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Low Complexity Resource Allocation for
Massive Carrier Aggregation

Stelios Stefanatos, Fotis Foukalas, Member, IEEE, and Theodoros A. Tsiftsis, Senior Member, IEEE

Abstract—Optimal resource allocation (RA) in massive carrier
aggregation scenarios is a challenging combinatorial optimization
problem whose dimension is proportional to the number of users,
component carriers (CCs), and OFDMA resource blocks per
CC. Towards scalable, near-optimal RA in massive CA settings,
an iterative RA algorithm is proposed for joint assignment of
CCs and OFDMA resource blocks to users. The algorithm is
based on the principle of successive geometric programming
approximations and has a complexity that scales only linearly
with the problem dimension. Although its derivation is based on a
relaxed formulation of the RA problem, the algorithm is shown to
converge to integer-valued RA variables with probability 1 under
mild assumptions on the distribution of user utilities. Simulations
demonstrate improved performance of the proposed algorithm
compared to commonly considered heuristic RA procedures of
comparable complexity.

Index Terms—massive carrier aggregation, resource allocation,
geometric programming, iterative algorithm, convergence.

I. INTRODUCTION

CARRIER aggregation (CA) is considered as one of the
key features of future cellular networks for effectively

increasing the system bandwidth by simultaneous utilization of
multiple component carriers (CCs) [1]. Although up to 5 CCs
were initially considered for CA in the Long-Term-Evolution-
Advanced (LTE-A) standard, the increasing system demands
strongly suggest that future applications of CA will utilize
more CCs, towards realizing the concept of massive CA [2].
Proposals for CA of 32 CCs in LTE have appeared [3].

One of the major challenges of CA is the resource allocation
(RA). With each CC typically consisting of multiple OFDMA
resource blocks (RBs) and with limitations on the maximum
number of CCs that UEs can utilize for communication, opti-
mal RA becomes a constrained, integer optimization problem
that is difficult to solve, even for a small number of available
CCs [4], [5]. This has led to most RA proposals performing
CC and RB allocation separately [4], [6], with CC allocation
performed first by some heuristic method, followed by RB
allocation per CC. Towards improving system performance,
the problem of joint CC and RB allocation was considered
in [5], [7], where iterative RA algorithms were proposed in
an attempt to reduce the number of combinations required to
be examined by a brute-force solution approach. However, the
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complexity of these algorithms becomes impractical when a
massive CA scenario is considered.

In this correspondence, the problem of joint CC/RB al-
location to UEs in a massive CA scenario (e.g., with 50
available CCs) is considered, with the goal of maximizing
the weighted sum utility of the users. Towards obtaining an
efficient, scalable RA algorithm, the method of successive
geometric programming approximations [8] is applied to a
relaxed formulation of the RA problem. The resulting it-
erative RA algorithm has a simple analytical representation
(no general-purpose numerical optimization procedures are
required) with its complexity scaling only linearly with the
problem dimension when the maximum number of iterations
is kept fixed. It is shown that, under mild assumptions on
the distribution of utility functions, the algorithm converges
with probability 1 to integer-valued RA variables, which, in
certain special cases of the RA problem, are the optimal
ones. Performance of the algorithm in a massive CA setting
is investigated numerically, where it is shown to outperform
heuristic RA approaches of comparable complexity.

II. SYSTEM MODEL AND PROBLEM FORMULATION

The downlink or uplink of a single cell is considered that
serves K ≥ 2 user equipments (UEs), indexed by k ∈ K ,
{1, 2, . . . ,K}. The system has M ≥ 2 available CCs with
transmissions over the m-th CC, m ∈ M , {1, 2, . . . ,M},
performed via OFDMA. Without loss of generality, it will
be assumed that all CCs have the same bandwidth that is
partitioned into N ≥ 2 RBs of equal size, indexed by
n ∈ N , {1, 2, . . . , N}.

