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Abstract—For a general energy harvesting (EH) communica-
tion network, i.e., a network where the nodes generate their
transmit power through EH, we derive the asymptotically optimal
online power allocation solution which optimizes a generalutility
function when the number of transmit time slots, N , and the
battery capacities of the EH nodes,Bmax, satisfy N → ∞ and
Bmax → ∞. The considered family of utility functions is general
enough to include the most important performance measures
in communication theory such as the average data rate, outage
probability, average bit error probability, and average signal-
to-noise ratio. The proposed power allocation solution is very
simple. Namely, the asymptotically optimal power allocation for
the EH network is identical to the optimal power allocation
for an equivalent non-EH network whose nodes have infinite
energy available but their average transmit power is constrained
to be equal to the average harvested power and/or the maximum
average transmit power of the corresponding nodes in the
EH network. Moreover, the maximum average performance
of a general EH network converges to the maximum average
performance of the corresponding equivalent non-EH network,
whenN → ∞ andBmax → ∞. Although the proposed solution is
asymptotic in nature, it is applicable to EH systems transmitting
in a large but finite number of time slots and having a battery
capacity much larger than the average harvested power and/or
the maximum average transmit power.

I. I NTRODUCTION

Energy harvesting (EH) transmitters collect random
amounts of energy and store them in their batteries. For this
purpose, several techniques for harvesting energy from various
renewable sources, such as pressure, motion, solar, etc., have
been proposed, see [2], [3], [4], and references therein. Using
the stored harvested energy, EH transmitters send codewords
(or uncoded symbols) to their designated receivers. To this
end, the codewords’ powers have to be adapted to the random
amounts of harvested energy and also to the quality of the
channels between the EH transmitters and their designated
receivers, which may be time-varying due to fading. Excellent
overviews of recent advances in EH technology are provided
in [5], [6], [7].

In the literature, there are two approaches for solving the
EH power allocation problem. The aim of the first approach
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is to obtain the optimalonline solution. Online solutions re-
quire only causal energy and channel state information (CSI),
therefore, they are feasible in practice. However, for finite
numbers of transmit time slots, the optimal online solution
often cannot be computed even for simple communication
channels, such as the point-to-point channel. This is due to
the fact that computing the optimal online solution typically
involves dynamic programing [8], [9]. The computational
complexity of dynamic programing, even for the simple point-
to-point channel, grows exponentially with the number of
transmit time slots, and therefore, cannot be computed even
for small-to-moderate numbers of codewords [8]. As a result,
the second approach whose objective is to obtain the optimal
offlinesolution is often adopted in the literature [8], [9]. Offline
solutions require non-causal energy and CSI, therefore, they
are not feasible in practice. Nevertheless, offline solutions may
still serve as performance upper bounds for the performance
of any online solution.

In the literature, in general, the optimal offline solution
is studied for a specific system model, e.g., the point-to-
point channel, the broadcast channel, etc., and a specific
performance measure, most often the achievable data rate
[8]-[23] and seldom other performance measures such as the
outage probability [24], [25]. Hence, the proposed solutions
and the framework for deriving these solutions are usually
applicable to the specific considered system model and the
specific considered performance measure only, and cannot be
easily generalized to different system models and/or different
performance measures. For example, the optimal offline power
allocation which maximizes the achievable data rate has been
investigated for the point-to-point channel in [8]-[10], for the
broadcast channel in [11]-[15], for the multiple-access channel
in [16]-[18], and for the relay channel in [19]-[23]. The outage
probability for the point-to-point EH channel has been inves-
tigated in [24] and [25]. The above references make different
assumptions about the battery capacities and the numbers of
transmit time slots, namely, they assume finite and/or infinite
battery capacities and finite and/or infinite numbers of transmit
time slots. On the other hand, in the cases where optimal online
solutions are provided, the solutions are based on dynamic
programing and thus, can not be computed even for small-to-
moderate numbers of transmit time slots, see for example [8],
or they are derived for infinite numbers of transmit time slots
and infinite battery capacities and are applicable to a specific
model and specific performance measure only, see for example
[26].

Hence, as seen from the discussion above, optimal online
solutions for a general EH networkwhich maximize some
average performance measure, such as the average data rate,
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the outage probability, the average bit error probability,and the
average signal-to-noise ratio (SNR), are not known. Motivated
by this, the objective of this paper is to develop a framework
for obtaining the optimal online power allocation solution
which maximizes some predefined utility function of ageneral
EH communication network. The admissible utility functions
are general enough to include the most important average
performance measures in communication theory, including
the average data rate, outage probability, average bit error
probability, and average SNR. The developed framework is
asymptotic and holds when the number of transmit time slots,
N , and the battery capacity,Bmax, at each EH node in the
network are infinite. Based on the developed framework the
optimal online solution for a general EH network with a
general utility function is relatively easy to obtain. Namely, the
optimal online power allocation for the EH network is given by
the optimal online power allocation for an equivalent non-EH
network where each node has infinite available energy, under
the constraint that each node in the non-EH network employs
the same average transmit power as the corresponding node
in the EH network. As a consequence, the maximum average
performance of the EH network converges to the maximum
average performance of the corresponding equivalent non-
EH network, asN → ∞ and Bmax → ∞. Hence, the EH
network suffers no average performance loss compared to the
equivalent non-EH network. Therefore, in the asymptotic case,
instead of finding the optimal power allocation for the EH
network, it is sufficient to find the optimal power allocation
for the corresponding equivalent non-EH network and apply
it to the EH network.

The practical value of the developed framework is that it
gives an average performance upper bound for any online
power allocation in general EH networks with finiteN and/or
Bmax. Furthermore, in practice, the proposed online solution
is applicable to EH networks transmitting in a large but finite
number of time slots and having nodes with battery capacities
much larger than their average harvested powers and/or the
maximum average transmit powers.

In order to introduce the proposed framework for general
EH networks step-by-step, we first present a corresponding
framework for the point-to-point EH system in Section II.
Then, we generalize the framework to the broadcast and
multiple-access EH networks in Section III. Finally, in Sec-
tion IV, we further generalize the framework to general EH
networks. In Section V, we illustrate the applicability of
the developed framework through numerical examples, and
Section VI concludes the paper.

II. T HE POINT-TO-POINT EH SYSTEM

In the following, we consider the point-to-point EH com-
munication system and formulate the corresponding power
allocation problem. Then, we define an equivalent point-to-
point non-EH system which differs from the EH system only
in the energy available for transmission of the codewords. For
both systems, the transmission time is divided into slots of

equal length, each codeword1 spans one time slot, and the
power allocation has to be performed in a slot-by-slot (i.e.,
codeword-by-codeword) manner. Furthermore, the number of
transmit time slots,N , satisfiesN → ∞. We note that all
of the assumptions and definitions that we introduce for the
EH transmitter in the point-to-point EH system are also valid
for the individual EH transmitters in the more complex EH
networks considered in Sections III and IV.

A. Point-to-Point EH System Model

We consider an EH transmitter which harvests random
amounts of energy in each time slot and stores them in its
battery. It uses the energy stored in its battery to transmit
codewords to a receiver. Let the capacity of the battery,
denoted byBmax, be unlimited, i.e.,Bmax → ∞ holds. Let
B(i) denote the amount of power2 available in the battery at
the end of time sloti. Let the amount of harvested power
that is added to the battery storage in time sloti be denoted
by Pin(i). We assume thatPin(i) is a stationary and ergodic
random process with averagēPin given by

P̄in = lim
N→∞

1

N

N
∑

i=1

Pin(i) = E{Pin(i)}, (1)

where E{·} denotes expectation, and the converges of the
mean in (1) is almost surely.

In order to formulate the optimal power allocation solution,
in the following, we introduce the desired amount of power
that the EH transmitter wants to extract from the battery in
time sloti, denoted byPd(i), which satisfies0 ≤ Pd(i) < ∞,
∀i. Note that, in contrast to a non-EH system, in an EH system,
the desired amount of power that we want to extract from the
battery in time sloti and the actual amount of power that
can be extracted from the battery in time sloti may not be
identical. In particular, we may desire more power than what
is currently available in the battery. LetPout(i) denote the
actual amount of power extracted from the battery in time slot
i and used for transmission of thei-th codeword. Then, the
relation betweenPd(i) andPout(i) is given by

Pout(i) = min{B(i− 1), Pd(i)}, (2)

i.e., the power extracted from the battery at time sloti,
Pout(i), is limited by the desired amount of power that the
EH transmitter wants to extract from the battery,Pd(i), and
the amount of power stored in the battery at the end of the
previous time slot,B(i − 1). Obviously,Pout(i) ≤ Pd(i), ∀i,
always holds. Considering the harvested power,Pin(i), and
the extracted power,Pout(i), the amount of power stored in
the battery at the end of time sloti is given by

B(i) = B(i − 1) + Pin(i)− Pout(i). (3)

SincePin(i) is a stationary and ergodic random process, and
as a result of the law of conservation of flow in the battery, the

1For the case when one symbol spans one time slot and the power allocation
has to be performed in a symbol-by-symbol manner, we will replace the word
”codeword” by the word ”symbol”.

2In this paper, we adopt the normalized energy unit Joule-per-second. As
a result, we use the terms ”energy” and ”power” interchangeably.
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time average ofPout(i) converges to a finite number, which
we call the average transmit power, denoted byP̄out, given by

P̄out = lim
N→∞

1

N

N
∑

i=1

Pout(i)

= lim
N→∞

1

N

N
∑

i=1

min{B(i− 1), Pd(i)}. (4)

Note thatP̄out depends onPin(i) andPd(i), ∀i. On the other
hand, the average desired power that the EH transmitter wants
to extract from the battery, denoted bȳPd, is given by

P̄d = lim
N→∞

1

N

N
∑

i=1

Pd(i), (5)

where we assume that thePd(i), ∀i, are such that the limit in
(5) holds. Note that̄Pout ≤ P̄d as a result of (4).

