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Abstract—Despite the inevitable presence of transceiver im-
pairments, most prior work on multiple-input multiple-output
(MIMO) wireless systems assumes perfect transceiver hardware
which is unrealistic in practice. In this direction, motivated by the
increasing interest in MIMO relay systems due to their improved
spectral efficiency and coverage, this paper investigates the im-
pact of residual hardware impairments on the ergodic capacity of
dual-hop (DH) amplify-and-forward (AF) MIMO relay systems.
Specifically, a thorough characterization of the ergodic channel
capacity of DH AF relay systems in the presence of hardware
impairments is presented herein for both the finite and large
antenna regimes by employing results from finite-dimensional
and large random matrix theory, respectively. Regarding the
former setting, we derive the exact ergodic capacity as well
as closed-form expressions for tight upper and lower bounds.
Furthermore, we provide an insightful study for the low signal-
to-noise ratio (SNR) regimes. Next, the application of the free
probability (FP) theory allows us to study the effects of the
hardware impairments in future 5G deployments including a
large number of antennas. While these results are obtained for the
large system limit, simulations show that the asymptotic results
are quite precise even for conventional system dimensions.

I. INTRODUCTION

The continuous evolution of cellular networks is led by the
rapidly increasing demand for ubiquitous wireless connectivity
and spectral efficiency [2]. Initially, multiple-input multiple-
output (MIMO) technology emerged by means of the pioneering
works of Telatar and Foschini [3], [4] as an enabling technique
to implement high data-rate systems based on their impressive
capacity scaling in the high signal-to-noise ratio (SNR) regime
with the minimum of transmit and receive antennas. In order
to characterize such a MIMO wireless link, an information-
theoretic capacity has been commonly used as an important
figure of merit.

Following this direction, the massive MIMO paradigm,
originating from [5], is a new network architecture, and is also
known as large-scale antenna systems or very large MIMO. In
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this paradigm, the number of antennas of each base station
(BS) and the number of users per BS are unconventionally
large but they differ by a factor of two or four or even an
order of the magnitude. Interestingly, this technology brings
numerous advantages such as unprecedented spatial degrees-
of-freedom enabling large capacity gains from coherent recep-
tion/transmit beamforming, resilience to intra-user interference
and thermal noise, and the ease of implementation because of
low-complexity signal processing algorithms [6], [7].

The massive MIMO wireless systems are attractive (cost-
efficient) for a network deployment, but only if the antenna
elements consist of inexpensive hardware components. How-
ever, most of the research contributions are based on the strong
assumption of the perfect hardware and this assumption is quite
idealistic in practice. In reality, besides the effect of wireless
fading channel, both the transmitted and received baseband
signals are also affected by the unavoidable imperfections of the
transceiver hardware components. In fact, the lower the quality
of the transceiver hardware, the higher the impact of occurring
impairments on the performance of the system. Specifically, sev-
eral phenomena exist that constitute additive or multiplicative
hardware impairments e.g., in-phase/quadrature-phase (I/Q)-
imbalance [8], high power amplifier non-linearities [9], and
oscillator phase noise (PN) [10]. Even though the performance
degradation caused due to such hardware impairments can be
partially mitigated by means of suitable calibration schemes
at the transmitter or compensation algorithms at the receiver,
there still remains a certain amount of unaccounted distortion
caused due to residual hardware impairments. The main
reasons for these residual impairments are imperfect parameters
estimation due to the randomness and the time variation of
the hardware characteristics, inaccurate models because of the
limited precision, unsophisticated compensation algorithms, etc
[11]. To this end, this work focuses on the effect of additive
transceiver impairments on the ergodic capacity of the DH AF
MIMO relay systems and the performance characterization due
to multiplicative impairments is the subject of the future work.

Recently, the topic concerning the investigation of the
impact of radio-frequency (RF) impairments on wireless
communication systems has attracted a tremendous amount of
attention with a growing interest in the direction of the study
of their effects on conventional MIMO systems (see [8]–[10],
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[12]–[17] and the references therein) and, more lately, on large
MIMO systems [11], [18]–[22]. For instance, experimental
results modeling the residual hardware impairments only at
the transmitter and the study of their impacts on certain
MIMO detectors such as zero-forcing took place in [13]. More
interestingly, regarding the channel capacity, [16] elaborated
on the derivation of high signal-to-noise ratio (SNR) bounds by
considering only transmitter impairments for MIMO systems
with a finite number of antennas, while in [11], the authors
extended the analysis to arbitrary SNR values, but most
importantly, by including receiver impairments. Unfortunately,
the imposed fundamental capacity ceiling resulted due to
the presence of the impairments becomes more restrictive in
higher rate systems such as large MIMO systems in which
increasing the transmit power cannot be any more beneficial.
In addition, the authors in [21] showed that the transceiver
hardware impairments result in a channel estimation error and
a capacity ceiling even for the case of massive MIMO systems.

In contrast to the previous cellular generations where relaying
was mostly used for coverage enhancement, this has been a
misconception in today’s cellular networks since relaying can
improve both coverage and system capacity [23]. In this regard,
relaying has been already considered as one of the salient
features in 3GPP Long Term Evolution (LTE) advanced [24].
Out of various modes of relay operation such as amplify and
forward, decode and forward and compress and forward in
wireless fading channels, AF relaying is of significant impor-
tance for 5G and beyond wireless networks mainly due to low
transmission delay, and low implementation complexity [25].
Although the concept of massive MIMO using large-scale
antenna arrays has been shown to be a promising candidate for
future wireless networks, this technology requires favorable
propagation conditions to provide sufficient capacity gains [26].
In current networks, relaying can further enhance the capacity
of MIMO systems under line of sight conditions in addition
to the capacity enhancement due to improved modulation
and coding gain and enhanced service time allocation [23],
[24]. Moreover, the importance of relaying in massive MIMO
systems has been already demonstrated in several studies [27].
In addition to the application of dual hop AF relaying in
cooperative wireless networks, another promising application
area is inband backhauling, which enables radio access links
and backhaul/fronthaul links to operate in the same frequency
band to enhance the spectral efficiency of heterogeneous cellular
networks [28], [29]

Despite that relay systems have received important research
attention since they realize the performance gains of wireless
systems cost-efficiently by means of coverage extension and
uniform quality of service, only a few works have tackled the
effect of hardware impairments [30]–[33]. In particular, dual
hop (DH) amplify-and-forward (AF) relay systems have been
extensively studied for the cases of both conventional and large
MIMO systems [34]–[36], but the relevant studies of the relay
systems considering the effects of hardware impairments are
quite limited in the literature [31], [32], [37]–[40]. Actually,
the authors in [31], [32] provided the most noteworthy works
by considering these kinds of impairments in one-way and
two-way DH AF relaying systems, respectively. In particular,
they considered only the outage probability and simple capacity
upper bounds for the simplistic case of single antenna systems.

However, a thorough analysis of the capacity of the relay
systems for the case of multiple antennas is still lacking from
the literature.

In this paper, we acknowledge that the manifestation of
RF impairments becomes more significant in high data-rates
systems such as MIMO or more strikingly, in the future large
MIMO systems which offer a higher capacity. Nevertheless,
taking into account that the deployments of both relays and
a large number of antennas in a massive MIMO system are
desirable to be cost-efficient, the transceiver components should
be inexpensive (low quality), which makes the overall system
performance more prone to impairments. In this context, the
authors in [33] recently studied the impact of transceiver
impairments on massive MIMO relaying systems but the
work focused only on the large-antenna regime considering
decode and forward relaying policy. To the best of our
knowledge, there appear to be no analytical ergodic capacity
results applied to DH AF MIMO systems with an arbitrary
number of antennas and the relaying configurations in the
presence of hardware impairments. As a result, it is of great
interest and necessity to investigate the impact of residual
additive hardware impairments on DH AF relay systems with
both finite and infinite number of antennas by providing a
detailed performance analysis. Especially, unlike [31] which
only deals with single antenna relay systems, this work provides
a complete performance characterization by investigating the
impact of transceiver impairments on the ergodic capacity of DF
AF MIMO relay systems for both conventional (finite) and large
system (infinite number of antennas) regimes. Moreover, we
provide an exact theoretical expression for the ergodic capacity
of the considered system instead of only the bounds. In this
direction, the contributions of this paper can be summarized
as follows

• Given an ideal AF MIMO dual-hop system model, where
multiple single-antenna users (source) communicate with
a BS (destination) through a relay without the source
to destination link, we introduce a realistic model for
MIMO relay systems incorporating the inevitable residual
additive hardware transceiver impairments by taking into
account the generalized model of [12], [13], [31]. In
fact, contrary to the existing works which studied the
performance degradation due to separate single sources [8],
[12], we follow an overall approach of examining the
accumulated impact of the additive hardware impairments.

