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Abstract

This paper introduces a new maximum likelihood (ML) solatifor the code-aided (CA) timing recovery
problem in square-QAM transmissions and derives, for the ¥Viest time, its CA Cramér-Rao lower bounds
(CRLBSs) in closed-form expressions. By exploiting the sfimmetry of square-QAM constellations and further
scrutinizing the Gray-coding mechanism, we express thaitikod function (LF) of the system explicitly in terms
of the code bits’a priori log-likelihood ratios (LLRs). The timing recovery task isen embedded in the turbo
iteration loop wherein increasingly accurate estimatessteh LLRs are computed from the output of the soft-
input soft-output (SISO) decoders and exploited at a pdretiteration basis in order to refine the ML time delay

estimate. The latter is then used to better re-synchrohzeystem, through feedback to the matched filter (MF),

arXiv:1509.03810v1 [cs.IT] 13 Sep 2015

so as to obtain more reliable symbol-rate samples for thétoeo iteration. In order to properly benchmark the
new CA ML estimator, we also derive for the very first time tHesed-form expressions for the exact CRLBs
of the underlying turbo synchronization problem. Compuggnulations will show that the new closed-form
CRLBs coincide exactly with their empirical counterpart@leated previously using exhaustive Monte-Carlo

simulations. They will also show unambiguously the rembhgerformance improvements of CA estimation
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against the traditional non-data-aided (NDA) scheme;etnehighlighting the potential performance gains in time
synchronization that can be achieved owing to the decod@stasce. Over a wide range of practical SNRs,
CA estimation becomes even equivalent to toenpletely data-aided (DA) scheme in which all the transmitted
symbols are perfectly known to the receiver. Moreover, tbe €A ML estimator almost reaches the underlying
CA CRLBs, even for small SNRs, thereby confirming its stai@dtefficiency in practice. It also enjoys significant
improvements in computational complexity as compared #ontiost powerful existing ML solution, namely the

combined sum-product and expectation-maximization ($8-&gorithm.

. INTRODUCTION

N order to provide high quality of service while satisfyiniget ever-increasing demand in high
I data rates, the use of powerful error-correcting codes muecation with high-spectral-efficiency
modulations is advocated. Indeed, turbo codes along wgh-brder quadrature amplitude modulations
(QAMSs) are two key features of current and future wirelessicmnication standards such as 4G long-
term evolution (LTE), LTE-advanced (LTE-A) and beyond (L-B [1, 2]. As a crucial task in any
digital receiver [3], accurate time synchronization remsaa challenging problem especially for turbo-
coded systems since they are intended to operate at veryigmalgo-noise ratios (SNRs). In fact, the
widespread adoption of turbo codes is in part fueled by thbifity to operate in the near-Shannon
limit even under such adverse SNR conditions [4]. Yet, thieitasy performance of these powerful
error-correcting codes is prone to severe degradationseifsyystem is not accurately synchronized in
time, phase or frequency. The goal of time synchronizationparticular, consists in estimating and
compensating for the unknown time delay introduced by tlennkl so as to provide the decision device
with symbol-rate samples of lowest possible inter-symhbtériference (ISI) corruption [3].
The problem of timing recovery for linearly-modulated tarissions has been heavily investigated over
the last few decades. A plethora of time delay estimatorsEg)Dhave been introduced in the open
literature and the vast majority of existing TDEs are intshdo operate witttomplete unawareness of

the code structure (see [5-14] and references therein)thier avords, the TD estimate is acquired just



after oversampling the continuous-time signal and thewigeal to a discrete-time MF in order to output
the symbol-rate samples. The latter are then used by the tieboder, once for all, to decode the data
bits. Therefore, the fact that a large portion of the data lstto become almost perfectly known (i.e.,
correctly decoded) is systematically ignored by thoserestirs. The latter are referred to laen-code-
aided (NCA) or simply NDA TDEs since na priori knowledge about the transmitted symbols is used
during the estimation process and, as such, they suffer $@rare performance degradations under harsh
SNR conditions. Being more accurate and usually less caatipotlly expensive, DA methods require,
however, the regular transmission of a completely know, (pilot) sequence thereby limiting the whole
throughput of the system.

