Optimal Resource Allocation in Multicast
Device-to-Device Communications Underlaying
LTE Networks

Hadi Meshgt, Dongmei Zhad and Rong Zheng

!Department of Electrical and Computer Engineering, McMastniversity

’Department of Computing and Software, McMaster University

Abstract

In this paper, we present a framework for resource allonatimr multicast device-to-device (D2D)
communications underlaying a cellular network. The olijeds to maximize the sum throughput of active
cellular users (CUs) and feasible D2D groups in a cell, whileeting a certain signal-to-interference-
plus-noise ratio (SINR) constraint for both the CUs and D2Dbugs. We formulate the problem of power
and channel allocation as a mixed integer nonlinear progriagn (MINLP) problem where one D2D
group can reuse the channels of multiple CUs and the charinehah CU can be reused by multiple
D2D groups. Distinct from existing approaches in the litere, our formulation and solution methods
provide an effective and flexible means to utilize radio teses in cellular networks and share them
with multicast groups without causing harmful interfererto each other. A variant of the generalized

bender decomposition (GBD) is applied to optimally solve MINLP problem. A greedy algorithm and
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a low-complexity heuristic solution are then devised. Thefgrmance of all schemes is evaluated through
extensive simulations. Numerical results demonstratettieaproposed greedy algorithm can achieve close-
to-optimal performance, and the heuristic algorithm piegi good performance, though inferior than that

of the greedy, with much lower complexity.

. INTRODUCTION

Device-to-Device (D2D) communication is a technology comgnt for Long Term Evolution-
Advanced (LTE-A) of the Third Generation Partnership Reb{8GPP)[[1]. In D2D communication,
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cellular users (CUs) in close proximity can exchange infation over a direct link rather than
transmitting and receiving signals through a cellular bsisg¢ion (BS). D2D users communicate
directly while remaining controlled under the BS. Compat@douting through a BS, CUs at close
proximity can save energy and resources when communicdiregtly with each other. Moreover,
D2D users may experience high data rate and low transmisiglay due to the short-range direct
communication[[2]. Reducing the network load by offloadiedjidar traffic from the BS and other
network components to a direct path between users is anognefit of D2D communication reduce
the network load and increase its effective capacity. Obfegrefits and usage cases are discussed
in [3].

The majority of the literature in D2D communications uses tiellular spectrum for both D2D
and cellular communications,also known as in-band D2D GHnerally, in-band D2D falls in two
categories, underlay and overlay [5]. Underlay in-band 2D improve the spectrum efficiency
of cellular networks by reusing cellular resources. Itsnrdriawback lies in the interference caused
by D2D users to cellular communications. Thus, efficieneifgrence management and resource
allocation are required to guarantee a target performaanad bf the cellular communication![6],
[7]. In order to avoid this interference issue, it has alserb@roposed to dedicate part of the
cellular resources to D2D communications in overlay inebd@®2D. In this case, designing a
resource allocation scheme is crucial to maximize thezatilon of dedicated cellular resources [8].
Other works consider out-of-band instead of in-band D2D mamications so that the cellular
spectrum would not be affected by D2D communications [9]t-@itband D2D communication
faces challenges in coordinating the communication overdifferent bands because usually D2D
communication happens on a second radio interface (e.dri, Wiect and Bluetooth) [10].

Most of the work in D2D resource allocation targets the ustisaenario where a single or multiple
D2D pairs reuse the resources of CUs.[In [4], the authorsidenthroughput maximization where
by allowing D2D communication to underlay the cellular netky the overall throughput in the
network can increase compared to a case where all D2D traffielayed by the cellular network.
Some other work such as [10], [11] consider D2D communicateiability while guaranteeing a
certain level of SINR or outage probability. The works/in[[1J23], [14] consider both throughput
and reliability simultaneously. In_[12], throughput is niraxzed for a network with a single D2D

pair and a single CU subject to spectral efficiency restigiand energy constraints. There are



few works for scenarios with multiple D2D users and CUs. Faaneple, the quality-of-service
(QoS) requirements for both CUs and D2D users have beentigatsd in [13] and[[14]. In[[13], a

heuristic algorithm has been proposed to solve the MINLBue allocation problem that aims to
decrease interference to the cellular network and maxithizeotal throughput. The authors in [14]
present a framework of resource allocation for D2D commafioos underlaying cellular networks
to maximize the overall network throughput of existing CUsdaadmissible D2D pairs while

guaranteeing the QoS requirements for both CUs and D2D.paischeme based on maximum
weight bipartite matching is proposed to determine a speCiti partner for each admissible D2D
pair.