• Based on the aforementioned system model and employing
results from [34], we investigate the impact of RF
hardware impairments on the ergodic channel capacity
when both the relay and the BS are deployed with a finite
number of antennas. In particular, the study takes place
by means of derivation of a new exact analytical result,
simple closed-form low-SNR expressions, and the closed-
form tight upper and lower bounds on the ergodic capacity
in terms of easily computed standard functions, which
provide insightful outcomes regarding the characterization
of the degrading effects due to the residual hardware
imperfections.

• Using tools from large random matrix theory (RMT) and
contrary to the existing literature that usually employs a
deterministic equivalent analysis, we follow a different
line of realizing mathematical derivations by pursuing
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a free probability (FP) analysis [41]. Advantageously,
the FP requires just a polynomial solution instead of
fixed-point equations and allows us to provide a thorough
characterization of the impact of residual transceiver
impairments on the capacity of DH AF systems in the large
system limit. One of the most interesting outcomes of the
paper is the demonstration that the results coming from
both conventional and large-antenna analyses coincide for
the conventional number of antennas.

The remainder of this paper is structured as follows:
Section II presents the signal and system models for relay
systems with multiple antennas for the cases of both ideal
and imperfect hardware. In Section III, we pursue a complete
conventional random matrix theory analysis for DH AF MIMO
channels by means of a new analytical result for the ergodic
capacity, simple closed-form low-SNR expressions, and the
closed-form tight upper and lower bounds in the presence of
hardware impairments. Covering the need for the investigation
of the ergodic capacity in the case of large MIMO systems, we
employ a FP analysis in Section IV. The numerical results are
placed in Section V, while Section VI summarizes the paper.

Notation: Vectors and matrices are denoted by boldface
lower and upper case symbols. (·)T, (·)H, and tr(·) represent the
transpose, Hermitian transpose, and trace operators, respectively.
The expectation operator, as well as the adjugate and the
determinant of a matrix are denoted by E [·], as well as
adj(·) and det(·), respectively. The diag{·} operator generates
a diagonal matrix from a given vector, and the symbol
, declares definition. The notations CM and CM×N refer
to complex M -dimensional vectors and M × N matrices,
respectively. Finally, b ∼ CN (0,Σ) denotes a circularly
symmetric complex Gaussian with zero-mean and covariance
matrix Σ, and (·)+ signifies the positive part of its argument.
Note that El (·) is the exponential integral function of order
l [42, Eq. 8.211.1], Kv (·) is the modified Bessel function of
the second kind [42, Eq. 8.432.6], U(a, b, z) is the Tricomi
confluent hypergeometric function [43, Eq.07.33.02.0001.01]],
and Wλ,µ(·) is the Whittaker function [44, Eq. 13.1.33].

II. SYSTEM MODEL

We consider a DH AF relay system with ideal transceiver
hardware as illustrated in Fig. 1(a). We assign the subscript
1 for the parameters between the source and the relay, and
the subscript 2 for the parameters describing the second hop,
i.e., the link between the relay and the destination. While our
analysis concerning a DH AF system comprised by three nodes
(the source, a relay, and the destination) with multiple number
of antennas is rather general, we exemplify a scenario of
practical interest without loss of any generality. Specifically, we
assume that both the relay and the BS (destination) are compact
infrastructures with multiple antennas, but regarding the source
node, we assume that it consists of a number of single-antenna
users playing the same role as a single compact node with
an equivalent number of antennas1. Hence, K single antenna
non-cooperative users, trying to reach a distant N -antennas
BS, communicate first with an intermediate relay including an
array of M antennas (first hop). In other words, a single-input

1This example assumes that the users are in close proximity, in order to
realize the same channel as a multi-antenna source.

multiple-output (SIMO) multiple access channel (MAC) (users-
relay) is followed by a point to point MIMO channel (relay-BS).
In our system model, we assume that the BS estimates the CSI
using the pilots transmitted by the users and then re-transmitted
through the relay. The considered relay is just a simple amplify
and forward component and the inclusion of channel estimation
part would increase its complexity. Therefore, in this paper,
we consider the availability of channel knowledge only at the
BS side and not at the relay. If the relay can acquire the CSI
knowledge, the performance can be improved by applying
different techniques such as receive and transmit beamforming
as shown in several studies [45].

The mathematical representation of this model is expressed
as

y1 = H1x1 + z1, (1)
y2 = H2

√
νy1 + z2

=
√
νH2H1x1 +

√
νH2z1 + z2, (2)

where the first and second equations correspond to the first
(users-relay) and second (relay-BS) input-output signal models,
respectively. In particular, x1 ∈ CK×1 is the Gaussian vector
of symbols simultaneously transmitted by the K users with
E [x1x

H
1] = Q1 = ρ

K IK , H1 ∈ CM×K ∼ CN (0, IM ⊗ IK)
is the concatenated channel matrix between the K users
and the relay exhibiting flat-fading, while H2 ∈ CN×M ∼
CN (0, IN ⊗ IM ) describes the channel matrix between the
relay and the BS. In other words, both the first and second
hops exhibit Rayleigh fast-fading and are expressed by Gaus-
sian matrices with independent identically distributed (i.i.d.)
complex circularly symmetric elements. For the simplicity of
analysis, herein, we assume an i.i.d. model as considered in
several previous works [31], [46]. In practice, there may arise
situations such as channel correlations and large scale fading
and it is necessary to model the wireless channel considering
these aspects into account 2. In the case of random matrix
theory literature, one may refer to [46] for the analysis with
channel correlations and to [47] for the analysis with large scale
fading. In addition, y1 and y2 as well as z1 ∼ CN (0, IM )
and z2 ∼ CN (0, IN ) denote the received signals as well as
the additive white Gaussian noise (AWGN) vectors at the relay
and BS, respectively. In other words, the user signal-to-noise-
ratio (SNR) equals to µ = ρ

K . Note that before forwarding the
received signal y1 at the relay, we consider that it is amplified
by ν = α

M(1+ρ) , where we have placed a per relay-antenna fixed
power constraint α

M with α being the total gain of the relay,
i.e., E

[
‖
√
νy1‖2

]
≤ α, with the expectation taken over signal,

noise, and channel fading realizations. For the performance
characterization in this paper, we assume a fixed relay gain.

In practice, the transmitter, the relay, and the BS are
affected by certain inevitable additive impairments such as
I/Q imbalance [12]. Although mitigation schemes can be
incorporated in both the transmitter and receiver, residual
impairments still emerge by means of additive distortion
noises [12], [13]. In our system model, an important attention
should be given to the relay which plays two distinctive roles.
In the first hop, it operates as a receiver, while it becomes the

2In this regard, we consider the ergodic capacity analysis of DH AF relaying
channel with residual hardware impairments in the presence of large scale
fading and channel correlations as our future work.
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Fig. 1. (a) Conventional AF DH relay MIMO system with ideal transceiver
hardware. (b) Generalized AF DH relay MIMO system with residual additive
transmitter and receiver hardware impairments.

transmitter of the second hop. Taking this into consideration, in
each node of the system, a transmit and/or receive impairment
exists which may cause a mismatch between the intended signal
and what is actually transmitted during the transmit processing
and/or a distortion of the received signal at the destination.