It sounds reasonable then to conceive a third alternative ragddle ground between these two extreme
NDA and DA estimation schemes. Indeed, rather than relymgerfectly known or completely unknown
symbols, CA estimation takes advantage of $b# information delivered by the decoder at each turbo
iteration. In plain English, the decoder assistance isedallpon in an attempt to enhance the timing
recovery capabilities yet with no impact on the spectratifficy of the system. In fact, from one turbo
iteration to another, more refined soft information abow tonveyed bits are delivered by the two
soft-input soft-output (SISO) decoders. These @arthe a posteriori LLRs of the code bits andi) their
extrinsic information. According to the turbo principldet latter are iteratively exchanged between the
two SISO decoders until achieving a steady state whgsssteriori LLRs are used as decision metrics for
data detection. In a nutshell, CA estimation consists gyimpleveraging those soft outputs, by embedding
the timing recovery task into the decoding process, in amngit to enhance the estimation performance
and vice versa. In the context of timing, phase, and frequeacovery, such CA estimation scheme is
usually referred to agirbo synchronization [26]. A number of CA timing recovery algorithms have been
proposed over the last decade [15-27] and, to the best ofuti®s’ knowledge, only two approaches

are derived from ML theory. The first one [19] is based on thd-lwgown expectation maximization



(EM) algorithm whereas the second [25] is a combined sundyb(SP) and EM algorithm approach
(i.e., an improvement of [19]). The SP-EM-based ML estimatfiers indeed significant performance
improvements over the original EM-based estimator butettst of increased computational complexity.
In the SP-EM-based ML approach, an EM iteration loop is negliin each turbo iteration wherein the
algorithm stwitches between the so-called expcetation @eSTEP) and maximization step (M-STEP).
Roughly speaking, in each turbo iteration, the algorithmigrens the following main four steps for each
EM iteration:

« Obtain new symbol-rate samples (via MF) using the TD estnuditthe previous EM iteration;

« Update the symbolsa posteriori probabilities (APoPs) using those new symbol-rate samples

« Marginalizeempirically the conditional (on the transmitted symbols) likelihooddtion with respect

to those APoPs (E-STEP) ;

« Maximize the marginalized LF with respect to the working Tariable (M-STEP).
At the convergence of the EM algorithm, the obtained TD estérs used to acquire new ISl-reduced
(symbol-rate) samples which will serve as input for the naxhbo iteration where all the aforementioned
EM-related steps are repeated.
In this paper, we re-consider the problem of CA time syncization from both the “performance bounds”
and “algorithmic” point of views. By exploiting the full symetry of square-QAM constellations and
further scrutinizing the Gray coding mechanism, we are éblderive a closed-form and very simple
expression for the system’s LF. Typically, marginalizatad the conditional LF with respect to transmitted
symbols is carried-out analytically and tleepriori LLRs of the elementary code bits are explicitly
incorporated in the LF expression. We propose thereof a mgséematic framework to their direct
integration in the CA estimation process, thereby elimimtatompletely the need for the EM iteration
loop under each turbo iteration. In other words, the new L&dseo be maximized only once per-turbo

iteration (contrarily to SP-EM) after being updated by tlssaciatedh priori LLRs which are computed



from the output of the SISO decoders. Consequently, thegsexp CA timing recovery algorithm offers
significant improvements in computational complexity ampared to the existing SP-EM. As a matter
of fact, the new algorithm is 35 and 70 times less computatiprtomplex than SP-EM for 64 and 256
QAMs, respectively. It also enjoys an advantage in termsstfmation accuracy for low SNR levels and
higher-order modulations.

From the “performance bounds” point of view, we also tackle analytical derivation of thsetochastic
CRLBs for the underlying CA estimation problem. Actuallynlike many other loose bounds, the
stochastic! CRLB is a fundamental lower bound that reflects the actuadksable performance in practice
[36]. Yet, even under uncoded transmissions, the complextstre of the LF makes it extremely hard,
if not impossible, to derive analytical expressions forstpractical bound, especially with high-order
modulations. Therefore, in the specific context of timingoneery, the stochastic CRLBs were previously
evaluated using exhaustive Monte-Carlo simulations, (e@pirically) in [30] and [29] for both NCA
and CA estimations, respectively. Just recently thouglewvieeir analytical expressions established [31]
but only in the NCA (i.e., NDA) case.

