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Abstract—In this paper, a spatial multiplexing multiple-input
multiple-output (MIMO) system when hardware along with RF
imperfections occur during the communication setup is analyt-
ically investigated. More specifically, the scenario of hardware
impairments at the transceiver and imperfect channel state
information (CSI) at the receiver is considered, when successive
interference cancellation (SIC) is implemented. Two popular
linear detection schemes are analyzed, namely, zero forcing
SIC (ZF-SIC) and minimum mean-square error SIC (MMSE-
SIC). New analytical expressions for the outage probability of
each SIC stage are provided, when independent and identically
distributed Rayleigh fading channels are considered. In addition,
the well-known error propagation effect between consecutive SIC
stages is analyzed, while closed-form expressions are derived
for some special cases of interest. Finally, useful engineering
insights are manifested, such as the achievable diversity order,
the performance difference between ZF- and MMSE-SIC, and
the impact of imperfect CSI and/or the presence of hardware
impairments to the overall system performance.

Index Terms—Error propagation, hardware impairments,
imperfect channel estimation, minimum mean-square error
(MMSE), outage probability, successive interference cancellation
(SIC), zero forcing (ZF).

I. I NTRODUCTION

SPATIAL multiplexing represents one of the most promi-
nent techniques used for multiple-input multiple-output

(MIMO) transmission systems [1]. In general, both linear
and non-linear (e.g., maximum likelihood) detectors have
been adopted in these systems. For computational savings
at the receiver side, there has been a prime interest in the
class of linear detectors, such as zero-forcing (ZF) and linear
minimum mean-square error (MMSE). It is widely known that
MMSE outperforms ZF, especially in moderately medium-
to-high signal-to-noise ratio (SNR) regions, at the cost ofa
higher computational burden [2]. This occurs because MMSE
computes the noise variance along with the channel esti-
mates, in contrast to ZF which processes only the channel
estimates. Thereby, MMSE appropriately mitigates interfer-
ence and noise, while ZF cancels interference completely but
enhances the noise power at the same time. On the other
hand, a simplified non-linear yet capacity-efficient methodis
the successive interference cancellation (SIC). It is usually
combined with ZF or MMSE to appropriately counterbalance
performance and computational complexity [3].
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Performance assessment of either ZF- or MMSE-SIC has
been extensively reported in the technical literature to date
(e.g., see [2]-[13] and references therein). Nevertheless, all
the previous studies assumed perfect channel state information
(CSI) at the receiver and/or a non-impaired hardware at the
transceiver; an ideal and a rather overoptimistic scenariofor
practical applications. More specifically, the hardware gear
of wireless transceivers may be subject to impairments, such
as I/Q imbalance, phase noise, and high power amplifier
non-linearities [14], [15]. These impairments are typically
mitigated with the aid of certain compensation algorithms at
the transceiver. Nevertheless, inadequate compensation mainly
due to the imperfect parameter estimation and/or time variation
of the hardware characteristics may result to residual im-
pairments, which are added to the transmitted/received signal
[14]. Moreover, an erroneous CSI may occur due to imperfect
feedback signaling and/or rapid channel variations. It can
cause crosstalk interference (see [16] and [17] for explicit
details on this effect) within the SIC process, while it can affect
the detection ordering [11]. It is noteworthy that an analytical
performance assessment of ZF- and/or MMSE-SIC under the
aforementionednon-ideal communication setup (i.e., impaired
hardware at the transceiver and imperfect CSI) has not been
reported in the open technical literature so far.

Capitalizing on the above observations, current work
presents a unified analytical performance study of ZF- and
MMSE-SIC for non-ideal transmission systems. The ideal
(traditional) scenario is also considered as a special case.
Particularly, the ordered ZF-SIC scheme is considered, where
the suboptimal yet computational efficient Foschini ordering is
adopted (i.e., strongest stream is detected first, while weakest
stream is detected last, upon the ZF equalization). It should
be mentioned that the norm-based Foschini ordering requires
only m(m + 1)/2 − 1 comparisons, withm denoting the
number of transmit antennas. This represents a remarkable
computational gain over the optimal ordering, which operates
over an exhaustive search ofm! combinations. Interestingly,
it was recently demonstrated that Foschini ordering coincides
with the optimal one, in the case when the transmission rate is
uniformly allocated among the transmitters [4]. Additionally,
the scenario of MMSE-SIC with a fixed-ordering is analyti-
cally presented and studied, which can serve as a benchmark
for the more sophisticated ordered MMSE-SIC scheme.

The contributions of this work are summarized as follows:
• New closed-form expressions for the outage probability

for both the ordered ZF-SIC and unordered MMSE-SIC
schemes are derived. These expressions are reduced to the
corresponding conventional outage probabilities, when
ideal systems are assumed with perfect CSI and without
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hardware impairments at the transceiver.
• The well-known error propagation effect between con-

secutive SIC steps is analyzed for the general scenario.
Relevant closed-form expressions are provided for some
special cases of interest.

• A new MMSE linear filter is presented when the variances
of noise, hardware impairments and imperfect CSI are
known. Based on this filter, a substantial performance
gain of MMSE-SIC over ZF-SIC is observed.

• Simplified expressions in the asymptotically high SNR
regime are obtained, revealing useful engineering in-
sights, achievable diversity order and impact of non-
ideal communication conditions to the overall system
performance.

The rest of this paper is organized as follows: In Section
II, the system model is presented in detail. New analytical
performance results with respect to the outage probability
of ZF- and MMSE-SIC are derived in Sections III and IV,
respectively, while relevant asymptotic approximations are
provided in Section V. The error propagation effect is analyzed
in Section VI. Moreover, numerical results are presented in
Section VII, while Section VIII concludes the paper.

Notation: Vectors and matrices are represented by lowercase
bold typeface and uppercase bold typeface letters, respectively.
Also, [X]ij , denotes the element in theith row andjth column
of X, (X)−1 is the inverse ofX and xi denotes theith
coefficient ofx. The superscript(.)H denotes Hermitian trans-
position and|.| represents absolute (scalar) value. In addition,
Iv stands for thev× v identity matrix,E[.] is the expectation

operator,
d
= represents equality in probability distributions,

Pr[.] returns probability, whileo(.) is the Landau symbol (i.e.,
f(x) = o(g(x)), when f(x)/g(x) → 0 as x → ∞). Also,
fX(.) andFX(.) represent probability density function (PDF)
and cumulative distribution function (CDF) of the random
variable (RV)X , respectively. Complex-valued Gaussian RVs
with meanµ and varianceσ2, while chi-squared RVs withv
degrees-of-freedom are denoted, respectively, asCN (µ, σ2)
and X 2

2v. Furthermore,Γ(a) , (a − 1)! (with a ∈ N+)
denotes the Gamma function [18, Eq. (8.310.1)],B(a, b) ,

Γ(a)Γ(b)/Γ(a + b) is the Beta function [18, Eq. (8.384.1)]
andU(a, b, x) ,

∫∞
0 exp(−xt)ta−1(t+1)b−a−1/Γ(a)dt (with

{a, x} > 0) corresponds to the Tricomi confluent hypergeo-
metric function [18, Eq. (9.211.4)].