Introduction of the residual additive transceiver impairments
to (1) and (2) provides the following general channel models
for the respective links

y1 =H1(x1+ηt1)+ηr1 +z1, (3)
y2 =H2

(√
νy1+ηt2

)
+ηr2 + z2

=
√
νH2H1(x1+ηt1)+H2

(√
ν(ηr1+z1)+ηt2

)
+ηr2 +z2, (4)

where the additive terms ηti and ηri for i = 1, 2 are the
distortion noises coming from the residual impairments in the
transmitter and receiver of the link i, respectively. Interestingly,
this model (depicted in Fig. 1(b)) allows us to investigate
the impact of the additive residual transceiver impairments,
described in [12], [13], on a DH AF system. Obviously, as far as
the first hop is concerned, the additive transceiver impairments
are expressed as3

ηt1 ∼ CN (0, δ2
t1

ρ

K
IK), (5)

ηr1 ∼ CN (0, δ2
r1ρIM ). (6)

Given that the input signal for the second hop is
√
νyi, the

corresponding input covariance matrix is

Q2 = νE [y1y
H

1] = νK

(
µ+ δ2

t1µ+ δ2
r1µ+

1

K

)
IM

= µ̃νKIM , (7)

3Two basic approaches in the literature are followed for describing the receive
distortion noises. Their difference lies on both the mathematical expression
and physical meaning. In the first approach, the power of the distortion is often
proportional to the power of the desired signal and since the received signal
has gone through the channel and depends on the channel, it makes sense
that the distortion is also dependent on the channel [17], [31]. For the sake of
simplified mathematical exposition and analysis, the receive distortion may
not include the instantaneous channel [1], [11]. Following this direction, our
analysis is more tractable, while revealing at the same time all the interesting
properties.

where µ̃ =
(
µ+ δ2

t1µ+ δ2
r1µ+ 1

K

)
. Note that now, ν = α

KMµ̃ ,
after accounting for fixed gain relaying. Thus, the additive
transceiver impairments for the second hop take the form4

ηt2 ∼ CN (0, δ2
t2µ̃νKIM ), (8)

ηr2 ∼ CN (0, δ2
r2 µ̃νKMIN ). (9)

In particular, taking (4) into consideration, the capacity of
the considered channel model is described by the following
proposition.

Proposition 1: The ergodic capacity of a DH AF system
in the presence of i.i.d. Rayleigh fading with residual addi-
tive transceiver hardware impairments under per user power
constraints [Q1]k,k ≤ µ,∀k = 1 . . .K and (7) is given by

C = E
[
ln det

(
IN +

µν

B
H2H1H

H

1H
H

2Φ
−1
)]

(10)

= E
[
ln det

(
Φ +

µν

B
H2H1H

H

1H̄
H

2

)]
︸ ︷︷ ︸

C1

− E [ln det(Φ)]︸ ︷︷ ︸
C2

, (11)

where Φ = f2H2H1H
H
1H

H
2 + f3H2H

H
2 + IN with B =

δ2
r2 µ̃νKM+1, f1 = f̃1f3, f2 =f4δ

2
t1 , f3 =

ν(δ2t2 µ̃K+δ2r1
µK+1)

B ,
f4 = µν

B , and f̃1 = f2+f4
f3

.
Proof: Given any channel realizations H1,H2 and transmit

signal covariance matrices Q1 and Q2 at the user and relay
sides, a close observation of (4) shows that it is an instance of
the standard DH AF system model described by (2), but with
a different noise covariance given by

Φ = νδ2
t1H2H1diag (q11

, . . . , qK) HH

1H
H

2

+ H2

((
νδ2

r1 trQ1 + ν
)
IN + νδ2

t2diag (q11 , . . . , qM )
)
HH

2

+
(
δ2
r2 trQ2 + 1

)
IN . (12)

Taking into account for the optimality of the input signal x1

since it is Gaussian distributed with the covariance matrix
Q1 = ρ

K IK , the proof is conluded.
The above proposition (Proposition 1) allows us to investigate

the impact of the additive transceiver impairments in DH
AF systems for the cases of both finite and infinite system
dimensions.

Remark 1: Interestingly, C1 represents the mutual informa-
tion due to relaying and additive transceiver impairments, while
the physical meaning of C2 describes the loss due to noise
amplification.

Remark 2: Despite the resemblance of the ergodic capacity
with transceiver impairments, given by (10), with the con-
ventional ergodic capacity of a DH AF system with ideal
hardware [34, Eq. 2], this paper shows the fundamental
differences that arise because the noise covariance matrix now
depends on the product of the channel matrices H1 and H2,
as shown by (12). As a result, it is non-trivial to provide the
generalizations of the previous works on AF systems with ideal
hardware to the case of transceiver impairments.

Subsequently, employing the property det(I + AB) =
det(I + BA), the expressions for C1 and C2, which denote

4The presence of impairments at the relay node signifies two different
distortion noises ηr1 and ηt2 , where the latter one together with the distortion
noise ηr2 , occuring at the BS, have been amplified during the second hop.
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the ergodic capacity per receive antenna with Ci = 1
NCi for

i = 1, 2, can be alternatively written as

C1 =
1

N
E
[
ln det

(
IM+f3H

H

2H2

(
IM+f̃1H1H

H

1

))]
(13)

C2 =
1

N
E
[
ln det

(
IM+f3H

H

2H2

(
IM+

f2

f3
H1H

H

1

))]
. (14)

III. ERGODIC CAPACITY ANALYSIS-FINITE NUMBER OF
ANTENNAS

This section presents analytical results regarding the ergodic
capacity of AF MIMO dual-hop systems under additive
transceiver impairments. Well known results under the ideal
assumption of perfect hardware, given in [34], are generalized
by including the practical consideration of the imperfect
transceiver hardware. It should be stressed that these results
cannot be elicited from the prior works for several reasons such
as that the noise covariance matrix depends on the product term
H2H1. Specifically, the following theorem is the key result
of this section. We define p , max (M,N), q , min (M,N),
s , min (K, q), u = p− q− 1, v = p+ q− 1, and q̃ = K + q,
since these will be often used in our analysis.

A. Exact Expression for Ergodic Capacity

Theorem 1: The per receive antenna capacity of a DH AF
system in the presence of i.i.d. Rayleigh fading channels with
additive transceiver impairments in the case of a finite number
of transmit users K as well as relay and BS antennas (M and
N ) is given by

C =
2K
N

q∑
l=1

q∑
k=q−s+1

q+K−l∑
i=0

(
q̃−l
i

)
f q̃−l−i3

Γ(K − q + k)
Gl,kIi,k, (15)

where Gl,k is defined in Lemma 1 (Appendix A) and

Ii,k =

∫ ∞
0

ln

(
1 + f1λ

1 + f2λ

)
e−λf3λ(2K+2k+u−i−2)/2

×Kv−i

(
2
√
λ
)

dλ. (16)

Proof: See Appendix B.
Interestingly, Theorem 1 extends the result in [34, Eq. 39] that
did not consider any aggregate hardware impairments.

B. Extreme SNR Regime

Despite the exact expression for the capacity of a DH AF
channel with additive transceiver impairments, obtained by
Theorem 1, its lack to reveal insightful conclusions by means
of the dependencies with the various system parameters such as
the number of BS and relay antennas as well as the inevitable
hardware impairments leads to the need for investigation of
the low power regime5. Thus, in the case of low SNR, we
consider a meaningful scenario. Specifically, we let the user
power tend to zero (ρ = 0), while the relay transmit power is
kept constant. Note that if we let the relay power tend to zero,
no transmission is possible. For the sake of simplification of
various expressions, we denote δ̃2

t1 = δ2
t1 + 1, δ̃2

t2 = δ2
t2 + 1,

δ̃2
r2 = αδ2

r2 + 1, δ̃2
tr1 = δ2

r1 + δ2
t1 + 1, and δ̃2

tr1,ρ = ρδ̃2
tr1 + 1.

5The high SNR case is not included in this paper due to space limitations.

In the following, depending on the case and based on Jensen’s
inequality, we are able to change the order of expectation and
the limit or derivative by applying the dominated convergence
theorem [48], since the term inside the expectation is upper
bounded by an integrable function.

1) Low-SNR Regime: It is known that the capacity in this
region is well approximated as [49]

C

(
Eb
N0

)
≈ S0 ln

(
Eb
N0

Eb
N0min

)
, (17)

where the two key element parameters Eb
N0min

and S0 represent
the minimum transmit energy per information bit and the
wideband slope, respectively. In particular, we can express
them in terms of the first and second derivatives of C (ρ) as

Eb
N0min

= lim
ρ→0

ρ

C (ρ)
=

1

Ċ (0)
, (18)

S0 = −
2
[
Ċ (0)

]2
C̈ (0)

ln2. (19)

Theorem 2: In the low-SNR regime, the minimum transmit
energy per information bit, Eb

N0min
, and the wideband slope S0,

of a DH AF channel in the presence of i.i.d. Rayleigh fading
channels subject to additive transceiver impairments, are given

by (20) and (21), where E [λ]

∣∣∣∣
ρ=0

and (E [λ])
′
∣∣∣∣
ρ=0

are given

in Appendix C.
Proof: See Appendix C.

