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Abstract—A non-orthogonal multiple access (NOMA) ap-
proach that always outperforms orthogonal multiple access
(OMA) called Fair-NOMA is introduced. In Fair-NOMA, each
mobile user is allocated its share of the transmit power such that
its capacity is always greater than or equal to the capacity that
can be achieved using OMA. For any slow-fading channel gains of
the two users, the set of possible power allocation coefficients are
derived. For the infimum and supremum of this set, the individual
capacity gains and the sum-rate capacity gain are derived. It
is shown that the ergodic sum-rate capacity gain approaches 1
b/s/Hz when the transmit power increases for the case when
pairing two random users with i.i.d. channel gains. The outage
probability of this approach is derived and shown to be better
than OMA.

The Fair-NOMA approach is applied to the case of pairing
a near base-station user and a cell-edge user and the ergodic
capacity gap is derived as a function of total number of users in
the cell at high SNR. This is then compared to the conventional
case of fixed-power NOMA with user-pairing. Finally, Fair-
NOMA is extended to K users and it is proven that the capacity
can always be improved for each user, while using less than the
total transmit power required to achieve OMA capacities per
user.

I. INTRODUCTION

Orthogonal multiple access (OMA) is defined as a system
that schedules multiple users in non-overlapping time slots or
frequency bands during transmission. Therefore, if the signals
for k users, k = 1, . . . ,K are scheduled for transmission over
a time period T , where T is less than the coherence time of
the channel, each user transmits only T/K amount of the total
transmission period (or fraction of the total bandwidth) with
the entire transmit power ξ allocated to that user.

Non-orthogonal multiple access (NOMA) schedules trans-
mission of the K users’ signals simultaneously over the entire
transmission period and bandwidth. Since the total transmit
power ξ must be shared between the K users, a fraction
ak ∈ (0, 1) of the transmit power is allocated to user k,
and

∑K
k=1 ak ≤ 1. In NOMA, each user employs successive

interference cancellation (SIC) at the receiver to remove the
interference of the signals from users with lesser channel gains
[1].

An approach called Fair-NOMA is proposed for K users in
future wireless cellular networks. The underlying fundamental
property of Fair-NOMA is that users will always be guaranteed
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to achieve a capacity at least as good as OMA. The average
capacities of two random users with i.i.d. channel SNR gains
are derived along with the expected increase in capacity
between OMA and NOMA.

Another unique feature of our approach compared to the
previous work is the fact that prior studies on NOMA have
focused on demonstrating that NOMA has advantages for in-
creasing the capacity of the network when users are scheduled
and paired based on their channel conditions (i.e. their location
in the cell). Fair-NOMA does not rely on this condition since
users’ channel conditions are i.i.d. (i.e. location in the cell is
not considered). Hence, all users will have equal opportunity
to be scheduled, and thus is also completely ”fair” from a time-
sharing perspective. However, Fair-NOMA can be applied to
any system with any scheduling and user-pairing approach.

The paper is organized as follows. Previous contributions
on NOMA are discussed in section II. The assumptions and
system model are outlined in section III. Section IV defines
the Fair-NOMA power allocation region AFN, and develops its
basic properties. The analysis of the effects of Fair-NOMA on
the capacity of each user together with simulation results are
provided in section V. The improvement in outage probability
is derived and demonstrated in section VI. The application of
Fair-NOMA to opportunistic user-pairing with near and cell-
edge users is discussed and analyzed in section VII. Section
VIII defines Fair-NOMA for multi-user SISO systems. Finally,
section IX concludes the paper and discusses future work.

II. PREVIOUS WORK ON NOMA

The concept of NOMA is based on using superposition
coding (SC) at the transmitter and successive interference
cancellation (SIC) at the receivers. This was shown to achieve
the capacity of the channel by Cover and Thomas [1]. The
existence of a set of power allocation coefficients that allow
all of the participating users to achieve capacity at least as
good as OMA was suggested in [2].

Non-orthogonal access approaches using SC for future
wireless cellular networks were mentioned in [3] as a way
to increase single user rates when compared to CDMA.
Schaepperle and Ruegg [4] evaluated the performance of non-
orthogonal signaling using SC and SIC in single antenna
OFDMA systems using very little modifications to the existing
standards, as well as how user pairing impacts the throughput
of the system when the channel gains become increasingly
disparate. This was then applied [5] to OFDMA wireless
systems to evaluate the performance of cell edge user rates,
proposing an algorithm that attempts to increase the average
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throughput and maintain fairness. These works do not assume
to have the exact channel state information at the transmitter.

The concept of NOMA is evaluated through simulation for
full channel state information at the transmitter (CSIT) in the
uplink [6] and downlink [7], where the throughput of the
system is shown to be on average always better than OMA
when considering a fully defined cellular system evaluation,
with both users occupying all of the bandwidth and time, and
was compared to FDMA with each user being assigned an
orthogonal channel. In [8], the downlink system performance
throughput gains are evaluated by incorporating a complete
simulation of an LTE cellular system (3GPP).

Kim et. al. [9] developed an optimization problem that
finds the power allocation coefficients for a broadcast MIMO
NOMA system with N base-station antennas serving 2N
simultaneous users, where user-pairing is based on clustering
two users with similar channel vector directions. Choi [10]
extends this work for a base-station with L antennas and K
user-pairs (L ≥ 2K) by creating a two-stage beamforming
approach with NOMA, such that closed-form solutions to the
power allocation coefficients are found.

More recently, Sun et. al. explored the MIMO NOMA
system ergodic capacity [11] when the base-station has only
statistical CSIT. Given that a near user has a larger expected
channel gain than the cell-edge user, properties of the power
allocation coefficients are derived, and a suboptimal algorithm
to solving for the power allocation coefficients is proposed
which maximizes the ergodic capacity.

Fairness in NOMA systems is addressed in some works. The
uplink case in OFDMA systems is addressed in [12] by using
an algorithm that attempts to maximize the sum throughput,
with respect to OFDMA and power constraints. The fairness
is not directly addressed in the problem formulation, but is
evaluated using Jain’s fairness index. In [13], a proportional
fair scheduler and user pair power allocation scheme is used to
achieve fairness in time and rate. In [14], fairness is achieved
in the max-min sense, where users are paired such that their
channel conditions are not too disparate, while the power
allocation maximizes the rates for the paired users.

Ding et. al. [15] provide an analysis for fixed-power NOMA
(F-NOMA) and cognative radio NOMA (CR-NOMA). In F-
NOMA, with a cell that has N total users, it is shown that
the probability that NOMA outperforms OMA asymptotically
approaches 1. In CR-NOMA, a primary user is allowed all of
the time and bandwidth, unless an opportunistic secondary user
exists with a stronger channel condition relative to the primary
user, such that transmitting both of their signals will not reduce
the primary user’s SINR below some given threshold. It is
shown that the diversity order of the n-th user is equal to
the order of the weaker m-th user, leading to the conclusion
that this approach benefits from pairing the two users with the
strongest channels.