Multicast D2D transmissions, where the same packets for atgEent to multiple receivers, are
important for scenarios such as multimedia streamingcaéediscovery, and public safety. Specially,
D2D multicast communications are required features in ipudafety services like police, fire and
ambulance [1]. Compared to communicating with each recsiparately in unicast D2D, multicast
D2D transmission reduces overhead and saves resourcesveipwnlike the more commonly
studied unicast D2D (see e.g. [12] [14]), multicast D2D hasivn challenges. Within a multicast
group, the data rates attainable at different receiversdéferent because of the diverse link
conditions between each receiver and the transmitter. Anommapproach is to transmit at the
lowest rate of all users within a group determined by the wg#r the worst channel condition.
This assures that multicast services can be provided tasalisuOn the one hand, as all multicast
users within a group receive the same data rate, the total ratengrows with the number of
active users of the group. On the other hand, the lowestrrasgon rate typically decreases as the
number of users increases since it is based on the user witbethst Channel Gain (LCG) [15].

As discussed in [15] there are lots of works in multicast dciieg and resource allocation for
OFDMA-based systems. They can be broadly classified intotjes: single-rate and multi-rate
transmissions. In single-rate broadcast, the BS transmidl users in each multicast group at the
same rate irrespective of their non-uniform achievableactigs, whereas in multirate broadcast,
the BS transmits to each user in each multicast group atrelifferates based on what each user
can handle. All of the works mentioned in_[15] targeted dalHunetworks where the multicast
transmitter is the BS. However, in multicast D2D, UEs are troast transmitters and the QoS

requirements for both the D2D links and the cellular linkswdld be satisfied.



The problem of resource management for D2D multicast concation was first addressed in
our previous work([16]. In[[16] we formulate the power and rhel allocation problem for D2D
multicast communication for a special case where each D2Dgycan reuse the channel of one CU
and the channel of each CU can be reused by at most one D2D. Jroeioptimal solution is found
using maximum weight bipartite matching algorithm and a-wmplexity heuristic algorithm is
also proposed. Moreover, we adapt the heuristic scheme3jnf¢t multicast D2D and compare it
against our scheme and show that our proposed heuristic bagegior performance.

In this paper, we consider multicast D2D communicationseviaging cellular networks and
present a joint power and channel allocation scheme to magithe total throughput of all CUs
and D2D groups within a cell. We formulate the general pnobtd power and channel allocation
as an MINLP where one D2D group can reuse the channels ofplaul@iUs and the channel of
each CU can be reused by multiple D2D groups. To guarante®dtlserequirements for both CUs
and D2D groups, a minimum SINR constraint is imposed. A vdriaf the generalized bender
decomposition (GBD) is applied to optimally solve the MINIpPoblem. We further propose an
exact solution to a special case of the general problem.if8@dly, inspired by the work in[[14],
we use the maximum weight bipartite matching algorithm toe tase where each D2D group
can reuse the channel of at most one CU and each CU can shareemirces with at most
one D2D group. Next, we propose a greedy algorithm with a sdmehigh complexity but very
close-to-optimal performance. A low-complexity heuxdssiolution is then devised which trades
computation complexity with performance. This heuristgoaithm is an extension to the heuristic
algorithm presented [16] for the general scenario.

The remainder of the paper is organized as follows. In Sefflahe system model is described
and the problem of power and channel allocation for undentayticast D2D communication is
formulated. Section Ill describes the generalized bendeorhposition method to solve the general
problem. The matching-based optimal resource allocat@mnohe special case is presented in
Section[1V, and the greedy and the heuristic algorithms aesgmnted in Section]V. Numerical
results are demonstrated in Section VI, and Sediioh VIl kates the paper.



1. SYSTEM MODEL AND PROBLEM FORMULATION

We study resource allocation for multicast D2D communcetianderlaying uplink (UL) trans-
missions in LTE networks. UL resource sharing is consideiade reusing downlink resources is
more difficult and less effective than reusing uplink resesrin the worst case of a fully loaded
cellular network, as demonstrated in [17]. Considérgroups of multicast D2D users coexisting
with M CUs. We assume a fully loaded cellular network scenariot Thahere areM channels,
each occupied by one CU. We usec M = {1,2,..., M} to index both thenth CU and the
channel it occupies, ande K = {1,2,..., K} to index thekth D2D group. We consider a single
cell scenario and assume that advanced intercell intexterenitigation is applied on top of our
scheme. Within a D2D group, there is only one user that madtg& messages to the remaining
users. Each D2D user only belongs to one D2D group. WeTyséo represent the set of D2D
receivers in thekth multicast group, andiD;| is the total number of receivers in the group. As a
special case, whefD,| = 1, the scenario becomes unicast.

Define a set of binary variableg,,, with y,, = 1 if the kth D2D group reuses channel, and
yrm = 0 Otherwise. In the general case, each D2D group splits itéeast traffic among maximally
C; channels wher€’; < M, and each channel can be reused by at mgsb2D groups where
Cy < K. That is,

M
> Ykm <C1, VEEK (1)
m=1
K
> km < Ca, Vm € M, (2)
k=1

The channel quality of receivet in the kth D2D group at channeth is given by

GD2D
D2D k,m.,d (3)

km,d — C2D D2D D2D
Pnoise + Prge”kaLd + Ek’;ﬁk Pk’,m sz,k’,d

where P, IS the aggregate power of background no'@ﬁfn’?d is the link gain to D2D receiver
d from the D2D transmitter in group at channeln, ngn?d is the link gain from CUm to D2D

receiverd in groupk, P is the transmission power of Ckh, P22 is the transmission power
of the kth D2D group transmitter at channel, and G;;”; the link gain from the transmitter at

D2D groupk’ to receiverd at D2D groupk.