In communication systems, typically constraints are im-
posed on the transmit powerPout(i) and/or the average
transmit powerP̄out. Considering these constraints, letP̄lim

denote the upper limit on the average transmit powerP̄out for
the EH transmitter such that̄Pout ≤ P̄lim has to hold. Note
that if there are no constraints imposed onPout(i) and P̄out,
then P̄lim can be set toP̄lim = ∞. We now introduce the
considered class of utility functions.

Definition 1: The utility function, denoted byU(i), is asso-
ciated with thei-th codeword. It is a predefined function that
measures some desired quality of thei-th codeword. Further-
more, the consideredU(i) have the following properties.

1. U(i) depends on the transmit powerPout(i). To empha-
size this dependence we use the notationU(Pout(i)).

2. U(Pout(i)) is finite for finitePout(i), i.e., |U(Pout(i))| <
∞ for Pout(i) < ∞.

3. The time average ofU(Pout(i)) exists, it has a finite value
denoted byŪ , and is given by

Ū = lim
N→∞

1

N

N
∑

i=1

U(Pout(i)). (6)

4. If we add a negligible amount of powerǫ(i) > 0 to
Pout(i), ∀i, where lim

N→∞

1
N

∑N
i=1 ǫ(i) = 0 holds, thenŪ

satisfies

Ū = lim
N→∞

1

N

N
∑

i=1

U(Pout(i) + ǫ(i))

= lim
N→∞

1

N

N
∑

i=1

U(Pout(i)), (7)

i.e., adding zero average power cannot have a non-
negligible effect onŪ .

5. The maximum ofŪ cannot decrease if the average
transmit powerP̄out increases. More precisely,

max
Pout,1(i)

lim
N→∞

1

N

N
∑

i=1

U(Pout,1(i))

≤ max
Pout,2(i)

lim
N→∞

1

N

N
∑

i=1

U(Pout,2(i)) (8)

holds for

lim
N→∞

1

N

N
∑

i=1

Pout,1(i) ≤ lim
N→∞

1

N

N
∑

i=1

Pout,2(i). (9)

Remark 1:Given the above properties of the utility function
U(Pout(i)), valid utility functions include the data rate of
the i-th codeword, the average SNR of thei-th codeword
at the receiver, the outage probability of thei-th codeword,
and the symbol (bit) error probability of thei-th symbol (bit)
for uncoded transmission. Hence, our definition ofU(Pout(i))
includes the most important performance metrics in commu-
nication theory.

Remark 2:For simplicity of notation, we have assumed that
Ū is maximized. However, similar results can be obtained if
Ū needs to be minimized.

Considering how we have modeled the powers in the EH
system, the desired powersPd(i), ∀i, are the only variables
with a degree of freedom, sincePout(i) is a function ofPin(j)
and Pd(j), for j = 1, ..., i. Given a limit on the average
transmit power,P̄lim, we want to devise an optimal power
allocation strategy that maximizes the average utility function
Ū . More precisely, we want to determine the optimal desired
powersPd(i) ∈ P , ∀i, whereP is the domain ofPd(i) given
by 0 ≤ Pd(i) < ∞, which produce a correspondingPout(i),
∀i, such thatP̄out ≤ P̄lim holds and the average utility function
Ū is maximized. We state this rigorously in the following
maximization problem:

Maximize :
Pd(i)∈P,∀i

lim
N→∞

1
N

∑N
i=1 U(i)

Subject to : C1 : Pout(i) = min{B(i− 1), Pd(i)}
C2 : P̄out ≤ P̄lim

C3 : Optional constraints onPd(i)
C4 : B(i) = B(i − 1) + Pin(i)− Pout(i),

(10)

where we assume thatPin(i) is known causally at the EH
transmitter. More precisely, the amount of harvested power
during thei-th time slot is revealed at the EH transmitter at the
end of thei-th time slot. Furthermore, C3 represents optional
constraints onPd(i), if any. For example, C3 may constrain
Pd(i) to be constant for all time slots, or not to exceed some
upper limit, or to be zero in certain time slots. We assume that
the constraints onPd(i), ∀i, if they exist, are such that they
allow P̄d = P̄lim to be achievable. Otherwise, if̄Pd = P̄lim is
not achievable, then instead of̄Plim in (10) we can introduce
another upper limit on the average transmit power, denoted by
P̄lim,new, which is the maximum possiblēPd allowed by C3.
Then,P̄d = P̄lim,new is achievable and we just need to replace
P̄lim in C3 with P̄lim,new

3.
Remark 3:Note that there is a difference betweenP̄d and

P̄lim. P̄d is a design parameter of the communication system
that the designer can choose and optimize such that the
optimal power allocation is obtained. On the other hand,
P̄lim is a constraint of the communication system that the
system designer cannot influence. Instead, the system designer
has to optimize the power allocation such that the constraint
P̄out ≤ P̄lim is satisfied.

3We note that the assumption that̄Pd = P̄lim is achievable will be used
for all individual EH transmitters considered in this paper.
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Our objective is to solve (10), i.e., to obtain the desired
powersPd(i) ∈ P , ∀i, which produce transmit powersPout(i),
∀i, that maximize the average utility function̄U and satisfy
all of the corresponding constraints. To this end, we introduce
a non-EH communication system having infinite energy avail-
able for transmission of the codewords that is equivalent tothe
EH system. This non-EH system is defined in the following
subsection.

B. Equivalent Point-to-Point non-EH System

The equivalent point-to-point non-EH system is identical to
the EH system, defined in Section II-A, but with the following
two differences. First, the non-EH system has infinite4 power
available for the transmission of each of its codewords, and
secondly, the upper limit on its average transmit power is
P̄lim,non−EH. We will show that if P̄lim,non−EH is appropri-
ately adjusted, the EH system and the non-EH system become
equivalent in terms of maximum average performance, cf.
Theorem 1, whenN → ∞. As a result of the infinite power
available in the non-EH system, any desired powerPd(i) ∈ P
can be provided and therefore the transmit power of each
codeword,Pout(i), is identical to the desired power, i.e.,
Pout(i) = Pd(i), ∀i, holds. This is the fundamental difference
between an EH and a non-EH system since, contrary to a
non-EH system, in an EH system not every desired power
Pd(i) ∈ P can be provided by the power supply (i.e., battery)
and therefore the transmit power of thei-th codeword is given
by (2).

For the equivalent non-EH system, the aim is again to
maximize the average utility function, given an upper limit
on the average transmit power. However, since in this case
Pd(i) = Pout(i), ∀i, the maximization problem is given by

Maximize :
Pd(i)∈P,∀i

lim
N→∞

1
N

∑N

i=1 U(i)

Subject to : C1 : Pout(i) = Pd(i)
C2 :P̄d ≤ P̄lim,non−EH

C3 : Optional constraints onPd(i),

(11)

where U(i), ∀i, and C3 are as in (10). The optimization
problem in (11) is the conventional power allocation problem
for a conventional (non-EH) point-to-point communication
system, and has been solved in the literature for many different
utility functions, e.g., [27], [28].

Remark 4:Note that the optimization problems in (10) and
(11) may be non-concave and difficult to solve in general.

In the following, we provide the framework for solving (10).
In particular, we show that, forN → ∞ and Bmax → ∞,
the EH optimization problem in (10) becomes identical to
the non-EH optimization problem in (11), if̄Plim,non−EH

in (11) is appropriately adjusted. Therefore, the optimized
average performance of the EH system becomes identical to
the optimized average performance of the equivalent non-EH
system with adjusted̄Plim,non−EH. As a result, the solution of
the non-EH optimization problem is also the solution of the EH

4The assumption of the availability of infinite amounts of power is needed
for mathematical convenience. In practice, the power available in non-EH
systems is limited as well, of course.

optimization problem. In other words, instead of solving the
EH optimization problem in (10), one only needs to solve the
non-EH optimization problem in (11) and apply the solution in
the EH system. This is the subject of the following subsection.

C. Asymptotically Optimal Power Allocation for the Point-to-
Point EH System

Before providing the solution of the EH optimization prob-
lem in (10), we introduce the following definition.

Definition 2: When we say thatPout(i) = Pd(i) holds for
practically all time slots, we mean that it holds for allN → ∞
time slots except for a negligible fraction of them, denotedby
∆, which satisfies lim

N→∞
∆/N = 0.

useful lemma.
Lemma 1: In the point-to-point EH system, ifPd(i), ∀i, are

chosen such that they satisfy the following constraints

C1: 0 ≤ Pd(i) < ∞, ∀i, (12a)

C2: lim
N→∞

1

N

N
∑

i=1

Pd(i) = P̄d = min{P̄lim, P̄in}, (12b)

thenPout(i) = Pd(i) will hold for practically all time slots
i. Moreover, when the constraints in (12) hold, the events for
which Pout(i) 6= Pd(i) holds have negligible contribution to
the average performance,Ū , whenN → ∞ andBmax → ∞,
and therefore these events can be neglected. Thereby, by
choosing the values ofPd(i), ∀i, freely, as long as the
constraints in (12) hold, we actually choose the values of
Pout(i) freely for practically all time slotsi.

Proof: Please refer to Appendix A.
Using, Lemma 1, we now provide the asymptotically opti-

mal power allocation for the point-to-point EH system in the
following theorem.

