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Abstract

In this paper, we present a framework for resource allocations for multicast device-to-device (D2D)

communications underlaying a cellular network. The objective is to maximize the sum throughput of active

cellular users (CUs) and feasible D2D groups in a cell, whilemeeting a certain signal-to-interference-

plus-noise ratio (SINR) constraint for both the CUs and D2D groups. We formulate the problem of power

and channel allocation as a mixed integer nonlinear programming (MINLP) problem where one D2D

group can reuse the channels of multiple CUs and the channel of each CU can be reused by multiple

D2D groups. Distinct from existing approaches in the literature, our formulation and solution methods

provide an effective and flexible means to utilize radio resources in cellular networks and share them

with multicast groups without causing harmful interference to each other. A variant of the generalized

bender decomposition (GBD) is applied to optimally solve the MINLP problem. A greedy algorithm and

a low-complexity heuristic solution are then devised. The performance of all schemes is evaluated through

extensive simulations. Numerical results demonstrate that the proposed greedy algorithm can achieve close-

to-optimal performance, and the heuristic algorithm provides good performance, though inferior than that

of the greedy, with much lower complexity.

I. INTRODUCTION

Device-to-Device (D2D) communication is a technology component for Long Term Evolution-

Advanced (LTE-A) of the Third Generation Partnership Project (3GPP) [1]. In D2D communication,

http://arxiv.org/abs/1503.03576v1
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cellular users (CUs) in close proximity can exchange information over a direct link rather than

transmitting and receiving signals through a cellular basestation (BS). D2D users communicate

directly while remaining controlled under the BS. Comparedto routing through a BS, CUs at close

proximity can save energy and resources when communicatingdirectly with each other. Moreover,

D2D users may experience high data rate and low transmissiondelay due to the short-range direct

communication [2]. Reducing the network load by offloading cellular traffic from the BS and other

network components to a direct path between users is anotherbenefit of D2D communication reduce

the network load and increase its effective capacity. Otherbenefits and usage cases are discussed

in [3].

The majority of the literature in D2D communications uses the cellular spectrum for both D2D

and cellular communications,also known as in-band D2D [4].Generally, in-band D2D falls in two

categories, underlay and overlay [5]. Underlay in-band D2Dcan improve the spectrum efficiency

of cellular networks by reusing cellular resources. Its main drawback lies in the interference caused

by D2D users to cellular communications. Thus, efficient interference management and resource

allocation are required to guarantee a target performance level of the cellular communication [6],

[7]. In order to avoid this interference issue, it has also been proposed to dedicate part of the

cellular resources to D2D communications in overlay in-band D2D. In this case, designing a

resource allocation scheme is crucial to maximize the utilization of dedicated cellular resources [8].

Other works consider out-of-band instead of in-band D2D communications so that the cellular

spectrum would not be affected by D2D communications [9]. Out-of-band D2D communication

faces challenges in coordinating the communication over two different bands because usually D2D

communication happens on a second radio interface (e.g., WiFi Direct and Bluetooth) [10].

Most of the work in D2D resource allocation targets the unicast scenario where a single or multiple

D2D pairs reuse the resources of CUs. In [4], the authors consider throughput maximization where

by allowing D2D communication to underlay the cellular network, the overall throughput in the

network can increase compared to a case where all D2D traffic is relayed by the cellular network.

Some other work such as [10], [11] consider D2D communication reliability while guaranteeing a

certain level of SINR or outage probability. The works in [12], [13], [14] consider both throughput

and reliability simultaneously. In [12], throughput is maximized for a network with a single D2D

pair and a single CU subject to spectral efficiency restrictions and energy constraints. There are
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few works for scenarios with multiple D2D users and CUs. For example, the quality-of-service

(QoS) requirements for both CUs and D2D users have been investigated in [13] and [14]. In [13], a

heuristic algorithm has been proposed to solve the MINLP resource allocation problem that aims to

decrease interference to the cellular network and maximizethe total throughput. The authors in [14]

present a framework of resource allocation for D2D communications underlaying cellular networks

to maximize the overall network throughput of existing CUs and admissible D2D pairs while

guaranteeing the QoS requirements for both CUs and D2D pairs. A scheme based on maximum

weight bipartite matching is proposed to determine a specific CU partner for each admissible D2D

pair.

Multicast D2D transmissions, where the same packets for a UEare sent to multiple receivers, are

important for scenarios such as multimedia streaming, device discovery, and public safety. Specially,

D2D multicast communications are required features in public safety services like police, fire and

ambulance [1]. Compared to communicating with each receiver separately in unicast D2D, multicast

D2D transmission reduces overhead and saves resources. However, unlike the more commonly

studied unicast D2D (see e.g. [12] [14]), multicast D2D has its own challenges. Within a multicast

group, the data rates attainable at different receivers aredifferent because of the diverse link

conditions between each receiver and the transmitter. A common approach is to transmit at the

lowest rate of all users within a group determined by the userwith the worst channel condition.

This assures that multicast services can be provided to all users. On the one hand, as all multicast

users within a group receive the same data rate, the total sumrate grows with the number of

active users of the group. On the other hand, the lowest transmission rate typically decreases as the

number of users increases since it is based on the user with the Least Channel Gain (LCG) [15].