Let φk,m,n > 0 denote the utility that the k-th UE achieves
when utilizing the n-th RB of the m-th CC. A commonly used
metric for resource allocation (RA) purposes is the weighted
sum utility (WSU) of UEs [5], [7], [9], defined as

WSU ,
∑
k∈K

wk
∑
m∈M

∑
n∈N

αk,m,nφk,m,n, (1)

where wk > 0 is the weight of UE k, and {αk,m,n} is a set of
KMN binary-valued (0− 1) RA variables reflecting whether
UE k is allocated to RB n of CC m or not (αk,m,n = 1, 0,
respectively). With the goal of maximizing the WSU (equiva-
lently, minimizing 1/WSU), the RA variables are obtained as
the solution of the constrained integer (binary) optimization
problem described in (2), where Mk , {m ∈ M : αk,m,n =
1 for some n∈ N} is the set of CCs where UE k is allocated
at least one RB and |S| denotes the number of elements of
the set S.
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

minimize 1/WSU,

subject to C1 :
∑
k∈K

αk,m,n ≤ 1,∀m,n,

C2 : |Mk| ≤Mk,∀k,
C3 : | ∪k∈KMk| ≤M0,

C4 : αk,m,n ∈ {0, 1},∀k,m, n,


(2)

Constraint C1 corresponds to the common requirement that
at most one UE is allocated to the n-th RB of the m-th CC.
Constraint C2 restricts the number of CCs used by UE k
to a maximum value Mk ≤ M , possibly different among
UEs. Constraint C3 guarantees that M0 ≤ M CCs in total
will be utilized by the system for RA purposes. The last
two constraints may be imposed in practice due to, e.g.,
compatibility with legacy devices that can communicate only
via a single CC, power consumption considerations when a
UE operates on multiple CCs at the same time, and utilization
of the remaining M −M0 CCs for other system applications
of lower priority.

For the special case where Mk = M0 = M for all
k ∈ K, constraints C2 and C3 become irrelevant and the
RA problem effectively corresponds to a standard OFDMA
resource allocation problem on a single CC with MN RBs
[9]. The optimal allocation in this case is a simple, “winner-
takes-all” assignment per RB [9], namely,

αk∗,m,n =

{
1, k∗ = arg max

k∈K
wkφk,m,n,

0, k 6= k∗,
(3)

for all m,n, with ties resolved arbitrarily. This algorithm has
a complexity that scales only linearly with number of RA
variables. However, for the general case where limitations are
imposed on the maximum number of employed CCs, optimal
RA requires solving a combinatorial problem whose complex-
ity scales exponentially with the number of RA variables. For
massive CA applications, optimal solution of the RA allocation
problem becomes impractical, which motivates the search for
alternative RA procedures.

III. LOW-COMPLEXITY RESOURCE ALLOCATION
ALGORITHM

Towards obtaining an efficient, low complexity RA algo-
rithm for massive CA scenarios, the original RA problem
can be reformulated by introducing two sets of auxiliary
RA variables, {βk,m}, {γm} of cardinality KM , and M ,
respectively. The RA variables {βk,m} indicate whether UE k
is allocated to CC m or not (βk,m = 1, 0, respectively) and
the RA variables {γm} indicate whether CC m is utilized for
transmissions by the system or not (γm = 1, 0, respectively).
By expressing the WSU in the equivalent form

WSU =
∑
k∈K

wk
∑
m∈M

γmβk,m
∑
n∈N

αk,m,nφk,m,n, (4)

and treating {αk,m,n}, {βk,m}, {γm} as independent opti-
mization variables that are continuous-valued in the interval

(0, 1], a relaxed version of the original RA problem can be
formulated as



minimize 1/WSU,

subject to C1 :
∑
k∈K

αk,m,n ≤ 1,∀m,n,

C2′ :
∑
m∈M

βk,m ≤Mk,∀k,

C3′ :
∑

γm ≤M0

C4′ : αk,m,n, βk,m, γm ∈ (0, 1],∀k,m, n.


(5)

Note that the introduction of the auxiliary variables, al-
though increasing the dimension of the problem as a total
of KMN +KM +M variables have to be found. However,
it allows for expressing the combinatorial constraints C2 and
C3 of the original RA problem formulation in the much more
convenient, linear formulation of C2′ and C3′, respectively.
Consideration of strictly positive values for the RA variables
(even though they can be equal to zero, in principle) is only a
technical requirement for the following algorithm development
and has no effect in practice, since a RA variable of value
less than a sufficiently small positive threshold may be safely
assumed as zero.