II. SYSTEM MODEL

Consider a point-to-point MIMO system where the trans-
mitter and receiver sides are equipped withm andn ≥ m an-
tennas, respectively. The input-output relation of the received
signal stems as [19]

y = H (s+ nT ) + nR + w, (1)

where y ∈ Cn×1, s ∈ Cm×1 and w ∈ Cn×1 denote the
received, the transmit and the circularly symmetric Gaussian
noise signal vectors, respectively. In addition,nT ∈ Cm×1 and
nR ∈ C

n×1 correspond to the distortion noise due to residual
hardware impairments at the transmitter and receiver, respec-

tively.1 Moreover,H ∈ Cn×m is the channel matrix, while as-
suming that the coefficients ofH d

= CN (0, 1), i.e., a Rayleigh
flat fading scenario. Also,E[wwH] = N0In, whereN0 is the
noise power, whileE[ssH] = pIm is assumed, wherep denotes
the transmitted power per antenna. Typically,nT and nR are
Gaussian distributed (see, e.g., [19] and references therein),
i.e., nT

d
= CN (0, pκ2

T Im) andnR
d
= CN (0, pκ2

RmIn), where
κT and κR denote the level of residual impairments2 at the
transmitter and receiver, respectively. It is noteworthy that
the variance of residual impairments is proportional to the
transmission power per antenna [19, Eqs. (7) and (8)]. Also,
the last two terms of (1), i.e.,nR + w, denote the total post-
noise added onto the received signal, which can be modeled
asCN (0, (pκ2

Rm+N0)In).
In the ideal scenario where{κT , κR} = 0 (i.e., no hardware

impairments), (1) is reduced to the conventional MIMO signal
relation, given by

y = Hs+ w.

Further, in the rather realistic scenario when imperfect CSI
occurs, the estimated channel at the receiver is given by

Ĥ , H+∆H, (2)

where Ĥ is the estimated channel matrix,∆H ∈ Cn×m

stands for the channel estimation error matrix, while the
coefficients of∆H

d
= CN (0, ω) with ω representing the

channel estimation error variance [11]. Also,H and∆H are
statistically independent [21].

In the following, we turn our focus on two quite popular
linear detection schemes, namely, ZF and MMSE. These
schemes, combined with SIC, are extensively used in spatial
multiplexing transmissions [3].

A. ZF-SIC

In principle, ZF-SIC enables spatial multiplexing trans-
mission, i.e., it can distinguish the received streams from
different users and/or antennas with the aid of spatial structures
(individual spatial signatures) of the signals to be detected
[24]. It is performed in three main steps, namely, thesymbol
ordering that aims to enhance the overall reception perfor-
mance, theinterference nulling via ZF from the yet-to-be
detected symbols, and theinterference cancellation from the
already detected symbols. These steps are performed in a
number of consecutive stages, until all given symbols are
successfully decoded.

The interference nulling can be efficiently implemented by
applying the QR decomposition on a given channel matrix,
which is widely adopted in ZF equalizers, since it provides
computational complexity savings [25]. Let̂Q be a n × n
unitary matrix (with its columns representing the orthonormal

1This distortion noise denotes theaggregation of many residual im-
pairments when compensation algorithms are applied to mitigate the main
hardware impairments [20].

2In practical systems,κT is equivalent to the error vector magnitude [22],
which is defined as the ratio of distortion-to-signal magnitude, and can be
measured directly with the aid of [23]. As an indicative example, typical
values ofκT in LTE infrastructures [22] lie in the range of [0.08, 0.175].
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ZF nulling vectors) and̂R ann×m upper triangular matrix,
givenĤ. Accordingly,Q andR correspond to the true channel
matrix H. It follows from (2) that

Q̂R̂ = QR+∆H

⇔ Q̂H = (QRR̂−1)H + (R̂−1)H∆HH. (3)

Hence,Q̂Hy is performed at the receiver, yielding

Q̂Hy = Q̂H (QR (s+ nT ) + nR + w)

=
(

(QRR̂−1)H + (R̂−1)H∆HH
)

QR (s+ nT )

+ Q̂HnR + Q̂Hw. (4)

Interestingly, it has been demonstrated in [11, Eq. (30)] and
[16, Eq. (16)] thatR̂ ≈ R, whereas the resultant approxima-
tion error can be considered negligible in terms of distributions
[11]. Also, note that the latter approximations become exact
equalities in the case when perfect CSI is available. Thereby,
(4) can be reformed as

Q̂Hy ≈
(

In + (R−1)H∆HHQ
)

R (s+ nT ) + Q̂HnR + Q̂Hw.

(5)

Thus, the sequential signal decoding, which involves the
decision feedback, is given by

for i = m : −1 : 1

ŝi = Q





(

Q̂Hy
)

i
−∑m

j=i+1 r̂ij ŝj

r̂ii





≈ Q





(

Q̂Hy
)

i
−∑m

j=i+1 rij ŝj

rii





end

where ŝi is the estimated symbol of theith detected stream,
r̂ij (or rij ) is the coefficient at theith row andjth column of
R̂ (or R) andQ[.] stands for the slicing operator mapping to
the nearest point in the symbol constellation.

Therefore, based on the unitary invariant property of
Gaussian vectors (i.e., isotropic distribution [26, Theorem
1.5.5]), the signal-to-interference-plus-noise-and-distortion ra-
tio (SINDR) of theith decoding layer3 for ZF-SIC is expressed
as

SINDRi

≈ pr2ii

pr2
ii
κ2
T
+p
∑

m
j=1

∣

∣

∣((R−1)H∆HHQR)
ij

∣

∣

∣

2
(1+κ2

T
)+pκ2

R
m+N0

.

(6)

Notice that in the ideal scenario of perfect CSI and no hard-
ware impairments, (6) becomes the classical SNR expression
of the ith layer, since SNRi = pr2ii/N0 [6].

3The forward decoding is adopted into this work and, therefore, the first
SIC stage corresponds to the last decoding layer of the processing matrix
(from the left to the right). Similarly, theith decoding layer corresponds to
the (m − i + 1)th SIC stage. Note that the termsdecoding layer and SIC
stage will be interchangeably used in the rest of this paper.

B. MMSE-SIC

Unlike ZF-SIC, the more sophisticated MMSE-SIC detector
achieves an optimal balance between interference suppression
and noise enhancement. To this end, it requires the knowledge
(or estimation) of the noise variance and, thus, it represents the
optimal linear detection scheme [27, App. A]. Since the main
difference between ZF- and MMSE-SIC is in the equalization
process, we retain our focus on the discussion of the typical
MMSE, while the description of the more advanced MMSE-
SIC is provided subsequently.