In this paper, we succeed in factorizing the LF of the codestesy as the product of two analogous
terms involving two random variables that alenost identically distributed, i.e., their probability density
functions (pdfs) have the same expression but parametuidéerently. We then capitalize on this
interesting property to derive, for the very first time, thesed-form expressions for the TD CA CRLBs
from arbitrary turbo-coded square-QAM-modulated trarssmoins. The new closed-form expressions
corroborate the previous attempts reported in [29] to atalthe TD CA CRLBsmpirically and offer a
way to their immediate evaluation in practice. Moreoverwdkbe shown later, the previously published
closed-form NDA CRLBs [31] boil down to a very special casetlod new closed-form CA CRLBs by

simply setting all the code bits priori LLRs to zero.

LIn linearly-modulated transmissions, thtechastic model refers to estimation under the assumption of unknavetrandom transmitted

symbols. This to be opposed to theterministic model wherein the symbols are assumed to be unknowmdiutandom [5].



The rest of this paper is structured as follows. In sectionvét present the system model. In section I,
we derive the expression of the log-likelihood function B)Land express it explicitly as function of the
coded bits’a priori LLRs. in Section IV, we establish the new closed-form exgi@ss for the TD CA
CRLBs. In Section V, we introduce the new CA ML time delay mstior. In Section VI, we discuss
the simulation results of the proposed CA ML estimator ammdetl-form CRLBs. Finally, we draw out
some concluding remarks in section VII.

We also mention beforehand that some of the common notatidhbe used in this paper. Vectors and
matrices are represented in lower- and upper-case bold, fia#pectivelyl y and0y denote, respectively,
the N x N identity matrix and theV—dimensional all-zero vector. The shorthand notation A/(m, R)
means that the vector follows a normal (i.e., Gaussian) distribution with maanand auto-covariance
matrix R. Moreover, {.}7 and {.}¥ denote the transpose and the Hermitian (transpose cosjugat
operators, respectively. The operat®s.} and$3{.} return, respectively, the real and imaginary parts of
any complex number. The operatdrg* and|.| return its conjugate and its amplitude, respectively, and
is the pure complex number that verifigs= —1. The Kronecker and Dirac delta functions are denoted,
respectively, as,,,, and j(t). We will also denote the probability mass function (PMF) fliscrete
random variables (RVs) by’|.] and the pdf for continuous RVs by.] The statistical expectation is

denoted as£{.} and the notatiorf is used for definitions.

II. SYSTEM MODEL

Consider a turbo-coded system where a binary sequenceooiafion bits is fed into a turbo encoder
consisting of two identical recursive and systematic cauti@nal codes (RSCs) which are concatenated
in parallel via an inner interleavdi,. The resulting code bits are fed into a puncturer which sglan
appropriate combination of the parity bits, from both erersdin order to achieve a desired code rate
R. The entire code bit sequence is then scrambled with an diedeaver,Il,, and divided intoX

subgroups ofp bits each for some integer > 1. The k' subgroup of code bitdijt - - - b - - - b5, is



conveyed by a symbal(k) that is selected from a fixed alphab€f,= {cy,c1,--- ,cp—1}, of a M —ary
(with M = 2??) QAM constellation (i.e., square-QAM). In fact, each point, € C,, is mapped onto a
unique sequence afg, (M) = 2p bits denoted here dg'by' - - - bj" - - - by, according to the Gray coding
mechanism, and the point, is selected to convey the" code bits subgroup [i.eq(k) = c,,] if and

only if bf = b for I = 1,2,---,2p. We also define tha priori LLR of the {* code bit,bf, conveyed

by a(k) as follows:

P[bf = 1]
Lik) £ In|=—Lt—"2). 1
CRC =) &
Using (1) and the fact thaP[b} = 0] + P[b} = 1] = 1, it can be easily shown that:
Ly(k) 1
k € k

For mathematical convenience, the two identities in (2) lbarmerged together to yield the following
common generic expression:

k Tmy 1 (b —1) 2
Pl =8"1= 5o (Li(k)/2) l ) (3)

in which b is either0 or 1 depending on which of the symbols, is transmitted, at time instart,
and of course on the Gray mapping associated to the congtelldhe obtained information-bearing

symbols,{a(k)}£_,, are then pulse-shaped and the resulting continuous-tignels

x(t) = a(k) h(t — kT), (4)
k=1

is transmitted over the communication channel vithbeing the symbol duration andt) a unit-energy
square-root shaping pulse. Being completely unknown tor¢leivera priori, the transmitted symbols
{a(k)}, are drawn from a gived/-ary Gray-coded (GC) square-QAM constellation whose diphés
denoted a¥, = {cy,c1,- - ,ca—1}. Here, bysquare QAM we meanM = 2% for some integep > 1