Theorem 1:The solution of the non-EH optimization
problem in (11) with P̄lim,non−EH set as P̄lim,non−EH =
min{P̄lim, P̄in} is also the solution to the EH optimization
problem in (10). As a result, the maximum average per-
formance of a point-to-point EH system,̄U , is identical to
the maximum average performance of its equivalent non-EH
system withP̄lim,non−EH = min{P̄lim, P̄in}.

Proof: In the optimization problem in (10), we add the
constraint in (12b). As a result, we obtain a new optimization
problem for the point-to-point EH system where the con-
straints in (12) are satisfied. Now, according to Lemma 1,
since the constraints in (12) hold,Pout(i) = Pd(i) holds
practically always. Hence, we can write constraint C1 in (10)
as Pout(i) = Pd(i) and constraint C2 in (10) as̄Pout =
P̄d = min{P̄in, P̄lim}. Consequently, constraints C4 in the
EH optimization problem in (10) becomes unnecessary, and
therefore the optimization problem in (10) becomes identical
to the optimization problem in (11) with̄Plim,non−EH =
min{P̄in, P̄lim}. This completes the proof of Theorem 1.

Theorem 1 gives a very simple solution to the power
allocation problem for the point-to-point EH system when
N → ∞ and Bmax → ∞. It states that, instead of solving
the power allocation problem for the point-to-point EH sys-
tem, we should solve the power allocation problem for its
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equivalent point-to-point non-EH system with̄Plim,non−EH =
min{P̄lim, P̄in}. Then, the derived solution forPd(i) obtained
for the equivalent non-EH system is also the solution for the
point-to-point EH system. Moreover, with this solution for
Pd(i), both the EH and non-EH systems achieve the same
maximum average performancēU . The convergence of the
maximum average performance,Ū , of the point-to-point EH
system to the maximum average performance of its equivalent
non-EH system is a result ofPout(i) = Pd(i) holding for
practically all time slotsi.

Remark 5:An interesting consequence arising from The-
orem 1 is that the asymptotically optimal power allocation
for the EH system requires only knowledge of the average
harvested power̄Pin and does not need any causal or noncausal
knowledge ofPin(i), ∀i, i.e., any additional knowledge would
not increasēU . We note that sincePin(i) is a stationary and
ergodic random process, its mean,P̄in, can be estimated from
its samples. For example, an estimate of the mean harvested
power in time sloti, denoted byP̄ ǫ

in(i), can be obtained as

P̄ ǫ
in(i) =

i− 1

i
P̄ ǫ
in(i− 1) +

1

i
Pin(i). (13)

Using the above recursive equation,P̄ ǫ
in(i) approachesP̄in,

i.e., P̄ ǫ
in(i) → P̄in, asi → ∞.

In the following, we present several examples for the
applicability of the proposed framework for the point-to-point
EH system.

D. Examples for Power Allocation in Point-to-Point EH Sys-
tems with Fading

In this subsection, we illustrate the application of the
proposed framework, for an EH system with fading. To this
end, we consider a point-to-point EH system that operates
over a slow time-continuous fading channel with complex-
valued additive white Gaussian noise (AWGN) having unit
variance. For this system, let the square of the magnitude
of the fading gain in thei-th time slot be denoted byγ(i).
Furthermore, we assume that the average power harvested by
the EH transmitter isP̄in. In the following, we consider two
examples with different utility functionsU(i).

Example 1: For the first example,U(i) is the outage
indicator for thei-th codeword, which is given by

U(i) =

{

1 if log2(1 + Pout(i)γ(i)) < R0

0 if log2(1 + Pout(i)γ(i)) ≥ R0,
(14)

i.e., the value ofU(i) indicates whether or not an outage
occurs when the EH transmitter transmits a codeword with
a fixed data rateR0. Hence, Ū represents the fraction of
codewords received in outage, or in other words, the outage
probability of a codeword.

We would like to minimizeŪ . Hence, Remark 2 applies and
the maximization in (10) has to be replaced by a minimization.
Furthermore, for this example, we impose a constraint on
Pd(i). Namely, Pd(i) can take any value but has to be
constant for all time slots. Moreover,̄Plim ≥ P̄in is assumed.
According to Theorem 1, in order to find the optimalPd(i)
which maximizesŪ , we have to solve the non-EH problem in
(11) with the maximization replaced by a minimization, and

with P̄lim,non−EH = P̄in and Pd(i) being constant∀i. The
solution to this non-EH problem is straightforward and given
by Pd(i) = P̄in, ∀i, which, according to Theorem 1, is also
the solution of the considered EH problem in (10). Hence,
the output power for thei-th codeword in the EH system is
Pout(i) = min{B(i− 1), Pd(i)} = min{B(i− 1), P̄in}.

Example 2:For the second example, letU(i) represent the
maximum information rate of thei-th codeword. To underline
the generality of the proposed framework, we consider now an
example that accounts for power amplifier inefficiency [29],
[30]. In particular, we model the ”transmit” power5 for the
i-th codeword as [30]

Pout(i) = εPT
out(i) + PC, (15)

wherePT
out(i) is the actual transmit power of thei-th codeword

and ε ≥ 1 is a constant which accounts for the inefficiency
of the power amplifier. For example, ifε = 5, then 5 Watts
are consumed in the power amplifier and have to be drawn
from the battery for every1 Watt of power radiated in the RF,
which results in a power efficiency of1/ε = 1/5 = 20%. The
power that is not radiated is dissipated as heat in the power
amplifier [30]. Furthermore,PC ≥ 0 is the static circuit power
consumption of the transmitter device electronics such as
mixers, filters, digital-to-analog converters, and is independent
of the actual transmitted powerPT

out(i). Hence,U(i) is given
by

U(i) = log2
(

1 + PT
out(i)γ(i)

)

= log2

(

1 +
1

ε
(Pout(i)− PC)

+γ(i)

)

, (16)

where (x)+ = max{0, x}. Given U(i), Ū is the maximal
average data rate that the EH transmitter can transmit to the
receiver. For this example, we do not impose any additional
constraints onPd(i) and assumēPlim ≥ P̄in. According to
Theorem 1, the optimal power allocation for this EH system
can be found by solving the non-EH optimization problem
in (11) with P̄lim,non−EH = P̄in. To this end, we follow the
approach in [27] (whereε = 1 and PC = 0 was assumed)
and obtain the solution to the non-EH optimization problem
in (11) as

Pd(i) =

{

PC + ε(1/λ− 1/γ(i)), if γ(i) > λ
0, if γ(i) ≤ λ,

(17)

where λ is found as the solution toE{Pd(i)} = P̄in.
According to Theorem 1, the optimal desired power of the non-
EH system in (17) is also the desired power for the EH system.
Hence,Pout(i) is given byPout(i) = min{B(i − 1), Pd(i)},
wherePd(i)} is given in (17).

Numerical results for Examples 1 and 2 are provided in
Section V.

III. T HE BROADCAST AND MULTIPLE-ACCESSEH
NETWORKS

In the following, we generalize the framework developed
for the point-to-point EH channel to the broadcast (point-
to-multipoint) and the multiple-access (multipoint-to-point)

5In this case,Pout(i) is actually the power drawn from the battery and
consumed for the transmission of thei-th codeword.
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EH networks. Thereby, we show that the maximum average
performances of the broadcast and multiple-access EH net-
works converge to the maximum average performance of their
equivalent broadcast and multiple-access non-EH networks,
respectively.

A. The Broadcast EH Network

Let us assume a single EH transmitter transmitting toM
receiving nodes (receivers). In each time slot, the EH trans-
mitter extracts power from its battery and uses it to transmit
codewords to each of the receivers. Let the transmit power
of the codeword transmitted to thek-th receiver in thei-th
time slot be denoted byPout,k(i)

6. Without loss of generality,
we assume that in each time slot the EH transmitter extracts
power from the battery in the following predefined sequential
manner. In each time slot, the transmitter first extracts the
power for the codeword transmitted to the first receiver, then,
from the leftover power in the battery it extracts the power
for the codeword transmitted to the second receiver, and so
on until from the leftover power in its battery it extracts the
power for the codeword transmitted to theM -th receiver.
Let Pd,k(i) ∈ P denote the desired transmit power for the
codeword to thek-th receiver in thei-th time slot. Then,
Pout,k(i) is given by

Pout,k(i) =

{

Pd,k(i), if B(i − 1) ≥∑k

j=1 Pd,j

B(i− 1)−∑k−1
j=1 Pout,j , otherwise,

(18)

whereB(i) is the amount of power in the battery of the EH
transmitter in thei-th time slot and is given by

B(i) = B(i − 1) + Pin(i)−
M
∑

k=1

Pout,k(i). (19)

Here,Pin(i) is the amount of power harvested in thei-the time
slot. The total transmit power and the desired total transmit
power of the EH transmitter in time sloti, denoted byPout(i)
andPd(i), respectively, are given by

Pout(i) =

M
∑

k=1

Pout,k(i), Pd(i) =

M
∑

k=1

Pd,k(i). (20)

Hence, the average transmit power and the average desired
power of the EH transmitter, denoted bȳPout andP̄d, respec-
tively, are given by

P̄out = lim
N→∞

1

N

N
∑

i=1

Pout(i) = lim
N→∞

1

N

N
∑

i=1

M
∑

k=1

Pout,k(i)

(21)

P̄d = lim
N→∞

1

N

N
∑

i=1

Pd(i) = lim
N→∞

1

N

N
∑

i=1

M
∑

k=1

Pd,k(i). (22)

UsingPin(i), the average harvested power,P̄in, is given by (1).
Now, let P̄lim denote the upper limit on the average transmit
power P̄out. Then, the average transmit power must satisfy

6If the same codeword is transmitted to more than one receiver, then, in
terms of transmit power, these receivers can be merged into asingle equivalent
receiver.