For the kth D2D group, its transmission condition in chanmelis determined by the receiver

with the worst condition. Define

D2D . AD2D
= min . 4
k,m deD), Bk,m,d ( )

Then, the normalized transmission rate (bit/s/Hz) of ktie D2D group is given by

M
2P = "y logy(1+ PR2PBEEP). (5)

m=1

The aggregate transmission rate of #fte D2D group is given by
RY?P = |Dyfry". (6)

For CUm, its channel quality is given by
GCell
Proise + Z]Ile yk,mplggzDGlg%nC7

where G5 is the link gain of CUm to the cellular base station, ar@>" is the link gain

Cell
B =

(7)

from the kth D2D transmitter to the cellular base station at chammellherefore, the normalized

transmission rate for Clh is
ROZ = logy (1 + PR8I, ®)

A threshold is set for the SINR of each D2D group and CU trassion. For theith D2D group,

PIQ%D@Q%D 2 yk,m7£2D> (9)
and for CUm,
Prgellﬂgell 2 %Che”~ (10)

Given these SINR threshold constraints, we can approxith&eapacity in higher SINR cases
by removing the term “1” from the logarithm functions in baf) and [8). The maximum power

constraints for CUs and D2D groups, respectively, are giwen

PO < pCell € M, (11)

max ?

and

max ’

M
> PP < PP vk ek (12)
m=1



The objective is to maximize the aggregate data transmmssite of all the D2D groups and
CUs. Combining[(I1) —(12), we formulate the joint power cohtaind channel allocation problem

to maximize the sum throughput of multicast D2D groups arltlilee users as follows,

K M
P1. max (Z RP*P+3 Rﬁf’”) (13)
m=1

k=1
M
st RP?P ="y Dillogy(POZPBP2P) Yk € K.m € M, (14)
m=1
RCell ZlogZ PCellﬁCell) Vm € M, (15)
BP0 < 553,3, Vk € K,m € M, d € Dy, (16)
Ym € {0,1}, VE € K,m € M, a7)

Constraints[(i1) (@), (@), (9), (10), @1), (@2)

Table[] lists all the parameters and variables used in thbl@mo formulation.

Clearly, P1 is a Mixed Integer Nonlinear Programming (MINL#oblem. In general, MINLP
problems are NP-hard and thus no efficient polynomial-timletsns exist. In the general case,
when C; and C; are arbitrary values, we will use GBD [18] to solve the problen the next
section.

Based on the values d@f;, and C,, several special cases exist. For example, when= 1 and
Cy =1, each D2D group can reuse the channels of at most one CU ahdGéhcan share their
channels with at most one D2D group. Another special casetefast is wher; = 1. In this case,
to increase the spectrum utilization, we allow each D2D grtmreuse the resources of multiple
CUs, but each CU cannot share its resource with more than @i ddoup. Here, there is no
interference between D2D groups and this setting is usehdrnthe number of D2D groups is
much less than the number of CUs. All the special cases camedwved via GBD. However, it
turns out that polynomial algorithm can be devised whgn=1 andC, = 1 as will be discussed
in Section1V.

[Il. GENERALIZED BENDER DECOMPOSITION

The MINLP problem in P1 has the special property that whenbihary variables . ,,,'S) are

fixed, the problem becomes a geometric programming problémaentinuous variablesFQ%D’s



TABLE |: Table of notations

Notation | Description
M Set of cellular users (CU)
K Set of D2D groups
Dy, Set of receivers irkth D2D group
A Set of admissible or successful D2D groups
Yk,m Binary variable, =1 ifkth D2D group reuses Clh’s channel, and =0 otherwise
C1 Maximum number of channels to be reused by each D2D group
Cs Maximum number of D2D groups sharing each CU channel
Proise Aggregate power of background noise
Gﬁfn’?d Link gain to D2D receiverd from the D2D transmitter in groug at channelmn
G232, Link gain from CUm to D2D receiverd in group k
,ﬁi?d Link gain from the transmitter at D2D grouyd to receiverd at D2D groupk
GGt Link gain of CUm to the cellular base station
Gﬁfnc Link gain from thekth D2D transmitter to the cellular base station at chanmnel
P,ff,P Transmission power of theth D2D group transmitter at channel
pgett Transmission power of Clh
D20 Channel quality of received in the kth D2D group at channeh
Crell Channel quality of Cun
RP?D Normalized transmission rate of ttiéh D2D group
R Normalized transmission rate for Chi
Rev™ The summation of D2D and cellular throughput
Tt SINR threshold for all D2D groups
A Gett SINR threshold for all CUs
fi(IDk]) | The complexity of solving problem Pi

and P¢<'s), which can be transformed to a convex problem. This alow to use GBDI[18] to

solve the problem efficiently with proper transformation.