(i.e., QPSK,16—QAM, 64—QAM, etc..). The Nyquist pulse(¢) obtained froma(t) is defined as:

g(t) = /_+OO h(x)h(t + x)dz, (5)

o0



and satisfies the first Nyquist criterion [3]:
g(nT) =0, for any integerm # 0. (6)

At the receiver side, assuming perfect frequency and phasehsonizations, the (delayed) continuous-

time received signal before matched filtering is expressed a

y(t) = VEs z(t — 1) + w(t), (7)

where F, is the transmit signal energy andis the unknown time delay parameter to be estimated.
Moreover,w(t) is aproper complex additive white Gaussian noise (AWGN) with indepartdeal and
imaginary parts, each of variane@ (i.e., with overall noise powelN, = 20?). The SNR of the channel

is also denoted as:

N, T 2% (8)

An integral step in the derivation atochastic ML estimators and CRLBs consists in finding the LLF
of the system. This requires marliginalizing the condigibfon the unknown symbols) LF over the
constellation alphabet. loompletely NDA estimation (or before data detection), agriori information

is available about the transmitted symbols. Thereforelatier are usually assumed to be equally likely,

i.e., with equala priori probabilities (APPs). That is to sayc,, € C,:
Pla(k) = ¢ = — for k=1,2,--- K. (9)

In CA estimation, however, the actual APPs of the transihigigmbols must be used in order to enhance
the estimation performance as done in the next section. Bygdso, we will ultimately express the
LLF explicitly as function of thea priori LLRs of the individual coded bits. As will be explained later
in Section IV-E, accurate estimates for the underlying Lldas be obtained in practice from the soft

outputs of the two SISO decoders at the convergence of th&Bbrithm [32].



IIl. DERIVATION OF THE LLF

As widely known, the set of finite-energy signals usually ated as:

L3 = {s(t) such that/ |s(t)[?dt < +oo} ,
R

form an infinite-dimension Hilbert subspace [35] that carebdowed with an orthonormal badig,,(¢) }.,

and an inner product as follows:

<81(t),82(t)> = / Sl(t)82<t>*dt, W Sl(t),Sg(t) S E%@ (10)

R

Therefore, an exact discrete representation for any cemtis-time signak(¢) € £2 requires an infinite-
dimensional vectors, that contains its expansion coefficientss, = (s(t),¢.(t))} , in the basis

{¢n(t)},. To sidestep this problem, we first consider fliedimensional truncated representation vectors:

Yn = [y17y27 ce ,yN]T> (11)
wN:[wl,wg,...,wN]T, (12)
xn(7) = [21(7), 22(7), . .., 2 (7)]". (13)

that contain the orthogonal projection coefficientsy0f), w(t), andx(t — ), respectively, over the first

N basis functiong ¢, (t)}Y_, (for any N > 1), i.e.:

yu = (y(t), u(t)) = / y(t)pu(t) dt, (14)
wn = {w(t), ou(t)) = / w(t)pu(t)*dt, (15)
(7)) = <93(t —7), gpn(t)> = /Rg:(t — T)n(t)*dt, (16)

Using (7) and (14) to (16), it follows that:

Yn = \/EwN(T) + wy. (17)

Due to the orthogonality of the basis functions, it can bewshthat the noise projection coefficients,

n=1"

{w,}2,, explicitly given by (15) are uncorrelated, il{w,w}, } = 204, .. Hence, they are independent
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since they are also Gaussian-distribdtéehding towy ~ AN (0y,20%Iy). Therefore, the pdf of the
vectoryy in (17) conditioned on the sequence of transmitted symhols,[a(1), a(2),...,a(K)]", and

parametrized by is given by:

plynla; 7) Hwexp{ 2 |n—vEa(0)]*} (18)

Note here that, although we do not show it explicitly, thensmitted symbols are indeed involved in
(18) via the coefficientgx, (1)}, . After dropping the constant terms that do not depend etiglion 7

in (18), we obtain the simplifietruncated LF:

A(yN‘a’; T) = exp{\/_ Z% {ynxn — 552 Z‘xn } . (19)

n=1

The conditional LF which incorporates all the informatioontained in thenon-truncated vector y [or
equivalently the received continuous-time sigyéd)}, Is obtained by makingV tend to infinity in (19).