C. Tight Lower and Upper Bounds of the Ergodic Capacity
Having in mind that the ergodic capacity, obtained in (15),

can be calculated only numerically, in this section, we provide
upper and lower tight bounds of the ergodic capacity in
tractable closed forms that can describe the easier behavior of
C. Obviously, their importance is indisputable because they
shed light on interesting properties regarding the impact of
residual impairments on the ergodic capacity.

Theorem 3: The ergodic capacity of AF MIMO dual-hop
systems with i.i.d. Rayleigh fading channels under additive
transceiver impairments can be upper and lower bounded by

CU = C̃U,1 − C̃L,2 and CL = C̃L,1 − C̃U,2, (22)

where C̃U,i, C̃L,i for i = 1, 2 are given by (55), (57).
Proof: See Appendix D.

IV. ASYMPTOTIC PERFORMANCE ANALYSIS

Since the cost-efficiency of the massive MIMO technology
depends on the application of inexpensive hardware and such
inexpensive hardware components will make the deleterious
effect of the residual impairments more pronounced, it is of
pivotal importance to study the ergodic capacity in the large
system regime, i.e., users, relays, and the BS equipped with
a large number of antennas. Hence, this section presents the
main results regarding the system performance in the large-
antenna regime. Nevertheless, we account also for the scenario
where the number of users increases infinitely. Given that
our interest is focused on channel matrices with dimensions
tending to infinity, we employ tools from the large RMT.
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Eb
N0min

=
KMδ̃2

r2

αsE [λ]

∣∣∣∣
ρ=0

ln 2 (20)

S0 =
2K4M4δ̃4

r2

α3s3E2 [λ]

∣∣∣∣
ρ=0

(2KMδ̃2
r2

(
E [λ]

∣∣∣∣
ρ=0

δ̃2
tr1 − (E [λ])

′
∣∣∣∣
ρ=0

)
− α(2δ2

t1 + 1)E [λ2]

∣∣∣∣
ρ=0

)

(21)

Among the advantages of the ensuing analysis, we mention the
achievement of deterministic results that make Monte Carlo
simulations unnecessary. Moreover, the asymptotic analysis
can be quite accurate even for realistic system dimensions,
while its convergence is rather fast as the channel matrices
grow larger. Under ideal hardware, the ergodic capacity was
obtained in [50], however, the deduction to the case with RF
impairments is not trivial, as stated in Section-III. Thus, after
defining β , K

M and γ , N
M , the channel capacity of the

system under study is given by the following theorem.
Theorem 4: The capacity of a DH AF MIMO system in

the presence of i.i.d. Rayleigh fading channels with additive
transceiver impairments, when the number of transmit users K
as well as relay and BS antennas (M and N ) tends to infinity
with a given ratio, is given by

C→ 1

γ

∫ ∞
0

ln (1+f3Mx)

(
f∞Kf1/M

(x)−f∞Kf2
f3

/M (x)

)
dx, (23)

where the asymptotic eigenvalue probability density functions
(a.e.p.d.f.) of Kf1/M and Kf2/f3/M are obtained by the
imaginary part of the corresponding Stieltjes transform S for
real arguments.

Proof: See Appendix E.

A. Special Cases

Herein, we investigate the ergodic capacity of the DH AF
system with additive impairments, when its dimensions grow
in turn larger without a bound.

Proposition 2: The ergodic capacity of the DH AF system
with additive impairments, when the number of users K tends
to infinity, reduces to6

lim
K→∞

C=E

ln det

 Iq+
αδ̃2t2
Mδ̃2r2

H2H
H
2

Iq+
α(δ2t2

δ̃2tr1,ρ
+δ2r1

ρ+δ2t1
ρ+1)

Mδ̃2r2
δ̃2tr1,ρ

H2HH
2


.
(24)

Proof: See Appendix F-A.
Proposition 3: The ergodic capacity of the DH AF system

subject to additive impairments, when the number of relay
antennas M tends to infinity, reduces to (25).

Proof: See Appendix F-B.
Proposition 4: The ergodic capacity of the DH AF system

subject to additive impairments, when the number of BS

6Note that matrix division is equivalent to multiplication with the inverse
matrix.

antennas N tends to infinity, is given by

lim
N→∞

C=E

ln det

IK+
δ̃2t1

ρ

K(δ2t2
δ̃2tr1,ρ

+δ2r1
ρ+1)

H̃1H̃
H
1

IK+
δ2t1

ρ

K(δ2t2
δ̃2tr1,ρ

+δ2r1
ρ+1)

H̃1H̃H
1


. (26)

Proof: See Appendix F-C.
These propositions generalize the results presented in [34,

Eqs. 42–44] for arbitrary K, M , and N configurations under
the unavoidable presence of additive transceiver impairments.
Notably, these impairments affect the asymptotic limits, while
our proposed expressions reduced to (42)− (44) in [34] for
the ideal case where perfect transceiver hardware is assumed.
Especially, in the high-SNR regime, we witness a hardening
effect due to the various imperfections affecting differently
the ergodic capacity. For example, when K → ∞, and the
second hop impairments are negligible, i.e., (δ2

t2 = δ2
r2 = 0),

the nominator of (24) does not depend on any impairments, and
it reduces to the ergodic capacity of a conventional single-hop
i.i.d. Rayleigh fading MIMO channel with the transmit power α,
and M transmit antennas. Another interesting intuitive outcome
comes from Proposition 3, when the relay transmit power α
diminishes to zero and the user transmit power ρ is fixed or
vice-versa. Specifically, the ergodic capacity reduces to zero,
which means no communication between the users and the BS
can occur. Nevertheless, Proposition 4 reveals that the ergodic
capacity of this DH AF system with transceiver imperfections
does not depend on the relay power α, when the number of
BS antennas N grows larger. It is also worthwhile to mention
that the ergodic capacity is characterized by the fading of the
channel of the second hop when the number of users grows
large, while this disappears when M or N go to infinity. In
such a case, C depends only on the channel of the first hop.

V. NUMERICAL RESULTS

In this section, we verify the theoretical analysis carried out
in previous sections, and subsequently illustrate the impact of
impairments on the ergodic capacity of dual-hop AF MIMO
relay systems7

7The evaluation of the considered system is carried out in terms of the
per antenna ergodic capacity, which is defined as the total ergodic capacity
divided by the number of receive antennas. The reason behind this is hidden
in the terminology of the second part studying the large system regime. In
fact, a need to define the per-antenna capacity in the large system regime
appears. Hence, we employ this term in the first part as well, in order to
make the comparison with the first part fair. It is worthwhile to mention that
this metric does not restrict us to evaluate the dependence on the number of
receive antennas N .
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lim
M→∞

C = E

ln det

IK+
αδ̃2t1

ρ

K(δ̃2r2
δ̃2tr1,ρ

+α(δ̃2t2
δ̃2tr1,ρ

+δ2r1
ρ+1))

H̃1H̃
H
1

IK+
αδ2t1

ρ

K(δ̃2r2
δ̃2tr1,ρ

+α(δ̃2t2
δ̃2tr1,ρ

+δ2r1
ρ+1))

H̃1H̃H
1


. (25)

A. Finite Results

Figure 2(a) provides the comparison of per-antenna ergodic
capacity versus ρ with and without imperfections considering
K = 2, M = 4, N = 3. The theoretical curve for the case
without impairments was obtained by evaluating (39) from
[34], while for the case with impairments, it was obtained by
evaluating (15). Further, the simulated curves were obtained
by averaging the corresponding capacities over 103 random
instances of H1 and H2. From the figure, it can be shown
that the exact finite analysis matches well with the Mote Carlo
(MC) simulation for the arbitrary values of K, M and N .
The per-antenna ergodic capacity monotonically increases with
the increase in the value of ρ in the absence of hardware
impairments, but in the presence of impairments, the ergodic
capacity first increases with ρ and then gets saturated after a
certain value of SNR. Also, the per-antenna ergodic capacity in
the presence of impairments is almost the same as the capacity
in the absence of impairments at the lower values of ρ, i.e.,
ρ < 5 dB, but the gap between these two capacities increases
with the value of ρ.
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Fig. 2. Per-antenna ergodic capacity versus (a) ρ with and without im-
perfections (δt1 = δt2 = δr1 = δr2 = 0.08, K = 2, M = 4,
N = 3, α = 2ρ), (b) α with and without imperfections (µ = 15 dB,
δt1 = δt2 = δr1 = δr2 = 0.08, K = 2, M = 1, N = 4, α = 2ρ)

Besides, Fig. 2(a) also depicts the theoretical upper and lower
bounds of the per-antenna ergodic capacity. The presented
theoretical bounds for the case without impairments were
obtained by using (67) and (75) from [34]. Similarly, the bounds
for the case with impairments were obtained by evaluating (22)
using the involved equations. The capacity results as well as the
bounds in the absence of impairments are in close agreement
with the results presented in Fig. 6 of [34]. It can be observed
that both bounds are tight over the considered range of SNR
values. Moreover, the closed-form upper bound coincides with
the exact capacity curve at the lower SNR regime (ρ < 5 dB
in Fig. 2(a)), and the lower bound coincides with the exact
capacity curve at the higher SNR regime. Clearly, similar
observations can be noticed for the case with impairments.