The conventional MMSE (non-SIC) detector strives to min-
imize the mean-square error (MSE) of thejth transmitted
stream, i.e.,s(j), as follows

MSE(j) = E

[

∣

∣

∣s(j) − (g(j))Hŷ

∣

∣

∣

2
]

, 1 ≤ j ≤ m, (7)

whereg(j) is the optimal weight vector and̂y denotes the
post-detection received signal, subject to channel estimation
imperfections and hardware impairments of the transceiver.
To facilitate the analysis, we can formulateŷ as the classical
MIMO model

y = Hs+w′, (8)

wherew′ , (H+∆H)nT +∆Hs+nR+w with a (colored)
noise covariance matrix given by [19, Eq. (9)]

E[w′w′H] = pκ2
T (H+∆H) (H+∆H)

H

+ p∆H (∆H)
H
+ (pκ2

Rm+N0)In. (9)

Due to the scaling property of Gaussian RVs [28, Chapt. 3],
while keeping in mind the independence betweenH and∆H,
it holds thatE[(∆H)(∆H)H] = ωE[HHH]. Hence, after
some simple manipulations, the noise covariance matrix can
be expressed more concisely as

E[w′w′H] = (pκ2
T (ω + 1) + pω)HHH + (pκ2

Rm+N0)In.
(10)

Based on (7), it can be seen that (see Appendix A for details)

g(j) = p
(

pHHH + E[w′w′H]
)−1

hj

=
(

HHH (κ2
T (ω+1)+ω+1) +

(

κ2
Rm+

N0
p

)

In
)−1

hj , (11)

whereas, after some straightforward manipulations (see Ap-
pendix A), the total SINDR of thejth stream is obtained as
[29, Eq. (5)]

SINDR(j) =

1
(κ2

R
m+N0/p)

hH
j

(

HHH (κ2
T (ω+1)+ω+1)

(κ2
R
m+N0/p)

+ In

)−1

hj

1− (2
√
ω+1)−1

(κ2
R
m+N0/p)

hH
j

(

HHH (κ2
T
(ω+1)+ω+1)

(κ2
R
m+N0/p)

+ In

)−1

hj

.

(12)

Based on Woodbury’s identity [30, Eq. (2.1.4)], (12) reads also
as

SINDR(j) =
C(j)

1− C(j)

2
√
ω+1

, (13)



4

where

C(j) ,
1

(κ2
T (ω + 1) + ω + 1)

×
hH
j

(

KjK
H
j +

(κ2
Rm+N0/p)

(κ2
T
(ω+1)+ω+1)

In

)−1

hj

1 + hH
j

(

KjK
H
j +

(κ2
R
m+N0/p)

(κ2
T
(ω+1)+ω+1)

In

)−1

hj

,

and Kj , [h1 · · ·hj−1 hj+1 · · ·hm]. The form of (13)
is preferable than (12) for further analysis, becausehj and
Kj are statistically independent. Also, in ideal conditions of
perfect CSI and no hardware impairments, (13) is reduced
to the classical signal-to-interference-plus-noise ratio (SINR)
expression of MMSE detectors [7, Eqs. (11) and (13)]

SINR(j) = hH
j

(

KjK
H
j +

N0

p
In

)−1

hj . (14)

On the other hand, when MMSE-SIC is applied to the
receiver, the corresponding SINDR of theith SIC step (1 ≤
i < m) can be expressed as

SINDRi =
Ĉ(i)

1− Ĉ(i)

2
√
ω+1

, (15)

where Ĉ(i) is the same asC(i), but replacingKi with K̂i ∈
Cn×(m−i), which is the remaining (deflated) version ofKi

with its (i− 1) columns being removed. This occurs because
MMSE-SIC at theith SIC stage is equivalent to the classical
MMSE detector with the previous (i − 1) symbols already
detected.

Further, in the last SIC stage wherei = m, it can be seen
that (see Appendix A)

SINDRm =
1

(κ2
Rm+N0/p)

× hH
m

(

hmhH
m

(κ2
T (ω + 1) + ω)

(κ2
Rm+N0/p)

+ In

)−1

hm,

(16)

since no inter-stream interference is experienced at the last
SIC stage.4

III. PERFORMANCEANALYSIS OF THE ORDEREDZF-SIC

In this section, closed-form formulae with regards to the
outage performance of the ordered ZF-SIC for each transmit-
ted stream are provided. We start from the general scenario,
when both CSI errors and hardware impairments are present,
followed by some simplified special cases of interest.

A. General Case

We commence by deriving the CDF of the SINDR for each
transmitted stream, which represents the corresponding outage
probability, as follows.

Pr[SINDRi ≤ γth] ⇔
4In fact, (16) represents the optimal combining scheme in interference-free

environments. In other words, it coincides with the maximalratio combining
(MRC) scheme, when imperfect CSI and hardware-impaired transceivers are
present. Notice that when{ω, κT , κR} = 0, (16) is reduced to the classical
SNR expression of MRC.

Pr

[

pr2ii ≤
(

p
(

κ2
T + 1

)

Yi + pκ2
Rm+N0

)

γth

(1− κ2
Tγth)

]

, (17)

where γth denotes the predetermined SINDR
outage threshold, while the auxiliary variable
Yi ,

∑m
j=1 |((R−1)H∆HHQR)ij |2 is introduced for

notational convenience. Notice that the conditionκ2
T < 1/γth

should be satisfied, which is typically the case in most
practical applications. Thus, it holds that

P
(i)
out (γth) , FSINDRi

(γth) ≈

1− Pr

[

pr2ii ≥
(

p
(

κ2
T + 1

)

Yi + pκ2
Rm+N0

)

γth

(1− κ2
Tγth)

]

, (18)

whereP (i)
out (.) denotes the outage probability for theith stream.

To proceed, we have to determine the distributions of the
mutually independent RVs, namely,Yi andpr2ii.

Lemma 1: The PDF ofYi, fYi
(.), yields as

fYi
(x) =

xm−1 exp
(

− x
ω

)

Γ(m)ωm
, ∀i, 1 ≤ i ≤ m. (19)

Proof: From [11], while conditioning onR, in a similar
manner as in [31, Eq. (11)],Yi

d
= ω

2 Gi, whereGi
d
= X 2

2m.
Based on the scaling property of RVs (i.e.,fZ=cX(z) =
fX(z/c)/c for c ≥ 0), the result in (19) is obtained.

On the other hand,fpr2
ii
(.) depends on the precise ordering

that is adopted. In current study, the classical Foschini (norm-
based) ordering is investigated, where the strongest stream
is decoded first while the weakest stream is decoded last. It
was recently demonstrated that the Foschini ordering coincides
with the optimal ordering in the case when the transmission
rate is uniformly allocated among the transmitters [4].

Lemma 2: In the case when Foschini ordering is applied,
fpr2

ii
(.) is given by

fpr2
ii
(x) = Ξi x

ξi exp

(

− (m+ l − i+ 1)x

p

)

, (20)

where

Ξi ,

i−2
∑

j=0

i−1
∑

l=0

m+l−i
∑

ρ1=0

ρ1
∑

ρ2=0

· · ·
ρn−2
∑

ρn−1=0

i+φ−j−2
∑

r=0

(i + φ− j − 2)!