By doing so and using the Plancherel equality, we obtain dfieviing conditional LF:

Alylair) = exp{{,? [ (u(t)s(0-

—7) 2dt} : (20)
Now, replacing the transmitted signa(lt) by its expression given in (4), and exploiting the fact threg t

shaping pulsey(t), in (5) verifies the first-order Nyquist criterion (6), it céwe shown that:

Ayla; 1) HQ (21)

where

lI>

O, (a(k), y(1)) exp{ §R{y )*}h(t—kT—T)dt—fT;}a(k)f}. (22)

The unconditional LF, A(y; ), is obtained by averaging (21) over all possible transmittgmbol

sequences of siz&, i.e., A(y;7) = E,{A(y|a; )} leading to:
AMy;7)= Y Pla=c]A(yla=c;7). (23)
Ciecz{(

2This is because they are obtained by some linear transfamsai.e., the orthogonal projection) of the original doobus-time white

Gaussian random process(t).
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Under coded digital transmissions, a simplifying assuomtis usually used in estimation practices,
whether CA or NCA, in order to allow for tractable mathemailtderivations of CRLBs and ML estimators
of any parameter. This assumption postulates that thentigiesl symbols are independent (cf. [15-30]
and references therein) in spite of the statistical depsrelbetween the coded bits that is introduced by
channel coding. In fact, before even initiating the decgdinocess itself, the system needs to be fully
synchronized by estimating the time delay, as well as, tres@hand frequency offsets. Moreover, the
decoder itself needs some estimates for other key chanrapgers, e.g., the channel coefficient, noise
variance, SNR, etc. All those estimates are obtained byyaypplraditional NDA estimators directly
on the symbol-rate samples that are delivered by the matiiiedbefore starting data decoding. As a
matter of fact, in digital transmissions, all state-of-tré NDA estimators (for any parameter, whether
maximum likelihood or moment-based) are indeed based oraglsemption of independent symbols
although the latter are actually dependent due to chanrkhgo

We emphasize, however, that exploitation of this assumptioes not imply denying to exploit the
dependence of the coded bits during the decoding procedt itsdeed, such dependence is exploited
by the SISO decoders in order to output the estimates for aded bits’a posteriori LLRs. The latter
are then used to decode the bits and also to computedhwiori LLRs (as explained later in Section
IV-E) which are in turn used to evaluate the CA CRLBs and to timel CA TD ML estimate. Yet, even
by assuming independent symbols (both in this paper andkiiiy works), it turns out that no much
information is lost from the estimation point of view. In fathe resulting CA estimation schemes achieve
the ideal data-aided one (where all the symbols are peyfotiwn) over a wide range of practical SNRs
where the completely NDA schemes do not (cf. Figs. 4 and 5imghper and the reported simulation

results in other researchers’ works). Using the assummiandependent symbols it follows that:

Pla=c¢] =[] Plak) = ci(k)]. (24)
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Plugging (21) and (24) in (23), it can be shown that:

My:m)= Y [ Plak) = ei(®b)] 2 (ei(k), y(2))

C; EC{,( k=1

- H Z P[a(k) = Cm} Qr (Cmv y(t))' (25)

k=1cmeCp

Therefore, theunconditional log-likelihood function (LLF) defined a£(y; ) £ In (A(y; 7)), is given

by:
K —
Ly;7)=) In <Qk(7'7y(t)))v (26)
k=1
in which Q, (7, y(t)) is simply the average df, (a(k),y(t)) over the constellation alphabet, i.e.:
(ry®)2 S Plak) = 6] O (cm y(t)). 27)
cm€Cy

For ease of notations, we will hereafter no longer show thgeddence of), (7,y(t)) on the received
signal, y(t), and denote it simply a€, (7). Next, we will further manipulate this term and ultimately
factorize it into two analogous terms which involve two ipdadent andimost identically distributed
RVs. In fact, by further denoting the top-right quadrant loé tconstellation aép, it follows thatC, =

C, U (=Cp) UC; U (=Cz). Thus, the sum over,, € C, in (27) can be equivalently replaced by a sum
over eacty,, € @, and its three symmetrical points in the other quadrants. @ggiso and noticing that

lem|=|—cCm|=1c:,|=|—¢%,|, we obtain from (22) and (27):

