

sr + σ2
r IN r

)
AH

F

]
≤ Pr (2)

where Pr is the RN’s transmit power and E{xxH } = σ2
x IN x . We also90

calculate the average interference (Ip ) at the PU as91

T r
[
Hr pAf AH

f HH
rp + ρ1Hr pAf Hsr AsAH

s HH
sr A

H
f HH

rp

]
≤ Ip /σ2

r

(3)
where ρ1 = Ip /σ2

r . Similarly, we obtain the received signal at the DN92

as93

rd = Hr dAF Hsr AS x + Hr dAF vr + vd

� Hx + v (4)

where H � Hr dAF Hsr AS and v � Hr dAF vr + vd , while vd is94

the noise at DN, which has a covariance matrix of σ2
d IN d

. The effective95

noise v has a covariance matrix of Cv = σ2
d IN d

+ Hr dAF AH
F HH

rd .96

An equalizer matrix Wd ∈ CN d ×N x used at the DN would estimate97

the vector x by x̂ = WH
d rd .98

B. Parallel MIMO-Relay Model99

For the parallel MIMO relay, our final design goal is to select the100

best relay link from the set of parallel relay links between the SN and101

the DN, as shown in Fig. 2. We assume that there are K parallel relays102

between the source and destination. Let us denote the channel matrices103

between the SN and the kth relay as well as the kth relay and the104

DN, respectively, by Hk
sr and Hk

r d . Furthermore, we denote the AF105

matrix at the kth RN by AF ,k . The data received at the kth relay after106

multiplication by the AF relaying matrix are given by107

rr,k = AF Hsr,k AS x + AF ,k vr,k (5)

with the power constraint formulated as108

Tr
[
AF ,k

(
σ2

xHsr,k AS AH
S (Hsr,k )H + σ2

r IN r

)]
≤ Pr . (6)

We assume that each link has a maximum power budget of Pr . The109

data received at the DN from the kth relay link are given by110

rd ,k = Hr d ,k AF ,k Hsr,k AS x + Hr d ,k AF ,k vr,k + vd . (7)

C. Multihop MIMO-Relay Model 111

For the multihop MIMO-relay scenario, we assume that there are K 112

recursive single relays, as shown in Fig. 3. For simplicity, we assume 113

having a single source and a DN. The matrices Hr,k ∈ CN r ×N r and 114

AF ,k ∈ CN r ×N r represent the (k − 1)th to kth relay link and the AF 115

relaying matrix of the kth RN, respectively. We impose the power 116

constraint of Pr,k at the kth RN. Hence, the signal received at the kth 117

RN after multiplication by the AF relaying matrix becomes [3], [4] 118

rf ,k =
k∏

i= 1

(Hr,iAF ,i )AS x +
k∑

j= 2

[
k∏

i= 1

(Hr,iAF ,i )vr,j−1

]

+ vr,k .

(8)
Similarly, the signal received at the DN is given by 119

rd = Hr dAF ,K

K −1∏

k= 1

(Hr,iAF ,k )AS x+

Hr d ,K −1AF ,K −1 ×
[

K −1∑

j= 2

[
K −1∏

i= 1

(Hr,iAF ,i )vr,j−1

]

+ vr,K −1

]

+ vd .

� Hx + v (9)

where H and v are defined as follows: 120

H � Hr dAF ,K

K −1∏

k= 1

(Hr,iAF ,i )AS (10)

v � Hr d ,K −1AF ,K −1

×
[

K −1∑

j= 2

[
K −1∏

i= 1

(Hr,iAF ,i )vr,j−1

]

+ vr,K −1

]

+ vd . (11)

The overall covariance matrix is then defined as 121

Cv =
K∑

k= 2

σ2
k

(
K∏

i= k

Hr,iAF ,i

) (
K∏

i= k

Hr,iAF ,i

)H

+ σ2
d IN d

. (12)

We assume that the channel state information (CSI) is required at 122

various nodes as depicted in Table I. We assume that DN and the PU 123

send the CSI to the RN through feedback channel. 124
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TABLE I
REQUIREMENT OF CSI AT VARIOUS NODES FOR THE MEP -CRITERION-BASED