P̄out ≤ P̄lim. In the following, we introduce the utility function
of the broadcast network which is a multivariate version of the
utility function of the point-to-point system.

Let U(i) denote the utility function of the broadcast
network in the i-th time slot. The utility functionU(i)
is now associated with allM codewords transmitted in
the i-th time slot, and, similar to the point-to-point case,
it measures some desired quality of the codewords trans-
mitted in the i-th time slot. Let U(i) be a function of
all M transmit powersPout,k(i), k = 1, ...,M . We for-
mally express the dependence of the utility function on the
M transmit powers asU(Pout,1(i), Pout,2(i), ..., Pout,M (i)).
For simplicity of presentation, we writeU(i) instead of
U(Pout,1(i), Pout,2(i), ..., Pout,M (i)). We assume that the
properties ofU(i) as a function of an individual transmit
powerPout,k(i), ∀k = 1, ...,M , are as outlined in Definition 1.
Given U(i), ∀i, the average utility function̄U can be found
using (6). Based on̄U , we introduce now the power allocation
problem for the broadcast EH network.

For the broadcast EH network, given a limit on the average
transmit power,P̄lim, we wish to determine the optimal de-
sired powersPd,k(i), ∀i, k, which produce the corresponding
Pout,k(i), ∀i, k, such thatP̄out ≤ P̄lim holds and the average
utility function Ū is maximized. We define this rigorously in
the following maximization problem forN → ∞

Maximize :
Pd,k(i)∈P,∀k,i

lim
N→∞

1
N

∑N

i=1 U(i)

Subject to :

C1 : Pout,k(i) =

{

Pd,k(i), if B(i − 1) ≥
∑k

j=1 Pd,j

B(i− 1)−∑k−1
j=1 Pout,j , otherwise,

C2 : P̄out ≤ P̄lim

C3 : Optional constraints onPd,k(i)

C4 : B(i) = B(i − 1) + Pin(i)−
∑M

k=1 Pout,k(i),
(23)

where Pin(i) is known causally at the EH transmitter as
explained for the point-to-point EH channel.

On the other hand, for the equivalent non-EH broadcast
network, the non-EH transmitter can supply any desired power,
thusPout,k(i) = Pd,k(i), ∀i, k. Therefore, maximizing the av-
erage utility function,Ū , for the equivalent non-EH broadcast
network has the following form forN → ∞
Maximize :
Pd,k(i)∈P,∀k,i

lim
N→∞

1
N

∑N

i=1 U(i)

Subject to : C1 : Pout,k(i) = Pd,k(i)
C2 : P̄d ≤ P̄lim,non−EH

C3 : Optional constraints onPd,k(i),

(24)

whereU(i), ∀i, and C3 are the same as in (23). We now
present the solution of (23) in the following theorem.

Theorem 2:The solution of the non-EH optimization prob-
lem in (24) with P̄lim,non−EH = min{P̄lim, P̄in} is also the
solution to the EH optimization problem in (23). As a result,
the maximum average performance of an EH broadcast net-
work, Ū , is identical to the maximum average performance of
its equivalent non-EH broadcast network with̄Plim,non−EH =
min{P̄lim, P̄in}.

Proof: Please refer to Appendix B.
Next, we consider the multiple-access EH network.
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B. The Multiple-Access EH Network

The multiple-access EH network is comprised ofM EH
transmitters transmitting to a single receiving node (receiver).
Here, we impose one practical constraint by assuming that
the harvested energy from one EH transmitter cannot be
transferred to another EH transmitter. In each time slot, each
EH transmitter extracts power from its battery and uses it to
transmit a codeword to the receiver. Let the transmit power
of the codeword transmitted by thek-th EH transmitter in
the i-th time slot be denoted byPout,k(i). Let Pd,k(i) ∈ P
denote the desired power that thek-th EH transmitter wants
to extract from its battery in thei-th time slot. Then,Pout,k(i)
andPd,k(i) are related by

Pout,k(i) = min{Bk(i− 1), Pd,k(i)}, (25)

whereBk(i) is the amount of power in the battery of thek-th
EH transmitter in thei-th time slot and is given by

Bk(i) = Bk(i− 1) + Pin,k(i)− Pout,k(i). (26)

Here,Pin,k(i) is the harvested power at thek-th EH transmitter
in the i-th time slot. For thek-th EH transmitter, the average
transmit power, denoted bȳPout,k, the average desired power,
denoted byP̄d,k, and the average harvested power, denoted by
P̄in,k, are given by

P̄α,k = lim
N→∞

1

N

N
∑

i=1

Pα,k(i), α ∈ {out, d, in}. (27)

Furthermore, each EH transmitter imposes an upper limit on
the average transmit power, which for thek-th EH transmitter
is denoted byP̄lim,k. Thus,P̄out,k ≤ P̄lim,k has to hold.

Similar to the broadcast EH network, the utility function of
the multiple-access EH network in thei-th time slot,U(i),
depends on allPout,k(i), k = 1, ...,M , and, as a function
of any individual Pout,k(i), has the properties laid out in
Definition 1.

For the multiple-access EH network, given a limit on the
average transmit power of each EH transmitter,P̄lim,k, we
wish to determine the optimal desired powersPd,k(i), ∀i, k,
which produce the correspondingPout,k(i), ∀i, k, such that
P̄out,k ≤ P̄lim,k, ∀k, holds, and the average utility function
Ū is maximized. This leads to the following maximization
problem

Maximize :
Pd,k(i)∈P,∀k,i

lim
N→∞

1
N

∑N
i=1 U(i)

Subject to :
C1 : Pout,k(i) = min{Bk(i− 1), Pd,k(i)}
C2 : P̄out,k ≤ P̄lim,k

C3 : Optional constraints onPd,k(i)
C4 : Bk(i) = Bk(i − 1) + Pin,k(i)− Pout,k(i),

(28)

wherePin,k(i) is known causally only at thek-th EH trans-
mitter. On the other hand, for the equivalent non-EH multiple-
access network, sincePout,k(i) = Pd,k(i), ∀k, i, we have the

following optimization problem

Maximize :
Pd,k(i)∈P,∀k,i

lim
N→∞

1
N

∑N

i=1 U(i)

Subject to : C1 : Pout,k(i) = Pd,k(i)
C2 : P̄d,k ≤ P̄lim,non−EH,k

C3 : Optional constraints onPd,k(i),

(29)

whereU(i), ∀i, and C3 are the same as in (28). We now
characterize the solution of (28).

Theorem 3:The solution of the non-EH optimization prob-
lem in (29) with P̄lim,non−EH,k = min{P̄lim,k, P̄in,k} is also
the solution to the EH optimization problem in (28). As a
result, the maximum average performance of an EH multiple-
access network,̄U , is identical to the maximum average
performance of its equivalent non-EH multiple-access network
with P̄lim,non−EH,k = min{P̄lim,k, P̄in,k}.

Proof: Please see Appendix C.
In the following, we present examples for power allocation

in the multiple-access EH network.

C. Example for Power Allocation in Broadcast EH Networks

Example 3:We assume a broadcast EH network comprised
of an EH transmitter and two receivers, where the receivers are
impaired by complex-valued AWGN with unit variance. We
assume that the channel gains from the EH transmitter to the
two receivers are fixed and denoted by

√
γk, k = 1, 2. Let the

average power harvested by the EH transmitter beP̄in, where
P̄lim ≥ P̄in holds. Our goal is to obtain the capacity region of
this EH network using the proposed framework.

Assuming γ1 < γ2, the maximum achievable rates for
receivers 1 and 2 in time sloti, denoted byR1(i) andR2(i),
respectively, are given by [31]

R1(i) = log2

(

1 +
Pout,1(i)γ1

Pout,2(i)γ1 + 1

)

(30)

R2(i) = log2 (1 + Pout,2(i)γ2) . (31)

The rates (30) and (31) are achieved in the following manner
[31]. In time slot i, the EH transmitter transmits a super-
imposed codewordX(i) comprised of two codewordsX1(i)
andX2(i) asX(i) = X1(i) + X2(i). The codewordsX1(i)
and X2(i) containn → ∞ symbols, where each symbol is
generated independently from a zero-mean complex-valued
Gaussian distribution with variancesPout,1(i) andPout,2(i),
respectively. On the other hand, in time sloti, receivers 1 and
2 receive codewordsY1(i) andY2(i), respectively, given by

Y1(i) =
√
γ1X1(i) +

√
γ1X2(i) +N1(i) (32)

Y2(i) =
√
γ2X1(i) +

√
γ2X2(i) +N2(i), (33)

whereN1(i) andN2(i) are the unit-variance complex-valued
AWGNs at receivers 1 and 2, respectively. The decoding at the
receivers is performed as follows. Receiver 1 decodesX1(i)
by consideringX2(i) as interference. Since in this case the
resulting channel is a complex-valued AWGN channel with
SNR Pout,1(i)γ1/(Pout,2(i)γ1 + 1), the decoding ofX1(i)
at receiver 1 is successful if the rate ofX1(i) is smaller
than or equal toR1(i), see [31]. Similarly, receiver 2 also
decodesX1(i) by consideringX2(i) as interference. Since,
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in this case, the resulting channel is a complex-valued AWGN
channel with SNRPout,1(i)γ2/(Pout,2(i)γ2+1), the decoding
of X1(i) is successful if the rate ofX1(i) is smaller than or

equal toR3(i) = log2

(

1 +
Pout,1(i)γ2

Pout,2(i)γ2+1

)

. Now, since the

rate ofX1(i) is R1(i), and since forγ1 < γ2, R1(i) < R3(i)
holds, receiver 2 can decodeX1(i) successfully. Once receiver
2 has decodedX1(i), it subtractsγ2X1(i) from the received
codewordY2(i) and thereby obtains a new received codeword,
denoted byY ′

2(i), as

Y ′
2(i) = Y2(i)− γ2X1(i) = γ2X2(i) +N2(i). (34)

Since (34) is a complex-valued AWGN channel with SNR
Pout,2(i)γ2, receiver 2 can decodeX2(i) successfully if the
rate ofX2(i) is smaller than or equal to (31).