() = > e 1 (P[a(k)zém] exp{{E /R afe{a;ny(t)}h(t—kT—T)dt}

Cm Ecp

+ Pla(k)=—Cp] exp {\{IE* /R %{—a;y(t)}h(t—w—f)dt}

+ PLal) =] exp {3 [REep(O(e-kT )it}

+ Pla(k)=—¢,] exp { VL. /R ﬂ%{—émy(t)}h(t—k:T—r)dt}> . (28)
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Using a simple recursive scheme that allows the constiuctiarbitrary square-QAM constellations, it

has been recently shown in [33] that the APPs for each symdglare expressed as followgd,, € @):

L2p71(k) L2p(k)

Pla(k) =Gl =P pop(@n) e 2 e & (29)

Pla(t) =Gl =i pplen) e 25 (30

Pla(k)=—Gnl=Br jup(G) €55 e 5 @31

Pla(k) === 10p(em) €27 e %, (32)

in which s ,(¢,,) and j; are given by:
i (Gm) 2 H G-I ve, ed, (33)
. . 1
B = H 2 cosh (Ll(k;)/2) ' (34)

Plugging (29)-(32) back into (28) and using the trivial itlBne” + e=* = 2 cosh(x), it can be shown

that:

) =281 prp(Em)e —pleml” [COSh{F/%{Cmy ) th(t—kT— 7)dt+M}+

Cm GCP

cosh{\/E R{c: y(t)}h(t—kT —7)dt + _L2P(k)+2sz1(’f)}], (35)

Furthermore, by using the relationshipsh(z) + cosh(y) = 2 cosh(*3¥) cosh(*3%) along with the two
identities¢,, + ¢, = 2R{¢,,} andé,, — &, = 253{é,}, it can be shown that (35) can be rewritten as

follows:

Qi(7) :45,62%@(6”1)6_”EmPcosh{%uk(T)jLLQ”Tw)} X cosh {%U}C(T) + szfﬂk)}] (36)
émeCp

in which u,(7) and v, (7) are the matched-filtereish-phase and quadrature components of the received

signal given by:

u(T) = /_Jroo?)?{y(t)}h(t — kT — 7)dt, (37)
vk(T) :/_Jroog{y(t)}h(t — kT — 7)dt. (38)
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Since in the Cartesian coordinate system of the constilagachc,, € 5,, can be writted as ¢, =
(20 —1]d,+ j[2n —1]d, for somel < i,n < 2P~!, then the single sum oveér, in (36) can be equivalently

replaced by a double sum over the two counteamdn as follows:

op—lop—1

—45. 3% [uk,p<[2¢ —1)d, + j[2n — 1]dp>

i=1 n=1
x e PRi- 1Pd; cosh (4E [212_ 1]—dpu/k(7) + LZp(k))
o 2
X e_P[Zn—l]Qd?) COSh (V E8[2n2_ l]dpvk(7->+ L2p—21(k))] (39)
g
We also recall the following decomposition recently showf33] for eachc,, = [2i—1]d,+j[2n—1]d, €
e
tep([20 = 1]d, + j12n — 1]d,,) = Op2p(0)0p2p—1(n) (40)
where
pl 2b (1) 1 L2l
Orop(i) £ H e\ (41)
7(n) Loj_q(k)
oo () & [[ 0= (42)

After using (40) in (39) and splitting the two sums, we obttie following much useful factorization

for Q.(7):
Qk(T) = 4/8ka,2]) (Uk(T))Fk,zp—1 (W(ﬂ)» (43)
where
2p—1
Fk q Z‘gk q —p[22 1 2d2 COSh( L [(2; b T+ Lq2(k)) ) (44)

in which ¢ is a generic counter that is used from now on to refeRjoor 2p — 1 depending on the

context. Finally, by using (43) back in (26) and dropping tomstant termis, that do not depend on

Note here thatl, is half the minimum inter-symbol distance whose expressogiven in [33, eq. (30)] explicitly as function of for

normalized-energy constellations.
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7, the useful LLF develops into:

Zln(Fkgp ug(T ) Zln(Fkgp 1 (v (T ))) (45)

We succeeded here in decomposing the LLF into two analogousst[the two sums in (45)] involving
each either RVsu, (1) or ux(7) that will be shortly shown to have almost the same distrangi This
is actually the cornerstone result upon which we will essiibthe analytical expressions for the CA TD

CRLBs in the next section.