RELAY DESIGN

Link SN RN DN

SN-RN-DN H s r , H r d , H r p H r d

III. MEP CF125

In the current context, the MEP CF directly minimizes the BER126

of the system at the DN. We formulate the MEP CF for the QPSK127

constellation for the sake of conceptual simplicity. Let us denote the128

symbol error ratio (SER) by Pe,i , when detecting xi (the ith component129

of x) at the DN. With a slight “abuse” of notation, we consider the SER130

here instead of BER, since the BER and SER are approximately related131

to each other as SER ≈ log2(M ) × BER in conjunction with gray132

coding. If every xi is detected independently, the average probability133

of a symbol error associated with detecting the complete vector x is134

given by135

Pe =
1

Nx

N x∑

i= 1

Pe,i . (13)

Let us denote wi as the ith column of the DN’s equalizer matrix136

Wd . Assume that L = 2N x represents the total number of unique137

realizations of x, while xj is the jth such realization of x. For the138

Gaussian Q(x) function, we use an approximation, which works well139

for a good range of x. This is given as [11]140

Q(x) = Kc exp
(
−mc x

2

2

)
(14)

where mc is chosen from 1 ≤ x ≤ 2 and Kc is function of mc as141

defined in [11]. If x̂i is the estimate of xi for the QPSK constellation,142

we arrive at the expression of Pe,i in (15) [9]143

Pe,i =
1
2
Ex

⎡

⎣Q

⎛

⎝�
[
(wi )H Hx

]
�{xi}√

1
2 (wi )H Cv wi

⎞

⎠

⎤

⎦

+
1
2
Ex

⎡

⎣Q

⎛

⎝�
[
(wi )H Hx

]
�{xi}√

1
2 (wi )H Cv wi

⎞

⎠

⎤

⎦

=
1
L

L∑

j= 1

Q

⎛

⎝�
[
(wi )H Hxj

]
�{xi}√

1
2 (wi )H Cv wi

⎞

⎠

+
1
L

L∑

j= 1

Q

⎛

⎝�
[
(wi )H Hxj

]
�{xi}√

1
2 (wi )H Cv wi

⎞

⎠

≈ Kc

L

L∑

j= 1

exp
(
−mc a

2
1

2

)
+

1
L

L∑

j= 1

exp
(
−mc a

2
2

2

)
,

where a1 =
�

[
(wi )H Hxj

]
�{xi}√

1
2 (wi )H Cv wi

and a2 =
�

[
(wi )H Hxj

]
�{xi}√

1
2 (wi )H Cv wi

.

(15)

A. Optimization Problem144

We now have to obtain the optimal TPC weights as well as the AF145

and equalizer matrices by optimizing the CF. Hence, for the cognitive146

TABLE II
COMPUTATION COMPLEXITY COMPARISON BETWEEN THE PROPOSED MEP

METHODS (MULTIHOP AND COGNITIVE) WITH EXISTING LMMSE METHOD

Type of Relay Approximate complexity number

Cognitive N itn(3 min(Nd , Nr , Ns )
+2Nd Ns + (22Nr − 2)Nr Nd + 4N 2

d

+Ns (8N 2
d + 17Nd ) + 4Nd Ns Ns

+6Ns 4N x NQ + 18Nr + Ns + 12 + Nd )
Multihop N itn(K (14N 2

r + Ns Nd )
+4Nd Ns Nx + 4Ns N 2

d + 2Ns Nd

+(32K N 3
d + 60K N 2

d − 14Nd )/3
+(8Ns − 2)Nd Ns + (8Nd − 2)Ns Nd

The result is QPSK dataset with K relays.

Fig. 4. Typical complexity comparison between the LMMSE and MEP meth-
ods for multihop relay design, varying the Nd only.