×
n−1
∏

t=1

[

(−1)j+l
(

i−2
j

)(

i−1
l

)

(ρt−1 − ρt)!(t!)ρt−ρt+1

]

pi−j−r−n−1

r!ρn−1!(n− 1)!

× (m+ l − i)!(m+ l − i+ 1)−(i+φ−j−r−1)

B(n− i+ 1, i− 1)B(m− i+ 1, i)
, i > 1, (21)

or

Ξ1 ,

m−1
∑

ρ1=0

ρ1
∑

ρ2=0

· · ·
ρn−2
∑

ρn−1=0

m!

ρn−1!pn+φ(n− 1)!

×
n−1
∏

t=1

[

1

(ρt−1 − ρt)!(t!)ρt−ρt+1

]

, i = 1, (22)

while ξi , n + r + j − i (for i > 1), ξ1 , n + φ − 1,
ρ0 , m + l − i for i > 1 or ρ0 , j for i = 1, ρn , 0, and
φ ,

∑n−1
q=1 ρq. In general,m + l − i is substituted withj in

the case ofi = 1.
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Proof: The detailed proof is relegated in [5].
In the simplified scenario of fixed symbol ordering (i.e.,

no ordering),fpr2
ii
(.)

d
= X 2

2(n−i+1) [8]. Thereby, in this case,

Ξi , 1/(Γ(n− i+ 1)pn−i+1) andξi , n− i for 1 ≤ i ≤ m,
while exp(−(m + l − i + 1)x/p) in (20) is replaced with
exp(−x/p).

We are now in a position to formulate the outage probability
for the ordered ZF-SIC as follows:

Theorem 1: Outage probability for theith decoding layer is
obtained in closed-form as

P
(i)
out (γth) ≈ 1−Ψi

µ
∑

v=0

(

µ
v

) (

pκ2
Rm+N0

)µ−v (
p
(

κ2
T + 1

))v

Γ(m)ωm(1− κ2
Tγth)µ

×
γµ

th Γ(v +m) exp
(

− (m+l−i+1)γth(pκ
2
Rm+N0)

p(1−κ2
T
γth)

)

(

(m+l−i+1)γth(κ2
T
+1)

(1−γthκ2
T
)

+ 1
ω

)v+m ,

(23)

where

Ψi , Ξi

ξi
∑

µ=0

ξi!

µ!
(

m+l−i+1
p

)ξi−µ+1
.

Proof: The proof is provided in Appendix B.
It is noteworthy that the derived result includes finite sum

series of simple elementary functions and factorials and, thus,
can be efficiently and rapidly calculated.5

B. Imperfect CSI without hardware impairments

In this case, the system suffers from imperfect CSI, which
in turn reflects to channel estimation errors, but it is equipped
with ideal hardware. The corresponding outage probabilityof
each stream is directly obtained from (23), by settingκT =
κR = 0.

C. Perfect CSI with hardware impairments

This scenario corresponds to the case when channel is
correctly estimated (e.g., via pilot or feedback signaling), but
the transmitted and/or received signal is impaired due to low-
cost hardware equipment at the transceivers.

Proposition 1: The exact closed-form outage probability of
the ith stream under perfect CSI conditions with hardware
impairments is expressed as

P
(i)
out (γth) =1−Ψi

(

(

pκ2
Rm+N0

)

γth

(1− κ2
Tγth)

)µ

× exp

(

− (m+ l− i+ 1)
(

pκ2
Rm+N0

)

γth

p (1− κ2
T γth)

)

.

(24)

Proof: The proof is given in Appendix C.

5At this point, it should be mentioned that the auxiliary parametersΞi and
Ψi include the required multiple nested sum series, while theyare introduced
for notational simplicity and presentation compactness.

IV. PERFORMANCEANALYSIS OF MMSE-SIC WITH

FIXED ORDERING

A closed-form expression for the PDF/CDF of SINDR with
regards to the ordered MMSE-SIC is not available so far.
To this end, we retain our focus on the unordered (fixed)
MMSE-SIC scenario in this section, which can be used as
a benchmark and/or as a lower performance bound for the
more sophisticated ordered MMSE-SIC scheme.

Theorem 2: Outage probability of theith SIC stage, when
1 ≤ i < m, is derived in a closed-form as given by (25) and
for themth SIC stage as

P
(m)
out (γth) = 1− exp



−

(

κ2
Rm+ N0

p

)

γth

(1− (κ2
T (ω + 1) + ω)γth)





×
n−1
∑

k=0

(

(κ2
Rm+

N0
p )γth

(1−(κ2
T
(ω+1)+ω)γth)

)k

k!
. (26)

Proof: The proof is provided in Appendix D.
In general,γth < 1

(κ2
T
(ω+1)+ω)

should hold for the evalua-
tion of every SIC stage (see Appendix D for details). When the
latter condition is not satisfied, an outage occurs with prob-
ability one. As previously mentioned, typicallyκT ≤ 0.175
[22]. Moreover, practical values ofω could not exceed30%
(i.e., ω ≤ 0.3), because higher values of channel estimation
error reflect to a rather catastrophic reception [11], [21].
Thereby, based on the latter extreme values,γth < 4.27dB is
required. Equivalently, sinceγth , 2R − 1 (whereR denotes
a target transmission rate),R < 1.88bps/Hz is required for a
feasible communication. Nonetheless, higherγth values can be
admitted for more relaxed CSI imperfections and/or hardware
impairments, while there is no constraint in the ideal scenario.

Moreover, notice that the special cases of non-impaired
hardware or perfect CSI are directly obtained by setting
κT = κR = 0 or ω = 0 in (25) and (26), respectively.

Corollary 1: The ideal scenario of non-impaired hardware at
the transceiver and perfect CSI conditions corresponds to the
typical MMSE-SIC outage probability for theith SIC stage
(when1 ≤ i < m), given by

P
(i)
out (γth) = 1− exp

(

−N0γth

p

)

[

n
∑

k1=1

(

N0γth

p

)k1−1

(k1 − 1)!

−
n
∑

k2=n−m+i+1

m−i
∑

j=n−k2+1

(

m−i
j

)

(

N0

p

)k2−1

γk2+j−1
th

(k2 − 1)! (1 + γth)
m−i

]

,

(27)

while for themth SIC stage is expressed as

P
(m)
out (γth) = 1− exp

(

−N0γth

p

) n−1
∑

k=0

(

N0γth

p

)k

k!
, (28)

which coincides with the outage probability of the conven-
tional MRC, as it should be.
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P
(i)
out (γth) =

1− exp



−

(

κ2
Rm+ N0

p

)

γth

1 + γth (1− (κ2
T (ω + 1) + ω + 1))





















n
∑

k1=1

1

(k1 − 1)!