Consideration of the relaxed RA problem is motivated by
noting that its formulation corresponds to that of a convex,
geometric programming (GP) problem [10], with the exception
that the objective function is not a posynomial with respect to
(w.r.t.) the RA variables, but the inverse of a posynomial. This
exact type of problem was considered in [8] where an iterative
solution algorithm was proposed based on solving a sequence
of successive GP approximations of the problem formulation.
The algorithm is guaranteed to converge to a point satisfying
the Karush-Kuhn-Tucker (KKT) conditions of the problem.

Applying the same procedure as in [8] for solving the
relaxed RA problem results in obtaining the (positive-valued)
estimates {α(i)

k,m,n}, {β
(i)
k,m}, {γ

(i)
m } of the RA variables at

iteration i, as the solution of a modified version of the
relaxed RA problem where the objective function 1/WSU is
approximated by the monomial (see [8] for details)

f̃ (i) =
∏
k,m,n

(
wkφk,m,nβk,mγmαk,m,n

u
(i)
k,m,n

)−u(i)
k,m,n

, (6)

where

u
(i)
k,m,n ,

wkφk,m,nβ
(i−1)
k,m γ

(i−1)
m α

(i−1)
k,m,n∑

k′,m′,n′ wk′φk′,m′,n′β
(i−1)
k′,m′γ

(i−1)
m′ α

(i−1)
k′,m′,n′

, (7)

for all k,m, n, where {α(i−1)
k,m,n}, {β

(i−1)
k,m }, {γ

(i−1)
m } are the

estimates of the RA variables obtained at iteration i − 1. As
the following result shows, the new RA variables estimates can
be obtained via a simple (semi-) closed form formula, with no
need to employ general-purpose numerical solvers.

Lemma 1. The optimal RA variables for the GP optimization
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Algorithm 1 SGPA RA Algorithm

1) Choose an initial estimate a(0)k,m,n > 0, β(0)
k,m > 0, γ(0)m >

0, ∀k,m, n, of the RA variables.
2) At iteration i ≥ 1, obtain a new estimate of the RA

variables {a(i)k,m,n}, {β
(i)
k,m}, {γ

(i)
m } as per Lemma 1.

3) Increase iteration index i and go to step 2 until conver-
gence to a fixed point.

problem resulting by replacing the objective function 1/WSU
in the relaxed RA problem formulation with f̃ (i) as defined in
(6) equals

α
(i)
k,m,n = α

(i−1)
k,m,n

β
(i−1)
k,m wkφk,m,n∑

k′ α
(i−1)
k′,m,nβ

(i−1)
k′,m wk′φk′,m,n

β
(i)
k,m = min

{
1, β

(i−1)
k,m

∑
n wkγ

(i−1)
m a

(i−1)
k,m,nφk,m,n

λ
(i)
k

}
,

γ(i)m = min

{
1, γ(i−1)m

∑
k,n wkβ

(i−1)
k,m a

(i−1)
k,m,nφk,m,n

µ(i)

}
,

for all k ∈ K,m ∈ M, n ∈ N , where λ(i)k > 0, µ(i) > 0,
are uniquely determined by the conditions

∑
m β

(i)
k,m = Mk,∑

m γ
(i)
m = M0, respectively.

Proof: Recalling that replacing the objective function of
an optimization problem with its logarithm does not change
the solution of the optimization variables [10], the objective
f̃ (i) can be replaced by log(f̃ (i)), which is equal to

−
∑
k,m,n

u
(i)
k,m,n(log(ak,m,n) + log(βk,m) + log(γm)),

after dropping additive constants that are independent of the
RA variables and play no role in the solution. It can be verified
that the resulting problem formulation is convex. Therefore,
standard solution techniques using Lagrange multipliers can
be employed [10] resulting in the optimal RA variables stated
in the Lemma. Details are omitted.

The successive GP approximations (SGPA) RA algorithm
is summarized at the top of the page. Its complexity scales
only linearly with the number of RA variables, as long as the
number of iterations required for convergence is independent
of the dimension of the problem. Even though the latter
condition is not the case, simulations show that limiting the
number of iterations to a maximum number, irrespective of
the dimension of the problem, yields good performance.