As discussed in [15] there are lots of works in multicast scheduling and resource allocation for

OFDMA-based systems. They can be broadly classified into twotypes: single-rate and multi-rate

transmissions. In single-rate broadcast, the BS transmitsto all users in each multicast group at the

same rate irrespective of their non-uniform achievable capacities, whereas in multirate broadcast,

the BS transmits to each user in each multicast group at different rates based on what each user

can handle. All of the works mentioned in [15] targeted cellular networks where the multicast

transmitter is the BS. However, in multicast D2D, UEs are multicast transmitters and the QoS

requirements for both the D2D links and the cellular links should be satisfied.
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The problem of resource management for D2D multicast communication was first addressed in

our previous work [16]. In [16] we formulate the power and channel allocation problem for D2D

multicast communication for a special case where each D2D group can reuse the channel of one CU

and the channel of each CU can be reused by at most one D2D group. The optimal solution is found

using maximum weight bipartite matching algorithm and a low-complexity heuristic algorithm is

also proposed. Moreover, we adapt the heuristic scheme in [13] for multicast D2D and compare it

against our scheme and show that our proposed heuristic has asuperior performance.

In this paper, we consider multicast D2D communications underlaying cellular networks and

present a joint power and channel allocation scheme to maximize the total throughput of all CUs

and D2D groups within a cell. We formulate the general problem of power and channel allocation

as an MINLP where one D2D group can reuse the channels of multiple CUs and the channel of

each CU can be reused by multiple D2D groups. To guarantee theQoS requirements for both CUs

and D2D groups, a minimum SINR constraint is imposed. A variant of the generalized bender

decomposition (GBD) is applied to optimally solve the MINLPproblem. We further propose an

exact solution to a special case of the general problem. Specifically, inspired by the work in [14],

we use the maximum weight bipartite matching algorithm for the case where each D2D group

can reuse the channel of at most one CU and each CU can share their resources with at most

one D2D group. Next, we propose a greedy algorithm with a somewhat high complexity but very

close-to-optimal performance. A low-complexity heuristic solution is then devised which trades

computation complexity with performance. This heuristic algorithm is an extension to the heuristic

algorithm presented [16] for the general scenario.

The remainder of the paper is organized as follows. In Section II, the system model is described

and the problem of power and channel allocation for underlaymulticast D2D communication is

formulated. Section III describes the generalized bender decomposition method to solve the general

problem. The matching-based optimal resource allocation for one special case is presented in

Section IV, and the greedy and the heuristic algorithms are presented in Section V. Numerical

results are demonstrated in Section VI, and Section VII concludes the paper.



5

II. SYSTEM MODEL AND PROBLEM FORMULATION

We study resource allocation for multicast D2D communcations underlaying uplink (UL) trans-

missions in LTE networks. UL resource sharing is consideredsince reusing downlink resources is

more difficult and less effective than reusing uplink resources in the worst case of a fully loaded

cellular network, as demonstrated in [17]. ConsiderK groups of multicast D2D users coexisting

with M CUs. We assume a fully loaded cellular network scenario. That is, there areM channels,

each occupied by one CU. We usem ∈ M = {1, 2, . . . ,M} to index both themth CU and the

channel it occupies, andk ∈ K = {1, 2, . . . , K} to index thekth D2D group. We consider a single

cell scenario and assume that advanced intercell interference mitigation is applied on top of our

scheme. Within a D2D group, there is only one user that multicasts messages to the remaining

users. Each D2D user only belongs to one D2D group. We useDk to represent the set of D2D

receivers in thekth multicast group, and|Dk| is the total number of receivers in the group. As a

special case, when|Dk| = 1, the scenario becomes unicast.

Define a set of binary variablesykm with ykm = 1 if the kth D2D group reuses channelm, and

ykm = 0 otherwise. In the general case, each D2D group splits its multicast traffic among maximally

C1 channels whereC1 ≤ M , and each channel can be reused by at mostC2 D2D groups where

C2 ≤ K. That is,
M
∑

m=1

yk,m ≤ C1, ∀k ∈ K (1)

K
∑

k=1

yk,m ≤ C2, ∀m ∈ M. (2)

The channel quality of receiverd in the kth D2D group at channelm is given by

βD2D
k,m,d =

GD2D
k,m,d

Pnoise + PCell
m GC2D

k,m,d +
∑

k′ 6=k P
D2D
k′,m GD2D

k,k′,d

, (3)

wherePnoise is the aggregate power of background noise,GD2D
k,m,d is the link gain to D2D receiver

d from the D2D transmitter in groupk at channelm, GC2D
k,m,d is the link gain from CUm to D2D

receiverd in groupk, PCell
m is the transmission power of CUm, PD2D

k,m is the transmission power

of the kth D2D group transmitter at channelm, andGD2D
k,k′,d the link gain from the transmitter at

D2D groupk′ to receiverd at D2D groupk.
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For thekth D2D group, its transmission condition in channelm is determined by the receiver

with the worst condition. Define

βD2D
k,m = min

d∈Dk

βD2D
k,m,d. (4)

Then, the normalized transmission rate (bit/s/Hz) of thekth D2D group is given by

rD2D
k =

M
∑

m=1

yk,m log2(1 + PD2D
k,m βD2D

k,m ). (5)

The aggregate transmission rate of thekth D2D group is given by

RD2D
k = |Dk|r

D2D
k . (6)

For CUm, its channel quality is given by

βCell
m =

GCell
m

Pnoise +
∑K

k=1 yk,mP
D2D
k,m GD2C

k,m

, (7)

whereGCell
m is the link gain of CUm to the cellular base station, andGD2C

k,m is the link gain

from thekth D2D transmitter to the cellular base station at channelm. Therefore, the normalized

transmission rate for CUm is

RCell
m = log2(1 + PCell

m βCell
m ). (8)

A threshold is set for the SINR of each D2D group and CU transmission. For thekth D2D group,

PD2D
k,m βD2D

k,m ≥ yk,mγ
D2D
th , (9)

and for CUm,

PCell
m βCell

m ≥ γCell
th . (10)

Given these SINR threshold constraints, we can approximatethe capacity in higher SINR cases

by removing the term “1” from the logarithm functions in both(5) and (8). The maximum power

constraints for CUs and D2D groups, respectively, are givenby

PCell
m ≤ PCell

max , ∀m ∈ M, (11)

and
M
∑

m=1

PD2D
k,m ≤ PD2D

max , ∀k ∈ K. (12)
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The objective is to maximize the aggregate data transmission rate of all the D2D groups and