Now, what are the optimal values forPout,1(i) and
Pout,2(i), ∀i, which maximize the rate region? This is inves-
tigated in the following.

Let us define the weighted sum rateU(i) = αR1(i) + (1−
α)R2(i), with weightα, 0 ≤ α ≤ 1. Then,

Ū = lim
N→∞

1

N

N
∑

i=1

U(i) (35)

= α lim
N→∞

1

N

N
∑

i=1

R1(i) + (1− α) lim
N→∞

1

N

N
∑

i=1

R2(i)

is the weighted sum rate achieved duringN → ∞ time slots.
By maximizing Ū for a fixed α, we obtain one point on
the boundary of the rate region, see [31]. Then, by varying
0 ≤ α ≤ 1, we can obtain all points on the boundary
of the rate region. Now, to maximizēU , we insert (35)
into (23) and thereby obtain the EH optimization problem.
To solve this optimization problem, we use Theorem 2 and
thereby transform an EH optimization problem into the non-
EH optimization problem in (24) with̄U replaced by (35) and
P̄lim,non−EH set to P̄lim,non−EH = P̄in. The solution of the
resulting non-EH optimization problem is given by [31]

Pd,1(i) = αP̄in andPd,2(i) = (1− α)P̄in, ∀i. (36)

As a result of Theorem 2, (36) is also the solution to the
EH optimization problem in (23). According to this solution,
Pout,1(i) andPout,2(i) are given by

Pout,1(i) =

{

αP̄in, if B(i − 1) ≥ αP̄in

B(i − 1), otherwise,
(37)

Pout,2(i) =

{

(1 − α)P̄in, if B(i − 1) ≥ P̄in

B(i − 1)− Pout,1(i), otherwise.
(38)

To show that indeed with the power allocation in (37)
and (38) the capacity region is achieved, we insert (37)
and (38) into R̄1 = limN→∞

1
N

∑N

i=1 R1(i) and R̄2 =

limN→∞
1
N

∑N
i=1 R2(i), whereR̄1 and R̄2 are the rates for

receivers 1 and 2, respectively, achieved duringN → ∞ time
slots. Now, utilizing Lemma 1, which states that if̄Pin =
P̄d,1+P̄d,2 holds,Pout,1(i) = αP̄in andPout,2(i) = (1−α)P̄in

will occur in almost all time sloti, we obtainR̄1 and R̄2 as

R̄1 = lim
N→∞

1

N

N
∑

i=1

log2

(

1 +
αP̄inγ1

(1− α)P̄inγ1 + 1

)

= log2

(

1 +
αP̄inγ1

(1 − α)P̄inγ1 + 1

)

(39)

R̄2 = lim
N→∞

1

N

N
∑

i=1

log2
(

1 + (1− α)P̄inγ2
)

= log2
(

1 + (1 − α)P̄inγ2
)

, (40)

which is identical to the points on the boundary of the capacity
region of the complex-valued AWGN non-EH broadcast net-
work for average prower constraint̄Pin, see [31]. Now, since
an EH broadcast network cannot have a better performance
than its equivalent non-EH broadcast network, it follows that
(39) and (40) indeed define the capacity region of the complex-
valued AWGN EH broadcast network.

Numerical results for this example are provided in Sec-
tion V.

IV. T HE GENERAL EH NETWORK

In this section, we extend the framework developed in the
previous sections further and derive the asymptotically optimal
power allocation for a general EH network.

A. Asymptotically Optimal Power Allocation

We consider a network comprised ofM EH transmitters.
For thek-th EH transmitter,k = 1, ...,M , in thei-th time slot,
we denote the harvested power, the actual transmit power, the
desired transmit power, and the amount of stored power in the
battery byPin,k(i), Pout,k(i), Pd,k(i), andBk(i), respectively.
Each EH transmitter uses the harvested power to transmit to
its designated receiving nodes. We collect the indices of the
receiving nodes of thek-th EH transmitter in setRk. Then,
in the i-th time slot, we decompose the transmit power of the
k-th EH node,Pout,k(i), into |Rk| transmit powers as

Pout,k(i) =
∑

j∈Rk

Pout,k→j(i), (41)

wherePout,k→j(i) is the transmit power of the codeword sent
from the k-th EH transmitter to itsj-th receiver7 in the i-th
time slot. Similarly, in thei-th time slot, we decompose the
desired transmit power of thek-th EH transmitter,Pd,k(i),
into |Rk| desired transmit powers as

Pd,k(i) =
∑

j∈Rk

Pd,k→j(i), (42)

wherePd,k→j(i) ∈ P is the desired transmit power for the
codeword sent from thek-th EH transmitter to itsj-th receiver
in the i-th time slot. Using (41) and (42), we write the average

7If the same codeword is transmitted to more than one receiver, then, in
terms of transmit power, these receivers can be merged into asingle equivalent
receiver.
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transmit power and the average desired transmit power of the
k-th EH transmitter as

P̄out,k = lim
N→∞

1

N

N
∑

i=1

Pout,k(i)

= lim
N→∞

1

N

N
∑

i=1

∑

j∈Rk

Pout,k→j(i) (43)

and

P̄d,k = lim
N→∞

1

N

N
∑

i=1

Pd,k(i) = lim
N→∞

1

N

N
∑

i=1

∑

j∈Rk

Pd,k→j(i),

(44)

respectively. The average harvested power of thek-th EH
transmitter is given by

P̄in,k = lim
N→∞

1

N

N
∑

i=1

Pin,k(i) = E{Pin,k(i)}. (45)

Let P̄lim,k denote the upper limit on the average transmit
power of thek-th EH transmitter. Then,̄Pout,k ≤ P̄lim,k has
to be satisfied.

Similar to our model for the broadcast EH network in
Section III, and without loss of generality, we assume that in
each time slot thek-th EH transmitter extracts power from its
battery in the following predefined sequential manner. For each
time slot, thek-th EH transmitter first extracts the power for
transmission of the codeword intended for the first receiving
node inRk, then, from the leftover power in the battery, the
k-th EH transmitter extracts the power for transmission of the
codeword intended for the second receiving node inRk, and
so on until, from the leftover power in its battery, it extracts
power for transmission of the codeword intended for the|Rk|-
th receiving node inRk. Then,Pout,k→j(i) is given by

Pout,k→j(i) =

{

Pd,k→j(i), if Bk(i− 1) ≥∑l∈Rk,l≤j Pd,k→l

Bk(i− 1)−∑l∈Rk,l<j Pout,k→l, otherwise,
(46)

whereBk(i) is the amount of power stored in the battery of
the k-th EH transmitter at thei-th time slot and is given by

Bk(i) = Bk(i − 1) + Pin,k(i)−
∑

j∈Rk

Pout,k→j(i). (47)

In a communication network comprised of multiple nodes,
codewords may arrive at the intended receiver with a certain
delay from the moment of transmission if multiple hops are in-
volved. For example, a codeword originating from transmitter
k in time slot l may pass through several hops before arriving
at the intended receiver in time sloti, wherei ≥ l. In order to
model this delay, in the following, for thei-th time slot, we
develop a generalized utility function,U(i), which may be a
function of the transmit powers in time slots prior toi.

Let U(i) denote the utility function in thei-th time slot. In
order to generalize the utility function,U(i), we introduce a
delay∆k→j assigned to the pair of thek-th EH transmitting
node and thej-th receiving node. The delay∆k→j is a
constant integer number satisfying0 ≤ ∆k→j ≤ N , ∀i, i.e.,

the delay between nodesk andj does not change with time8.
Now, we define the utility function for the general network,
U(i), to be a function ofPout,k→j(i − ∆k→j), ∀k, j. Using
Rk, defined previously, we construct the following vector of
powers

Pout,k(i) =
[

Pout,k→1(i−∆k→1), Pout,k→2(i−∆k→2),

...., Pout,k→|Rk|(i−∆k→|Rk|)
]

. (48)

Using vectorsPout,k(i), for k = 1, ...,M , we express the
dependence ofU(i) on Pout,k→j(i−∆k→j), ∀k, j, as9

U(i) = U
(

Pout,1(i),Pout,2(i), ...,Pout,M (i)
)

. (49)

We note thatU(i) as a function of any individualPout,k→j(i−
∆k→j) has the properties outlined for the point-to-point case
in Definition 1. AdoptingU(i) in (49), the average utility
function Ū is given by (6).

For the general EH network, given a limit on the average
transmit power of each EH transmitter,P̄lim,k, our objective is
to determine the optimal desired powersPd,k→j(i −∆k→j),
∀k, j, i, which produce the corresponding transmit powers
Pout,k→j(i −∆k→j), such thatP̄out,k ≤ P̄lim,k hold ∀k and
the average utility function̄U is maximized. We define this
rigorously in the following maximization problem

Maximize :
Pd,k→j(i)∈P,∀k,j,i

lim
N→∞

1
N

∑N

i=1 U(i)

Subject to :

C1 : Pout,k→j(i) =







Pd,k→j(i), if Bk(i− 1) ≥
∑

l∈Rk,l≤j

Pd,k→l

Bk(i − 1)− ∑

l∈Rk,l<j

Pout,k→l, otherwise,

C2 : P̄out,k ≤ P̄lim,k

C3 : Optional constraints onPd,k→j(i)
C4 : Bk(i) = Bk(i− 1) + Pin,k(i)−

∑

j∈Rk
Pout,k→j(i),

(50)

wherePin,k(i) is known causally at thek-th EH transmitter
only. On the other hand, since for the equivalent non-EH
systemPout,k→j(i) = Pd,k→j(i), ∀i, k, j, the optimization
problem is given by

Maximize :
Pd,k→j(i)∈P,∀k,j,i

lim
N→∞

1
N

∑N

i=1 U(i)

Subject to : C1 : Pout,k→j(i) = Pd,k→j(i)
C2 : P̄d,k ≤ P̄lim,non−EH,k

C3 : Optional constraints onPd,k→j(i),

(51)

whereU(i), ∀i, and C3 are the same as in (50). We are now
ready to provide the framework for solving (50).