Let X = [PP2P PGl RP?P RO gP2P gl | e IC,m e M] represent the set of all con-
tinuous variables an® = [yx..,k € K,m € M)] represent the binary variables. We modify the
constraints in problem P1 to separate binary variaplgsfrom the continuous variables X and

make the problem linear in terms of ,,’s when the continuous variables are fixed. Problem P1

m

can be transformed as

K M
P2. f(X,Y)=max|Y RP*+> RO
k=1 m=1




s.t. RDP?P < Z |Dy|logy (POZPBE2P) + O(1 — ypm), Yk € K,m € M, (19)

m=1

RP?P < Cypms ¥k € KCom € M, (20)
K

RO < Z log, (Pge”ﬁgf”) , Vm e M, (21)
k=1

Cell GCell

By < - , Vm e M, (22)

Pnoise + Zf:l PI?r%LDGIQEnC
(iD2D
BP0 < kym,d VkeKC,m e M, d e Dy, (23)

km  — 2D D2D D2D
Pnozse + PCSlleCm d + Zk’;ﬁk P Gk K d
D2D

P < o + € < CPP2P Wk € Kom € M, (24)

max

Constraints[(1) @), @), (@), 10), 1), @2), @2)

where(C' is a very large number and> 0 is a very small number.

The basic idea of GBD is to decompose the original MINLP peablinto a primal problem
and a master problem, and solve them iteratively. The prpnalblem corresponds to the original
problem with fixed binary variables. Solving this problenoyides the information about the lower
bound and the Lagrange multipliers corresponding to thetcaimts. The master problem is derived
through nonlinear duality theory using the Lagrange mliétip obtained from the primal problem.
The solution to the master problem gives the informationuatibe upper bound as well as the
binary variables that can be used in the primal problem irt iteration. When the upper bound

meets the lower bound, the iterative process converges.

A. Primal problem

The primal problem results from fixing thg ,,, variables to a particular 0-1 combination denoted

by y,ﬁ’)m where: stands for the iteration counter. The formulation for thiengit problem at iteration

1 Is given by
M
P3. f(X, YY) =max (Z RP*P +) R,ff”) (25)
k=1 m=1
s.t. RP?P < Z D[ logy(PE2P BP2P) + C(1 — yi!) ), Vk € K,m € M, (26)

m=1

RP?P < Cy) Wk € K,m e M, (27)
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K
RO <Y "log, (RSB, Vm € M, (28)

k=1

Cell GCell

B < = , Vm e M, (29)
Pnoise + Ek:l PI?r%LDGkD,EnC
GER,

D2D il Vke K,me M, de Dy, (30
5k,m = Pnoise + Pyge”GkC:ifd + Zk,#k PlganGlgz?dy ,m 5 ks ( )
ppRp (i) D2D
ppn S Yy €< CPOP, V€ K,m e M, (31)
PPAPEPD > y® AB2P k€ KC,m € M, (32)

Constraints[(10) (11), (2), (22). (23)

Since the optimal solution to this problem is also a feassulkition to problem P1, the optimal
value f(X*, Y®) provides a lower bound to the original problem. In general, al choices of
binary variables lead to a feasible primal problem. Thersféor a given choice of ,,,’s, there
are two cases for primal problem P3: feasible problem anelasible problem. In the following,
we consider each of these cases.

. Feasible Primal: If the primal problem at iterationis feasible, then its solution provides
information on the transmission power of D2D and cellulangmitters,f(X*, Y®), and the
optimal multiplier vectors)\*, ¢ = 1,2, ..., Q for the () inequality constraints in Problem P3.
Subsequently, using this information we can formulate thgrange function for all inequality
constraints7,(X, Y®) <0 forg=1,2,...,Q as

Q
LX, YD A0) = f(X, YD) + 320G, (X, YD), (33)

q=1

whereA® =\ ¢ =1,2,...,Q].
« Infeasible Primal: If the primal problem is infeasible, tentify a feasible point we can

formulate ani;-minimization problem as
Q

P3.1. min) a, (34)
q=1

st. G(X, YD) <a,q=1,2,..,Q, (35)
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a,>0,g=1,2,...Q. (36)

Note that if Zle a, = 0, then P3 is feasible. Otherwise, the solution to this fekisib
problem (FP) provides information on the Lagrange mukigj which are denoted a‘.é"); the
Lagrange function resulting from the feasibility problemitaration: can be defined as

Q
LX, Y AD) =3 A0 (Gy(X, YY) — ay). (37)
q=1

B. Master Problem

The master problem is derived from the non-linear dualigotly [18].