CUs. Combining (1) – (12), we formulate the joint power control and channel allocation problem

to maximize the sum throughput of multicast D2D groups and cellular users as follows,

P1. max

(

K
∑

k=1

RD2D
k +

M
∑

m=1

RCell
m

)

(13)

s.t. RD2D
k =

M
∑

m=1

yk,m|Dk| log2(P
D2D
k,m βD2D

k,m ), ∀k ∈ K, m ∈ M, (14)

RCell
m =

K
∑

k=1

log2
(

PCell
m βCell

m

)

, ∀m ∈ M, (15)

βD2D
k,m ≤ βD2D

k,m,d, ∀k ∈ K, m ∈ M, d ∈ Dk, (16)

yk,m ∈ {0, 1}, ∀k ∈ K, m ∈ M, (17)

Constraints (1), (2), (7), (9), (10), (11), (12).

Table I lists all the parameters and variables used in the problem formulation.

Clearly, P1 is a Mixed Integer Nonlinear Programming (MINLP) problem. In general, MINLP

problems are NP-hard and thus no efficient polynomial-time solutions exist. In the general case,

when C1 and C2 are arbitrary values, we will use GBD [18] to solve the problem in the next

section.

Based on the values ofC1 andC2, several special cases exist. For example, whenC1 = 1 and

C2 = 1, each D2D group can reuse the channels of at most one CU and each CU can share their

channels with at most one D2D group. Another special case of interest is whenC1 = 1. In this case,

to increase the spectrum utilization, we allow each D2D group to reuse the resources of multiple

CUs, but each CU cannot share its resource with more than one D2D group. Here, there is no

interference between D2D groups and this setting is useful when the number of D2D groups is

much less than the number of CUs. All the special cases can be resolved via GBD. However, it

turns out that polynomial algorithm can be devised whenC1 = 1 andC2 = 1 as will be discussed

in Section IV.

III. GENERALIZED BENDER DECOMPOSITION

The MINLP problem in P1 has the special property that when thebinary variables (yk,m’s) are

fixed, the problem becomes a geometric programming problem with continuous variables (PD2D
k,m ’s



8

TABLE I: Table of notations
Notation Description

M Set of cellular users (CU)

K Set of D2D groups

Dk Set of receivers inkth D2D group

A Set of admissible or successful D2D groups

yk,m Binary variable, =1 ifkth D2D group reuses CUm’s channel, and =0 otherwise

C1 Maximum number of channels to be reused by each D2D group

C2 Maximum number of D2D groups sharing each CU channel

Pnoise Aggregate power of background noise

GD2D
k,m,d Link gain to D2D receiverd from the D2D transmitter in groupk at channelm

GC2D
k,m,d Link gain from CUm to D2D receiverd in groupk

GD2D
k,k′,d Link gain from the transmitter at D2D groupk′ to receiverd at D2D groupk

GCell
m Link gain of CUm to the cellular base station

GD2C
k,m Link gain from thekth D2D transmitter to the cellular base station at channelm

PD2D
k,m Transmission power of thekth D2D group transmitter at channelm

PCell
m Transmission power of CUm

βD2D
k,m,d Channel quality of receiverd in the kth D2D group at channelm

βCell
m Channel quality of CUm

RD2D
k Normalized transmission rate of thekth D2D group

RCell
m Normalized transmission rate for CUm

Rsum The summation of D2D and cellular throughput

γD2D
th SINR threshold for all D2D groups

γCell
th SINR threshold for all CUs

fi(|DK|) The complexity of solving problem Pi

andPCell
m ’s), which can be transformed to a convex problem. This allows us to use GBD [18] to

solve the problem efficiently with proper transformation.

Let X = [PD2D
k,m , PCell

m , RD2D
k , RCell

m , βD2D
k,m , βCell

m , k ∈ K, m ∈ M] represent the set of all con-

tinuous variables andY = [yk,m, k ∈ K, m ∈ M] represent the binary variables. We modify the

constraints in problem P1 to separate binary variablesykm from the continuous variables inX and

make the problem linear in terms ofyk,m’s when the continuous variables are fixed. Problem P1

can be transformed as

P2. f(X,Y) = max

(

K
∑

k=1

RD2D
k +

M
∑

m=1

RCell
m

)

(18)
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s.t. RD2D
k ≤

M
∑

m=1

|Dk| log2(P
D2D
k,m βD2D

k,m ) + C(1− yk,m), ∀k ∈ K, m ∈ M, (19)

RD2D
k ≤ Cyk,m, ∀k ∈ K, m ∈ M, (20)

RCell
m ≤

K
∑

k=1

log2
(

PCell
m βCell

m

)

, ∀m ∈ M, (21)

βCell
m ≤

GCell
m

Pnoise +
∑K

k=1 P
D2D
k,m GD2C

k,m

, ∀m ∈ M, (22)

βD2D
k,m ≤

GD2D
k,m,d

Pnoise + PCell
m GC2D

k,m,d +
∑

k′ 6=k P
D2D
k′,m GD2D

k,k′,d

, ∀k ∈ K, m ∈ M, d ∈ Dk, (23)

PD2D
k,m

PD2D
max

≤ yk,m + ǫ ≤ CPD2D
k,m , ∀k ∈ K, m ∈ M, (24)

Constraints (1), (2), (7), (9), (10), (11), (12), (17).

whereC is a very large number andǫ > 0 is a very small number.