The main contribution of this work is to demonstrate that
NOMA capacity can fundamentally always outperform OMA
capacity for each user, regardless of the channel conditions
of the users, and to derive exactly what the power allocation
should be for each user to achieve this, based on their channel
gains. Furthermore, the expected sum-rate capacity gain made

when the users are paired with i.i.d. random channels is 1
bps/Hz at high SNR, even in the extreme case when all of the
transmit power is allocated to the stronger user. Furthermore,
the outage probabilities are also derived for this case, and
shown to decrease for each user, but significantly for the
weaker user. The approximate sum-rate capacity gain for the
case of pairing the strongest and weakest users in the cell is
derived for the high SNR regime, and compared to user-pairing
with fixed-power approaches. Lastly, the more general case of
K user SISO NOMA is considered, and it is fundamentally
proven that a NOMA power allocation strategy always exists
that achieves equal or greater capacity per user when compared
to OMA.

III. SYSTEM MODEL AND CAPACITY

Let a mobile user i have a signal xi transmitted from a
single antenna base-station (BS). The channel gain is hi ∈ C
with SNR gain p.d.f. f|h|2(w) = 1

β e
−wβ , and receiver noise

is complex-normal distributed zi ∼ CN (0, 1). In the two-
user case, if user-1 and user-2 transmit their signals half
of period T utilizing the entire transmit power ξ, then the
received signal for each user is yi = hi

√
ξxi + zi, i = 1, 2.

If E[|xi|2] = 1, the information capacity of each user is
CO
i = 1

2 log2

(
1 + ξ|hi|2

)
. The sum-rate capacity for OMA is

therefore SO = CO
1 +CO

2 . For the case of NOMA, it is assumed
that user-2 channel gain is the larger one (|h2|2 > |h1|2), then
user-2 can perform SIC at the receiver by treating its own
signal as noise and decoding user-1’s signal first. If the power
allocation coefficient for user-2 is a ∈ (0, 1/2), then user-
1’s signal is allocated 1− a transmit power, and the received
signals for both users are

yi =
√

(1− a)ξhix1 +
√
aξhix2 + zi, i = 1, 2. (1)

Since |h2|2 > |h1|2, it follows that (1−a)ξ|h2|2
aξ|h2|2+1 > (1−a)ξ|h1|2

aξ|h1|2+1 ,
which allows user-2’s receiver to perform SIC and remove the
interference from user-1’s signal. Hence, the capacity for each
user is

CN
1 (a) = log2

(
1 +

(1− a)ξ|h1|2

aξ|h1|2 + 1

)
, (2)

CN
2 (a) = log2

(
1 + aξ|h2|2

)
. (3)

The sum-rate capacity for NOMA is therefore SN(a) =
CN

1 (a) +CN
2 (a). These capacity expressions are used in each

case of OMA and NOMA to find the values of a that make
NOMA ”fair.”

IV. FAIR-NOMA POWER ALLOCATION REGION

In order for user-1 NOMA capacity to be greater than or
equal to OMA capacity, it must be true that CN

1 (a) ≥ CO
1 .

Solving this inequality for a gives a ≤
√

1+ξ|h1|2−1
ξ|h1|2 . Similarly,

for user-2 when CN
2 (a) ≥ CO

2 results in a ≥
√

1+ξ|h2|2−1
ξ|h2|2 .

Both the upper and lower bounds on the transmit power
fraction a to achieve better sum and individual capacities have
the form a(x) = (

√
1 + ξx− 1)/(ξx).
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Define

ainf =

√
1 + ξ|h2|2 − 1

ξ|h2|2
and asup =

√
1 + ξ|h1|2 − 1

ξ|h1|2
.

(4)
Then by Property 1 in [16], it is clear that if |h2|2 > |h1|2 ⇒
asup > ainf. The Fair-NOMA power allocation region is there-
fore defined as AFN = [ainf, asup], and selecting any a ∈ AFN
gives CN

1 (a) ≥ CO
1 , C

N
2 (a) ≥ CO

2 , and SN(a) > SO. Since
the sum-rate capacity SN(a) is a monotonically increasing
function of a, then asup = arg max

a∈AFN
(CN

2 (a)) also maximizes

SN(a). The sum-rate capacity of NOMA is strictly larger than
the sum-rate capacity of OMA because at the least one of the
user’s capacities always increases.

Theorem IV.1. For a two-user NOMA system that allocates
power fraction 1 − a to user-1 and a to user-2, such that
a ∈ AFN, the sum-rate SN(a) is a monotonically increasing
function of both |h1|2 and |h2|2.

Proof. See appendix A.

This result implies that as the channel gain for the weaker
user increases, the total capacity increases while the power
allocation to the stronger user decreases. This means that, as
the channel gain |h1|2 increases towards the value of |h2|2,
then the capacity gain by user-1 is greater than the capacity
loss by user-2. In the extreme case where |h1|2 → |h2|2,
then asup → ainf, and both CN

1 (a) and CN
2 (a) → CO

2 . In
other words, the Fair-NOMA capacity is upper bounded by
the capacity obtained by allocating all of the transmit power
to the stronger user. This is somewhat related to the multiuser
diversity concept result in [17] for OMA systems, which
suggests allocating all the transmit power to the stronger users
will increase the overall capacity of the network.

In contrast, with the increase in |h2|2, CN
2 (asup) increases

and hence the capacity gains from Fair-NOMA increase.
Therefore with Fair-NOMA, as is the same with the previ-
ously obtained result for fixed-power allocation NOMA, when
|h2|2 − |h1|2 increases, SN(a) − SO also increases [1], [15].
This will be further exemplified in Section VII, Theorem VII.1.

V. ANALYSIS OF FAIR-NOMA CAPACITY

A. Expected Value of Fair-NOMA Capacity

The expected value of the Fair-NOMA capacities of the two
users depend on the power allocation coefficient a. In order
to determine the bounds of this region, the expected value of
capacity of each user is derived for the cases of ainf and asup
and compared with that of OMA.