P4. maxn (38)

Y (3)
s.t. 7 <sup L(X, Y® XD) wyA®D >0 (39)

X
1§fE(X,Y<i>, AD) <0, VAW € A, (40)
Constraints[{iL) (@), (@7), (42)
where
—_ Q —
A={X2>0> X\ =1} (42)
q=1

The master problem P4 is similar to the original problem R, s two inner optimization
problems which need to be considered forathnd X obtained from the primal problem in every
iteration. Therefore, it has a very large number of constsaiBecause of the separability of binary
variablesY and continuous variableX, and the linearity with regard t&, we can adopt Variant
2 of GBD (V2-GBD) in [18]. It is proven in[[18] that under the mditions for V2-GBD, the
Lagrange function evaluated at the solution of the corredpy primal is a valid under-estimator
of the inner optimization problem in P4. Therefore, the xethmaster problem can be formulated

as,

P5. maxn (43)
Y (%)

sit. < LIX, YO X)) wA® > g, (44)
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LX, YD XY <0, ¥AD € A, (45)

Constraints[(i1) (2), (17). (46)

The relaxed problem provides an upper bound to the mastbtgmoand can be used to generate

the primal problem in the next iteration.The same procedsirthen repeated until convergence.

Over the iterations, the sequence of upper bounds are measing and the set of lower bounds are

nondecreasing. The two sequences are proven to convergbealforithm will stop at the optimal

solution within a finite number of iterations [19]. Algorithll summarizes the GBD procedure.

Algorithm 1 GBD Algorithm

1:

2:

3:

10:

11:

12:

13:

14:

15:

16:

First iteration,i = 1
Select an initial value foly @, which makes the primal problem feasible.
Solve the primal problem in P3 and obtain the Lagrange foncti
UBDY = 0o, LBD® =0
while UBDY — LBD® > ( do
1=1+1
Solve the relaxed master problem P5 to optairand Y*
SetUBDY = p*
Solve the primal problem P3 with fixe ) = Y*
if the primal problem is feasiblghen
Obtain optimal solutiorX* and the Lagrange functioh(X, Y® \(®)
Set LBD® = max(LBD V), fO(X* Y1))
else
Solve the feasibility-check problem P3.1 to obtain the mpti solution X* and the
Lagrange functionl (X, Y® \(®)
end if

end while
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IV. MATCHING-BASED OPTIMAL RESOURCEALLOCATION

In this section, we consider the MINLP problem in P1 for theaal caseC; =1 andC; = 1.
This case can be cast as a bipartite matching problem andctmude solved polynomially. To
formulate the bipartite problem, we divide P1 into two sudippems. In the first step, for each D2D
groupk and each CUn, we find their transmission power so that the sum throughptheoD2D
group and the CU is maximized. If this problem is feasibleDDgoup & is allowed to reuse the
channel of CUm and is marked as a candidate partner in the second stepywighegroup Kk is
excluded from the list of feasible partners. The second stéjpen to find the best CU partner for
each D2D group among all feasible candidates so that thettwtaughput of all D2D groups and
CUs is maximized.

1) Feasibility check and power allocation: In order to determine whether D2D gro#&pcan reuse
channelm and to find the transmission power of the feasible D2D group@u,we have problem

P6 as follows:

P6. max (Rl?an + Rgfil) (47)
st Rpn = |Dillogy(Pon B ), (48)
R = log, (PS55) (49)
PO B = vt (50)
Pgellﬁgell Z %5;6117 (51)
GCell
B = g , (52)
Pnoise + PIS%DG]Q?,ALC
GE2,
BPeb < i , Vd € Dy (53)
s Pnoise + Pnge”Gg,an,d
Pyt < PLAL (54)
M
Y PP < PP (55)
m=1

P6 is a reduced version of P1 by limiting it to only one D2D grand one CU with the objective
of maximizing their sum throughput. Clearly, P6 is a geomgirogramming problem and can be

transformed to a convex optimization problem using geom@irogramming techniques [20]. We
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solve problem P6 for alk andm pairs. Define a candidate channel S§gtfor D2D groupk. If the
problem is feasible, D2D groupis admissible to channel (i.e., eligible to use channet), thenm
is added ta’,. Form € C,, denote the optimal throughput for tihéh D2D transmitter and the:th
CU asR;1?P and R; <", respectively, and the optimal sum throughputrgg = R;2P + R;Gel.

k,m k,m k,m
PCell GCell

Form ¢ Cy, we setR;220 — 0, RiCell — log, (Pi) and thusry" = R;Cell,

2) Maximizing total throughput: Given the maximum achievable throughput for each D2D group
when reusing each cellular channel, to find the optimal cbhaltocation that maximizes the total

throughput we have,

K M
P7. max) > yrmBi (56)
A p—
K
st > yem <1, VmeM (57)
k=1
M
> km <1, VEEK (58)
m=1
Yrm € {0,1}, Vk € K, m € M. (59)

P7 is in effect the maximum weight bipartite matching proflevhere the D2D groups and the
cellular channels are two groups of vertices in the bipagitaph, and the edge connecting D2D
group k£ and channeln has a weightz;"". The Hungarian algorithnmi_[21] can be used to solve
the bipartite matching problem in polynomial time.