Figure 2(b) presents the comparison of the per-antenna
capacity versus the relay gain α in the presence and the absence
of impairments. It can be observed that the per-antenna ergodic
capacity first increases with the increase in the value of α and
saturates after a certain value of α. Also, it can be noted that
the upper and lower bounds are tight over the considered range
of α for both cases. Another important observation is that the
capacity loss due to the presence of impairments is quite small
at the lower values of α and increases with the increase in the
value of α until both capacity curves reach the saturation.

Figures 3(a) and 3(b) illustrate the per-antenna ergodic
capacity versus K and N in the absence and the presence of
transceiver imperfections, respectively. From the figure, it can
be noted that the per-antenna ergodic capacity monotonically
increases with K, whereas it monotonically decreases with
the increase in the value of N . It should be noted that the
decreasing trend of the capacity with respect to N in Fig. 3(a)
and Fig. 3(b) is due to the fact we plot the per-antenna capacity
(normalized with respect to N ) instead of the capacity itself.
However, the total ergodic capacity monotically increases with
N and the rate of this increase is observed to be significantly
higher than the rate of increase with respect to K.

Figure 4 presents the comparison of the per-antenna ergodic
capacity versus ρ for finite and asymptotic cases by considering
the cases of the presence and the absence of impairments (with
parameters δt1 = δt2 = δr1 = δr2 = 0.08, K = 1, M = 2,
N = 1, α = 2ρ). From the figure, it can be observed that
finite results exactly match with that of the simulated capacity
results but the asymptotic results show a slight deviation with
respect to the simulated results. However, as noted in the next
subsection, the asymptotic results match quite well with the
simulated ones even for the moderate values of M , N , and K.

Figure 5 presents the per-antenna ergodic capacity with low
SNR approximation in the presence and the absence of impair-
ments. In the presented results, Eb

N0min
depicts the intersection

of the capacity curves with the horizontal axis. From Fig. 5, it
can is shown that not only the slope of the ergodic capacity
curve decreases when impairments are considered, but also the
minimum transmit energy per information bit is affected. In
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Fig. 3. Per-antenna ergodic capacity versus K and N (a) without imperfections,
(b) with imperfections (µ = 20 dB, δt1 = δt2 = δr1 = δr2 = 0.08, M = 4,
α = 2ρ)
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Fig. 4. Comparison of per-antenna ergodic capacity with finite and asymptotic
analyses (δt1 = δt2 = δr1 = δr2 = 0.08, K = 1, M = 2, N = 1,
α = 2ρ)

other words, the transceiver impairments generally have not
only a second-order impact on the capacity in the low-SNR
regime as in [11], but in the case of the relay channel, there is
also a first-order effect. Further, another important observation
is that the value of Eb

N0min
increases with the increase in the

value of impairments. This is due to the dependence of Eb
N0min

on the values of δt2 and δr2 .
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Fig. 5. Per-antenna ergodic capacity with low SNR approximation (δt1 =
δt2 = δr1 = δr2 = δ, K = 2, M = 3, N = 2, α = 2 dB)

B. Asymptotic Results

In Fig. 6, we illustrate the theoretical and simulated per-
antenna ergodic capacities versus ρ for the following two
cases: (i) without impairments, and (ii) with impairments on
transmitter and receiver of both links. From the figure, it can be
noted that the theoretical and the simulated capacity curves for
both the considered cases match perfectly. Furthermore, the per-
antenna capacity increases with ρ in the absence of impairments,
i.e., δt1 = δt2 = δr1 = δr2 = 0 as expected. Moreover, another
important observation is that the per-antenna capacity saturates
after a certain value of ρ in the presence of impairments. The
trend of the per-antenna capacity saturation with respect to
ρ in Fig. 6 is well aligned with the result obtained in [11]
for the case of MIMO systems. However, for the considered
scenario in this paper, an early saturation of the capacity in
the presence of impairments is noted due to the introduction
of the relay node impairments. Nevertheless, in Fig. 6, we also
illustrate the effect of different values of impairments on the
capacity considering the values of δt1 = δt2 = δr1 = δr2 = δ
as 0.05, 0.08 and 0.15. Specifically, it can be observed that
with the increase in the value of impairments, the saturation
point appears earlier, i.e., at the lower values of ρ.

Figures 7(a) and Figure 7(b) present the per-antenna capacity
versus ρ and α in the presence and the absence of impairments,
respectively. It can be observed that in the absence of impair-
ments, the capacity increases monotonically with the increase
of both ρ and α with the slope being more steeper for the case
of ρ. In addition, the slope for both capacity curves decreases
at their higher values. Notably, in the presence of impairments,
a clear saturation can be observed with the increase of ρ and α
after their certain values. Moreover, in Figs. 7(c) and 7(d), we
plot the per-antenna capacity versus the channel dimensions γ
and β in the absence and the presence of channel impairments,
respectively. In both cases, the capacity increases monotonically
with both β and 1

γ , however, the slope with respect to 1
γ is

steeper as compared to the slope with β. This trend remains
almost the same in the presence of impairments, but the slope
of the capacity curve with respect to 1

γ in Fig. 7(d) is observed
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Fig. 7. Per-antenna ergodic capacity versus ρ, α (β = 5, γ = 10, K = 50,
M = 10, N = 100), (a) δt1 = δt2 = δr1 = δr2 = 0, (b) δt1 = δt2 =
δr1 = δr2 = 0.08, and versus the channel dimensions β, γ (ρ = 20 dB,
α = 2ρ) (c) δt1 = δt2 = δr1 = δr2 = 0, (d) δt1 = δt2 = δr1 = δr2 =
0.15

to be less steeper than in Fig. 7(c) at the higher values of 1
γ .

Figure 8(a) depicts the per-antenna ergodic capacity versus
the number of source antennas, i.e., K by considering the
cases with and without impairments. From the figure, it can be
noted that the per-antenna ergodic capacity initially increases
with the increase in the value of K, and it saturates at the
higher values of K for both cases. In addition, in Fig. 8(a), we
plot the capacity results from the infinite K bound for both
cases. For the case without impairments, the infinite K bound
capacity curve is obtained by using (43) from [34], while for
the case with impairments, it is obtained by evaluating (24).
Clearly, it is noted that the infinite K bound approximates the
exact result in the infinite K regime for both cases.

Figure 8(b) presents the variation of the per-antenna ergodic
capacity with the number of antennas at the relay, i.e., M , by
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Fig. 8. Per-antenna ergodic capacity versus (a) K (ρ = 20 dB, δt1 = δt2 =
δr1 = δr2 = 0.08, M = 20, N = 20, α = 2ρ), (b) M (ρ = 20 dB,
δt1 = δt2 = δr1 = δr2 = 0.08, K = 20, N = 20, α = 2ρ), (c) N
(ρ = 20 dB, δt1 = δt2 = δr1 = δr2 = 0.08, K = 20, M = 20, α = 2ρ)

considering parameters (ρ = 20 dB, δt1 = δt2 = δr1 = δr2 =
0.08, K = 20, N = 20). From the figure, it can deduced that
the capacity initially increases with the value of M and gets
almost saturated at the higher values of M for both cases. In
Fig. 8(b), we also plot the per-antenna ergodic capacity obtained
from the infinite M bound for the case without impairments
using (42) from [34]. It can be noted that the capacity results
considering the infinite M bound almost approximate the exact
results in the infinite M regime. Moreover, in Fig. 8(c), we
plot the per antenna capacity with the value of N for the cases
with impairments and without impairments. Further, we also
plot the per-antenna ergodic capacity obtained from the infinite
N bound for the case without impairments using (44) from
[34]. It can be noted that the capacity results considering the
infinite N bound almost approximate the exact result in the
infinite N regime.