Since the channels of the two users are i.i.d. random
variables, let the two users selected have channel SNR gains
of |hi|2 and |hj |2, where f|h|2(x) = 1

β e
− xβ . Since we call

the user with weaker (stronger) channel gain user-1 (user-2),
then |h1| = min{|hi|2, |hj |2} and |h2|2 = max{|hi|2, |hj |2}.
Therefore, the joint pdf of |h1|2 and |h2|2 is

f|h1|2,|h2|2(x1, x2) =
2

β2
e−

x1+x2
β . (5)

It is shown [16] that the ergodic capacities and the sum-rate
of users in OMA are

E[CO
1 ] =

e
2
βξ

ln(4)
E1

(
2

βξ

)
, (6)

E[CO
2 ] =

e
1
βξ

ln(2)
E1

(
1

βξ

)
− e

2
βξ

ln(4)
E1

(
2

βξ

)
, (7)

E[SO] =
e

1
βξ

ln(2)
E1

(
1

βξ

)
(8)

where E1(x) =
∫∞
x
u−1e−udu is the well-known exponential

integral. Note that E[CO
1 ] = E[CN

1 (asup)] and E[CO
2 ] =

E[CN
2 (ainf)].

It is also shown [16] that

E
[
CN

1 (ainf)
]

=
3e

2
βξ

ln(4)
E1

(
2

βξ

)
(9)

−
∫ ∞
0

2

β ln(2)
· exp

(
−x
β

(√
1 + ξx− 2√
1 + ξx− 1

))
×
(
E1

(
x

β(
√

1 + ξx− 1)

)
− E1

(
x
√

1 + ξx

β(
√

1 + ξx− 1)

))
dx,

and

E[CN
2 (asup)] =

e
2
βξ

ln(4)
E1

(
2

βξ

)
+

∫ ∞
0

2

β ln(2)
(10)

× exp

(
−x
β

(√
1 + ξx− 2√
1 + ξx− 1

))
E1

(
x
√

1 + ξx

β(
√

1 + ξx− 1)

)
dx.

At high SNR (ξ � 1), the approximate capacities are

CO
i ≈

1

2
log2(ξ|hi|2), (11)

CN
1 (ainf) ≈

1

2
log2(ξ|h2|2), (12)

CN
2 (asup) ≈ log2

(√
ξ

|h1|2
|h2|2

)
. (13)

This implies that when ξ � 1, CN
1 (asup) ≈ CO

2 . The high SNR
approximations lead to following result for the difference in
the expected capacity gains, i.e., ∆S(a) = SN(a)− SO.

Theorem V.1. In a two-user SISO system with |hi|2 ∼
Exponential( 1

β ) and at high SNR regime, the increase in sum
capacity is E[∆S(a)] ≈ 1 bps/Hz, ∀a ∈ AFN.

Proof: See appendix B.
This interesting result means that when the transmit power

approaches infinity, the average increase in sum capacity is
the same for both ainf and asup and is equal to 1 bps/Hz.
Equivalently, it means that ∀a ∈ AFN, both users experience
an expected increase in capacity over OMA of c and 1 − c
where c ∈ [0, 1].

B. Comparison of Theoretical and Simulations Results

Fair-NOMA theoretical results are compared with simula-
tion when β = 1. In figure 1, the capacity of NOMA is
compared with that of OMA for both users, including the
high SNR approximations. As can be seen, the theoretical
derivations match the simulation results. The performances
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of CN
1 (ainf) and CN

2 (asup) are plotted. The simulation of
E[CN

1 (ainf)] matches the theoretical result in equation (9), and
the simulation of E[CN

2 (asup)] matches the theoretical result
in equation (10). The high SNR approximations show to be
very close for values of ξ > 25 dB. Since CO

2 = CN
2 (ainf) and

CO
1 = CN

1 (asup), it is apparent from the plots that the gain in
performance is always approximately 1 bps/Hz for one of the
users and also the sum capacity when using Fair-NOMA [16].
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Fig. 1. Comparing the capacity of NOMA and OMA

VI. OUTAGE PROBABILITY OF FAIR-NOMA

Suppose that the minimum rate that is allowed by the
system to transmit a signal is R0. The probability that a user
cannot achieve this rate with any coding scheme is given by
Pr{C < R0}. As with the average capacity analysis, the
outage performance of NOMA is analyzed by looking at ainf
and asup, and then draw logical conclusions from that.

The outage probability of user-1 using OMA is given by

pout
O,1 = Pr

{
log2(1 + ξ|h1|2)1/2 < R0

}
(14)

=

∫ 4R0−1
ξ

0

∫ ∞
x1

2

β2
e−

x1+x2
β dx2dx1 (15)

= 1− exp
(
− 2(4R0−1)

βξ

)
.

For user-2 using OMA, the outage probability is given by

pout
O,2 =Pr

{
log2(1 + ξ|h2|2)1/2 < R0

}
(16)

=

∫ 4R0−1
ξ

0

∫ 4R0−1
ξ

x1

2

β2
e−

x1+x2
β dx2dx1, (17)

=1 + exp
(
− 2(4R0−1)

βξ

)
− 2 exp

(
− 4R0−1

βξ

)
.

Denote the NOMA outage probability for user-i as pout
N,i(a)

such that pout
N,i(a) = Pr{CN

i (a) < R0} for i = 1, 2. It should
be obvious that pout

N,1(asup) = pout
O,1 and pout

N,2(ainf) = pout
O,2. The

outage probabilities pout
N,1(ainf) and pout

N,2(asup) are provided in
the following property.
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Property 1. Outage Probabilities pout
N,1(ainf) and pout

N,2(asup):

(a) The outage probability for user-1 at a = ainf is given by

pout
N,1(ainf) = 1 + e−

α2
β − 2

β

∫ ∞
α2

e−
x(α1+1)

β dx, (18)

where α1 and α2 are defined as

α1 = 2R0−1
ξx+2R0 (1−

√
1+ξx)

,

α2 = 4R0−2
2ξ +

√
4R0−1
ξ2 + (4R0−2)2

4ξ2 .

(b) The outage probability for user-2 at a = asup is given by

pout
N,2(asup) = 1 + e−

2(4R0−1)
βξ − 2e−

2(2R0−1)
βξ + (2R0 − 1)

e
(2R0−3)2

4βξ ·
√

π
βξ

[
erfc

(
2R0+1
2
√
βξ

)
− erfc

(
3(2R0 )−1

2
√
βξ

)]
. (19)

Proof: See appendix C.
There is no closed form solution for the integral in

pout
N,1(ainf), however it can be easily computed by a computer.
Figure 2 plots the outage probabilites of OMA and NOMA

for different values of a and for R0 = 2 bps/Hz. The proba-
bility of user-1 experiencing an outage is clearly greater than
for user-2. However, the reduction of the outage probability
for user-1 using a = ainf becomes significant as ξ increases, to
the effect of nearly 1 order of magnitude drop-off when ξ is
really large. The outage probability reduction for user-2 is not
as significant as the improvement made by user-1. However,
when a = asup, the same outage probability can be obtained
using NOMA with ξ approximately 2 dB less than is required
when using OMA. Thus, even when the power allocation
coefficient a is restricted to being in AFN, the probability of
users to be able to achieve their minimum service requirement
rates R0 is improved, and especially improved for the weaker
channel gain. Even when the power allocation coefficient
a = (ainf + asup)/2, the outage probabilities of both users
improves significantly when using NOMA.
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VII. FAIR-NOMA IN OPPORTUNISTIC USER-PAIRING

It has been suggested in [15] that the best NOMA perfor-
mance is obtained when user channel conditions are most
disparate, i.e. pairing the user with the weakest channel
condition and the user with the strongest channel condition
together. However, it is not known what the expected capacity
gap is in this case, particularly for the case when both users
are allocated power such that they both always outperform
their OMA performance. Since the power allocation scheme
where NOMA outperforms OMA with probability of 1 has
been defined, regardless of number of users, this approach
can also be applied here.