The basic idea of GBD is to decompose the original MINLP problem into a primal problem

and a master problem, and solve them iteratively. The primalproblem corresponds to the original

problem with fixed binary variables. Solving this problem provides the information about the lower

bound and the Lagrange multipliers corresponding to the constraints. The master problem is derived

through nonlinear duality theory using the Lagrange multipliers obtained from the primal problem.

The solution to the master problem gives the information about the upper bound as well as the

binary variables that can be used in the primal problem in next iteration. When the upper bound

meets the lower bound, the iterative process converges.

A. Primal problem

The primal problem results from fixing theyk,m variables to a particular 0-1 combination denoted

by y
(i)
k,m, wherei stands for the iteration counter. The formulation for the primal problem at iteration

i is given by

P3. f(X,Y(i)) = max

(

K
∑

k=1

RD2D
k +

M
∑

m=1

RCell
m

)

(25)

s.t. RD2D
k ≤

M
∑

m=1

|Dk| log2(P
D2D
k,m βD2D

k,m ) + C(1− y
(i)
k,m), ∀k ∈ K, m ∈ M, (26)

RD2D
k ≤ Cy

(i)
k,m, ∀k ∈ K, m ∈ M, (27)
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RCell
m ≤

K
∑

k=1

log2
(

PCell
m βCell

m

)

, ∀m ∈ M, (28)

βCell
m ≤

GCell
m

Pnoise +
∑K

k=1 P
D2D
k,m GD2C

k,m

, ∀m ∈ M, (29)

βD2D
k,m ≤

GD2D
k,m,d

Pnoise + PCell
m GC2D

k,m,d +
∑

k′ 6=k P
D2D
k′,m GD2D

k,k′,d

, ∀k ∈ K, m ∈ M, d ∈ Dk, (30)

PD2D
k,m

PD2D
max

≤ y
(i)
k,m + ǫ ≤ CPD2D

k,m , ∀k ∈ K, m ∈ M, (31)

PD2D
k βD2D

k,m ≥ y
(i)
k,mγ

D2D
th , ∀k ∈ K, m ∈ M, (32)

Constraints (10), (11), (12), (22), (23).

Since the optimal solution to this problem is also a feasiblesolution to problem P1, the optimal

value f(X∗,Y(i)) provides a lower bound to the original problem. In general, not all choices of

binary variables lead to a feasible primal problem. Therefore, for a given choice ofyk,m’s, there

are two cases for primal problem P3: feasible problem and infeasible problem. In the following,

we consider each of these cases.

• Feasible Primal: If the primal problem at iterationi is feasible, then its solution provides

information on the transmission power of D2D and cellular transmitters,f(X∗,Y(i)), and the

optimal multiplier vectors,λk
q , q = 1, 2, . . . , Q for theQ inequality constraints in Problem P3.

Subsequently, using this information we can formulate the Lagrange function for all inequality

constraintsGq(X,Y(i)) ≤ 0 for q = 1, 2, . . . , Q as

L(X,Y(i), λ(i)) = f(X,Y(i)) +

Q
∑

q=1

λ(i)
q Gq(X,Y(i)), (33)

whereλ(i) = [λ
(i)
q , q = 1, 2, . . . , Q].

• Infeasible Primal: If the primal problem is infeasible, to identify a feasible point we can

formulate anl1-minimization problem as

P3.1. min

Q
∑

q=1

αq (34)

s.t. Gq(X,Y(i)) ≤ αq, q = 1, 2, ..., Q, (35)
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αq ≥ 0, q = 1, 2, ..., Q. (36)

Note that if
∑Q

q=1 αq = 0, then P3 is feasible. Otherwise, the solution to this feasibility

problem (FP) provides information on the Lagrange multipliers, which are denoted asλ̄(i)
q ; the

Lagrange function resulting from the feasibility problem at iteration i can be defined as

L̄(X,Y(i), λ̄(i)) =

Q
∑

q=1

λ̄(i)
q (Gq(X,Y(i))− αq). (37)

B. Master Problem

The master problem is derived from the non-linear duality theory [18].

P4. max
Y(i)

η (38)

s.t. η ≤ sup
X

L(X,Y(i), λ(i)), ∀λ(i) ≥ 0, (39)

inf
X

L̄(X,Y(i), λ̄(i)) ≤ 0, ∀λ̄(i) ∈ Λ, (40)

Constraints (1), (2), (17), (41)

where

Λ = {λ̄q ≥ 0,

Q
∑

q=1

λ̄q = 1}. (42)

The master problem P4 is similar to the original problem P2, but has two inner optimization

problems which need to be considered for allλ andλ obtained from the primal problem in every

iteration. Therefore, it has a very large number of constraints. Because of the separability of binary

variablesY and continuous variablesX, and the linearity with regard toY, we can adopt Variant

2 of GBD (V2-GBD) in [18]. It is proven in [18] that under the conditions for V2-GBD, the

Lagrange function evaluated at the solution of the corresponding primal is a valid under-estimator

of the inner optimization problem in P4. Therefore, the relaxed master problem can be formulated

as,

P5. max
Y(i)

η (43)

s.t. η ≤ L(X,Y(i), λ(i)), ∀λ(i) ≥ 0, (44)
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L̄(X,Y(i), λ̄(i)) ≤ 0, ∀λ̄(i) ∈ Λ, (45)

Constraints (1), (2), (17). (46)

The relaxed problem provides an upper bound to the master problem and can be used to generate

the primal problem in the next iteration.The same procedureis then repeated until convergence.

Over the iterations, the sequence of upper bounds are nonincreasing and the set of lower bounds are

nondecreasing. The two sequences are proven to converge andthe algorithm will stop at the optimal

solution within a finite number of iterations [19]. Algorithm 1 summarizes the GBD procedure.

Algorithm 1 GBD Algorithm
1: First iteration,i = 1

2: Select an initial value forY(i), which makes the primal problem feasible.