IV. CONVERGENCE PROPERTIES OF THE SGPA RA
ALGORITHM

Although the SGPA RA is guaranteed to converge to a KKT
point of the relaxed RA problem formulation, it is of interest
to determine further properties of the convergence in order
to obtain insights on its operation and usefulness of provided
solutions. The key to study the convergence is to view the

parallel updates of the scalar RA variables performed by the al-
gorithm as parallel updates of appropriate vector RA variables.
In particular, consider (a) the RB allocation vector variables
{αm,n}, where αm,n , [α1,m,n, α2,m,n, . . . , αK,m,n], (b)
the UE-CC allocation vector variables {βk}, where βk ,
[βk,1, βk,2, . . . , βk,M ], and (c) the CC activation vector vari-
able γ , [γ1, γ2, . . . , γM ]. Using the compact notation x =
[x1, x2, . . . , xP ] for representing any of the aforementioned
vector variables, and according to Lemma 1, the update rules
of the SGPA RA algorithm are equivalent to updating the
elements of x at iteration i as

x(i)p = min

{
1, x(i−1)p

r
(i)
p

κ(i)

}
, p ∈ P , {1, 2, . . . , P}, (8)

where r(i)p > 0, p ∈ P , is independent of x(i) and κ(i) > 0 is
selected such that

P∑
p=1

x(i)p = L, for all i, (9)

where L ∈ P . For example, with x corresponding to βk,
for some k ∈ K, index p in (8) represents the tuple (k,m)

with m ∈ M, P = M, P = M , κ(i)=λ(i)k , L = Mk, and
r
(i)
p = wkγ

(i−1)
m

∑
n α

(i−1)
k,m,nφk,m,n.

The following technical result is fundamental towards un-
derstanding the operation of the SGPA RA algorithm and its
convergence properties.

Proposition 2. Let the iterations of (8) initialized by
{x(0)p }p∈P , such that it holds x(0)p ∈ (0, 1], for all p ∈ P ,
and assume that there exists a permutation π of P and an
integer P0 ∈ P such that r(i)π(1) > r

(i)
π(2) > · · · > r

(i)
π(P0)

> 0

and r
(i)
π(P0+1) = · · · = r

(i)
π(P ) = 0, for all i ≥ 0. When

the iterations are performed with finite (hardware) precision
arithmetic, sequence x(i)p , p ∈ P , converges to the limit

x̄p =

{
1, if r(0)p > 0 and r(0)p ≥ r(0)π(L),
0, if r(0)p = 0 or r(0)p < r

(0)
π(L),

. (10)

Proof: See Appendix.
Remark: In case where x(0)p = 0 for some p ∈ P , it can be

verified that x(i)p = 0 for all i ≥ 0, and the iterations of (8)
are essentially performed for the sequence of indices in P \ p
with Prop. 2 changed accordingly.

In order to obtain insights on the operation of the SGPA RA
algorithm, consider the special case where {αk,m,n} and {γm}
have been pre-selected (by external means) and the optimal
{βk,m} are required. It is easy to see that in this case, the RA
problem becomes a linear programming (LP) problem with a
particularly simple solution [10]: Assign to UE k ∈ K the
Mk CCs corresponding to the largest effective CC utilities
φ̄k,m,m ∈M, where φ̄k,m , wkγm

∑
n αk,m,nφk,m,n. Solv-

ing the same problem with the SGPA RA algorithm, results
in the iterative estimates of {βk,m} for UE k corresponding
to the general update formula of (8) with r(i)k,m = φ̄k,m for all
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Fig. 1. Convergence example of the SGPA RA algorithm w.r.t. {βk,m}m∈M
when {αk,m,n} and {γm} are given (M = 20,Mk = 3).

i, which, by Prop. 2, converge to the optimal solution if the
positive elements of {φ̄k,m}m∈M are not equal.

A typical example of the convergence of the {βk,m}m∈M
estimates for a UE k obtained by the SGPA RA algorithm in
this special case is shown in Fig. 1, with M = 20 and Mk = 3.
The effective weights {φ̄k,m}m∈M were randomly generated
and ordered such that φ̄k,1 > φ̄k,2 > . . . > φ̄k,M > 0,
and a random initialization {β(0)

k,m > 0}m∈M such that∑
m∈M βk,m = 3 was used. It can be seen that the RA

variables converge to βk,m = 1 for m = 1, 2, 3, as predicted
by Prop. 2. Note that, even though at i = 50, βk,3 has not
achieved the value of 1, stoping the iterations at i = 15 and
quantizing the RA variables to their nearest integer would still
result in the optimal RA variables.