Suppose there exists a set of K mobile users in a cell,
and two of these users can be scheduled during the same
transmission period. It is of particular interest to select the
users that have the largest difference in channel SNR gain. If
the channel SNR gains of the users are i.i.d. Exponential( 1

β ),
and the two selected users have the minimum and maximum
channel SNR gains, how much of an improvement in the sum-
rate capacity will be observed by using NOMA versus OMA?
A. Analysis of Fair-NOMA with Opportunistic User-Pairing

Let |h0|2 = min(|h1|2, . . . , |hK |2) and |hM |2 =
max(|h1|2, . . . , |hK |2). In order to compute the expected sum-
rate capacity, the joint CDF F|h0|2,|hM |2(x0, xM ) and PDF of
f|h0|2,|hM |2(x0, xM ) are needed. It is easily shown that

Pr{|hM |2 < xM} = Pr{|h0|2 < x0, |hM |2 < xM}
+ Pr{|h0|2 > x0, |hM |2 < xM}, (20)

⇒F|h0|2,|hM |2(x0, xM ) = Pr{|h0|2 < x0, |hM |2 < xM}
(21)

= Pr{|hM |2 < xM} − Pr{|h0|2 > x0, |hM |2 < xM}.
(22)

The first term on the right in equation (22) is the CDF of the
maximum of K i.i.d. exponential random variables, which is
given by

Pr{|hM |2 < xM} = (1− e−
xM
β )K . (23)

The second term can be easily computed.

Pr{|h0|2 > x0, |hM |2 < xM} =

∫ xM

x0

· · ·
∫ xM

x0

K∏
k=1

e−
xk
β

β
dxk

=(e−
x0
β − e−

xM
β )K

Therefore, the joint CDF is given by

F|h0|2,|hM |2(x0, xM ) =(1− e−
xM
β )K − (e−

x0
β − e−

xM
β )K ,

(24)

and the joint PDF is

f|h0|2,|hM |2(x0, xM ) (25)

=
K(K − 1)

β2
e−

x0+xM
β (e−

x0
β − e−

xM
β )K−2.

The following theorem provides the sum-rate capacity increase
of NOMA when ξ|h0|2 � 1.
Theorem VII.1. Let {|h1|2, . . . , |hK |2} be the i.i.d. SISO
channel SNR gains of K users, such that the two users selected

for transmission together have the minimum and maximum
channel SNR gains. When ξ |h0|2 � 1, the sum-rate capacity
increase from OMA to NOMA for a = asup is

E[∆S(asup)] ≈ 1

2
log2(K) +

1

2

K∑
m=2

(
K

m

)
(−1)m log2(m).

(26)

Proof: See appendix D.

Remark 1. This result is similar to the result obtained for the
2-by-2 MIMO case in Lemma 2, equation 33 in [18], except a
fixed-power allocation approach was used there, whereas the
result above uses a Fair-NOMA power allocation approach.
Although the expected capacity gap E[∆S(a)] increases when
selecting a = asup, caution should be used when utilizing the
fixed-power approach to not set a too close to the value of
ainf. An approximation of the capacity gap using E[∆S(ainf)]
for large ξ and K is given as

E[∆S(ainf)] ≈
e
K
βξ

ln(4)
E1

(
K

βξ

)
− log2

(
1 +

√
1 + ξ(ψ(K + 1) + γ)− 1)

K(ψ(K + 1) + γ)

)
.

where ψ(w) = Γ′(w)/Γ(w) is the digamma function,
Γ(w) =

∫∞
0
uw−1e−udu is the gamma function, and γ =

−
∫∞
0
e−u ln(u)du is the Euler-Mascheroni constant. It can

be seen in figure 5 that as the number of users increases,
the expected capacity gap actually decreases. Therefore, even
for fixed-power allocation approaches to NOMA, a should be
selected to be greater than ainf for the case of pairing minimum
and maximum channel gain users.

This result shows that the sum-rate capacity difference
increases as a function of K. However, this increase is slow.
Nonetheless, there is a fundamental limit to the amount the
capacity can increase when using Fair-NOMA, while main-
taining the capacity of the weaker user equal to the capacity
using OMA.

It is important to note that as the number of mobile users
becomes very large, while pairing the strongest and weakest
users together will give us the greatest increase in sum-rate
capacity, it does not maximize sum-rate capacity itself. This
can be seen from theorem IV.1, which states that the sum-rate
capacity actually increases as the channel gain of the weaker
user monotonically increases. A practical way of viewing this
issue is that, as the number of users K increases, the weakest
user has channel gain that in probability is too weak to achieve
the quality of service threshold rate R0.Should no outage rate
be specified, the weaker user achieves such a low capacity,
that the stronger user contributes most of the capacity, while
using nearly half the transmit power, according to Property 1
from [16]. Hence, a little more than half of the transmit power
is nearly wasted.

B. Comparing Simulation Results with Analysis

For the simulation results, the performance of Fair-NOMA
combined with opportunistic user-pairing is compared to the
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performance of OMA and fixed-power NOMA. The simula-
tions are run for different values of ξ and K. For fixed-power
NOMA, the power allocation coefficient is a constant value of
a = 1

5 , such that the weaker user is allocated 4
5 of the transmit

power.
Figure 3 shows the average capacities of both the weakest

and strongest users versus K and for each case of a = ainf and
asup. The capacity of the stronger user is shown to exhibit the
effects of multiuser diversity, since not only does its channel
gain grow as K increases, but also the power allocated also
increases when a = asup, thus providing the increase in
capacity predicted in equation (26). In the case of a = ainf
the capacity is initially shown to increase as K increases, due
to ainf decreasing with |hM |2 according to Property 1 from
[16]. However, as K continues to increase, the weakest users
capacity eventually begins to decrease due to its channel gain
being the minimum of a large number of users, and thus this
term begins to dominate the capacity behavior.
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Fig. 3. Ergodic capacity with opportunistic user-pairing, ξ = 50 dB

The sum-rate capacity for Fair-NOMA with a = asup, fixed-
power NOMA with a = 1

5 , and OMA are shown in Fig.
4. As expected, the sum-rate capacity for each user at lower
values of ξ performs best when applying Fair-NOMA when
compared to fixed-power NOMA. This is because Fair-NOMA
always guarantees a capacity increase, i.e. with probability 1,
while fixed-power NOMA only achieves higher capacity with
probability as given in [15]. However, as ξ increases, both
capacities of Fair-NOMA and fixed-power NOMA approach
the same value asymptotically. This agrees with the result
obtained that at high SNR, the capacity gain should reach
a limit when ξ → ∞, no matter how much extra power is
allocated to the stronger user.