V. DERIVATION OF THE CA CRLBs

As an overall benchmark, the CRLB lower bounds the variarfceng unbiased estimatof, of the
time delay parameter, i.€E{(7 — 7)?} > CRLB(7). It is explicitly given by [36]:

CRLB(7) = % (46)

where I(7) is the so-called Fisher information for the received datéctvlis given by:
2 .
I(t) = -E {M} . 47)

Using (45) in (47) and owing to the linearity of the partialridgative and expectation operators, it

immediately follows that:

K
Z Vr2p(T) + Vr2p-1 (T ﬂ (48)
k=1
where
Yop(T) = —E {8 In (Fk QP(Uk ))/372} (49)
Yk, 2p— 1( = —E {8 In (Fk 2p— 1(’Uk ))/67’2} (50)

Before delving too much into details, we state the followiagult that is extremely useful to the derivation

of the analytical expressions of the two terms,,(7) and i 2,-1(7).



16

LEMMA 1: ui(7) andv(7) are twoindependent RVs whose distributions are given by:

p[uk(Tﬂ = \2/62';% F.op (Uk(T))e_u];(,Tz)27 "
plon(r)] = 26%1 Fk,2p—1(Uk(7'))€_vk257—72)2. (52)
whith
Br.2p £ T 1 | -
- 2cosh (La(K)/2)
-1
Br,2p—1 £ 1 1 "

2 cosh (Ly—1(k)/2)

—

1

Proof: see Appendix A.
As seen from (51) and (52), the two RYg(7) andv(7) arealmost identically distributed (i.e., their pdfs
have the same structure, but they are parametrized diffgyemherefore, when evaluating the required
expectation with respect to either,(7) or v, (7), equivalent derivation steps can be followed to find
either 4y 2,(7) or vx2,—1(7). As such, we will only derivey, ,,(7) and later deduce the expression of
ve2p—1(7) Dy easy identification. To that end, we denote the first andrskderivatives off 5, (x) in
(44), with respect to the working variabte by Fy , (r) andF/, (z), respectively. We therefore establish

the second partial derivative af (£} 2, (ux(7))) with respect to the time delay parameteras follows:

1" /2 /
P (Frao) = @2(r Fiap (@) Figy (w0)] i (r Ffp (us(7)
or ( ’Zp( § )) k( ) Fk,Qp(uk(T)) Fﬁgp(uk(T)) ( )Fk,Qp(uk(T))

in which 1, (7) = Ouy(7)/07 andiiy(7) = 0%ui(7)/072. We further show in Appendix A that, ()
andu(7) are two independent RVs as well. Thus, by applying the epiect operator to the previous

equation, we obtainy »,(7) as follows:

() = E{i3()} [E{ B g [Hale O] gy a0l (o)

Fk%2p (uk(T)) Fi 2p (uk(T))
In the sequel, we will derive analytical the expressionglierfour expectations involved in (55) separately.

For convenience, we define beforehand the following two gties (for ¢ = 2p and 2p — 1) that will
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appear repeatedly in the obtained expressions:

or—1
—Qqucosh< ) Z@ 22— (56)
or—1
_25kqsmh( o() ) Zﬁkq »(20—1). (57)
A. Derivation of E{u7(7)}
In Appendix A, we show that :
\FZ%{a Vba(lk — KNT) + R{dw()}, (58)
where
+o0 .
Wi (1) = —/ w(t)h(t — kT — 7)dt. (59)

Recall here that the transmitted symbols are assumed muttdépendent. As they are also independent
from the derivative noise components and exploiting the flaat E{ (1)} = 0 (sinceE{w(t)} = 0),

it can be shown thak{u?(7)} is given by:

ZE{@%{a W ha(lk - 17)*

E{ iy, () E,

—i—iil@{?ﬁ{a DHE{R{a()} }g (I — 0T)g (I - nlT) | + E{R{in(m)}}. (60)

=1 n=
i
The expected values 8t{a(k)} and %{a(k)}2 involved in (60) are obtained by averaging them over all

the points in the constellation alphabéy, i.e.:

E{R{a(k)}"}= ZP em] R}’ (61)
E{R{a(k)} }= ZP em] R{Con}- (62)

Starting form (61) and resorting to some algebraic mantmra, we show in Appendix B that:

E{%R{a(k;)}z} = Whap- (63)
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Using equivalent derivations, it can be also shown that:

E{R{a(k)} } = arz. (64)
In order to find the noise contribution through the derivatterm in (60), we recall that the original
continuous-time noise is assumed to be white, B{R{w(t,)} R{w(t2)}} = o%6(t1 — t,). Therefore,
starting from the expression afi,(7) in (59) and resorting to equivalent manipulations as in {160