In order to illustrate the effect of different impairments on
the per-antenna ergodic capacity, we plot the capacity versus δ
in Fig. 9, by considering parameters (ρ = 5 dB, β = 5, γ = 10,
N = 100, M = 10, K = 50, α = 2ρ). For this evaluation,
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Fig. 9. Per-antenna ergodic capacity versus δ (ρ = 5 dB, β = 5, γ = 10,
N = 100, M = 10, K = 50, α = 2ρ)

all other impairments values are considered to be zero while
analyzing the effect of a particular impairment. From the figure,
it can be noted that the per-antenna ergodic capacity decreases
with the increase in the value of impairment for all cases.
Further, the effect of δt2 on the per-antenna ergodic capacity
is found to be the most severe as compared to the effects of
other impairments. Other observations from Fig. 9 are that
the effects of δt1 and δr1 on the per-antenna ergodic capacity
are almost the same, and the impairment δr2 has significantly
less effect than the rest of impairments. Another observation
from our analysis is that the ordering of the capacity curves
with respect to the variations in the considered impairments
depends on the value of the parameters ρ, α, M , N , and K.
In our results, the trend of the capacity curves with respect to
different impairments was found to be quite stable for large
values of M , N , and K i.e., N = 100, M = 10, and K = 50
and lower values of ρ. However, for small values of M , N ,
and K, the ordering of the performance curves was found to
vary significantly even with a small variation in the values of
ρ and α.

VI. CONCLUSIONS

While the transceiver hardware impairments are inherent
in any communication system, their impact on DH AF relay
systems with multiple antennas was not taken into consideration,
since prior work assumed the idealistic scenario of perfect
hardware or single-antenna nodes. Hence, we introduced the
aggregate hardware impairments on a DH AF relay system,
and investigated their impact for the case of the system nodes
having multiple number of antennas. In particular, initially, we
elaborated on the MIMO ergodic capacity, when the number
of antennas is finite as in contemporary (conventional) systems.
Specifically, building on some existing results, we derived an
exact expression for the ergodic capacity, simplified tight lower
and upper bounds, and interestingly, low-SNR approximations.
The need to provide a complete study concerning the next gen-
eration systems (massive MIMO) led us to derive the ergodic
capacity in the setups with a very large number of antennas by
pursuing a free probability analysis. Furthermore, the validation

of the analytical results was shown by reducing to special
cases and by means of simulations. In particular, simulations
depicted that the asymptotic results can be applicable even for
contemporary system dimensions. Moreover, it has been shown
that the ergodic capacity with transceiver impairments saturates
after a certain SNR and a large number of antennas. Notably,
while the transceiver impairments have only a second-order
impact on the capacity in the low-SNR regime of point-to-point
MIMO systems, there also exists a first-order effect for the
case of the relay channel.

APPENDIX A
USEFUL LEMMAS

Herein, given the eigenvalue probability distribution function
fX(x) of a matrix X, we provide useful definitions and lemmas
that are considered during our analysis. In the following
definitions, δ is a non-negative real number.

Definition 1 (Shannon transform [51, Definition 2.12]): The
Shannon transform of a positive semidefinite matrix X is
defined as

VX (δ) =

∫ ∞
0

ln (1 + δx) fX(x)dx. (27)

Definition 2 (η-transform [51, Definition 2.11]): The η-
transform of a positive semidefinite matrix X is defined as

ηX (δ) =

∫ ∞
0

1

1 + δx
fX(x)dx. (28)

Definition 3: [S-transform [51, Definition 2.15]] The S-
transform of a positive semidefinite matrix X is defined as

ΣX(x) = −x+ 1

x
η−1
X (x+ 1). (29)

Definition 4 (The Marčenko-Pastur law density function
[52]): Given a Gaussian K × M channel matrix H ∼
CN (0, I), the a.e.p.d.f. of 1

KHHH converges almost surely
(a.s.) to the non-random limiting eigenvalue distribution of the
Marčenko-Pastur law given by

f∞1
KHHH(x) = (1− β)

+
(x) +

√
(x− a)

+
(b− x)

+

2πx
, (30)

where a = (1−
√
β)2, b = (1 +

√
β)2, β = M

K , and δ (x) is
Dirac’s delta function.

Lemma 1 (The pdf of the unordered eigenvalue of HLHH [34,
Theorem 1]): The marginal pdf f (λ) of the unordered eigen-
value λ of HLHH, where L = diag{ λ2

i

1+aλ2
i
}qi=1 and H ∼

CN (0, IK ⊗ Iq) with p = max (M,N), q = min (M,N),
and s = min (K, q), is given by

f (λ) = Ae−λaλ(2K+2k+u−i−2)/2Kv−i

(
2
√
λ
)
Gl,k, (31)

where A= 2K
s

∑q
l=1

∑q
k=q−s+1

∑q̃−l
i=0

(q̃−li )aq̃−l−i

Γ(K−q+k) Gl,k with

K =

(
q∏
i=1

Γ(q − i+ 1) Γ(p− i+ 1)

)−1

, (32)

and Gl,k is the (l, k)th cofactor of a q × q matrix G whose
(m,n)th entry is

[G]m,n=a−u−m−nΓ(u+m+n) U

(
u+m+n, v+1,

1

a

)
. (33)
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Lemma 2 ( [51, Eqs. 2.87, 2.88]): The S-transform of the
matrix 1

KHHH is expressed as

Σ 1
KHHH (x, β) =

1

1 + βx
, (34)

while the S-transform of the matrix 1
KHHH is obtained as

Σ 1
KHHH (x, β) =

1

β + x
. (35)

Lemma 3 ( [51, Eq. 2.48]): The Stieltjes-transform of a
positive semidefinite matrix X can be derived by its η-transform
according to

SX(x) = −ηX(−1/x)

x
. (36)

Lemma 4 ( [51, Eq. 2.45]): The asymptotic eigenvalue
probability density function (a.e.p.d.f.) of X is obtained by the
imaginary part of the Stieltjes transform S for real arguments
as

f∞X (x) = lim
y→0+

1

π
I {SX(x+ jy)} . (37)

APPENDIX B
PROOF OF THEOREM 1

Proof: Given a conventional system with finite dimensions,
i.e., finite number of users and antennas, we start from (11),
and we consider each term separately. Thus, for C1, we have

C1 =E[log2 det(Φ + H2H1H
H

1H
H

2)]

=E
[
log2 det

(
IN+f1H2H1H

H

1H
H

2 (IN+f3H2H
H

2)
−1
)]

+E [log2 det(IN+f3H2H
H

2)], (38)

while the other term of (11) can be written as

C2 =E[log2 det(Φ)]

=E
[
log2 det

(
IN+f2H2H1H

H

1H
H

2 (IN+f3H2H
H

2)
−1
)]

+E [log2 det(IN+BH2H
H

2)]. (39)

Subtraction of (39) from (38) gives the ergodic capacity as

C = E
[
log2 det

(
IN+f1H2H1H

H

1H
H

2 (IN+f3H2H
H

2)
−1
)]

− E
[
log2 det

(
IN+f2H2H1H

H

1H
H

2 (IN+f3H2H
H

2)
−1
)]

= C̃1 − C̃2, (40)

where we have defined

C̃i,E
[
log2det

(
IN+fiH2H1H

H

1H
H

2(IN+f3H2H
H

2)
−1
)]

(41)

because it will be used often throughout the proofs. Fortunately,
each term of (40) is similar to [34, Eq. 2], i.e., it can be
expressed by a very concise form as

C̃i = E
[
log2 det

(
IK+fiH̃1LH̃H

1

)]
, (42)

where L = diag{ λ2
i

1+f3λ2
i
}qi=1 and H̃1 ∼ CN (0, IK ⊗ Iq). To

this end, C can be finally derived by expressing C̃i in (40) in
terms of the real non-negative eigenvalues of Z = H̃1LH̃H

1,
since it is a K × q random non-negative definite matrix
following the pdf given by Lemma 1 with α = f3.