3: Solve the primal problem in P3 and obtain the Lagrange function

4: UBD(i) = ∞, LBD(i) = 0

5: while UBD(i) − LBD(i) > 0 do

6: i = i+ 1

7: Solve the relaxed master problem P5 to optainη∗ andY∗

8: SetUBD(i) = η∗

9: Solve the primal problem P3 with fixedY(i) = Y
∗

10: if the primal problem is feasiblethen

11: Obtain optimal solutionX∗ and the Lagrange functionL(X,Y(i), λ(i))

12: SetLBD(i) = max(LBD(i−1), f (i)(X∗,Y(i)))

13: else

14: Solve the feasibility-check problem P3.1 to obtain the optimal solution X
∗ and the

Lagrange function̄L(X,Y(i), λ̄(i))

15: end if

16: end while
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IV. M ATCHING-BASED OPTIMAL RESOURCEALLOCATION

In this section, we consider the MINLP problem in P1 for the special caseC1 = 1 andC2 = 1.

This case can be cast as a bipartite matching problem and thuscan be solved polynomially. To

formulate the bipartite problem, we divide P1 into two subproblems. In the first step, for each D2D

groupk and each CUm, we find their transmission power so that the sum throughput of the D2D

group and the CU is maximized. If this problem is feasible, D2D groupk is allowed to reuse the

channel of CUm and is marked as a candidate partner in the second step; otherwise group k is

excluded from the list of feasible partners. The second stepis then to find the best CU partner for

each D2D group among all feasible candidates so that the total throughput of all D2D groups and

CUs is maximized.

1) Feasibility check and power allocation: In order to determine whether D2D groupk can reuse

channelm and to find the transmission power of the feasible D2D group and CU,we have problem

P6 as follows:

P6. max
(

RD2D
k,m +RCell

k,m

)

(47)

s.t. RD2D
k,m = |Dk| log2(P

D2D
k,m βD2D

k,m ), (48)

RCell
k,m = log2

(

PCell
m βCell

m

)

, (49)

PD2D
k,m βD2D

k,m ≥ γD2D
th , (50)

PCell
m βCell

m ≥ γCell
th , (51)

βCell
m =

GCell
m

Pnoise + PD2D
k,m GD2C

k,m

, (52)

βD2D
k,m ≤

GD2D
k,m,d

Pnoise + PCell
m GC2D

k,m,d

, ∀d ∈ Dk (53)

PCell
m ≤ PCell

max , (54)
M
∑

m=1

PD2D
k,m ≤ PD2D

max . (55)

P6 is a reduced version of P1 by limiting it to only one D2D group and one CU with the objective

of maximizing their sum throughput. Clearly, P6 is a geometric programming problem and can be

transformed to a convex optimization problem using geometric programming techniques [20]. We
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solve problem P6 for allk andm pairs. Define a candidate channel setCk for D2D groupk. If the

problem is feasible, D2D groupk is admissible to channelm (i.e., eligible to use channelm), thenm

is added toCk. Form ∈ Ck, denote the optimal throughput for thekth D2D transmitter and themth

CU asR∗D2D
k,m andR∗Cell

k,m , respectively, and the optimal sum throughput asRsum
k,m = R∗D2D

k,m +R∗Cell
k,m .

For m /∈ Ck, we setR∗D2D
k,m = 0, R∗Cell

k,m = log2

(

PCell
max GCell

m

Pnoise

)

, and thusRsum
k,m = R∗Cell

k,m .

2) Maximizing total throughput: Given the maximum achievable throughput for each D2D group

when reusing each cellular channel, to find the optimal channel allocation that maximizes the total

throughput we have,

P7. max
yk,m

K
∑

k=1

M
∑

m=1

yk,mR
sum
k,m (56)

s.t.
K
∑

k=1

yk,m ≤ 1, ∀m ∈ M (57)

M
∑

m=1

yk,m ≤ 1, ∀k ∈ K (58)

yk,m ∈ {0, 1}, ∀k ∈ K, m ∈ M. (59)

P7 is in effect the maximum weight bipartite matching problem, where the D2D groups and the

cellular channels are two groups of vertices in the bipartite graph, and the edge connecting D2D

group k and channelm has a weightRsum
k,m . The Hungarian algorithm [21] can be used to solve

the bipartite matching problem in polynomial time.

To determine the computational complexity, considerM ≥ K and the complexity of solving P6

is a function of the size of each D2D group, i.e.f6(|DK|). Therefore, the time complexity of the

matching-based optimal resource allocation isO(M × K × f6(|DK|)) + O(M3) , where the first

and second terms correspond to the computation time in the first and second steps, respectively.

V. GREEDY AND HEURISTIC CHANNEL ALLOCATION ALGORITHMS

The MINLP problem in P1 is an NP-hard problem and the computation complexity is exponential

in the worst case. In other words, GBD may converge in an exponential number of iterations. In

this section we first propose a greedy algorithm and then a heuristic solution to the general MINLP

problem in P1.