TABLE III
SIMULATION PARAMETERS

Parameter Name Values

Nx , Ns , Nr , Nd , Np 2
Pt 0 dBm,10 dBm
Pr (Each relay link) 5 dBm
Constellation QPSK
SNR1 (Each Relay link) 20, 5 dB
K 4(Parallel), 2(Multihop)

case, the optimization problem can be stated as 147

Amep
S ,Amep

F ,Wmep
d = arg

A S ,AF ,W d

min Pe (AS ,AF ,Wd )

s.t (1) Tr
[
AF

(
σ2

xC
−1
r Hsr AS AH

S HH
sr (C

H
r )−1 + IN r

)
AH

F

]
≤ Pr

(2) σ2
x Tr{AH

S AS } ≤ Pt

(3)T r
[
Hr pAf AH

f HH
rp + ρ1Hr pAf Hsr AsAH

s HH
sr A

H
f HH

rp

]

≤ Ip /σ2
r . (16)



4 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 00, NO. 00, 2016

Fig. 5. BER versus SNR2 performance of the SRD link design for a cognitive MIMO relay based on the MEP method along with the MC method [6] over a
flat Rayleigh fading channel without the channel estimation. Ns , Nr , Nd , Np = 2, Pr is constrained to 5 dBm as shown in Table III. (a) BER performance with
Pt = 10 dBm and SNR1 is kept at 5 dB. (b) BER performance with Pt = 0, 10 dBm.

For the parallel relaying case, this is a two-step process. In the first step,148

we optimize each parallel link independently as per equation similar149

to (16), and then, during the second step, we choose the specific link150

having the lowest value of the CF, i.e., the lowest Pe . For the multihop151

relaying case, the optimization problem is stated as follows:152

Amep
S ,Amep

F ,k ,Wmep
d = arg

A S ,AF , k ,W d

min Pe (AS ,AF ,k Wd )

s.t (1) Tr{AF

(
σ2

xHsr HH
sr + σ2

r IN r

)
AH

F } ≤ Pr,k

(2) σ2
x Tr{AH

S AS } ≤ Pt , (for k = 1, 2, . . . , K.) (17)

In the literature, both gradient and bioinspired solutions [12] have been153

invoked for optimization problems specific to MEP framework [9].154

Here, we have opted for the PSD [10] for solving our constrained op-155

timization problem, because it was found beneficial in [9]. The initial156

condition for all of them is chosen to be the linear minimum mean157

square error (LMMSE) solution except for the cognitive case, where158

an MC-based initial solution is chosen. This is because unless the ma-159

trices involved are strongly rank deficient and hence noninvertible, it160

is reasonable to assume that the MEP solution will be in this neighbor-161

hood [9]. For the case of multihop relaying, even the simplest LMMSE162

solution has no closed-form expression. Hence, in that case, we opted163

for using a random initial condition for the LMMSE case and invoked164

the LMMSE solution for the MEP based one.165

B. Computational Complexity166

Let us now approximate the computational complexity of the relay167

link designs using the MEP CF. We characterize it in terms of the168

number of operations, which can be additions, subtractions, and mul-169

tiplications. The results have been extrapolated from [9]. For the case170

of parallel relaying, the results remain similar to [9], except we need to171

incur an additional cost of O log K for searching the best link. Hence,172

Fig. 6. Capacity comparison for MEP- and MC-based cognitive system with
SNR1 = 20 dB.

we present the complexity results only for the cognitive and for the 173

multihop relaying. 174

Let us assume that NQ represents the approximate number of 175

operations required for computing the Q(·) function, which can 176

be accurately approximated as Taylor series. The computational 177

complexity of the LMMSE solution conceived for the multihop 178

scenario has not been analyzed in the literature. We approxi- 179

mate it as Nitn(K(8Ns − 2)N 2
s + 29Ns + 3 + K(8Nr − 2)N 2

r + 180

2Nr + (8Ns − 2)Nr Ns + (32N 3
s + 60N 2

s − 14Ns )/3 + (8Ns − 2) 181

NdNs + (8Nd − 2)NsNd + 2NsNd + 4N 2
d + (32N 3

d + 60N 2
d − 182
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Fig. 7. BER versus SNR2 performance of the SRD link design for a parallel and a multihop relay systems. The parameters are defined in Table III. (a) BER
versus SNR2 performance of the SRD link design for a 4-parallel MIMO relay based on the MEP method along with the LMMSE method over a flat Rayleigh
fading channel. Ns , Nr , Nd = 2, Pr at each RN is constrained to 5 dBm and SNR1 is 20 dB as shown in Table III. (b) BER versus SNR2 performance of the
SRD link design for a multihop MIMO relay link based on the MEP method along with the LMMSE method over a flat Rayleigh fading channel. Ns , Nr , Nd = 2,
Pr at each RN is constrained to 5 dBm and SNR1 is 20 dB as shown in Table III.