Equation (26) shows that the capacity gain made by pairing
the nearest and furthest cell-edge users is slow in K, and is
due to the combined gain in capacity achieved by the strongest
user and loss in capacity by the weakest user. This makes
sense from multiple points of view. The expected value of
power allocation coefficient asup → 1

2 when K is large, due
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Fig. 4. Comparison of Fair-NOMA, fixed-power NOMA, and OMA

to the selection of the user with the weakest channel gain.
In other words, as K increases, the weakest user needs less
power in NOMA to achieve the same capacity as it can using
OMA. Hence, more power goes to the stronger user. Figure
5 plots the simulation of E[∆S(asup)] for ξ = 50 dB, and
the approximation given by (26). Notice that the simulation
and approximation seem to slightly diverge as the number
of users increases. This is because the approximation in (26)
needs a sufficiently large value of ξ as the number of users
increases for the simulation and approximation to become
tighter. However, ξ = 50 dB was used because it is a large but
still realistic value of ξ. Since the number of users K cannot
become arbitrarily large, the approximation remains tight for
realistic values of ξ and K.
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VIII. MULTI-USER NOMA IN SISO SYSTEMS

So far, the treatment of Fair-NOMA has focused on the
two-user case. Consider an OMA system, where K users have
their information transmitted over K orthogonal time slots (or
frequency bands) during a total time of T (and bandwidth B).
For each user k, the capacity of user k is given by

CO
k =

1

K
log2(1 + ξ|hk|2),∀k = 1, . . . ,K. (27)

When applying NOMA to this system, the information of each
user occupies the entire time T (bandwidth B) simultaneously.
Hence, a superposition coding strategy must be used, in which
all K users must share the total transmit power ξ. User k must
perform SIC of each message that is intended for the other
users l that have weaker channel conditions than user k. The
channel gains are ordered as |h1|2 < |h2|2 < · · · < |hK |2.
Lets define the power allocation coefficients {b1, . . . , bK},
where bk is the power allocation coefficient for user k and

K∑
k=1

bk ≤ 1. (28)

Therefore, the capacity of user k for 1 ≤ k ≤ K is given by

CN
k (b1, . . . , bK) = log2

(
1 +

bkξ|hk|2

1 + ξ|hk|2
∑K
l=k+1 bl

)
. (29)

In order for CN
k (b1, . . . , bK) > CO

k , the inequality must be
solved for bk assuming that equation (28) is true. Since user
K does not receive any interference power after decoding all of
the other users’ messages, solving for bK is straight forward.

CO
K ≤ CN

K(b1, . . . , bK)⇒ bK ≥
(1 + ξ|hK |2)

1
K − 1

ξ|hK |2
.

For users k = 1, . . . ,K−1, the power allocation for each user
is conditioned on CO

k ≤ CN
k (b1, . . . , bK) which results in

bk ≥
[(1 + ξ|hk|2)

1
K − 1]

(
1 + ξ|hk|2

∑K
l=k+1 bl

)
ξ|hk|2

.

As expected, the power allocation of the users with weaker
channel gains depend on the power allocation of the users
with stronger channel gains.

Notice that in the above derivation, the total power al-
location was not necessarily used. Consider the case where∑K
k=1 ak = 1 and the case where user 1 capacity in OMA

and NOMA are equal. Therefore, CO
1 = CN

1 ⇒

⇒ log2(1 + ξ|h1|2)
1
K = log2

(
1 +

a1ξ|h1|2

1 + ξ|h1|2
∑K
l=2 al

)

⇒ (1 + ξ|h1|2)
1
K =

1 + ξ|h1|2

1 + ξ|h1|2(1− a1)
. (30)

Solving for a1 gives

a1 =
1 + ξ|h1|2 − (1 + ξ|h1|2)

K−1
K

ξ|h1|2
. (31)

Note that both sides of equation (30) are greater than 1 which
means 0 < a1 < 1,∀ξ > 0. Define A1 = 1 − a1 as the sum

of the interference coefficients to user 1. Therefore,

A1 =
(1 + ξ|h1|2)

K−1
K − 1

ξ|h1|2
, (32)

and 0 < A1 < 1. In general, the power allocation coefficient
required for the NOMA capacity of user k to equal the OMA
capacity of user k can be derived by solving the equation

CO
k = CN

k (a1, . . . , aK)

⇒(1 + ξ|hk|2)
1
K =

1 +Ak−1ξ|hk|2

1 + (Ak−1 − ak)ξ|hk|2
, (33)

∀k ∈ {2, . . . ,K}, ξ > 0, where Ak−1 = 1 −
∑k−1
l=1 al. The

following property for the set of power allocation coefficients
{a1, . . . , aK} arises from solving equation (33).

Property 2. If the set of power allocation coefficients
{a1, . . . , aK} are derived from equations (30) and (33), then

ak ∈ (0, 1), and
K∑
k=1

ak ≤ 1. (34)

Proof. See appendix E.

This is an important property, because it sets the precedent
for the existence of a set of NOMA power allocation coeffi-
cients that (i) achieves at least OMA capacity for every user
in the current transmission time period, and (ii) allows for at
least one user to have a capacity greater than OMA capacity.