15

Algorithm 2 Greedy algorithm
1: M: Set of cellular users

2: K: Set of all D2D groups

3: ek,m = 1, ∀k ∈ K, m ∈ M

4: Y = [yk,m| yk,m = 0, ∀k ∈ K, m ∈ M]

5: S = ∅

6: while
∑K

k=1

∑M

m=1 ek,m ≥ 1 do

7: E = [ek,m| ek,m = 1, ∀k ∈ K, m ∈ M]

8: T sum
k,m =

∑M

m′=1 log2

(

PCell
max GCell

m′

Pnoise

)

, ∀k ∈ K, m ∈ M

9: for each ek,m ∈ E do

10: yk,m = 1

11: if (k,m) is Admissible then

12: Solve P3 to findPD2D
k′,m′ andPCell

m′ , ∀(k′, m′) ∈ [S ∪ (k,m)]

13: if P3 is feasible then

14: T sum
k,m =

∑

(k′,m′)∈[S ∪ (k,m)] yk′,m′ |Dk′| log2(P
D2D
k′,m′βD2D

k′,m′) +
∑M

m′=1 log2
(

PCell
m′ βCell

m′

)

15: else

16: ek,m = 0

17: end if

18: else

19: ek,m = 0

20: end if

21: yk,m = 0

22: end for

23: (k∗, m∗) = argmax∀(k,m) T
sum
k,m

24: yk∗,m∗ = 1

25: ek∗,m∗ = 0

26: S = S ∪ (k∗, m∗)

27: end while
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A. Greedy algorithm

Algorithm 2 shows the greedy resource allocation algorithm. The key idea of the greedy algorithm

is that, in each iteration, it selects a CU and D2D group pair that maximizes the resulting sum

throughput of all selected pairs. The algorithm terminateswhen there is no more pair that can be

included.

In this algorithm, we first initialize all edges of aK ×M bipartite graph ,ek,m, to one in line 3.

TheK ×M assignment matrixY is initialized to zero.S is the set of selected CU and D2D pairs

that maximize the sum throughput and initialize to zero at first. MatrixE includes all edges (ek,m)

with the value of one. The inner loop (lines 8-23) finds the sumthroughput,T sum
k,m , of all pairs in

setS after an admissible pair(k,m) is added toS. In line 10, to find if (k,m) is admissible, the

algorithm checks constraints (1) and (2) for a given(k,m) pair. If either of these constraints is

violated for the current(k,m), the procedure setsek,m andyk,m to zero and moves to the next pair.

Otherwise, the algorithm solves problem P3 and findsT sum
k,m . In the outer loop, the pair(k∗, m∗) that

maximizesT sum
k,m ∀(k,m) ∈ S (line 24) is found and removed fromE. The outer loop is iterated

until ek,m = 0, ∀k ∈ K andm ∈ M.

Since a total ofmin{M ×C2, K×C1} pairs can be found in the procedure, and in each iteration

of the outer loop, only one such pair can be added, the computational complexity of the greedy

algorithm isO(min{M × C2, K × C1} ×K ×M × f3(|DK|)), wheref3(|DK|) is the complexity

of solving P3 as a function of the size of each D2D group. The high complexity of the greedy

algorithm mainly arises from the need to solve the optimization problem up toK × M times to

find the best pair in each iteration.

B. Heuristic algorithm

Since the complexity of the greedy algorithm is high, we propose a heuristic algorithm with less

complexity in Algorithm 3. In the following we explain some intuition behind the algorithm.

To increase cellular and D2D throughputs, it is desirable tohave higher SINR. From (3) and (7),

it can be deduced that having smaller values ofGC2D
k,m,d andGD2D

k,k′,d reduces interference from CU

m to D2D groupk and from D2D groupk to D2D groupk′ respectively, and consequently results

in higherβD2D
k,m and D2D throughput. Furthermore, higher values ofGCell

m lead to higher cellular

throughput. Therefore, Algorithm 3 tries to pair up a CU thathas a high link gain to the BS and a
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Algorithm 3 Heuristic algorithm

1: M: List of cellular users in decreasing order ofGCell
m

2: K: List of all D2D groups

3: GC2D
m,k = mind∈Dk

GC2D
k,m,d, ∀k ∈ K, m ∈ M,

4: GD2D
k,k′ = mind∈D′

k
GD2D

k,k′,d, ∀k ∈ K, m ∈ M

5: yk,m = 0, ∀k ∈ K, m ∈ M

6: PCell
m = PCell

max , ∀m ∈ M

7: PD2D
k,m = 0, ∀k ∈ K, m ∈ M

8: m = 1

9: while m ≤ M do

10: K′ = {∀k ∈ K|
∑M

m=1 yk,m < C2}

11: while
∑K

k=1 yk,m < C1 or K′ 6= ∅ do

12: k∗ = argmink∈K′

(
∑K

k′=1 P
D2D
k′,m GD2D

k,k′ + PCell
m GC2D

m,k

)

13: yk∗,m = 1

14: Solve P3 to findPD2D
k∗,m andPCell

m

15: if P3 is feasible then

16: D2D k∗ transmits on channelm

17: yk∗,m = 1

18: else

19: yk∗,m = 0

20: end if

21: K′ = K′ \ {k∗}

22: end while

23: m = m+ 1

24: end while
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D2D group that has low interference to the CU. Here, we assumethat each CU sends the channel

information between itself and D2D receivers through control channels to the BS.

Starting fromm = 1, the outer loop in Algorithm 3 iterates through all CUs. For eachm, the

algorithm finds at mostC1 best D2D groups to share the channelm in the inner loop. Line 12

shows the criteria for choosing the D2D group that receives the minimum interferences from CU

m and all other D2D groups using the same channel. In line 14, based on the current value ofyk,m,

problem P3 is solved to find the optimal transmission power for each CU and D2D group. If P3

is feasible, D2D groupk∗ will reuse the channelm and we haveyk∗,m = 1, otherwiseyk∗,m = 0

in line 20. In both cases,k∗ is removed from the D2D group list for the next iteration. Theinner

loop stops iterating after findingC1 D2D groups for CUm or after at mostK iterations. It is

worth mentioning that each D2D group cannot reuse more thanC2 CUs. That is accomplished by

introducingK′ that keeps track of all D2D groups with less thanC2 assigned channels in line 10.

In this algorithm, problem P3 is solvedM ×C1 times in the worst case, and thus the complexity

of the heuristic algorithm isO(M2)+O(M×K×f3(|DK|)). This is much less than the complexity

of the greedy algorithm. However, as will be demonstrated inthe simulation, the improvement in

computation complexity comes at the cost of lower performance.