Although the above result demonstrates that the SGPA
RA algorithm converges to the optimal RA variables under
special cases, this is not the case in general, i.e., a suboptimal
convergence point is expected. However, as the following
result shows, the convergence point has desirable properties,
namely, it is binary-valued irrespective of the initialization as
long a mild condition on the utilities holds.

Proposition 3. Under that assumption that {φk,m,n} are
distributed according to a joint continuous probability density
function (p.d.f.) over [0,∞)KMN , and for any initialization of
the RA variables that is independent of {φk,m,n}, the SGPA
RA algorithm converges with probability 1 to binary-valued
RA variables.

Proof: Since the SGP RA algorithm is guaranteed to
converge to a KKT point of the relaxed RA problem, it follows
that that the sequences {r(i)p }p∈P of the general iteration
formula of (8) will converge to a limit {r̄p}p∈P . Assuming
for the moment that no two positive elements of {r̄p}p∈P
are the same, it follows from fundamental properties of limits
that for any sufficiently small ε > 0, there exists an iteration
index iε, a permutation π of P , and an integer P0 ∈ P such
that it holds |r(i)p − r̄p| < ε for all p ∈ P , with r

(i)
π(1) >

r
(i)
π(2) > · · · > r

(i)
π(P0)

> 0 , r(i)π(P0+1) = · · · = r
(i)
π(P ) = 0,

for all i ≥ iε. That is, as the algorithm approaches one of its
fixed points, the elements of {r(i)p }p∈P , although varying in
principle as the iterations progress, will achieve an ordering
that holds for all i ≥ iε. Treating {x(iε)p } as an initialization
point for the algorithm iterations, it follows from Prop. 2 that
each RA variable will converge to either 0 or 1.

Next, it will be shown that, with probability one, the
limit {r̄p}p∈P has no two positive elements that are equal.
By examination of the equations corresponding to the KKT
conditions of the relaxed RA problem, it can be verified that
the condition r̄p = r̄q , for some p 6= q, does not hold
identically (by default) at any KKT point. Noting that both
the equations corresponding to the KKT conditions as well
as the expressions for r(i)p (and hence, r̄p) are posynomials
w.r.t. the RA variables and {φk,m,n}, it follows that the set
Z , {{φk,m,n} : r̄p = r̄q > 0, for some p 6= q} is of
(Lebesgue) measure zero [11, Corollary 10], which implies
that the probability of the event {φk,m,n} ∈ Z is zero.

Remark: The assumption of continuous-valued {φk,m,n} is
critical for the operation and convergence of the proposed
algorithm and applies to many possible utilities that can
be considered for RA purposes including link capacity [5],
[9]. The case of RA with discrete-valued utilities requires a
different treatment.

V. NUMERICAL EXAMPLES

In order to demonstrate the application of the SGPA RA
algorithm in a massive CA setting, an example case where
K = 30 UEs are served via a single cell utilizing up to M =
50 CCs, each with N = 100 RBs is considered. Note that
for M = 50, the optimal RA problem formulation consists
of KMN = 150, 000 binary valued variables {αk,m,n}. The
normalized maximum transmission rate (link capacity) was
considered as the utility function [5], [9], i.e.,

φk,m,n =
1

N
log2 (1 + gk,m,nSNRk,m) ,∀k,m, n, (11)

where the elements of {gk,m,n}, representing channel gains,
are independent, identically distributed (i.i.d.) according to
an exponential p.d.f. of unit mean, and the elements of
{SNRk,m}, representing the average CC signal-to-noise-ratios
per UE, are i.i.d. according to a uniform p.d.f. over the interval
[−10, 20] (in dB). Note that for this choice of utility function
and with wk = 1 for all k, the WSU is equal to the sum
capacity of the system.