(

κ2
Rm+ N0

p

)

γth

1 + γth (1− (κ2
T (ω + 1) + ω + 1))





k1−1

−
n
∑

k2=n−m+i+1

m−i
∑

j=n−k2+1

(

m−i
j

)

(

(κ2
Rm+

N0
p )

(κ2
T
(ω+1)+ω+1)

)k2−1







γth

γth

(

(2
√

ω+1)−1

(κ2
T

(ω+1)+ω+1)
−1

)

+ 1

(κ2
T

(ω+1)+ω+1)







k2+j−1

(k2 − 1)!






1 +







γth

γth

(

(2
√

ω+1)−1

(κ2
T

(ω+1)+ω+1)
−1

)

+ 1

(κ2
T

(ω+1)+ω+1)













m−i

















(25)

V. A SYMPTOTIC ANALYSIS

Although the previous formulae are presented in closed
formulations, it is rather difficult to reveal useful insights,
straightforwardly. Therefore, in this section, outage probability
is analyzed in the asymptotically high SINDR regime. Thus,
more amenable expressions are manifested, while important
outcomes regarding the influence of imperfect CSI and hard-
ware impairments are obtained.

A. Ordered ZF-SIC

1) General Case: The following proposition presents a
sharp outage floor for the general scenario of erroneous CSI
under hardware impairments.

Proposition 2: When p
N0

→ ∞, outage performance reaches
to a floor, given by

P
(i)
out| p

N0
→∞(γth)

=
m(m− i + 1)1−i

(i − 1)!(m− i)!(n− i+ 1)!(1− γthκ2
T )

n−i+1

×
n−i+1
∑

k=0

(

n− i+ 1

k

)

(κ2
Rm)n−i−k+1(κ2

T + 1)kωkΓ(m+ k)

× (N0γth)
n−i+1 + o

(

(

p

N0

)−(n−i+1)
)

(29)

=
(m−i+1)1−i(κ2

Rm)n+m−i+1(N0γth)
n−i+1(ω(κ2

T+1))−mm!

(i−1)!(m−i)!(n−i+1)!(1−γthκ2
T
)n−i+1

× U
(

m,n+m− i+ 2,
κ2
Rm

ω(κ2
T
+1)

)

+ o

(

(

p
N0

)−(n−i+1)
)

.

(30)

Proof: The proof is provided in Appendix E.
2) Imperfect CSI without hardware impairments: The fol-

lowing corollary describes this simplified scenario.

Corollary 2: Asymptotic outage floor in the case of imperfect
CSI but with ideal transceiver equipment is expressed as

P
(i)

out| p
N0

→∞(γth) = (n+m− i)!

× m(m− i+ 1)1−i(γthω)
n−i+1

(i − 1)!(m− i)!(n− i+ 1)!
+ o

(

(

p

N0

)−(n−i+1)
)

.

(31)

Proof: In the absence of hardware impairments, it holds
that P (i)

out| p
N0

→∞(γth) =
∫∞
0 Fpr2

ii
(pγthy)fYi

(y)dy. Evaluating

the latter integral with the aid of (E.1) yields (31).
3) Perfect CSI with hardware impairments: In this case,

the following corollary describes the corresponding asymptotic
outage performance.

Corollary 3: Asymptotic outage performance is derived as

P
(i)

out| p
N0

→∞(γth) =
m!(m− i+ 1)1−i

(i− 1)!(m− i)!(n− i+ 1)!

×
(

γthκ
2
Rm

(1− γthκ2
T )

)n−i+1

+ o

(

(

p

N0

)−(n−i+1)
)

. (32)

Proof: Utilizing (C.2) and (E.1), (32) can be readily
obtained.

B. MMSE-SIC with Fixed Ordering

1) General Case: The following proposition presents an
outage floor for the general scenario of erroneous CSI under
hardware impairments.

Proposition 3: When p
N0

→ ∞, outage probability of theith
SIC stage reaches to a floor, which is given by (25) and (26),
when1 ≤ i < m and i = m, respectively, by neglecting the
N0/p term.

The special cases of channel estimation error without
hardware impairments or vice versa are obtained by setting
κT = κR = 0 or ω = 0, respectively.

Most importantly, the system scenario with ideal (non-
impaired) hardware at the receiver provides full diversityorder
(i.e., n−m+ i), regardless of the presence of imperfect CSI
or the amount of hardware impairments at the transmitter. The
following proposition explicitly describes this effect.

Proposition 4: Asymptotic outage probability of theith SIC
stage in the presence of imperfect CSI and when hardware
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impairments occur only at the transmitter reads as

P
(i)
out| p

N0
→∞(γth) =

(

N0

p(κ2
T
(ω+1)+ω+1)

)n−m+i

(n−m+ i)!
×







γth

γth

(

(2
√

ω+1)−1

(κ2
T

(ω+1)+ω+1)
−1

)

+ 1

(κ2
T

(ω+1)+ω+1)







n






1 +







γth

γth

(

(2
√

ω+1)−1

(κ2
T

(ω+1)+ω+1)
−1

)

+ 1

(κ2
T

(ω+1)+ω+1)













m−i

+ o

(

(

p

N0

)−(n−m+i)
)

, (33)

and for themth SIC stage as

P
(m)

out| p
N0

→∞(γth) =

(
(

N0γth
p

)

(1−(κ2
T
(ω+1)+ω)γth)

)n

n!
+ o

(

(

p

N0

)−n
)

.

(34)

Proof: The proof is provided in Appendix F.
Notice that when{ω, κT} = 0, (33) and (34) reflect the

corresponding asymptotic outage expressions for the ideal
MMSE-SIC receivers.

Collecting all the aforementioned asymptotic results, a
number of conclusions can be drawn and, hence, the following
remarks are outlined.

Remark 1: When hardware impairments and/or imperfect CSI
are present, outage performance reaches to an upper bound
(i.e., outage floor), regardless of the adopted equalization
technique (ZF or MMSE). This is explicitly indicated in (30),
(31) and (32) for ZF-SIC and in (25) and (26) for MMSE-SIC.
Therefore, there is no feasible diversity order in this case.

Remark 2: Diversity order manifests itself, only in the case
of MMSE-SIC and when there is a non-impaired receiver,
regardless of the presence of hardware impairments at the
transmitter and/or imperfect CSI at the receiver. This is in-
dicated in (33) and (34), where both expressions tend to zero
as p/N0 → ∞ (by noticing the existence of theN0/p term
within these expressions). Particularly, the diversity order in
this case isn− i+1 with respect to theith decoding layer or
n−m+ i with respect to theith SIC stage.