14Nd )/3 + 3 min(Nd , Nr , Ns )2NdNs + K(8Nr − 2)Nr Nd +183

Nd ), where Nitn is the average number of iterations used by our184

optimization method. Note that even the LMMSE solution has185

no closed-form expression for the multihop scenario. Finally, the186

complexity is presented in Table II.187

A typical comparison curve is presented in Fig. 4 for the multihop188

relay design varying Nd .189

IV. NUMERICAL RESULTS190

Let us now study the BER performance of the proposed method191

against LMMSE/MC methods for all the above-mentioned MIMO-192

relay configurations. We consider a nondispersive Rayleigh fading i.i.d193

channel with unit variance for each complex element of the channel194

matrix of the various links. We have used perfect channel for our195

simulation. The RN’s SNR is defined as SNR1 = 10 log10

(
σ 2

x

σ 2
1

)
dB,196

where σ2
x is the power of each xi , which is set to Pt

N x
. The DN’s SNR is197

defined as SNR2 = 10 log10

(
Pr

N r σ 2
2

)
dB. The SNR1 is kept at 20, 5 dB.198

Ip /σ2
r = 1 dB. Our simulation results are averaged over 1000 channel199

realizations per SNR value. We summarize the simulation parameters200

in Table III.201

In this work, we have designed only the SN–RN–DN link of the202

various configurations.203

1) Cognitive relay: This characterizes our cognitive relay link de-204

sign based on the BER performance of the proposed MEP method205

against that of the MC benchmarker [6]. It can be observed206

in Fig. 5(a) (SNR1 = 5 dB) that the MEP method achieves a BER207

of 10−2 at the SNR of ≈ 14.2 dB, whereas its MC counterpart208

achieves the same BER at the SNR of ≈ 16.7 dB. Hence, the MEP-209

based relay design attains an overall SNR gain of about 2.5 dB at210

the BER of 10−2. This gain is further increased for higher SNRs. 211

As expected, the BER performance is poorer for Pt = 0 dBm, as 212

observed in Fig. 5(b). Fig. 6 shows a capacity comparison. We 213

observe that the capacity of the MEP method is poorer as expected. 214

2) Parallel relay: This solution relies on finding the best link from 215

the set of parallel relay links using K = 4. For each link, we have 216

kept the total relay power at 5 dBm. It can be observed in Fig. 7(a) 217

that the MEP method attains the BER of 10−3 at the SNR of about 218

10.2 dB, whereas its LMMSE counterpart achieves the same BER 219

at the SNR of ≈ 13 dB. Hence, the MEP-based relay design attains 220

an overall SNR gain of about ≈ 2.8 dB at the BER of 10−3. 221

3) Multihop relay: Let us now embark on characterizing a multihop 222

MIMO relay link. We opted for Nr = 2 for all the intermediate 223

RNs. We have chosen K = 2, i.e., two serial relay links. For each 224

link, we have kept the total relay power at 5 dBm. It can be observed 225

in Fig. 7(b) that the MEP method attains the BER of 10−3 at the 226

SNR of about 14.5 dB, whereas its LMMSE counterpart achieves 227

the same BER at the SNR of ≈ 18 dB. Hence, the MEP-based relay 228

design attains an overall SNR gain of almost 3.5 dB at the BER of 229

10−3. 230

V. CONCLUSION 231

In this treatise, we have extended the MEP-based framework to the 232

design of various types of relaying configurations. We have considered 233

cognitive, parallel, and multihop relaying. CFs have been developed 234

and optimization frameworks have been conceived. Numerical simula- 235

tions have shown considerable BER performance improvements in all 236

these cases. Future research will have to be focused on reducing the 237

computational complexity. 238
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