The power allocation coefficient ak considers interference
received from users with higher channel gains to be at a
maximum. However, the coefficients bk consider the minimum
power allocation. Note that in power allocation for multiuser
Fair-NOMA using ak coefficients, the allocation process be-
gins with user having weakest channel (first user) and allocate
enough power to have a capacity of at least equal to OMA
capacity for the first user. Then, the process continues with
the next user until all the power is allocated amongst all
users, i.e., the last user with strongest channel receives the
remaining power allocation that results in higher capacity than
OMA for that user. When bk coefficients are used for power
allocations, the power allocation process begins with the user
with strongest channel, Kth user and assign enough power to
achieve the same capacity as OMA for that user. The process
then continues with the next user until the process reaches the
first user. Therefore, it is clear that

bk < ak (35)

and CN
k (b1, . . . , bK) < CN

k (a1, . . . , aK),∀k. (36)

Hence, property 2 highlights that there always exists a power
allocation scheme in the general multiuser NOMA case that
always achieves higher capacity than OMA, while keeping
the total transmit power to ξ. This minimum power allocation
requirement is demonstrated in figure 6. The most interesting
aspect of this result is that the same capacity of OMA can be
achieved using Fair-NOMA with potentially much less total
transmit power by using bk coefficients. This can be useful if
the purpose of NOMA is to minimize the total transmit power
in the network.
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Fig. 6. Minimum total power allocation in NOMA required to achieve
capacity equal to OMA per user, K = 5

IX. CONCLUSION AND FUTURE WORK

Fair-NOMA approach is introduced which allows two
paired users to achieve capacity greater than or equal to the ca-
pacity with OMA. Given the power allocation set AFN for this
scheme, the ergodic capacity for the infimum and supremum
of this set is derived for each user, and the expected asymptotic
capacity gain is found to be 1 bps/Hz. The outage probability
was also derived and it is shown that when a = ainf, the
outage performance of the weaker user significantly improves
over OMA, where as the outage performance of the stronger
user improves by at most roughly 2dB.

Fair-NOMA is applied to opportunistic user-pairing and the
exact capacity gain is computed. The performance of Fair-
NOMA is compared with a fixed-power NOMA approach to
show that even when the power allocation coefficient a = asup
becomes less than the fixed-power allocation coefficient, the
capacity gain is the same at high SNR, while Fair-NOMA
clearly outperforms the fixed-power approach at low SNR.

The concept of Fair-NOMA can be extended to MIMO
systems. In [18], a similar result is found for the approximate
expected capacity gap of a 2-user 2-by-2 MIMO NOMA
system. In order to eliminate the existing possibility that
NOMA does not outperform OMA in capacity for any user, the
Fair-NOMA approach can be applied to users that are utilizing
the same degree of freedom from the base-station. By ordering
the composite channel gains, which include the transmit and
receive beamforming applied to the channel, K users on the
same transmit beam can have their signals superpositioned,
and then SIC can be done at their receivers to obtain their
own signal with minimum interference. Receive beamforming
is used to eliminate the interference from the transmit beams’
signals. The power allocation region can then be derived in
the same manner as in Section VIII, and NOMA can then be
used to either increase the capacity gap as is done in [18], or
to minimize the transmit power required to achieve the same
capacity as in OMA, similar to what was done in Section VIII.

Finally, it is necessary to demonstrate a full system analysis
and simulation of the impact of NOMA on bit-error rate

(BER). It has been shown that the BER is very tightly
approximated by the outage probability in [19], and therefore
a tight approximation of the BER performance is given in this
work. However, the transmission of signals using superposition
coding and different information rates for the users are factors
that impact the analysis of BER for the signal of the weaker
user, especially because constellation sizes will most likely be
different for the two superpositioned signals.

APPENDIX A
PROOF OF THEOREM IV.1

Proof: For the case when a = ainf, the proof is trivial.
Proving for the case when a = asup then suffices to show it is
true for all a ∈ AFN, because the CN

1 (a) performance is lower-
bounded by the case when a = asup, while for CN

2 (a) the per-
formance will only improve for a > ainf. In order for S to be
monotonically increasing function of |hi|2, it must be shown
that dS/d|hi|2 > 0, ∀|hi|2. In the case of |h2|2, CN

1 (asup) does
not factor in, so dS

d|h2|2 =
dCN

2 (asup)
d|h2|2 =

asupξ
asupξ|h2|2 > 0, ∀|h2|2.

The case of |h1|2 goes as follows.

dS

d|h1|2
=

1

ln 2

[
ξ

2(1 + ξ|h1|2)

+

ξ|h2|2

2|h1|2
√

1+ξ|h1|2
+ |h2|2
|h1|4 (1−

√
1 + ξ|h1|2)

1 + |h2|2
|h1|2 (

√
1 + ξ|h1|2 − 1)



=


ξ(|h1|4 + |h1|2|h2|2[(1 + ξ|h1|2)

1
2 − 1]

+2|h2|2(1 + ξ|h1|2) + ξ|h1|2|h2|2(1 + ξ|h1|2)
1
2

−2|h2|2(1 + ξ|h1|2)
3
2


2|h1|2 ln(2)(1 + ξ|h1|2)(|h1|2 + |h2|2(

√
1 + ξ|h1|2 − 1))

The numerator above can be simplified as

ξ|h1|4 + |h2|2

× [2ξ|h1|2
√

1 + ξ|h1|2 + ξ|h1|2 + 2− 2(1 + ξ|h1|2)
3
2 ].

The value inside the square brackets can be simplified to

=2 + ξ|h1|2 − 2
√

1 + ξ|h1|2.

Since 2 + ξ|h1|2 − 2
√

1 + ξ|h1|2 ≥ 0 because ξ2|h1|4 ≥ 0,
then

⇒ξ|h1|4 + |h2|2(2 + ξ|h1|2 − 2
√

1 + ξ|h1|2) > 0

⇒ dS

d|h1|2
> 0.

Since |h1|2 < |h2|2, dS
d|h1|2 > 0, and dS

d|h2|2 > 0, then S is
a monotonically increasing function with respect to |h1|2 and
|h2|2.

APPENDIX B
PROOF OF THEOREM V.1

Proof: For ξ � 1,

∆C1(ainf) ≈ ∆C2(asup) ≈ 1
2 log2(|h2|2)− 1

2 log2(|h1|2).
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The expected value of ∆C1(ainf) and ∆C2(asup) is then

E
[

1

2
log2(

|h2|2

|h1|2
)

]
≈
∫ ∞
0

∫ x2

0

1

β2
e−

x1+x2
β log2(x2)dx1dx2

−
∫ ∞
0

∫ ∞
x1

1

β2
e−

x1+x2
β log2(x1)dx2dx1

=

∫ ∞
0

1

β
e−

x2
β log2(x2)dx2 −

∫ ∞
0

1

β
e−

2x2
β log2(x2)dx2

−
∫ ∞
0

1

β
e−

2x1
β log2(x1)dx1

(a)
=

∫ ∞
0

1

β
e−

x2
β log2(x2)dx2 − 2

∫ ∞
0

1

β
e−

2x2
β log2(x2)dx2

(b)
=

∫ ∞
0

1

β
e−

x2
β log2(x2)dx2 −

∫ ∞
0

1

β
e−

x
β log2(x)dx

+

∫ ∞
0

1

β
e−

x
β log2(2)dx

(c)
= 1,

where (a) is true because the second two integrals are actually
the same integral adding together, (b) is true by making
the substitution x = 2x2. and (c) is true because the first
two integrals are the same integral subtracting each other.
Since SN(a) is a monotonically increasing function of a, and
SN(ainf)− SO = ∆C1(ainf) and SN(asup)− SO = ∆C2(asup),
then when ξ � 1, ∆S = SN(a)− SO ≈ 1,∀a ∈ AFN.