It can be easily seen that the latter remark indicates no
difference in the diversity order of the considered MMSE-SIC
and the classical MMSE-SIC of an ideal communication setup
(see, e.g., [32]). Apparently, performance difference between
these two scenarios appears to the underlying coding (array)
gains. Observe that ZF-SIC does not achieve diversity order,
even when hardware impairments occur only at the transmitter.
This effect occurs due to the fact that ZF, in principle,
operates by fully eliminating interference but enhancing the
noise at the same time. When noise power is proportional
to the transmission power, then it unavoidably reflects to
the aforementioned outage floor. Such observations could be
quite useful for system designers of various MIMO practical

applications. As an indicative example, it is preferable to
enable higher quality hardware gear for the antennas of the
receiver rather than the transmitter. When such a condition
occurs, the performance difference of MMSE-SIC over ZF-
SIC is emphatically increased for larger SINDR regions. Yet,
in order to achieve this performance gain, the variances of
channel estimation error and hardware impairments at the
transceiver are required, i.e., see the linear filter in (11).

VI. ERROR PROPAGATION EFFECT

One of the most important degradation factors of SIC-
based reception is the well-known error propagation effect.
To date, it has been studied mainly numerically (e.g., see [3]
and references therein) and semi-analytically [11] in terms
of integral or bound expressions. The limited scenario of
m = 2 was analytically studied in [12], but the derived
expressions were in terms of infinite series representations. In
this section, error propagation is analyzed with regards tothe
average symbol error probability (ASEP). A formula including
numerical verifications is presented for the general case, while
closed-form expressions are obtained for some special cases
of interest.

ASEP of theith decoding layer, namely ASEPi, explicitly
reads as

ASEPi , Pr[ǫi|ǫm]Pr[ǫm]

+ Pr[ǫi|ǫm−1 ∩ ǫcm]Pr[ǫm−1 ∩ ǫcm] + · · ·

+ Pr

[

ǫi|ǫi+1 ∩
(

m
⋂

l=i+2

ǫcl

)]

× Pr

[

ǫi+1 ∩
(

m
⋂

l=i+2

ǫcl

)]

+ Pr

[

ǫi|
m
⋂

l=i+1

ǫcl

]

Pr

[

m
⋂

l=i+1

ǫcl

]

=

(

1− 1

M

) m
∑

t=i

Pr

[

ǫt|
m
⋂

l=t+1

ǫcl

]

Pr

[

m
⋂

l=t+1

ǫcl

]

,

(35)

whereǫi denotes an error event at theith decoding layer,ǫci
is the complement ofǫi, while M represents the number of
modulation states. Also, the second equality of (35) arisesby
assuming that an earlier error (with probability one) results in
a uniform distribution over the constellation for a subsequent
symbol decision (equal-power constellation).

Hence, ASEP describing the overall behavior of the system,
namelyASEP, is given by

ASEP=
1

m

∑

i

ASEPi

=

(

1− 1
M
)

m

m
∑

t=1

tP st

m
∏

l=t+1

(

1− P sl

)

, (36)

whereP si , Pr
[

ǫi|
⋂m

l=i+1(1 − ǫl)
]

is the conditional ASEP
at theith decoding layer given that there are no errors in prior
layers.



8

Thereby, findingP si represents a key issue to prescribe the
total ASEP. It holds that [33]

P si ,
A
√
B

2
√
π

∫ Z

0

exp(−Bx)√
x

P
(i)
out (x)dx, (37)

whereZ = 1/κ2
T for ZF-SIC, whileZ = 1/(κ2

R(ω +1)+ω)
for MMSE-SIC. Note thatZ → +∞, in ideal conditions of
both schemes. Also,A andB are specific constants that define
the modulation type [34].

Unfortunately, there is no straightforward closed-form solu-
tion for P si for the general case of ZF-SIC and MMSE-SIC,
which is based on (23), (25) and (26), to our knowledge. Thus,
P si and ASEP can be resolved only via numerical methods.
Still, the involvement of a single numerical integration ismuch
more efficient than classical simulation methods (e.g., Monte-
Carlo). In the following, some certain scenarios of special
interest admit a closed formulation ofP si , which in turn
provide a corresponding solution toASEP.

A. Ordered ZF-SIC

Proposition 5: The closed-form expression forP si in the
presence of channel estimation errors, an impaired receiver
and an ideal transmitter is derived as

P si ≈
A
2

[

1−
√

B
π
Ψi

µ
∑

v=0

(

µ

v

)

(v +m− 1)!

× pv(pκ2
Rm+N0)

µ−vΓ(µ+ 1
2 )

Γ(m)ωµ+ 1
2−v(m+ l − i+ 1)µ+

1
2

× U
(

µ+ 1
2 , µ+ 3

2 − v −m,
(pκ2

Rm+N0)
pω + B

ω(m+l−i+1)

)

]

.

(38)

Proof: Plugging (23) in (37), settingκT = 0, while
utilizing [35, Eq. (2.3.6.9)], gives (38).

Notice that although (38) is involved with a special function
(i.e., Tricomi confluent hypergeometric function), it is ina
form of finite sum series, whereas is included as standard built-
in function in several popular mathematical software packages.
Hence, this expression can be easily and efficiently calculated.6

B. MMSE-SIC with Fixed Ordering

Proposition 6: P si , for the ith SIC stage (1 ≤ i < m), in the
presence of perfect CSI, a non-impaired transmitter, and an
impaired receiver is expressed as

P si =
A
2















1−
√

B
π

[

n
∑

k1=1

Γ(k1 − 1
2 )
(

κ2
Rm+ N0

p

)k1−1

(k1 − 1)!
(

κ2
Rm+ N0

p + B
)k1− 1

2

−
n
∑

k2=n−m+i+1

m−i
∑

j=n−k2+1

(

m− i

j

)(

κ2
Rm+

N0

p

)k2−1

6The asymptotic ASEP expressions could be easily extracted,by following
the same methodology as in the previous section. Yet, they have omitted herein
since they present very similar insights as the previously derived asymptotic
outage probabilities.
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× Γ (k2+j− 1
2 )

(k2 − 1)!
U
(

k2+j− 1
2 ,k2+j+i−m+ 1

2 ,B+κ2
Rm+

N0
p

)

]















.

(39)

Proof: By invoking (25) in (37), setting{κT , ω} = 0,
while utilizing [35, Eq. (2.3.6.9)], (39) is obtained.

For i = m, in the last SIC stage, the expression of (26) does
not admit a closed formulation of ASEP. However, it can be
numerically calculated quite easily by using (26) in (37) over
the valid integration range{0, 1

(κ2
T
(ω+1)+ω)

}.

VII. N UMERICAL RESULTS

In this section, analytical results are presented and cross-
compared with Monte-Carlo simulations. There is a good
match between all the analytical and the respective simulation
results and, hence, the accuracy of the proposed approach is
verified. Note that in Figs. 1 and 2, for ease of tractability
and without loss of generality, we assume symmetric levels of
impairments at the transceiver, i.e., an equal hardware quality
at the transmitter and receiver. To this end, letκT = κR , κ.