We summarize the computational complexity of GBD, greedy and heuristic algorithms in Table II

in the worst case.

TABLE II: Worst case complexity comparison
Algorithm Worst Case Complexity

GBD Exponential

Greedy O(min{M × C2,K × C1} ×K ×M × f3(|DK|))

Heursitic O(M2) + O(M ×K × f3(|DK|))

VI. PERFORMANCE EVALUATION

We consider a single cell network as illustrated in Fig. 1, where cellular users are uniformly

distributed in the cell. We assume that the QoS requirementsof all the CUs are satisfied before

including D2D groups to the cell. The distance-based path loss and slow Rayleigh fading are

adopted as channel models. The proposed algorithms have been implemented in Matlab together
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Fig. 1: Regularly placed D2D clusters in a cell,C1 = 2, C2 = 2, M = 40.

with the CVX convex optimization package [22]. Default parameters used in the simulations are

given in Table III. We run two sets of experiments to evaluatethe performance of the proposed

algorithms, namely, regularly placed D2D clusters and randomly placed D2D clusters.

TABLE III: Default Simulation Parameters
Parameter Value

Cell radius (R) 1 km

Number of D2D receivers in each group3

Pnoise -114 dBm

Pathloss exponent (α) 3

PD2D
max 20 dBm

PCell
max 20 dBm

γth =γCell
th =γD2D

th 10 dB

D2D cluster size(r) 50 m

a) Regularly placed D2D clusters: In Fig. 1, D2D groups are manually placed in six different

locations and D2D transmitters and receivers are placed in the fixed locations within each group
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with radiusr. This scenario allows us to have a better understanding of the channel selection for

D2D users and how it is impacted by geographical spacing. In the figure, D2D transmitters are

labeled with their coordinates. The GBD algorithm finds the CU partner (or equivalent, the CU

channel) for each D2D group among 40 CUs whenC1 = 2 andC2 = 2. The straight lines in Fig. 1

connect D2D groups with their respective CU partners. As shown in the figure, the chosen CU

partners, tend to be close to the base station to ensure the rate of the CUs. Meanwhile, the CU

partners are away from the respective D2D users to reduce mutual interference between the CUs

and the D2D users. Note that even for CUs at the cell edges, their SINR constraints are satisfied

as guaranteed by P1.

Fig. 2 compares the maximum cellular throughput (without D2D users),RCell
max, the throughput of

cellular users (with D2D users),RCell, and D2D throughput,RD2D, defined as follows,

RCell
max =

M
∑

m=1

log2

(

PCell
maxG

Cell
m

Pnoise

)

, (60)

RCell =
M
∑

m=1

RCell
m , (61)

RD2D =
∑

k∈A

RD2D
k , (62)

whereA is the set of D2D groups that are allowed to reuse at least cellular channel. As can be

observed in Fig. 2, the overall network throughput,Rsum = RCell + RD2D, is greater than the

maximum throughput before including D2D users,RCell
max. With the introduction of D2D users, the

overall throughput increases by 25% to 125%. This comes at the cost of reduced cellular throughput

asRCell
max > RCell since adding D2D users causes interference to cellular users and decreases their

throughput. However, the reduction is relatively small, compared to the D2D throughput. Moreover,

although a larger D2D cluster size leads to lower D2D channelgain and lower D2D throughput, it

does not affect the cellular throughput very much.

Fig. 3 shows D2D and sum rates versusC1 for different values ofC2. Both rates increase with

C1 since the number of available channels for each D2D group increases and hence D2D rate

increases. However, whenC2 = 1, both the D2D and sum rates flatten out after a certain value of

C1. In this case, each CU can serve at most one D2D group, and increasingC1 does not increase
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the rate since there are not enough channels to allow all the D2D groups to reuseC1 channels.

Also, from this figure we see that cellular throughput, whichis the difference between the sum rate

and the D2D rate, decreases asC1 increases. This is because of the fact that the interferencefrom

D2D groups on CUs increases withC1. On the other hand, increasingC2 increases the D2D and

sum rate for higher values ofC1 since each CU can serve more D2D groups and hence there are

more available channels for D2D groups. However, for lower values ofC1, since there are enough

CUs in the cell to be reused by D2D groups, increasingC2 does not change the D2D and sum

rates significantly.

b) Randomly placed D2D users: In the second set of experiments, we follow the clustered

distribution model in [23], where clusters of radiusr are randomly located in a cell and the D2D

users in each group are randomly distributed in the corresponding cluster. Four metrics are used to

evaluate the performance: the sum throughput,Rsum, the D2D throughput,RD2D, the success rate,

and the fairness index. The success rate is defined as the ratio of the number of D2D groups that

found their CU partners (|A|) and the total number of D2D groups. Fairness index is definedas

follows,

f(RD2D
1 , RD2D

2 , . . . , RD2D
k ) =

(
∑

k∈ARD2D
k )2

|A|
∑

k∈A (RD2D
k )2

(63)

The fairness index is a positive number with the maximum value of 1 suggesting an equal D2D

throughput among all feasible D2D groups.

The results in this section have been generated for two sets of C1 andC2 values: in part (a) of

all the figures,C1 = 4 andC2 = 3; and in part (b),C1 = 1 andC2 = 1. In the case ofC1 = 1

andC2 = 1, both GBD and the matching-based algorithm return the same results since both are

optimal. In our previous work, [16], we have adapted the heuristic scheme in [13] for multicast

D2D and compared it against proposed scheme whenC1 = 1 andC2 = 1. Numerical results in [16]

show that our proposed heuristic outperforms the resource allocation algorithm in [13], and thus

evaluation of the heuristic in [13] is omitted here.