APPENDIX C
PROOF OF OUTAGE PROBABILITY RESULTS

A. Proof of property 1(a)

Proof: pout
N,1(ainf)

=Pr
{

log2

(
1+ξ|h1|2

1+ainfξ|h1|2

)
< R0

}
(C.37)

=Pr

{
|h1|2 < |h2|2(2R0−1)

ξ|h2|2+2R0 (1−
√

1+ξ|h2|2)

}
(C.38)

Since |h1|2 < |h2|2, then there are two cases as

|h2|2 ≶ |h2|2(2R0−1)
ξ|h2|2+2R0 (1−

√
1+ξ|h2|2)

= α1. (C.39)

Solving above for |h2|2 gives

=⇒|h2|2 ≶ 4R0−2
2ξ +

√
4R0−1
ξ2 + (4R0−2)2

4ξ2 = α2. (C.40)

This allows the event in equation (C.38) to be written as the
two mutually exclusive events given in{
|h1|2 < α1

}
(C.41)

=
{
|h1|2 < |h2|2, |h2|2 < α2

}⋃{
|h1|2 < α1, |h2|2 > α2

}
.

The probability in equation (C.38) can then be written as
Pr{|h1|2 < α1} = Pr{|h1|2 < |h2|2, |h2|2 < α2} +
Pr{|h1|2 < α1, |h2|2 > α2}. The first probability is equal
to

Pr{|h1|2 < |h2|2, |h2|2 < α2} =

∫ α2

0

∫ x2

0

2

β
e−

x1+x2
β dx1dx2

= 1 + e−
2α2
β − 2e−

α2
β . (C.42)

The second probability is found to be

Pr{|h1|2 < α1, |h2|2 > α2} =

∫ ∞
α2

∫ α1

0

2

β
e−

x1+x2
β dx1dx2

= 2e−
α2
β − 2

β

∫ ∞
α2

e−
x2+α1
β dx2, (C.43)

where the integral in equation (C.43) has no known closed-
form solution. Combining equations (C.42) and (C.43), gives

pout
N,1(ainf) = 1 + e−

2α2
β − 2

β

∫ ∞
α2

e−
x2+α1
β dx2 (C.44)

B. Proof of property 1(b)

Proof: pout
N,2(asup)

=Pr
{

log2(1 + |h2|2
|h1|2 (

√
1 + ξ|h1|2 − 1)) < R0

}
(C.45)

=Pr
{
|h1|2 > ξ|h2|4

(2R0−1)2 −
2|h2|2
2R0−1

}
. (C.46)

Since 0 < |h1|2 < |h2|2 is always true, then the domain of
|h2|2 that makes the statement ξ|h2|4

(2R0−1)2 −
2|h2|2
2R0−1 > 0 true or

false must be found, and thus gives us two intervals for |h2|2.

ξ|h2|4
(2R0−1)2 −

2|h2|2
2R0−1 ≶ 0 (C.47)

=⇒|h2|2 ≶ 2(2R0−1)
ξ . (C.48)

For the case of |h2|2 < 2(2R0−1)
ξ , which gives ξ|h2|4

(2R0−1)2 −
2|h2|2
2R0−1 < 0, the event is explicitly written as

Aout
1 =

{
0 < |h1|2 < |h2|2, 0 < |h2|2 < 2(2R0−1)

ξ

}
. (C.49)

For the case of |h2|2 > 2(2R0−1)
ξ , the interval for |h1|2 is

ξ|h2|4
(2R0−1)2 −

2|h2|2
2R0−1 < |h1|2 < |h2|2, so it must also be

true that |h2|2 > ξ|h2|4
(2R0−1)2 −

2|h2|2
2R0−1 . This gives |h2|2 <

(2R0−1)2+2(2R0−1)
ξ = 4R0−1

ξ , and therefore the interval for
this event is explicitly written as

Aout
2 =

{
ξ|h2|4−2|h2|2(2R0−1)

(2R0−1)2 < |h1|2 < |h2|2, (C.50)

2(2R0−1)
ξ < |h2|2 <

4R0 − 1

ξ

}
Now the probability above can be derived by computing the
probabilities of the two disjoint regions as

Pr
{
|h1|2 > ξ|h2|4

(2R0−1)2 −
2|h2|2
2R0−1

}
= Pr{Aout

1 }+ Pr{Aout
2 }.
(C.51)

The first probability is computed by

Pr{Aout
1 }=

∫ 2(2R0−1)
ξ

0

∫ x2

0

2

β2
e−

x1+x2
β dx1dx2

= 1 + e−
4(2R0−1)

βξ − 2e−
2(2R0−1)

βξ . (C.52)
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Let K1 = 2(2R0−1)
ξ and K2 = 4R0−1

ξ . Then the second
probability is given by

Pr{Aout
2 } =

∫ K2

K1

∫ x2

ξx22−2x2(2R0−1)

(2R0−1)2

2

β2
e−

x1+x2
β dx1dx2

(C.53)

=

∫ K2

K1

2

β

(
e
−
(
x2
β +

ξx22−2x2(2R0−1)

β(2R0−1)2

)
− e−

2x2
β

)
dx2 (C.54)

The second term in the integral in equation (C.54) can be
easily computed to be∫ K2

K1

2

β
e−

2x2
β dx2 = −e−

2(4R0−1)
βξ + e−

4(2R0−1)
βξ . (C.55)

The first integral in equation (C.54) is computed by completing
the square in the exponent as∫ K2

K1

2

β
e
−
(
x2
β +

ξx22−2x2(2R0−1)

β(2R0−1)2

)
dx2 (C.56)

=

∫ K2

K1

2

β
e
− ξ

β(2R0−1)2

(
x2
2+

x2(2R0−1)(2R0−3)

ξ

)
dx2. (C.57)

Since

x22 + x2(2
R0−1)(2R0−3)

ξ (C.58)

=
(
x2 + (2R0−1)(2R0−3)

2ξ

)2
−
(

(2R0−1)(2R0−3)
2ξ

)2
, (C.59)

then equation (C.57) equals

=
2

β
e

(2R0−3)2

4βξ

∫ K2

K1

e
− ξ

β(2R0−1)2

(
x2+

(2R0−1)(2R0−3)
2ξ

)2

dx2.