In Fig. 1, the outage performance for the 1st stage of
the ordered ZF- and unordered MMSE-SIC is presented
for various system settings/conditions. There is an emphatic
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performance difference between the two schemes in all the
considered cases, despite the fact that no optimal orderingis
used in MMSE-SIC. This observation verifies the superiority
of MMSE against ZF detectors in non-ideal communication
setups. In addition, it is obvious that CSI imperfection impacts
the performance of ZF-SIC in greater scale than hardware
impairments. When this imperfection is more relaxed, the
performance gap between the two extreme hardware impair-
ment scenarios starts to grow. This occurs because ZF, fun-
damentally, relies on channel estimation accuracy to achieve
performance gains, counteracting the unavoidable noise en-
hancement. Thereby, CSI imperfection dramatically affects its
performance in comparison to the (noise-oriented) hardware
imperfection. Interestingly, this does not comply with MMSE-
SIC, whereas quite the opposite condition holds. This is
consistent with Remark 2. Also, the traditional MMSE-SIC
scheme (taking into consideration only the channel gains
and N0) is included for performance comparison reasons.
The performance gain of the presented MMSE-SIC over its
traditional counterpart is straightforward.

Figure 2 depicts the ordered and unordered outage per-
formance of ZF-SIC in ideal and non-ideal communication
setups. Obviously, diversity order is manifested only in the
former case, while an outage floor is presented in the latter
case. This is consistent with Remark 1. It is also noteworthy
that the diversity order remains unaffected from the ordering
strategy, in accordance to [36]. Moreover, the superiorityof
the ordered 1st SIC stage against the corresponding unordered
stage can be clearly seen. This is the price of performing opti-
mal detection ordering. Furthermore, an important observation
from the non-ideal scenario is the fact that the 2nd stage has
worse performance as compared to the 1st stage of the ordered
ZF-SIC in the entire SNR region. This should not be confusing
since the 2nd stage of the ordered SIC has always the worst
SNR, whereas this is not the case for the unordered SIC (on
average). It seems that less interference (at the 2nd stage)is
not enough to counteract the presence of channel imperfection
severity and impaired hardware and, hence, to outperform 1st
stage. This is in contrast to the traditional (ideal) SIC receivers,
where the 1st SIC stage influences more drastically the overall
system performance, representing a lower outage performance
bound [12], [9]. Figure 3 highlights the important outcome of
Remark 2 in non-ideal communication systems. Specifically,
it can be seen that when hardware impairments occur only
at the transmitter side, MMSE-SIC maintains its diversity
order, while ZF-SIC introduces an outage floor, confirming the
previous analysis. Also, in dense multi-stream transmissions
(i.e., whenm = 6), outage performance of ZF-SIC is rather
inefficient in comparison to MMSE-SIC.

ASEP of the 1st MMSE-SIC stage is presented in Fig.
4 for various settings, using (37). Again, it is verified that
providing a higher-cost/higher-quality hardware gear at the
receiver side is a much more fruitful option. Finally, Fig. 5
presents the overall ASEP using (36), for the two considered
SIC schemes. All the results for the ZF-SIC are obtained using
(38). In addition, the corresponding results of MMSE-SIC for
the scenarios with imperfect and perfect CSI are obtained via
numerical integration (as in Fig. 4) and using (39), respec-
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tively. Considering all the above, both the outage and error
rate numerical results confirm the theoretical framework, while
the following important outcomes are summarized: a) In the
case of ZF-SIC, hardware impairments at the transmitter are
as crucial (proportionally) as the impairments at the receiver;
b) in ZF-SIC schemes, CSI imperfection influences more the
performance than hardware impairments; c) MMSE-SIC ap-
propriately counterbalance the impact of CSI imperfectionand
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the amount of impaired hardware; d) whenκR = 0, MMSE-
SIC maintains diversity order and, thus, there is an emphatic
performance gain over ZF-SIC, especially in medium-to-high
SNR regions.

VIII. C ONCLUSIONS

Successive decoding of multiple individual streams was
thoroughly investigated under practical communication sce-
narios. Particularly, ZF-SIC detection/decoding with symbol
ordering and MMSE-SIC with fixed ordering were studied for
hardware-impaired transceivers and when CSI is imperfectly
provided at the receiver side. The analysis included i.i.d.
Rayleigh multipath fading channels. New analytical and quite
simple (in terms of computational complexity) expressions
regarding the outage probability for each SIC stage were
obtained. In addition, a general formula indicating the error
rate performance with regards to the error propagation effect
is provided. Moreover, it was indicated that MMSE-SIC out-
performs ZF-SIC in non-ideal communication systems in spite
of utilizing no optimal ordering. In addition, an unavoidable
performance floor is introduced in the general scenario for
both schemes, while diversity order is maintained in MMSE-
SIC only when an ideal hardware equipment is enabled at the
receiver.

APPENDIX

A. Derivation of (11), (12) and (16)

From (7), we have that

MSE(j)

= (g(j))HCg(j) − p(g(j))Hhj − phH
j g(j) + p

=
(

(g(j))H − phH
j C−1

)

C
(

(g(j))H − phH
j C−1

)H

+ p− p2hH
j C−1hH

j , (A.1)

where C , E[yyH] = pHHH + E[w′w′H]. Since only
the first term of (A.1) depends ong(j), the optimal solution
that minimizes MSE isg(j) = pC−1hj and, hence, (11) is
obtained.

At the receiver,(g(j))Hy is performed, yielding

zj = (g(j))Hy = βjsj + ηj ,

where βj , (g(j))Hhj and ηj ,
∑

l 6=j(g
(j))Hhlsl +

(g(j))Hw′. Then, the variance ofηj is computed as

E[ηjη
H
j ] = p(2

√
ω + 1)(g(j))HKjK

H
j g(j) + (g(j))HHHH

× (pκ2
T (ω + 1) + pω)g(j) + (g(j))H(pκ2

Rm+N0)g
(j)

= p(2
√
ω + 1)(g(j))HKjK

H
j g(j) + (g(j))HHHH

× (pκ2
T (ω + 1) + pω)g(j) + (g(j))H(pκ2

Rm+N0)g
(j)

+
p

2
√
ω + 1

((g(j))Hhj)
2 − p

2
√
ω + 1

((g(j))Hhj)
2

= p(g(j))H
(

HHH (κ2
T (ω + 1) + ω + 1

)

+

(

κ2
Rm+

N0

p

)

In

)

g(j) − p

2
√
ω + 1

β2
j

= p

(

βj −
1

2
√
ω + 1

β2
j

)

, (A.2)

whereKj , [h1 · · ·hj−1 hj+1 · · ·hm]. Thus, the SINDR of
the jth stream is given by

SINDR(j) =
pβ2

j

E[ηjηHj ]
=

βj

1− βj

2
√
ω+1

, 0 < βj < 1,

and thus we arrive at (12).
At the MMSE-SIC receiver, the corresponding SINDR

expression is presented in (15) for theith SIC stage, when
i < m (i.e., except the final SIC stage). At the last SIC stage,
wheni = m, there is no residual interference caused by other
streams. Following the same methodology as in (A.2), we have
that

E[ηmηHm] = p(g(m))H

×
(

hhH (κ2
T (ω + 1) + ω

)

+

(

κ2
Rm+

N0

p

)

In

)

g(m),

(A.3)

while the corresponding SINDR stems in (16).