To determine the computational complexity, considér> K and the complexity of solving P6
is a function of the size of each D2D group, i&(|Dx|). Therefore, the time complexity of the
matching-based optimal resource allocatiorOigV x K x fs(|Dx|)) + O(M?3) , where the first

and second terms correspond to the computation time in thteaiid second steps, respectively.

V. GREEDY AND HEURISTIC CHANNEL ALLOCATION ALGORITHMS

The MINLP problem in P1 is an NP-hard problem and the compmrtatomplexity is exponential
in the worst case. In other words, GBD may converge in an expited number of iterations. In
this section we first propose a greedy algorithm and then adtieusolution to the general MINLP
problem in P1.



Algorithm 2 Greedy algorithm

1: M: Set of cellular users

2: KC: Set of all D2D groups

3 epm=1 Vke K,meM

4 Y = [Wkm| Yem =0, Vk € ,;m € M]

5 S=10

6: while S8 SM ¢ >1 do

7. E=lerm| eem =1, Yk e K,m e M]

B T = log, () vk e Kom e M

9. for each e;,,, € E do

10: Ykom = 1

11: if (k,m) is Admissible then

12: Solve P3 to findP[2 and P!, V(K ,m/) € [S U (k,m)]
13: if P3is feasiblethen

14: T = 2w mels u (omy) Yo | Di| logy (P75 Birom) + > i log (P Bes™)
15: else

16: €em = 0

17: end if

18: else

19: €em = 0

20: end if

21: Yim = 0

22:  end for

23 (k*,m") = arg maxy(x,m) 15"
240 Yprmr =1

25: €kx mx = 0

2. S=8 U (k*,m")

27: end while
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A. Greedy algorithm

Algorithm[2 shows the greedy resource allocation algoritfitre key idea of the greedy algorithm
is that, in each iteration, it selects a CU and D2D group et maximizes the resulting sum
throughput of all selected pairs. The algorithm terminatéen there is no more pair that can be
included.

In this algorithm, we first initialize all edges of & x M bipartite graphey ., to one in line 3.
The K x M assignment matriX’ is initialized to zero.S is the set of selected CU and D2D pairs
that maximize the sum throughput and initialize to zero at.fivlatrix £ includes all edgesef, ,,,)
with the value of one. The inner loop (lines 8-23) finds the ghnoughput, 7,7, of all pairs in
setS after an admissible paiik, m) is added taS. In line 10, to find if (k, m) is admissible, the
algorithm checks constraintsl (1) arid (2) for a givénm) pair. If either of these constraints is
violated for the currentk, m), the procedure sets. ,, andy; ., to zero and moves to the next pair.
Otherwise, the algorithm solves problem P3 and fifigtg". In the outer loop, the paiix*, m*) that
maximizesT;7" V(k,m) € S (line 24) is found and removed fromy. The outer loop is iterated
until e, =0, Yk € K andm € M.

Since a total oinin{M x C5, K x C;} pairs can be found in the procedure, and in each iteration
of the outer loop, only one such pair can be added, the coriguogh complexity of the greedy
algorithm isO(min{M x Cy, K x C1} x K x M x f3(|Dx|)), where f3(|Dx|) is the complexity
of solving P3 as a function of the size of each D2D group. Thgh ldomplexity of the greedy
algorithm mainly arises from the need to solve the optinmraproblem up toK x M times to

find the best pair in each iteration.

B. Heuristic algorithm

Since the complexity of the greedy algorithm is high, we s®a heuristic algorithm with less
complexity in Algorithm[3. In the following we explain somstuition behind the algorithm.

To increase cellular and D2D throughputs, it is desirableawee higher SINR. From (3) and (7),
it can be deduced that having smaller valuesigf”, and G;”, reduces interference from CU
m to D2D groupk and from D2D groupk to D2D groupk’ respectively, and consequently results
in higherﬁ,fﬁ? and D2D throughput. Furthermore, higher valuesif lead to higher cellular
throughput. Therefore, Algorithin 3 tries to pair up a CU thas a high link gain to the BS and a
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Algorithm 3 Heuristic algorithm

1: M: List of cellular users in decreasing order Gf <"
2:
3:
4.

5:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:

24:

K: List of all D2D groups

Ggka = Mingep, Gﬁ?fd, Vk € K,m e M,
Gey’ = mingepr G0y, Yk € K,m e M
Yem =0, Vk e K,m e M

PCell — PCell \v/m c M

max ?

: B2 =0, Ve K,m e M

m=1

while m < M do
K'={Vk e KIS ypm < Ca}
while S5 yrm < Cr or K' £ 0 do

. K
ke = argminge (5_, PR2PGPIP + PCUGEP)

Yk m = 1
Solve P3 to findP22" and PS"
if P3is feasiblethen

D2D k* transmits on channeh

Yirom = 1
else
Yrm = 0
end if
K=K\ (k)
end while
m=m-+1

end while




18

D2D group that has low interference to the CU. Here, we asdhateeach CU sends the channel
information between itself and D2D receivers through aanthannels to the BS.