In all cases, the SGPA algorithm was initialized as α(0)
k,m,n =

1/K, β(0)
k,m = 1/Mk, γ(0)m = 1/M0, for all k,m, n, and

was restricted to perform 20 iterations irrespective of the RA
problem dimension. Since convergence has not been achieved
at this point in general, quantization of the final RA variables
is performed, obtained by setting, for each k ∈ K, the largest
Mk values of {β(20)

k,m}m∈M equal to 1 and zero, otherwise. The
quantization of {α(20)

k,m,n} and {γ(20)m } is performed similarly.
For comparison purposes, a heuristic RA algorithm of

comparable complexity with the SGPA RA algorithm was con-
sidered, consisting of two steps. First, by assuming αk,m,n = 1
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Fig. 2. Average WSU performance of RA algorithms with varying M .

for all k,m, n, it solves the relaxed RA problem w.r.t. {βk,m}
and {γm} after re-formulating it as a relaxed LP problem
by introduction of auxiliary variables [12, Sec. 3.4]. After
quantization of the LP solution with the same method as in the
SGPA RA algorithm, the {αk,m,n} variables are determined
by the rule of (3) with wkγmβk,mφk,m,n in place of wkφk,m,n.

Fig. 2 shows the WSU obtained by averaging over inde-
pendent realizations of utilities {φk,m,n} and UE weights,
with the latter uniformly distributed over the set {wk, k ∈
K : wk ≥ 0,∀k,∑k∈K wk = 1}. The maximum number of
CCs per UE was set to Mk = 2 for all k ∈ K, whereas
the maximum number of CCs used by the system was set
to M0 = min{M,M̄0}, with M̄0 = 10, 20, 50. It can be
seen that, in all cases, increasing M monotonically improves
performance, since more resources are available for RA pur-
poses. However, when M0 is limited to a maximum value,
consideration of M > M0 provides only small gain, since the
total number of available RBs for RA purposes remains the
same. In comparison with the heuristic algorithm, the SGPA
RA algorithm provides better performance by approximately
10% in all cases.

Fig. 3 depicts that average execution time of the SGPA and
heuristic algorithms for the case shown in Fig. 2 corresponding
to M̄0 = 20 (results are similar for other values of M̄0). A
straightforward implementation in python was considered for
the SGPA algorithm, while the LP solver of [13] was used for
the heuristic algorithm. The measurements were performed on
an Intel i5 core operating on Linux. It can be seen that both
algorithms scale linearly with the problem dimension, which
is essential for their practical implementation in massive CA
applications. For the considered implementations, the SGPA
algorithm is slower than the heuristic, which can be viewed
as the price to pay for the improved performance. Note that
the SGPA algorithm speed can be improved by reducing the
number of performed iterations, with a cost in average WSU
performance.

The effect of increasing the maximum CCs per UE is shown
in Fig. 4, where the average WSU achieved via the SGPA
algorithm is depicted for the case M = 50. All UEs were
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set to have the same maximum number of CCs. As expected,
increasing the maximum number of CCs per UE increases
performance. However, this increase is substantial only up to
a moderate number of CCs, above which, the ability of UEs
to transmit to more CCs offers marginal gains. This is an
interesting observation as it suggests that the cost associated
with implementing devices able to communicate with multiple
CCs is unnecessary for leveraging the benefits of massive CA.

VI. CONCLUSION

An efficient iterative RA algorithm was proposed for mas-
sive CA scenarios. It was shown that the algorithm obtains the
optimal RA solution under special cases of the RA problem,
converges to binary-valued RA variables in the general case
under mild assumptions on the distribution of utilities, and
outperforms heuristic RA schemes.

APPENDIX A
PROOF OF PROPOSITION 2

For simplicity and without loss of generality, the case where
P0 = P will be considered, i.e., r(i)p > 0 for all p ∈ P . The



6

following result is critical as it shows that at any stage of the
iterations procedure before a fixed point is reached, one of the
sequences x(i)p is monotonically increasing towards the limit
1.

Lemma 4. Consider the RA algorithm initialization and the
ordering of {r(i)p } as described in the statement of Proposition
2. Assume that at iteration i− 1, i ≥ 1, the RA algorithm has
not reached a fixed point and let L(i−1) , {p ∈ P : x

(i−1)
p =

1}. Let p∗ denote the sequence index such that x(i−1)p∗ < 1

with r(i−1)p∗ > r
(i−1)
p for all p 6= p∗, p /∈ L(i−1). It holds

1) x
(j)
p = 1 for all j ≥ i and p ∈ L(i−1) with r

(i−1)
p >

r
(i−1)
p∗ ,

2) Sequence x(j)p∗ , j ≥ i, is strictly monotonically increasing
towards the limit value of 1.