APPENDIX C
PROOF OF THEOREM 2

The main targets are to derive the first and second derivatives
of (10), or equivalently of C̃i, as can be seen by (40). When
ρ → 0, and α is fixed, we find that f1 (0) = f2 (0) = 0,
while their first and second derivatives at ρ = 0 equal to

f
′

1 (0) =
αδ̃2t1
KMδ̃2r2

, f
′

2 (0) =
αδ2t1
KMδ̃2r2

, and f
′′

1 (0) = − 2αδ̃2t1
δ̃2tr1

KMδ̃2r2
,

f
′′

2 (0) = − 2αδ2t1
δ̃2tr1

KMδ̃2r2
. Also, L (0) = diag{ λ2

i

1+f3(0)(ρ)λ2
i
}qi=1

with f3 (0) =
δ̃2t2

α

Mδ̃2r2
. Thus, we have G (0) = IN . Given that

C̃i can be written as in (42), we take the first derivative with
respect to ρ, and we have

˙̃Ci (0) = s

∫ ∞
0

(log2 (1 + fi (ρ)) pλ (λ))
′
∣∣∣∣
ρ=0

dλ

=
s

ln 2
f
′

i (0)

∫ ∞
0

λpλ (λ)

∣∣∣∣
ρ=0

dλ (43)

=
s

ln 2
f
′

i (0)E [λ]

∣∣∣∣
ρ=0

= f
′

i (0)
E
[
tr
(
H̃1L (0) H̃H

1

)]
ln 2

, (44)

where (43) is obtained by making several algebraic manipu-
lations after taking into account that fi (0) = 0. Note that

E [λ]

∣∣∣∣
ρ=0

, given by Lemma 5, is the mean eigenvalue of

H̃1L (ρ) H̃H
1 at ρ = 0.

Lemma 5: The nth moment of the unordered eigenvalue of
H̃1L (ρ) H̃1

H

is given by

E (λn)=Ãa−
2k+2l+2n+u+i−2q−1

2 e
1
2aW− 2t+2n+u−i+−1

2 , v−i2

(
1

a

)
,

(45)

where Ã = 2K
s

∑q
l=1

∑q
k=q−s+1

∑q̃−l
i=0

(q̃−li )Γ(t+p+n−i−1)Γ(t−q+n)

Γ(K−q+k)
Gl,k. Note that we have defined t = K + k.

Proof: The calculation is straightforward after apply-
ing [42, eq. 9.220.3].
As far as the second derivative of C̃i is concerned, we have

¨̃Ci (0) = s

∫ ∞
0

(log2 (1 + fi (ρ)) pλ (λ))
′′
∣∣∣∣
ρ=0

dλ

=
s

ln 2
(

∫ ∞
0

(
f
′′

i (ρ)λ−
(
f
′

i (ρ)
)2

λ2

)
pλ (λ)

∣∣∣∣
ρ=0

dλ

+ 2

∫ ∞
0

f
′

i (ρ) (λpλ (λ))
′
∣∣∣∣
ρ=0

dλ ) (46)

=
s

ln 2

((
f
′′

i (0)E [λ]

∣∣∣∣
ρ=0

−
(
f
′

i(0)
)2

E
[
λ2
]∣∣∣∣
ρ=0

)

+2f
′

i(0)E
′
[λ]

∣∣∣∣
ρ=0

)
, (47)

where (46) is obtained after certain manipulations as in (43).

Special focus must be given in the derivation of E′ [λ]

∣∣∣∣
ρ=0

,

which is basically the derivative of the mean eigenvalue
at ρ = 0. Taking a closer look at (45), it consists of
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four terms depending on ρ. Thus, we can rewrite (45) as
E (λ) = I1I2I3I4 with I1 = Ã, I2 = a−

u+2k+2l+i−2q+1
2 ,

I3 = e
1
2a , and I4 = W− 2t+u−i+1

2 , v−i2

(
1
a

)
. Calculation of

the derivatives of I2 and I3 are straightforward. Similarly,
the derivative of I4 demands indirectly the derivative of the
Whittaker function given by [43, Eq. (07.45.20.0005.01)].
Taking this into account, I ′4 is obtained as

I
′

4 =
1

f2
3 (0)

[(
v − i

2
f3(0)− 1

2

)
W− 2t+u−i+1

2 , v−i2

(
1

f3(0)

)
+ f3(0) W− 2t+u−i−1

2 , v−i2

(
1

f3(0)

)]
(48)

The difficulty arises during the calculation of the derivative
of I1 because the cofactor Gl,k depends on ρ. Hence, the
calculation of the derivative of the cofactor of a non-singular
matrix B, presented by the following lemma, is the first step.

Lemma 6: Let a nonsingular matrix B with adj(B) and
det(B) denoting its adjugate and determinant. Given that the
cofactor C of B is related to its adjugate according to CT =
adj(B), its derivative of the cofactor C is given by

∂CT

∂u
=

tr
(
adj(B) ∂B∂u

)
adj(B)− adj(B) ∂B∂u adj(B)

det(B)
. (49)

Proof: Having in mind the basic property between the
adjugate of a matrix and its inverse (B−1 = adj(B)

det(B) ), we have

CT = adj(B) = det(B) B−1. (50)

Taking the differential of (50), we get

dCT = det(B) B−1 + det (B) d
(
B−1

)
(51)

= tr(adj (B) dB)
adj (B)

det(B)
− adj (B) dB

adj (B)

det(B)
(52)

where in (51) we have used the Jacobi’s formula expression8

as well as the differential of the inverse of a matrix B, which
can be written as [53, Eq. 8]

d
(
B−1

)
= −B−1dBB−1. (53)

Thus, the proof is concluded.
Use of Lemma 6 allows to obtain

∂GT
l,k

∂ρ . However, we still need
the derivative of the matrix G whose elements are given by (33).
Specifically, we have that if ∂GT

∂ρ expresses the derivative of a
matrix G, its elements are given by[
∂GT

∂ρ

]
m,n

= ḟ3 (0) (u−m− n) f3(0)
−u−m−n=1

×Γ(u+m+ n)

(
U

(
u+m+ n, v + 1,

1

f3(0)

)
− 1

f3(0)
U

(
u+m+ n+ 1, v + 2,

1

f3(0)

))
. (54)

where we have used [?, Eq. (07.33.20.0005.01)] that provides
the derivative of the Tricomi confluent hypergeometric function
as ∂U(a,b,z)

∂ρ = −aU(a+ 1, b+ 1, z). Having now obtained

everything necessary to calculate I ′1, ¨̃Ci (0) is derived since

8Jacobi’s formula expresses the differential of the determinant of a
matrix B in terms of the adjugate of B and the differential of B as
dB = tr(adj (B) dB).

E′ [λ]

∣∣∣∣
ρ=0

can be calculated my means of straightforward

substitutions. The proof is concluded after substitutions of
the derived ˙̃Ci (0) and ¨̃Ci (0) to (18) and (19), and making
necessary algebraic manipulations.

APPENDIX D
PROOF OF THEOREM 3

Taking the general form of C̃i from (40), we present its
upper and lower bounds, C̃U,i and C̃L,i, respectively. Both
bounds are obtained by applying the necessary changes to [34,
Theorems 5 and 6]. More concretely, the upper bound is

C̃i (ρ) ≤ C̃U,i (ρ) = log2 (Kdet(Ξi)) , (55)

where Ξi is a q × q matrix with elements given by (56). with
τ = u+m+ n− 1, and ϑτ (B) = Γ(τ) U

(
τ, v + 1, 1

B

)
.

Regarding the lower bound, [34, Theorems 6] enables us to
write

C̃i (ρ) ≥ C̃L,i (ρ)

=s log2

1+fi(ρ)exp

1

s

 s∑
k=1

ψ(N−s+k)+K

q∑
k=q−s+1

det(Wk)

,
(57)

where Wk is a q× q matrix whose (m,n)-th element is given
by

{Wk}m,n =

{
B1−τϑτ−1 (B) , n 6= k

ζm+n (B) , n = k
(58)

and the fact that ζt (B) =
∑2q−t
i=0 B2q−t−iΓ(v − i)(

2q−t
i

) (
ψ (v − i)−

∑v−i−1
l=0 gl

(
1
B

))
with τ and ϑτ (·) given

as above, while gl (x) = exEl+1 (x). Finally, the upper and
lower bounds of C are obtained by means of a combination
of (55) and (57).