B. Derivation of (23)

Based on (20) and utilizing [18, Eq. (3.351.2)], we have
that

Pr
[

pr2ii ≥ z
]

=

∫ ∞

z

fpr2
ii
(x)dx

= Ψiz
µ exp

(

− (m+ l − i+ 1)z

p

)

. (B.1)

Thus, based on (18), the unconditional CDF of SINDR for the
ith decoding layer is expressed as

FSINDRi
(γth) ≈

∫ ∞

0

Fpr2
ii
|Yi

(

(p(κ2
T+1)y+pκ2

Rm+N0)γth

(1−κ2
T
γth)

∣

∣

∣

∣

y

)

fYi
(y)dy, (B.2)

whereFX|Y (.) denotes the conditional CDF ofX given Y .
Then, plugging (18) and (19) into (B.2), using the binomial
expansion [18, Eq. (1.111)] and the integral identity [18, Eq.
(3.351.3)], (23) is easily derived after some straightforward
manipulations.

C. Derivation of (24)

Referring back to (5) and neglecting the∆H term, (6)
becomes

SNDRi =
pr2ii

pr2iiκ
2
T + pκ2

Rm+N0
, (C.1)

where SNDR stands for the signal-to-noise-plus-distortion
ratio. Hence, following similar lines of reasoning as for the
derivation of (18), the (unconditional) CDF of SNDR yields
as

FSNDRi
(γth) = 1− Pr

[

pr2ii ≥
(

pκ2
Rm+N0

)

γth

(1− κ2
Tγth)

]

. (C.2)
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Using (B.1) in (C.2), we have that

FSNDRi
(γth) = 1−Ψi

(

(

pκ2
Rm+N0

)

γth

(1− κ2
Tγth)

)µ

× exp

(

− (m+ l − i+ 1)
(

pκ2
Rm+N0

)

γth

p (1− κ2
Tγth)

)

.

(C.3)

Finally, recognizing thatP (i)
out (γth) , FSNDRi

(γth), the proof is
completed.

D. Derivation of (25) and (26)

Recall thatP (i)
out (γth) , FSINDRi

(γth). Also, observe from
(15) that for theith SIC stage (1 ≤ i < m), we have that

Pr[SINDRi ≤ γth] =

Pr

[

Φi ≤
γth

γth

(

(2
√
ω+1)−1

(κ2
T
(ω+1)+ω+1

− 1
)

+ 1
(κ2

T
(ω+1)+ω+1

]

,

(D.1)

whereΦi , hH
i (K̂iK̂i

H
+

(κ2
Rm+N0/p)

(κ2
T
(ω+1)+ω+1)

In)
−1hi. In order

for (D.1) to be a valid CDF,γth < 1/(κ2
T (ω + 1) + ω) is

required. Otherwise, Pr[SINDRi ≤ γth] = 1.
Fortunately, based on the pioneer work in [37, Eq. (11)],

and some further elaborations on this result (e.g., see [38,Eq.
(6)] and [39, Eq. (61)]), CDF ofΦi yields as

FΦi
(x) = 1− exp

(

− (κ2
Rm+N0/p)x

(κ2
T (ω + 1) + ω + 1)

)

×
n
∑

k=1

Ak(x)
(

(κ2
Rm+N0/p)x

(κ2
T
(ω+1)+ω+1)

)k−1

(k − 1)!
, (D.2)

where

Ak(x) =











1, n ≥ m+ k − i,

1+
∑n−k

j=1 (m−i
j )xj

(1+x)m , n < m+ k − i.

Nonetheless, (D.2) is quite cumbersome and it is not amenable
for further analysis. Due to this, we slightly modify it in order
to derive a more convenient formation. Noticing thatn ≥ m,
using (D.1), and the fact that

1 +
∑n−k

j=1

(

m−i
j

)

xj

(1 + x)
m−i = 1−

∑m−i
j=n−k+1

(

m−i
j

)

xj

(1 + x)
m−i ,

we arrive at (25), after some simple manipulations.
At the last SIC stage (i = m), based on (16), it holds that

SINDRm
d
=

(

1
(κ2

R
m+N0/p)

Y
)

(

(κ2
T
(ω+1))+ω

(κ2
R
m+N0/p)

Y + 1
) , (D.3)

whereY ,
∑n

l=1 |hl|2. This is due to the fact thathmhH
m

(which produces a rank-one column matrix) andhH
mhm share

the same single nonzero eigenvalue, defined asλ. Note that

λ
d
= Y d

= X 2
2n [40]. Thereby, CDF of SINDRm is expressed

as

FSINDRm
(γth) = Pr[SINDRm ≤ γth]

= FY





γth
(

1−(κ2
T
(ω+1)+ω)γth

(κ2
R
m+N0/p)

)



 , (D.4)

Hence, we can reach (26), after some straightforward manip-
ulations. Note that1 − (κ2

T (ω + 1) + ω)γth > 0 should hold
in (D.4) to be a valid CDF.

E. Derivation of (30)

From [5, Eq. (33)], while assuming thatpN0
→ ∞, Fpr2

ii
(.)

reads as

Fpr2
ii
| p
N0

→∞(x) =

m!(m− i+ 1)1−i
(

N0x
p

)n−i+1

(i − 1)!(m− i)!(n− i+ 1)!
+ o

(

(

p

N0

)−(n−i+1)
)

.

(E.1)

Further, based on (B.2), it is obvious that

FSINDRi| p
N0

→∞(γth)

=

∫ ∞

0

m(m− i+ 1)1−i
(

N0γth((κ
2
T+1)y+κ2

Rm)

1−γthκ2
T

)n−i+1

(i− 1)!(m− i)!(n− i+ 1)!ωm

× ym−1 exp
(

− y

ω

)

dy + o

(

(

p

N0

)−(n−i+1)
)

. (E.2)

Thus, after performing the binomial expansion [18, Eq.
(1.111)] and some straightforward manipulations to (E.2),(30)
arises.

F. Derivation of (33) and (34)

Setting κR = 0 and p
N0

→ ∞ in (25), it turns out that
only the first summation term significantly impacts the overall
outage performance, whereas all other terms approach zero.
Thus, settingk1 = 1, k2 = n − m + i + 1 and j = m − i,
while using the Maclaurin series of the exponential function
yields (33).

At the last SIC stage, (26) can alternatively be expressed as

P
(m)
out (γth) = exp

(

− N0γth/p

(1− (κ2
T (ω + 1) + ω) γth)

)

×
∞
∑

k=n

(

N0γth/p

(1−(κ2
T
(ω+1)+ω)γth)

)k

k!
.

By retaining only the first summation term (i.e.,k = n), the
final expressions can be extracted.
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