Theorem 4:The solution of the non-EH optimization prob-
lem in (51) with P̄lim,non−EH,k = min{P̄lim,k, P̄in,k} is
also the solution to the EH optimization problem in (50).

8We note that a similar mathematical framework could be developed for
time-varying delays∆k→j . However, this would make the presentation much
more involved. Hence, for simplicity, we assume∆k→j to be constant∀i.

9For simplicity of presentation, we have assumed thatU(i) depends only
on the transmit power of nodek to nodej in one time instant,∀k, j. However,
the proposed framework can also be extend to the case whenU(i) depends
on the transmit powers of nodek to nodej in multiple time slots, as would
be the case if, for example, an automatic repeat request (ARQ) protocol was
employed. To this end, defining a corresponding equivalent non-EH network
is required.
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As a result, the maximum average performance of a gen-
eral EH network,Ū , is identical to the maximum average
performance of its equivalent general non-EH network with
P̄lim,non−EH,k = min{P̄lim,k, P̄in,k}.

Proof: Please see Appendix D.

B. Example for General EH Network

In the following, we present an example for online power
allocation in a general EH network.

Example 4: In this example, we consider a multi-hop
amplify-and-forward (AF) relay network comprised of one EH
transmitter source,M − 2 AF half-duplex EH relays, and a
receiver. For simplicity, we assume thatM is an odd number.
We numerate the nodes with numbers such that the source
node is node 1, the destination node is nodeM , and theM−2
relays are indexed from 2 toM − 1. The network operates in
slow time-continuous fading and the complex-valued AWGN
at each receiver has unit variance. In thei-th time slot, the
square of the fading gain of the channel from thek-th EH
node to the(k+1)-th EH node is denoted byγk→k+1(i) where
k = 1, ...,M−1. We assume that all nodes have full CSI. The
transmission from the source via the relays to the destination is
carried out in the following manner. In odd (even) time slots,
the k-th node, wherek is an odd (even) number, transmits to
the (k + 1)-th node. When a relay transmits in time sloti, it
transmits a scaled version of the codeword received in time
slot i − 1. Let U(i) represent the data rate received at the
destination at time sloti. Then,U(i) is given by

U(i) =

{

log2(1 + SNReq(i)) if i ≥ M − 1 and i is even
0 otherwise,

(52)

where the equivalent SNR at the destination, SNReq(i), is
given by [32, Eq. (17)]

SNReq(i) =

(

M−1
∏

m=1

(

1+

1

Pout,m→m+1(i−M+ 1+m)γm→m+1(i−M+1+m)

)

− 1

)−1

.

(53)

Hence,Ū is the average data rate. Let̄Pin,k be the average
harvested power of thek-th EH node, and letP̄lim,k ≥
Pin,k, for k = 1, ..., (M − 1)/2 and P̄lim,k < Pin,k, for
k = (M − 1)/2 + 1, ...,M − 1. Furthermore, we impose
the constraints thatPd,k→k+1(i) is either zero or assumes a
constant value identical∀i for which it is not zero. Then, we
use Theorem 4 to solve (50). Thereby, we solve the non-EH
optimization problem (51) by settinḡPlim,non−EH,k = P̄in,k,
for k = 1, ..., (M − 1)/2 and P̄lim,non−EH,k = P̄lim,k,
for (M − 1)/2 + 1, ...,M − 1 and insert the constraint
on Pd,k→k+1(i). The solution to this non-EH optimization
problem is then straightforward and given as follows. For

k = 1, ..., (M − 1)/2, Pd,k→k+1(i) is given by

Pd,k→k+1(i) =















2P̄in,k for odd i and oddk
2P̄in,k for eveni and evenk

0 for eveni and oddk
0 for odd i and evenk

(54)

and fork = (M − 1)/2 + 1, ...,M − 1, Pd,k→k+1(i) is given
by

Pd,k→k+1(i) =















2P̄lim,k for odd i and oddk
2P̄lim,k for eveni and evenk

0 for eveni and oddk
0 for odd i and evenk.

(55)

According to Theorem 4, the desired transmit powers in
(54) and (55) are also the solution to the EH optimization
problem (50). Hence, the transmit powers of thek-th EH
node in thei-th time slot are given byPout,k→k+1(i) =
min{Bk(i − 1), Pd,k→k+1(i)}, wherePd,k→k+1(i) for k =
1, ..., (M − 1)/2 andk = (M − 1)/2+1, ...,M − 1 are given
by (54) and (55), respectively.

Numerical results for this example are provided in the
following section.

V. NUMERICAL EXAMPLES

In the following, we discuss the applicability of the devel-
oped framework, and, for the examples introduced in Sections
II - IV, we provide numerical results for different numbers
of time slotsN and/or battery capacitiesBmax. For all of
the examples, we assume that the channels are Rayleigh
fading with unit variance. Furthermore, we assume that the
power harvested by the EH transmitters is an exponentially
distributed random variable with mean̄Pin. All figures are
obtained via Monte-Carlo simulation and in all figuresP̄in in
dB is expressed with respect to the unit variance AWGN.

A. Applicability of the Developed Framework

In practical EH systems each EH node transmits in a finite
number of time slotsN and has a finite battery capacityBmax.
In this case, for the proposed solution to be applicable,N
has to be sufficiently large. The numerical examples in the
following subsections will illustrate what ”sufficiently large”
means in this context. In terms ofBmax, the proposed solution
is applicable in two cases. The first case is when the maximum
capacity of the battery,Bmax, is much larger than the average
harvested power̄Pin, i.e., whenBmax ≫ P̄in holds. This is
intuitive, since ifBmax ≫ P̄in then the battery is practically
never fully filled. Hence, the finiteness ofBmax has no effect.
The second case is when the maximum capacity of the battery
is much larger than the upper limit on the average transmit
power, i.e., whenBmax ≫ P̄lim holds. In this case, either
P̄in ≤ P̄lim or P̄in > P̄lim holds. If P̄in > P̄lim then the battery
is almost always completely full any desired power can be
accounted for, hence, the framework holds. Whereas, ifP̄in ≤
P̄lim then P̄in ≤ P̄lim ≪ Bmax and the battery is practically
never fully filled, hence, the finiteness ofBmax has no effect.
For example, in today’s mobile phones the maximum capacity
of the battery is much larger than the average transmit power



11

−5 0 5 10 15 20 25 30 35 40
10

−4

10
−3

10
−2

10
−1

10
0

P̄in (in dB)

Ū
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Fig. 1. Outage probability for the point-to-point EH and theequivalent
non-EH systems for differentN andBmax = 200P̄in.

of a codeword. This means thatBmax is much larger than
the upper limit on the average transmit powerP̄lim. Hence,
this corresponds to the second case and independent of how
large the average harvested power is, the proposed solutionis
applicable in terms ofBmax.

Furthermore, the results derived in this paper for an infinite
battery capacity constitute performance upper bounds for the
case when the battery capacity is finite. Such performance
upper bounds are very useful. In particular, in practice, usually
heuristic online power allocation solutions are adopted due to
practical constraints such as low complexity and/or lack of
CSI. However, in order to evaluate how good the proposed
heuristic solutions are, a benchmark performance is needed
for comparison. The proposed asymptotically optimal power
allocation scheme can serve as such a benchmark.

B. Numerical Results for Example 1

In Fig. 1, we plot the outage probability,̄U , of the point-
to-point EH system, discussed in Example 1 in Section II, for
Bmax = 200P̄in and differentN , and compare it to the outage
probability of the non-EH system with an average transmit
power P̄in and infiniteN . From Fig. 1, we observe that even
for N = 102, the loss in outage probability performance of
the proposed online solution is relatively small (less than3
dB in the entire considered range of̄Pin) compared to the
performance of the non-EH system. This performance loss
becomes almost negligible forN = 104. Hence, for the point-
to-point EH system the proposed online solution, although
sub-optimal for finiteN , yields a high performance at low
complexity even for smallN .

C. Numerical Results for Example 2

In Fig. 2, we show the average data rate,Ū , of the point-
to-point EH system discussed in Example 2 in Section II, for
differentN andBmax = 200P̄in, and compare it to the average
data rate of the equivalent non-EH system with average
transmit powerP̄in and infinite10 N . An ideal transmitter with

10Note that also the non-EH system achieves a lower average data rate for
finite N than forN → ∞, i.e., even for the non-EH systemN → ∞ has to
be assumed for the power allocation in (17) to be optimal.

−20 −15 −10 −5 0 5 10 15 20

10
−1

10
0

P̄in (in dB)

Ū
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Fig. 2. Average rates for the point-to-point EH and the equivalent non-EH
systems for differentN andBmax = 200P̄in.