Starting fromm = 1, the outer loop in AlgorithniI3 iterates through all CUs. Faclem, the
algorithm finds at most’; best D2D groups to share the channelin the inner loop. Line 12
shows the criteria for choosing the D2D group that receitesninimum interferences from CU
m and all other D2D groups using the same channel. In line 1gkdan the current value gof, ,,,,
problem P3 is solved to find the optimal transmission powerefich CU and D2D group. If P3
is feasible, D2D groug:* will reuse the channel» and we havey- ,, = 1, otherwiseyy- ,,, = 0
in line 20. In both cases;* is removed from the D2D group list for the next iteration. Tiheer
loop stops iterating after finding; D2D groups for CUm or after at mostK iterations. It is
worth mentioning that each D2D group cannot reuse more y@a@Us. That is accomplished by
introducing K’ that keeps track of all D2D groups with less th@pn assigned channels in line 10.

In this algorithm, problem P3 is solved x C; times in the worst case, and thus the complexity
of the heuristic algorithm i©(M?)+O(M x K x f3(|Dx|)). This is much less than the complexity
of the greedy algorithm. However, as will be demonstratethensimulation, the improvement in
computation complexity comes at the cost of lower perforoean

We summarize the computational complexity of GBD, greedy laeuristic algorithms in Table]ll

in the worst case.

TABLE II: Worst case complexity comparison

Algorithm Worst Case Complexity
GBD Exponential
Greedy | O(min{M x Cs, K x C1} x K x M x f3(|Dx|))
Heursitic O(M?) 4+ 0O(M x K x f3(|Dx)))

VI. PERFORMANCE EVALUATION

We consider a single cell network as illustrated in Kig. 1.ewhcellular users are uniformly
distributed in the cell. We assume that the QoS requiremeintdl the CUs are satisfied before
including D2D groups to the cell. The distance-based pa#is land slow Rayleigh fading are

adopted as channel models. The proposed algorithms haveitngéemented in Matlab together
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Fig. 1: Regularly placed D2D clusters in a céll, = 2, Cy = 2, M = 40.

with the CVX convex optimization package |22]. Default paeders used in the simulations are
given in Tablell. We run two sets of experiments to evaluidwe performance of the proposed

algorithms, namely, regularly placed D2D clusters and oanlgt placed D2D clusters.

TABLE |lI: Default Simulation Parameters

Parameter Value
Cell radius (R) 1 km
Number of D2D receivers in each group3

Proise -114 dBm
Pathloss exponentyj 3

po2P 20 dBm
Pl 20 dBm
ven =y =vinsP 10 dB
D2D cluster size(r) 50 m

a) Regularly placed D2D clusters: In Fig.[d, D2D groups are manually placed in six different

locations and D2D transmitters and receivers are placetfiarfixed locations within each group
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with radiusr. This scenario allows us to have a better understandingeotiiannel selection for
D2D users and how it is impacted by geographical spacinghénfigure, D2D transmitters are
labeled with their coordinates. The GBD algorithm finds thg @artner (or equivalent, the CU
channel) for each D2D group among 40 CUs wiign= 2 andC, = 2. The straight lines in Fid.]1
connect D2D groups with their respective CU partners. Assshm the figure, the chosen CU
partners, tend to be close to the base station to ensure tihefrathe CUs. Meanwhile, the CU
partners are away from the respective D2D users to reducaamimterference between the CUs
and the D2D users. Note that even for CUs at the cell edges, 3dR constraints are satisfied
as guaranteed by P1.

Fig.[2 compares the maximum cellular throughput (withoubD&ers),RC¢!, the throughput of

max’?

cellular users (with D2D usersR““!, and D2D throughputR”??, defined as follows,

PCellGCell
RO = Zlo&( max _m ) (60)
RCell Z RCell (61)
RDZD Z RDZD7 (62)
ke A

where A is the set of D2D groups that are allowed to reuse at leastlaelthannel. As can be
observed in Fig[]2, the overall network throughpit*™ = R + RP2?D | is greater than the
maximum throughput before including D2D usef, <. With the introduction of D2D users, the
overall throughput increases by 25% to 125%. This comeseatakt of reduced cellular throughput
as RG> RO since adding D2D users causes interference to cellulas wset decreases their
throughput. However, the reduction is relatively smalinpared to the D2D throughput. Moreover,
although a larger D2D cluster size leads to lower D2D chagaei and lower D2D throughput, it
does not affect the cellular throughput very much.