(C.60)

By using the substitution

u(x2) = 1
2R0−1

√
ξ
β

(
x2 + (2R0−1)(2R0−3)

2ξ

)
, (C.61)

the integral in equation (C.60) equals

=
2

β
e

(2R0−3)2

4βξ

∫ u(K2)

u(K1)

e−u
2

· (2R0 − 1)

√
β

ξ
du. (C.62)

= (2R0 − 1)e
(2R0−3)2

4βξ

√
π

βξ
· [erfc (u(K1))− erfc (u(K2))],

(C.63)

where u(x) is obtained by equation (C.61), and thus u(K1) =
2R0+1
2
√
βξ

, u(K2) = 3(2R0 )−1
2
√
βξ

, and erfc(z) = 2√
π

∫∞
z
e−u

2

du is
the complementary error function. Thus, combining equations
(C.52, C.55, C.63) results in equation (19).

APPENDIX D
PROOF OF THEOREM VII.1

Proof: When ξ|h0|2 � 1, ∆S(asup) ≈ 1
2 (log2(|hM |2) −

log2(|h0|2)). Therefore by equation (D.64),

E [∆S(asup)]

≈
∫ ∞
0

log2(xM )
K

2β
e−

xM
β (1− e−

xM
β )K−1dxM

−
∫ ∞
0

log2(x0)
K

2β
e−

Kx0
β dx0

=

∫ ∞
0

log2(xM )
K

2β
e−

xM
β

K−1∑
n=0

(
K−1
n

)
(−1)ne−

nxM
β dxM

−
∫ ∞
0

log2(x0)
K

2β
e−

Kx0
β dx0

=

K−1∑
n=0

∫ ∞
0

log2

(
x

n+ 1

)
K

2(n+ 1)β

(
K−1
n

)
(−1)ne−

x
β dx

−
∫ ∞
0

log2

( x
K

) 1

2β
e−

x
β dx

=

∫ ∞
0

log2

(
K

x
·
K−1∏
n=0

(
x

n+ 1

)( K
n+1)(−1)

n)
1

2β
e−

x
β dx

=
1

2
log2(K) +

1

2

K∑
m=1

(
K
m

)
(−1)m log2(m).

APPENDIX E
PROOF OF PROPERTY 2

Proof: It is already established that a1, A1 ∈ (0, 1). The
power allocation coefficient for user 2 is found by the equation

(1 + ξ|h2|2)
1
K =

1 +A1ξ|h2|2

1 + (A1 − a2)ξ|h2|2

=⇒ a2 =
(1 +A1ξ|h2|2)[(1 + ξ|h2|2)

1
K − 1]

ξ|h2|2(1 + ξ|h2|2)
1
K

.

(E.65)

If the following is true

1 <
1 +A1ξ|h2|2

1 + (A1 − a2)ξ|h2|2
< 1 +A1ξ|h2|2, (E.66)

then clearly a2 ∈ (0, A1). However, for equation (E.65) and
inequality (E.66) to be true, it must be true that

1 < (1 + ξ|h2|2)
1
K < 1 +A1ξ|h2|2. (E.67)

It is trivial to show that 1 < (1 + ξ|h2|2)
1
K ,∀ξ, |h2|2 > 0.

To show that (1 + ξ|h2|2)
1
K < 1 + A1ξ|h2|2,∀ξ > 0, the

inequality is rearranged so that

γ2 < A1, (E.68)

where

γk =
(1 + ξ|hk|2)

1
K − 1

ξ|hk|2
. (E.69)

The inequality γ2 < A1 is clearly true because γ2 < γ1, and
γ1 < A1 because (1 + ξ|h1|2)

m
K < (1 + ξ|h1|2)

K−1
K ,∀m <

K − 1. Therefore, equation (E.65) and inequality (E.66) are
true. In a similar manner, in order for the power allocation
coefficient ak for user k to be less than total interference Ak−1
received by user k − 1, the following must be true:

ak =
(1 +Ak−1ξ|hk|2)[(1 + ξ|hk|2)

1
K − 1]

ξ|hk|2(1 + ξ|hk|2)
1
K

, (E.70)

1 <
1 +Ak−1ξ|hk|2

1 + (Ak−1 − ak)ξ|hk|2
< 1 +Ak−1ξ|hk|2, (E.71)

1 < (1 + ξ|hk|2)
1
K < 1 +Ak−1ξ|hk|2. (E.72)
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E [∆S(asup)] ≈
∫ ∞
0

∫ xM

0

1
2 log2(xM )K(K−1)

β2 e−
x0+xM

β (e−
x0
β − e−

xM
β )K−2dx0dxM

−
∫ ∞
0

∫ ∞
x0

1
2 log2(x0)K(K−1)

β2 e−
x0+xM

β (e−
x0
β − e−

xM
β )K−2dxMdx0 (D.64)

Equation (E.70) is true by solving eq. (33), while (E.71) states
that ak ∈ (0, Ak−1) and (E.72) requires that user k’s OMA
capacity is feasible within ak ∈ (0, Ak−1), given the channel
condition of user k. Therefore, (E.72) leads to

γk < Ak−1 = Ak−2 − ak−1 =
Ak−2 − γk−1

(1 + ξ|hk−1|2)
1
K

=⇒ Ak−2 >

(1 + ξ|hk|2)
1
K − 1

ξ|hk|2
(1 + ξ|hk−1|2)

1
K +

(1 + ξ|hk−1|2)
1
K − 1

ξ|hk−1|2
(E.73)

Since the function

f(x) =
(1 + x)

m
K − 1

x
,∀m < K,m and K ∈ N (E.74)

is a monotonically decreasing function of x, then

(1 + ξ|hk|2)
1
K − 1

ξ|hk|2
(1 + ξ|hk−1|2)

1
K +

(1 + ξ|hk−1|2)
1
K − 1

ξ|hk−1|2
(E.75)

<
(1 + ξ|hk−1|2)

1
K − 1

ξ|hk−1|2
(1 + ξ|hk−1|2)

1
K +

(1 + ξ|hk−1|2)
1
K − 1

ξ|hk−1|2
(E.76)

=
(1 + ξ|hk−1|2)

2
K − 1

ξ|hk−1|2
< Ak−2 = Ak−3 − ak−2

=
Ak−3 − γk−2

(1 + ξ|hk−2|2)
1
K

(E.77)

=⇒ Ak−3 >
(1 + ξ|hk−1|2)

2
K − 1

ξ|hk−1|2
(1 + ξ|hk−2|2)

1
K (E.78)

+
(1 + ξ|hk−2|2)

1
K − 1

ξ|hk−2|2
. (E.79)

The inequality in (E.78) has the same form as the inequality
in (E.73), so the same steps taken in inequalities (E.75) and
(E.77) can be used repeatedly, until the following is obtained

(1 + ξ|h1|2)
k−1
K − 1

ξ|h1|2
≤ A1, (E.80)

which is true ∀k ≤ K. Hence, this series of inequalities shows
that the transmit power allocation coefficient ak required for
user k to achieve OMA capacity is always less than the total
interference coefficient received by user k − 1, which equals
the total fraction of power available for users k, . . . ,K.
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