ε = 1 andPC = 0 is assumed. Fig. 2 shows that even for finite
N and finiteBmax, the loss in rate of the point-to-point EH
system is small compared to the non-EH system. ForN = 102,
as a performance upper bound, we also show the average rate
obtained with the offline solution from [8]. We note that the
offline solution, however, needs noncausal knowledge of the
harvested powers and the fading gains in allN = 102 time
slots. In contrast, our proposed solution, although non-optimal
for finite N , is an online solution and requires only causal
knowledge of the fading gain in the current time slot, the
average harvested power, and the average fading gain. The
optimal online solution forN = 102 would result in a curve
which is between the curve obtained with the optimal offline
solution from [8] and the curve obtained with our proposed
solution. However, the optimal online solution for finiteN is
based on dynamic programing and its exponentially increasing
computational complexity becomes prohibitive forN = 102.

In Fig. 3, we plot the average data rate,Ū , of a point-to-
point EH system forε = 5 andPC = −25 dB. We plot Ū
for fixed N = 104 and differentBmax, and compare it to
the average data rate of the non-EH system with an average
transmit powerP̄in and infiniteN . The figure shows that, for
the adoptedN , even withBmax = 20P̄in, the loss in rate of
the point-to-point EH system is small compared to the non-
EH system. We note that in the figure, all rates are zero for
Pin ≤ −25 dB asPC = −25 dB.

D. Numerical Results for Example 3

In Fig. 4, we plot the rate region of the broadcast EH
network with two receivers, cf. Example 3 in Section III, for
differentN , and compare it to the capacity region of the non-
EH broadcast network with an average transmit powerP̄in.
For this example, we setγ1 = 1, γ2 = 10, and P̄in = 10, cf.
Example 3 in Section III. The figure shows that the difference
between the rate region of the broadcast EH network with
N = 102 and the capacity region of the non-EH broadcast
network is relatively small and becomes almost negligible for
N = 105. Hence, indeed asN → ∞, the rate region of the
broadcast EH network becomes the capacity region.
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Fig. 3. Average rates for the point-to-point EH system and the equivalent non-
EH systems for different battery capacityBmax, andN = 104. A realistic
transmitter model is adopted with power efficiencyε = 20% and constant
circuit power consumptionPC = −25 dB.
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Fig. 4. Comparison between the rate region of the broadcast EH network
for different N , γ1 = 1, γ2 = 10, andP̄in = 10, and the capacity region of
the non-EH broadcast network with an average transmit powerP̄in = 10.

E. Numerical Results for Example 4

In Fig. 5, we plot the average data rate,Ū , of the multihop
relay EH network, considered in Example 4 in Section IV,
for Bmax = 200P̄in, different N , and different numbers
of relays, and compare it to the average data rate of the
equivalent non-EH relay network with infiniteN . We assume
that P̄lim,k = P̄in/2, for k = (M − 1)/2 + 1, ....,M − 1.
Furthermore, we assume that the distance between source and
destination is fixed, and that the relays are equidistantly spaced
on the line between the source and destination. Hence, if we
assume a path loss model with a path loss exponent equal
to two, and assume that the fading gains squared have a unit
mean, then, forM − 1 relays between source and destination,
the fading gains squared have a meanM2. Note that each relay
has an average harvested power ofP̄in. The figure shows that,
for fixedN , as the number of relays increases, the performance
loss of the proposed power allocation solution also increases
compared to the performance of the non-EH network. How-
ever, asN increases this performance loss becomes negligible
as highlighted in Fig. 5 forN = 104 and 15 relays. Hence,
even if the utility functionU(i) has a relatively complicated
form, as is the case in this example, the performance of the
proposed online solution for the general EH network is almost
identical to the performance of the equivalent non-EH network
even for moderateN .
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Fig. 5. Average rate for multihop relay EH network and equivalent multihop
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relays.

VI. CONCLUSION

We have shown that the maximum average performance of
an EH network, utilizing optimal online power allocation, con-
verges to the maximum average performance of an equivalent
non-EH network with appropriately chosen average transmit
power when the number of transmit time slots,N , and the
battery capacities at each EH node,Bmax, satisfyN → ∞
andBmax → ∞. We have derived the asymptotically optimal
online power allocation which for a general EH network
optimizes a general utility function forN → ∞ andBmax →
∞. The considered family of utility functions is general
enough to include the most important performance measures
in communication theory such as the ergodic data rate, outage
probability, average bit error probability, and average signal-
to-noise ratio. The optimal online power allocation solution
is obtained by solving the power allocation problem of an
equivalent non-EH network with nodes having infinite energy
available for the transmission of their codewords. Interestingly,
the optimal solution only requires knowledge of the average
harvested energy but not of the amount of harvested energy
in past, present, or future time slots. Although asymptotic
in nature, the proposed solution is applicable to EH systems
transmitting in a large but finite number of time slots and
having nodes with battery capacities much larger than the
average harvested power and/or the maximum average transmit
power.

APPENDIX

A. Proof of Lemma 1

We divide the proof in two parts. In Parts I and II, we
consider the cases when̄Pd is set toP̄d = P̄lim < P̄in and
P̄d = P̄in ≤ P̄lim, respectively.

1) Part I (P̄d = P̄lim < P̄in): Taking the summation
lim

N→∞

1
N

∑N

i=1(·) of both sides of (3), we obtain

lim
N→∞

1

N

N
∑

i=1

B(i) = lim
N→∞

1

N

N
∑

i=1

B(i− 1)

+ lim
N→∞

1

N

N
∑

i=1

Pin(i)− lim
N→∞

1

N

N
∑

i=1

Pout(i), (56)



13

which can be written equivalently as

lim
N→∞

1

N

N
∑

i=1

B(i)− lim
N→∞

1

N

N
∑

i=1

B(i − 1) = P̄in − P̄out. (57)

Now, sinceP̄d < P̄in, and since due to (4)̄Pout ≤ P̄d holds,
we haveP̄out < P̄in, which means that̄Pin − P̄out = ǫ >
0. Replacing this in the right hand side of (57), and writing
∑N

i=1 B(i) =
∑N

i=1 B(i − 1) + B(N), whereB(0) = 0, we
obtain the following

lim
N→∞

1

N

N
∑

i=1

B(i− 1)− lim
N→∞

1

N

N
∑

i=1

B(i − 1)

+ lim
N→∞

1

N
B(N) = ǫ. (58)

The two sums in (58) cancel each other out, and we obtain
the following identity forP̄d = P̄lim < P̄in

lim
N→∞

B(N) = lim
N→∞

Nǫ = ∞. (59)

Hence, whenP̄d = P̄lim < P̄in holds, for any time slotN →
∞, (59) holds. This is intuitive, since if in each time slot, on
average, more energy is stored in an infinite storage battery
than what is extracted from the battery, then, afterN → ∞
time slots, there must be infinite energy in the battery. We now
use (59) for proving the following proposition.

Proposition 1: When P̄d = P̄lim < P̄in, there must be
some time slot, denoted byj, after which for anyi > j
the eventPout(i) = min{B(i − 1), Pd(i)} = B(i − 1)
does not occur, and fori > j, only the eventPout(i) =
min{B(i − 1), Pd(i)} = Pd(i) occurs. Moreover,j must
satisfy

lim
N→∞

j

N
= 0. (60)

Proof of Proposition 1:We prove Proposition 1 by contradic-
tion. Hence, we assume that we cannot find a time slotj, de-
fined in Proposition 1, sincemin{B(j−1), Pd(j)} = B(j−1)
occurred for some largej for which lim

N→∞
j/N 6= 0 holds.

However, if lim
N→∞

j/N 6= 0 holds, thenj → ∞ must hold.

Consequently, ifj → ∞ andmin{B(j−1), Pd(j)} = B(j−1)
occurred for thatj, then due to (59) we would get the
following identity

lim
j→∞

min{B(j − 1), Pd(j)} = lim
j→∞

B(j − 1) = ∞. (61)

However, since the powerPd(j) is finite, the expression in the
left hand side of (61) must also satisfy

lim
j→∞

min{B(j − 1), Pd(j)} ≤ lim
j→∞

Pd(j) < ∞, (62)

which is a contradiction to (61), i.e., we obtain that forj → ∞
both (61) and (62) have to hold, which is impossible. As a
result, Proposition 1 must be true.

Now if Proposition 1 is true, then the number of time slots∆
for which Pout(i) 6= Pd(i) holds, satisfieslimN→∞ ∆/N =
0, and the number of time slots for whichPout(i) = Pd(i)
holds satisfieslimN→∞(N −∆)/N = 1. Thereby,Pout(i) =
Pd(i) holds practically always. This concludes the proof that
Pout(i) = Pd(i) holds practically always.

On the other hand, sincePd(i) andU(i), ∀i, are finite, and
sincej is finite, we have

lim
N→∞

1

N

j
∑

i=1

Pd(i) = 0 (63)

lim
N→∞

1

N

j
∑

i=1

min{B(i− 1), Pd(i)} = 0 (64)

lim
N→∞

1

N

j
∑

i=1

U(i) = 0. (65)

From (63)-(65), we obtain the following

P̄out = lim
N→∞

1

N

j
∑

i=1

min{B(i− 1), Pd(i)}

+ lim
N→∞

1

N

N
∑

i=j+1

Pd(i) = P̄d. (66)

Ū = lim
N→∞

1

N

j
∑

i=1

U(i) + lim
N→∞

1

N

N
∑

i=j+1

U(i)

= lim
N→∞

1

N

N
∑

i=j+1

U(i), (67)

i.e., P̄out = P̄d and only the codewords after thej-th slot
contribute to the average utility function, the contribution
of the other codewords is negligible. Since fori > j,
Pout(i) = Pd(i) holds always, we obtain that only the
codewords for whichPout(i) = Pd(i) holds contribute to
the average utility function̄U and the other codewords have
negligible contributions tōU . This completes the proof of Part
I.