Fig.[3 shows D2D and sum rates versusfor different values ofC,. Both rates increase with
C; since the number of available channels for each D2D groupases and hence D2D rate
increases. However, whet, = 1, both the D2D and sum rates flatten out after a certain value of

C1. In this case, each CU can serve at most one D2D group, anelasiogC; does not increase
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Fig. 2: Throughput comparison for different cluster siz€s= 2, Cy = 2, M = 40.
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the rate since there are not enough channels to allow all 2i@ @oups to reus€’; channels.
Also, from this figure we see that cellular throughput, whiglhe difference between the sum rate
and the D2D rate, decreases@gsincreases. This is because of the fact that the interfernoe

D2D groups on CUs increases witty. On the other hand, increasirig, increases the D2D and
sum rate for higher values @f, since each CU can serve more D2D groups and hence there are
more available channels for D2D groups. However, for lonaues ofC', since there are enough
CUs in the cell to be reused by D2D groups, increasiingdoes not change the D2D and sum
rates significantly.

b) Randomly placed D2D users. In the second set of experiments, we follow the clustered
distribution model in[[28], where clusters of radinsare randomly located in a cell and the D2D
users in each group are randomly distributed in the corredipg cluster. Four metrics are used to
evaluate the performance: the sum through@it’™, the D2D throughputR”??, the success rate,
and the fairness index. The success rate is defined as theofatie number of D2D groups that
found their CU partners|4|) and the total number of D2D groups. Fairness index is defased

follows,

RDZD 2
f(R1D2D’ R2D2D7 e RkD2D> (ZkE.A k ) (63)

A e (RPPP)?
The fairness index is a positive number with the maximum eati 1 suggesting an equal D2D

throughput among all feasible D2D groups.

The results in this section have been generated for two $et§ and C, values: in part (a) of
all the figures,C; = 4 andCy = 3; and in part (b),C; =1 andC,; = 1. In the case of”; =1
and C; = 1, both GBD and the matching-based algorithm return the sawselts since both are
optimal. In our previous work/ [16], we have adapted the ts¢iarscheme in[[13] for multicast
D2D and compared it against proposed scheme whes 1 andC, = 1. Numerical results in [16]
show that our proposed heuristic outperforms the resoutoeation algorithm in [[13], and thus
evaluation of the heuristic in_[13] is omitted here.

Figs.[4 LT compare the performance of GBD, the greedy anddhestic algorithms for different
D2D cluster sizesr{) and different cell radii R). From these figures, we observe that both the sum
and the D2D throughput as well as the success rate decretts¢heiD2D cluster size. Since the

channel gain of D2D link decreases when the cluster radioeases, more transmission power
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is required for the D2D groups to satisfy the SINR threshaldstraint. This in turn causes more
interference to the reused CU partner. Furthermore, it & deom these figures that the sum
throughput, the D2D throughput and the success rate of iethlgorithms increase with the cell
radius. This is because increasing the cell radius incsetieedistance between the CUs and D2D
receivers and also the average distance of individual ntd#®e BS. Hence, the interference from
CUs to D2D receivers and the interference from D2D tranemstat the BS is decreased. Recall
that the D2D rate is the maximum throughput achieved by theitteld D2D groups. It is worth
mentioning that increasing the cell size leads to reduciiothe cellular throughput due to the
decreased link gain between the CUs and the base stationewgowvith the current simulation
parametersR?P is the dominating part in the sum rate and theref@f&™ increases with the cell
size in both parts (a) and (b).

It can be also seen from Figl 4 that the optimal solutions, GBforithm for part (a) and
matching-based algorithm for part (b), has the highest satasr In comparison, the greedy
algorithm achieves close-to-optimal sum rate, while theriséic algorithm has a lower sum rate
compared to the other two algorithms but it has the lowestptexity among them. Note that
in Fig. [B, the D2D rate of the greedy algorithm exceeds thathefoptimal solution for some
D2D cluster sizes. This does not contradict the optimalitys8D since the objective of P1 is to
maximize the sum rate not the D2D rate.

Fig.[4 shows that the D2D fairness indices achieved by atirélyns are greater than 90%. Note
that the fairness index calculates the fairness amongdatitted D2D groups. Therefore, we can
conclude that there is not much difference among D2D ratesdl gidmitted D2D groups.

In Figs.[8 {11 the performance of all proposed algorithmalffferent SINR thresholds)f}*° =
Gl = ~,,,) with different numbers of CUs{) is shown. It is seen that increasing the SINR
threshold leads to decreasing sum rates, D2D rates, andssucates since it limits the chances for
D2D groups to find CU partners. It can be also observed thatatiaé D2D throughput improves
slightly with increasing number of CUs since there are marteptial candidates for D2D groups

to reuse.
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number of cellular users\{), R =

for different number of cellular usersM), R =
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VIlI. CONCLUSIONS

In this paper, we considered joint power and channel alioedbr multicast D2D communications

sharing uplink resource in a fully loaded cellular netwdr&.maximize the overall throughput while

guaranteeing the QoS requirements of both CUs and D2D grevgo$ormulated the optimization

problem and found the optimal solution using GBD. Then, weexba special case when each D2D

group can reuse the channels of at most one CU and each CU a&antkhir channels with at most

one D2D group, using maximum weight bipartite matching atgm. Finally, a greedy algorithm

and a low-complexity heuristic algorithm were also progb3#&fe performed extensive simulations

with different parameters such as SINR threshold, cell, 02D cluster size, and number of CUs.

Results showed that the greedy algorithm has close-toraptperformance. In comparison, our

proposed heuristic algorithm has good performance (busevtran that of the greedy) with lower

computation complexity.
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