Proof: First note that it must hold |L(i−1)| < L, where
|L(i−1)| is the cardinality of L(i−1), since, otherwise, the
iterations would have reached the limit point where x

(j)
p =

1, p ∈ L(i−1) and x
(j)
p = 0, p /∈ L(i−1), for all j ≥ i − 1. In

addition, note that the iteration scheme of (8) guarantees that,
with x(0)p > 0, x(i)p ∈ (0, 1] for all i ≥ 0 such that |L(i)| < L.
Therefore, index p∗ exists. Let L(i−1)

∗ , {p ∈ L(i−1) :

r
(i−1)
p > r

(i−1)
p∗ } ⊆ L(i−1). The normalization factor κ(i) of

(8) is found as the unique solution of (9). It is easy to verify
that (9) can only be satisfied if κ(i) ≤ min{r(i)p }p∈L(i−1)

∗
. This

condition implies from (8) that x(i)p = 1, for all p ∈ L(i−1)
∗ .

By repeating this argument for the next iterations, it follows
that x(j)p = 1,j ≥ i, p ∈ L(i)

∗ , thus proving the fist claim.
Towards proving the second claim, note that κ(i) should

satisfy either κ(i) ≤ x
(i−1)
p∗ r

(i)
p∗ or κ(i) > x

(i−1)
p∗ r

(i)
p∗ . In the

former case, x(i)p∗ = 1, and by the previous argument, it follows
that this value remains fixed for all subsequent iterations. In
the latter case, x(i)p∗ = x

(i−1)
p∗ r

(i)
p∗ /κ

(i), whose value can be
lower bounded by finding an upper bound for κ(i). Towards
this end, it follows from (9) that

L =
∑

p∈L(i−1)

min

{
1,
r
(i)
p

κ(i)

}
+

∑
p/∈L(i−1)

x
(i−1)
p r

(i)
p

κ(i)

≤ |L(i−1)|+ 1

κ(i)

∑
p/∈L(i−1)

x(i−1)p r(i)p .

Therefore,

κ(i) ≤
∑
p/∈L(i−1) x

(i−1)
p r

(i)
p

L− |L(i−1)|

=

r
(i)
p∗

(
x
(i−1)
p∗ +

∑
p/∈L(i−1)\p∗ x

(i−1)
p

r(i)p

r
(i)

p∗

)
L− |L(i−1)|

(a)
<

r
(i)
p∗

(
x
(i−1)
p∗ +

∑
p/∈L(i−1)\p∗ x

(i−1)
p

)
L− |L(i−1)|

(b)
=
r
(i)
p∗

(
L−∑p∈L(i−1) x

(i−1)
p

)
L− |L(i−1)|

(c)
= r

(i)
p∗ , (12)

where the assumption r
(i)
p∗ > r

(i)
p for all p 6= p∗, p /∈ L(i−1),

was used in (a), (b) follows from (9) evaluated at iteration i−1

and (c) follows since x(i−1)p = 1 for p ∈ L(i−1). Therefore,
x
(i)
p∗ > x

(i−1)
p∗ , i.e., x(i)p∗ is an increasing bounded sequence,

which means that it has a limit x̄p∗ . It follows from (8) that
this limit must satisfy the condition

x̄p∗ = min
{

1, x̄p∗ lim
i→∞

(
r
(i)
p∗ /κ

(i)
)}

. (13)

Noting from (12) that r(i)p∗ /κ
(i) > 1, for all i, it follows that

x̄p∗ = 1 is the only positive value that can satisfy (13).
The proof of Proposition 2 now directly follows by noting

that at iteration 1 there will exist an index p∗ such that x(i)p∗ , i ≥
1, will be strictly monotonically increasing towards the limit 1,
according to Lemma 4. Therefore, for any ε > 0, there exists
an iteration index, say, i1, such that x(i1)p∗ ≥ 1 − ε. When ε
equals the finite precision used in the implementation of the
algorithm, x(i1)p∗ will be set equal to 1. By Lemma 4, x(i)p∗ = 1

for all i ≥ i1 and a new index q∗ will exist such that x(i)q∗ will
start to monotonically increase towards 1. It is easy to see that
this procedure repeats until all sequences of index p such that
r
(i)
p ≥ r(i)π(L) will have achieved the value of 1.
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