2) Part II (P̄d = P̄in ≤ P̄lim): If P̄d = P̄in, the following
must hold

P̄out = lim
N→∞

1

N

N
∑

i=1

min{B(i− 1), Pd(i)}

= lim
N→∞

1

N

N
∑

i=1

Pd(i) = P̄d = P̄in. (68)

We prove the above claim by contradiction. Assume thatP̄d =
P̄in holds, however, (68) does not hold and

P̄out = lim
N→∞

1

N

N
∑

i=1

min{B(i− 1), Pd(i)}

< lim
N→∞

1

N

N
∑

i=1

Pd(i) = P̄d = P̄in (69)

holds instead. However, sincēPout < P̄in holds, according to
the proof in Part I,P̄out has to be given by (66). Thereby,
we obtain a contradiction that both (66) and (69) must hold.
Due to this contradiction, (69) cannot hold and (68) must hold
instead. This concludes the proof of (68).

Now, there are only two cases for which (68) can hold. The
first case is when the number of slots for whichPout(i) =
B(i − 1) holds, denoted by∆, is negligible compared to the
number of slots for whichPout(i) = Pd(i) holds, i.e.,∆ is
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such thatlimN→∞ ∆/N = 0 holds. As a result, the codewords
for whichPout(i) = B(i−1) occurs have negligible effect on
the average utility function̄U compared to the codewords for
whichPout(i) = Pd(i) occurs. This can be proved as follows.
Put all time slotsi for whichPout(i) = B(i−1) occurs into set
I and the rest of time slots for whichPout(i) = Pd(i) occurs
into set Ī . Then, letUmax = maxi∈I U(i). SinceUmax is
finite it follows that the contribution of the codewords with
powersPout(i) = B(i− 1) to the average utility function is

lim
N→∞

1

N

∑

i∈I

U(i) ≤ lim
N→∞

1

N

∑

i∈I

Umax

= lim
N→∞

∆

N
× Umax = 0. (70)

The second case is when the number of slots for which
Pout(i) = B(i − 1) holds,∆, is not negligible compared to
the number of slots for whichPout(i) = Pd(i) holds, i.e.,∆
is such thatlimN→∞ ∆/N > 0 holds. Nevertheless, we can
prove whenPout(i) = B(i−1) occurs, the difference between
B(i − 1) andPd(i) must be so small that its effect on̄U is
negligible. As a result of this negligible effect on̄U , we can
assume thatPout(i) = B(i− 1) = Pd(i) holds for practically
all time slots. This is proven in the following.

Since (68) holds, using the setsI and Ī, we can rewrite
(68) as

lim
N→∞

1

N

N
∑

i=1

Pd(i) = lim
N→∞

1

N

N
∑

i∈I

B(i− 1)

+ lim
N→∞

1

N

N
∑

i∈Ī

Pd(i). (71)

Substracting the right hands side of (71) from both sides of
(71), we obtain that

lim
N→∞

1

N

N
∑

i∈I

(

Pd(i)−B(i− 1)
)

= 0 (72)

must hold. Now, since fori ∈ I, Pd(i) > B(i− 1) holds, we
can conclude that (72) can hold if and only if in almost all
time slotsi ∈ I, the difference betweenPd(i) andB(i − 1)
is negligible. Or, more precisely, fori ∈ I, the average of the
difference

ǫ(i) = Pd(i)−B(i− 1) > 0, i ∈ I, (73)

satisfies

lim
N→∞

1

N

N
∑

i∈I

ǫ(i) = 0. (74)

In the following, we prove that the events in whichPout(i) =
B(i − 1) occurs have negligible effect on̄U . To this end, let
us defineŪd as the average utility function obtained when

Pout(i) = Pd(i), ∀i. Then, we can writēUd and Ū

Ūd = lim
N→∞

1

N

N
∑

i=1

U(Pd(i))

= lim
N→∞

1

N

∑

i∈I

U(Pd(i)) + lim
N→∞

1

N

∑

i∈Ī

U(Pd(i)) (75)

Ū = lim
N→∞

1

N

N
∑

i=1

U(Pout(i))

= lim
N→∞

1

N

∑

i∈I

U(B(i − 1)) + lim
N→∞

1

N

∑

i∈Ī

U(Pd(i)).

(76)

Now, using (73), we can obtainPd(i) for i ∈ I asPd(i) =
B(i− 1) + ǫ(i). Inserting this into (75) we can obtain̄Ud as

Ūd =

lim
N→∞

1

N

∑

i∈I

U(B(i− 1) + ǫ(i)) + lim
N→∞

1

N

∑

i∈Ī

U(Pd(i))

(a)
= lim

N→∞

1

N

∑

i∈I

U(B(i− 1)) + lim
N→∞

1

N

∑

i∈Ī

U(Pd(i)) = Ū ,

(77)

where (a) follows from the fourth property ofŪ given in
Definition 1.

Hence, also for the second part when̄Pd = P̄in ≤ P̄lim

holds, we can conclude thatPout(i) = Pd(i) holds for practi-
cally all time slots. This completes the proof of Lemma 1.

B. Proof of Theorem 2

Following the same procedure as for the proofs in Appendix
A, with P̄d adjusted toP̄d = min{P̄lim, P̄in}, we obtain that
Pout(i) = Pd(i) holds for practically all time slots when
N → ∞. Now, for each time sloti for whichPout(i) = Pd(i)
holds, Pout,k(i) = Pd,k(i), ∀k, also holds. Therefore, it
follows that Pout,k(i) = Pd,k(i), ∀k, holds for practically
all time slots whenN → ∞. Consequently, following the
method in the proof of Theorem 1, we can write (23) as (24)
with appropriately adjustedPlim,non−EH = min{P̄lim, P̄in} as
explained in Theorem 2.

C. Proof of Theorem 3

In this proof, setA comprises the indices of the nodes
with P̄lim,k < P̄in,k and setĀ comprises the indices of the
nodes withP̄lim,k ≥ P̄in,k. We first prove that for the nodes
k ∈ A, the number of time slots for whichPout,k(i) 6= Pd,k(i)
holds is negligible compared to the number of time slots
with Pout,k(i) = Pd,k(i). To this end, we use the proof in
Appendix A, where it is shown that an individual nodek ∈ A,
after some finite number of time slotsjk, transmits with power
Pout,k(i) = Pd,k(i), ∀i > jk, where limN→∞ jk/N = 0.
Now, let j = maxk{jk}. Then, limN→∞ j/N = 0 holds.
Furthermore, after thisj-th time slot, all of the nodesk ∈ A
transmit with powerPout,k(i) = Pd,k(i), ∀i > j, i.e., these
nodes transmit with powerPout,k(i) = Pd,k(i) for practically
all time slots. This completes the proof for the nodes in the
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set setA. Now, we are only left to prove that for the nodes
k ∈ Ā, the number of time slots in whichPout,k(i) 6= Pd,k(i)
holds is negligible compared to the number of time slots with
Pout,k(i) = Pd,k(i). To this end, for each nodek ∈ Ā, let
us create a setIk in which we put the time slotsi for which
Pout,k(i) 6= Pd,k(i) holds. Furthermore, let us create the setI
in which we put the time slotsi for whichPout,k(i) 6= Pd,k(i)
holds for at least one of the nodesk ∈ Ā, i.e., I is the union
of all Ik for k ∈ Ā. Thereby, the cardinality ofI is upper
bounded by the sum of the cardinalities ofIk, ∀k ∈ Ā, i.e.,
the cardinality ofI, denoted by∆, is upper bounded as

∆ = |I| ≤
∑

k∈Ā

|Ik|. (78)

According to the proof in Appendix A, ifP̄d,k = P̄in,k

holds, for any individual nodek, Pout,k(i) = Pd,k(i) hold for
practically all time slots. Hence, let us adoptP̄d,k = P̄in,k,
∀k ∈ Ā. Now, since|Ik| is the number of time slots in which
Pout,k(i) 6= Pd,k(i) holds for nodek ∈ Ā, according to the
proof in Appendix A,|Ik| satisfies

lim
N→∞

|Ik|/N = 0 , ∀k ∈ Ā. (79)

Now, combining (78) and (79) we find that the cardinality of
I satisfies

lim
N→∞

∆/N ≤
∑

k∈Ā

lim
N→∞

|Ik|/N = 0. (80)

when |Ā| < ∞. Therefore, the cumulative effect of
Pout,k(i) 6= Pd,k(i) on Ū from the nodes inA and Ā is
negligible sincelimN→∞(j + ∆)/N = 0 holds. Therefore,
following the method in the proof of Theorem 1, we can
write (28) as (29) with appropriately adjustedPlim,non−EH

as explained in Theorem 3. This completes the proof.

D. Proof of Theorem 4

The proof for the general EH network is identical to that
of the multiple-access EH network given in Appendix C,
however, the powersPout,k(i) andPd,k(i) now have different
meanings and are given by (41) and (42), respectively. In
particular,Pout,k(i) and Pd,k(i) now are the total transmit
and the total desired powers in time sloti of the k-th EH
transmit node to all receiving nodes. Hence, by following the
same procedure as for the proof in Appendix C, we can prove
that, if for the nodesk ∈ A for which P̄lim,k < P̄in,k holds
and the nodesk ∈ Ā for which P̄lim,k ≥ P̄in,k holds, P̄d,k is
set toP̄d,k = P̄lim,k andP̄d,k = P̄in,k, respectively, we obtain
thatPout,k(i) = Pd,k(i) holds for practically all time slots. As
a result,Pout,k→j(i) = Pd,k→j(i) also holds∀i, k, j. Hence,
Theorem 4 follows.
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