APPENDIX E
PROOF OF THEOREM 4

The asymptotic limits of the capacity terms (13) and (14),
when the channel dimensions tend to infinity while keeping
their finite ratios β = K

M , γ = N
M fixed, are expressed by

means of principles of free probability theory in terms of a
generic expression as

Ci=
1

N
lim

K,M,N→∞
E[ln det(IM+f3H

H

2H2(IM+αH1H
H

1))]

=
M

N
lim

K,M,N→∞
E

[
1

M

M∑
i=1

ln

(
1+f3Mλi

(
1

M
Kα

))]

→ 1

γ

∫ ∞
0

ln(1+f3Mx) f∞Kα/M
(x) dx, (59)

where Ci corresponds to C1 or C2 depending on the value of i,
i.e., if α = f1 or if α = f2/f3, respectively. In addition, λi (X)
is the ith ordered eigenvalue of matrix X, and f∞X denotes
the a.e.p.d.f. of X. Moreover, for the sake of simplification
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{Ξi}m,n =

{
B1−τϑτ−1 (B) , n ≤ q −N
B1−τϑτ−1 (B) + fi (ρ) (N − q + n)B−τϑτ (B) . n > q −N

(56)

of our analysis, we have made use of the following variable
definitions similar to [54]

M̃α = IM + αH1H
H
1 (60)

Ñ1 = H1H
H

1 (61)

Ñ2 = HH

2H2 (62)

Kα = HH

2H2

(
IM + αH1H

H
1

)
= Ñ2M̃α. (63)

The a.e.p.d.f. of Kα/M can be obtained by means of
Lemma 4, which includes its Stieltjes transform. In the
following, we describe the steps leading to the derivation of
the desired Stieltjes transform of Kα/M . First, we employ
Lemma 3, and take the inverse of η-transform of Kα/M as

xη−1
Kα/M

(
−xSKα/M (x)

)
+ 1 = 0. (64)

Thus, we now focus on the derivation of η−1
Kα/M

(x).
Proposition 5: The inverse η-transform of Kα/M is given

by

η−1
Kα/M

(x) = ΣÑ2/M
(x− 1)η−1

M̃α/M
(x). (65)

Proof: The inverse of the η-transform of Kα/M is given
by means of the free convolution

ΣKα/M (x)=ΣÑ2/M
(x)ΣM̃α/M

(x)⇐⇒ (66)(
−x+1

x

)
η−1
Kα/M

(x+1)=ΣÑ2/M
(x)

(
−x+1

x

)
η−1

M̃α/M
(x+1),

where we have taken into advantage the asymptotic freeness
between the deterministic matrix with bounded eigenvalues
Ñ2/M and the unitarily invariant matrix M̃α/M . Note that
in (66), we have applied Definition 3. Appropriate change of
variables, i.e., y = x+ 1 provides (65).
In order to obtain η−1

M̃α/M
(x), we first need its a.e.p.d.f., given

by the next proposition.
Proposition 6: The a.e.p.d.f. of M̃α/M converges almost

surely to (67) with ᾱ = Mα.
Proof: By denoting z and x the eigenvalues of M̃α/M and

1
M Ñ1, respectively, the a.e.p.d.f. of M̃α/M can be obtained
after making the transformation z(x) = (1 +Mαx) as

f∞
M̃α/M

(z) =

∣∣∣∣ 1

z′(z−1(x))

∣∣∣∣·f∞1
M Ñ1

(
z−1(x)

)
=

1

ᾱ
f∞1
M Ñ1

(
z − 1

ᾱ

)
. (68)

Consequently, we are ready to obtain η−1

M̃α/M
(x) by us-

ing (28).
Proposition 7: The inverse η-transform of M̃α/M is given

by (70).
Proof: Having obtained the a.e.p.d.f. of M̃α, use of

Definition 2 allows to derive its η-transform as

ηM̃α/M
(ψ)=

∫ +∞

0

1

1 + ψx
f∞
M̃α/M

(x)dx.

If we make the necessary substitution, ηM̃α/M
(ψ) is written

as in (69).
Following a similar procedure as in [55], we perform certain

substitutions. Specifically, we set x = wᾱ + 1, dx = ᾱdw,
followed by w = 1 + β + 2

√
β cosω, dw = 2

√
β(− sinω)dω,

and finally ζ = eiω, dζ = iζdω. Hence, initially we calculate
the poles ζi and residues ρi of Eq. (69). Then, we perform
an appropriate Cauchy integration by including the residues
located within the unit disk. More concretely, we have

ηM̃α/M
(ψ) = −β

2
(ρ0 + ρ2 + ρ4),

which after inversion results to (70).
As far as ΣÑ2/M

(x) is concerned, it is given by (34) as

ΣÑ2/M
(x) =

1

γ + x
. (71)

In the last step, having calculated η−1
Kα

(x) from (65) after
substituting (70) and (71), we employ (64), and after tedious
algebraic manipulations we obtain the following quartic poly-
nomial

ᾱ2x2S4
Kα/M

+(2ᾱ2(1− γ)x+ ᾱ2x2)S3
Kα/M

+(ᾱ2(2− β − γ)x+ ᾱ2(γ − 1)2 − ᾱx)S2
Kα/M

+(ᾱ2(β(γ − 1)− γ) + ᾱ(γ + ᾱ− x− 1)SKα/M − ᾱ (72)

APPENDIX F
PROOF OF ASYMPTOTIC BOUNDS

Let us define F = δ̃2
r2

(
1 + δ̃2

tr1ρ
)

, then f1 =
αρδ̃2t1
KMF =

f̄1
KMF , f2 =

αρδ2t1
KMF = f̄2

KMF , and f3 = B
MF with B =

α
(

1 + δ2
r1ρ+ δ2

t2

(
1 + δ̃2

tr1ρ
))

.

A. Proof of Proposition 2
When the number of users increases infinitely (K → ∞),

C̃i, given by (42), can be expressed as

C̃i = E
[
log2 det

(
Iq+fiH̃

H

1H̃1L
)]
. (73)

The Law of Large Numbers (LLN) provides that

lim
K→∞

H̃1H̃
H
1

K
→ Iq. (74)

Hence, (73) becomes

lim
K→∞

C̃i = E[log2 det(Iq+fiL)] , (75)

which after substituting L and making certain algebraic
manipulations leads to

lim
K→∞

C̃i = E
[
log2 det

(
Iq+

f̄i + B
MF

H2H
H

2

)]
− E

[
log2 det

(
Iq+

B
MF

H2H
H

2

)]
. (76)

Substitution to (40) gives the desired result.
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f∞
M̃α/M

(x, β, ᾱ)→

√(
x− 1− ᾱ+ 2ᾱ

√
β − ᾱβ

) (
ᾱ+ 2ᾱ

√
β + ᾱβ − x+ 1

)
2ᾱπ (x− 1)

. (67)

ηM̃α/M
(ψ)=

ᾱ

4iπ

∮
|ζ|=1

(ζ2 − 1)2

ζ((1 + β)ζ+
√
β(ζ2 + 1))(ζ(1 + ψ(1 + ᾱ+ ᾱβ))+

√
βψᾱ(ζ2 + 1))

dζ. (69)

η−1

M̃α/M
(x)=

−xᾱ−βᾱ+ᾱ−1+
√
x2ᾱ2+2xᾱ2β−2xᾱ2−2xᾱ+β2ᾱ2−2βᾱ2+2βᾱ+ᾱ2+2ᾱ+1

2xᾱ
. (70)

B. Proof of Proposition 3
In the case of infinite number of relay antennas (M →∞),

we recall the LLN, i.e., we have

lim
M→∞

H̃2H̃
H
2

M
→ IN , (77)

or equivalenely,

lim
M→∞

λ2
i

M
→ 1, i = 1, . . . , N (78)

since q = N . Thus, initially C̃i can be written as

C̃i = E
[
log2 det

(
IK+

f̄i
KF

H̃1L̃H̃H

1

)]
, (79)

where L̃ = diag{ λ2
i

M(1+Aλ2
i )
}Ni=1. Application of (77), (78)

provides

lim
M→∞

C̃i = E
[
log2 det

(
IK+

f̄i
K (F + B)

H̃1H̃
H

1

)]
. (80)

The desired result is obtained by means of (40).

C. Proof of Proposition 4
By increasing the number of BS antennas N infinitely, we

obtain that λ2
i → ∞. Consequently, the diagonal matrix L

becomes a scaled identity matrix equal to f3IM , since q = M .
Thus, C̃i reads as

C̃i = E
[
log2 det

(
IK+

fi
f3

H̃H

1H̃1

)]
. (81)

The desired result is yielded by a straightforward substitution
to (40).
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