Figs. 4 – 7 compare the performance of GBD, the greedy and the heuristic algorithms for different

D2D cluster sizes (r) and different cell radii (R). From these figures, we observe that both the sum

and the D2D throughput as well as the success rate decrease with the D2D cluster size. Since the

channel gain of D2D link decreases when the cluster radius increases, more transmission power
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is required for the D2D groups to satisfy the SINR threshold constraint. This in turn causes more

interference to the reused CU partner. Furthermore, it is seen from these figures that the sum

throughput, the D2D throughput and the success rate of all three algorithms increase with the cell

radius. This is because increasing the cell radius increases the distance between the CUs and D2D

receivers and also the average distance of individual nodesto the BS. Hence, the interference from

CUs to D2D receivers and the interference from D2D transmitters at the BS is decreased. Recall

that the D2D rate is the maximum throughput achieved by the admitted D2D groups. It is worth

mentioning that increasing the cell size leads to reductionin the cellular throughput due to the

decreased link gain between the CUs and the base station. However, with the current simulation

parameters,RD2D is the dominating part in the sum rate and thereforeRsum increases with the cell

size in both parts (a) and (b).

It can be also seen from Fig. 4 that the optimal solutions, GBDalgorithm for part (a) and

matching-based algorithm for part (b), has the highest sum rates. In comparison, the greedy

algorithm achieves close-to-optimal sum rate, while the heuristic algorithm has a lower sum rate

compared to the other two algorithms but it has the lowest complexity among them. Note that

in Fig. 5, the D2D rate of the greedy algorithm exceeds that ofthe optimal solution for some

D2D cluster sizes. This does not contradict the optimality of GBD since the objective of P1 is to

maximize the sum rate not the D2D rate.

Fig. 7 shows that the D2D fairness indices achieved by all algorithms are greater than 90%. Note

that the fairness index calculates the fairness among alladmitted D2D groups. Therefore, we can

conclude that there is not much difference among D2D rates ofall admitted D2D groups.

In Figs. 8 – 11 the performance of all proposed algorithms fordifferent SINR thresholds (γD2D
th =

γCell
th = γth) with different numbers of CUs (M) is shown. It is seen that increasing the SINR

threshold leads to decreasing sum rates, D2D rates, and success rates since it limits the chances for

D2D groups to find CU partners. It can be also observed that thetotal D2D throughput improves

slightly with increasing number of CUs since there are more potential candidates for D2D groups

to reuse.



26

γ
th

(dB)
10 11 12 13 14 15 16 17 18 19 20

S
um

 r
at

e 
 (

bp
s/

H
z)

250

300

350

400

450

500

GBD, M=15

Greedy, M=15

Proposed heursitic, M=15

GBD, M=10

Greedy, M=10

Proposed heursitic, M=10

(a) C1 = 4, C2 = 3

γ
th

(dB)
10 11 12 13 14 15 16 17 18 19 20

S
um

 r
at

e 
 (

bp
s/

H
z)

140

160

180

200

220

240

260

Matching, M=15
Greedy, M=15
Proposed heursitic, M=15
Matching, M=10
Greedy, M=10
Proposed heursitic, M=10

(b) C1 = 1, C2 = 1

Fig. 8: Average sum throughput versusγth for different number of cellular users (M), R =

1000m,K = 4

γ
th

(dB)
10 11 12 13 14 15 16 17 18 19 20

D
2D

 r
at

e 
 (

bp
s/

H
z)

150

200

250

300

350

400

450

GBD, M=15
Greedy, M=15
Proposed heursitic, M=15
GBD, M=10
Greedy, M=10
Proposed heursitic, M=10

(a) C1 = 4, C2 = 3

γ
th

(dB)
10 11 12 13 14 15 16 17 18 19 20

D
2D

 r
at

e 
 (

bp
s/

H
z)

50

60

70

80

90

100

110

120

130

140

Matching, M=15
Greedy, M=15
Proposed heursitic, M=15
Matching, M=10
Greedy, M=10
Proposed heursitic, M=10

(b) C1 = 1, C2 = 1

Fig. 9: Average D2D throughput versusγth for different number of cellular users (M), R =

1000m,K = 4



27

γ
th

(dB)
10 11 12 13 14 15 16 17 18 19 20

S
uc

ce
ss

 r
at

e

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

GBD, M=15
Greedy, M=15
Proposed heursitic, M=15
GBD, M=10
Greedy, M=10
Proposed heursitic, M=10

(a) C1 = 4, C2 = 3

γ
th

(dB)
10 11 12 13 14 15 16 17 18 19 20

S
uc

ce
ss

 r
at

e

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Matching, M=15
Greedy, M=15
Proposed heursitic, M=15
Matching, M=10
Greedy, M=10
Proposed heursitic, M=10

(b) C1 = 1, C2 = 1

Fig. 10: Average D2D success rate versusγth for different number of cellular users (M), R =

1000m,K = 4
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Fig. 11: Average fairness index versusγth for different number of cellular users (M), R =

1000m,K = 4
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VII. CONCLUSIONS

In this paper, we considered joint power and channel allocation for multicast D2D communications

sharing uplink resource in a fully loaded cellular network.To maximize the overall throughput while

guaranteeing the QoS requirements of both CUs and D2D groups, we formulated the optimization

problem and found the optimal solution using GBD. Then, we solved a special case when each D2D

group can reuse the channels of at most one CU and each CU can share their channels with at most

one D2D group, using maximum weight bipartite matching algorithm. Finally, a greedy algorithm

and a low-complexity heuristic algorithm were also proposed. We performed extensive simulations

with different parameters such as SINR threshold, cell size, D2D cluster size, and number of CUs.

Results showed that the greedy algorithm has close-to-optimal performance. In comparison, our

proposed heuristic algorithm has good performance (but worse than that of the greedy) with lower

computation complexity.
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