Appendix A, we obtain:
E{R{in(r)}’} 202/h(t KT - 1) dr,
R
- o / h(t — KT — 7)i(t — kT — 7)dt,
R
= —02§(0). (65)
Note here that, in line with the left-hand side of (65), thghtthand side of the same equation is indeed

positive sincej(0) < 0. This is because the filtey(.) is convex in the vicinity of zero where it also

attains its maximum. Now, using (63) to (65) in (60), it candasily shown that:

E{in(r)?} = B, > (wnap — afy, )3 (1L = KIT) + B, (Z auz g([l-k]T)) ~0%j(0).  (66)

=1
B. Derivation of E{(F,; op (U (T)) / Fre2p (i (T )))2}
This is nothing but the expected value of a known transfoionatf the RV, (7), whose distribution

was already established in (51). Therefore, it can be etedua closed form by integration ovp{uk(r)}

Pl (10) ) / 2, (1)
E Zk2p \UEAT)) P 7)|d
{(Fk,Qp(uk(T))) } k2p(uk(7—)p wf( )
u 7“’“
=2 [ (a0 S ),

Fy, 2p(uk( )

as follows:

After using the explicit expression dr“,ggp(uk(f)), the last equality is further simplified by using the

variable substitutiort = v/2u,(7)/c to obtain:

E{ (w)} = L Uil (67)

F. 2p (uk(T))
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where W 5,(.) in the last equality is given by:

+oo )\2 (t, p) t2
Br,2p d2 k,2p P R
v = —t TR o7 Tt 68
k,QP(p) Nes /—oo 5k72p(t7p) ’ ( )
with
2r—1
Megpl(t,p) =Y (20 — 1)0;p(i)e P10 x sinh <\/ﬁ[2i—1]d t 4 Ll >),
=1
2p—1

Ok2p(t, p) 2:@%7 2’”dwamhgﬁpﬁ—ﬂdt+L%wD

C. Derivation of E {F},, (ux(7))/Frzp(ue(r))}

This expectation can also be explicitly found by integrgtoverp[u,(7)] in (51) to yield:

) - [

Fk’Qp(uk(T))
2 *“k(7)2
= 2 | Rl (n(n)e = du(n) (69)

in which the second derivative of the functidf ,,(.) defined in (44) is given by:

2p—1

Flo(r) = 2837 (2 — 1)26, 5, (0)e 2% x comn (@iw%wg@). (70)

=1

After expanding (70) using the identitysh(x + y) = cosh(z) cosh(y) + sinh(z) sinh(y), plugging the
result back into (69) and then using the fact th'ﬂih(x)e_é is an odd function (i.e., its integral is

identically zero), it follows that (69) is explicitly givehy:
E {-F’g%( (k)) }
F 2p (uk (T))
2Bk2p Pody Lap (k) - 20(i) —p[2i—1]2d2 e VEs[2i—1]d —up (1)
= v,échﬂ”cosh( 5 ) jg: (20 — 1)%0;5,e”" cosh “—2ug(r)) e 207 duy(7).

(71)

Moreover, we show via “integration by parts”, the followieguality for anya > 0 andb € R:

+o00 2 »2
]ﬁ cosh (bx)e " do = §,/Teta, (72)
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which is used in (71), with the appropriate identificatiotsyield the following closed-form expression

for the expectation in (69):

E {Fi’% ) } - B, (73)

Frap (ui(r)) o?

D. Derivation of E {ii(7)F} ,, (ur(7)) / Frzp (ur(7)) }

To find this expectation, we use a standard approach in whechirgt find the expectation conditioned
on u,(7) and then average the obtained result with respeet.ta). By doing so, we obtain:
Ly (w0) . Ff oy (ux()
E _k2p\TEV T = E,JE k2 NV N 74
{Uk(T) o () } k{ {Ulc(T)}uk(T)} Fooy (o (T))} (74)
In order to findEj, 1., {iix(7)|uk(7)} in (74), we must find the explicit expression@f(r) as function of

u(7). In fact, it is easy to show that:

fin(7) = /_m R{y(t) Vit — KT — 7)dt
= \/_ZﬁR{ ) }i([ — K]T) + R{ (1)} (75)

Moreover, from (100) and (102) in Appendix A, we readily have

= VE,®{a()} + R{w(7)}. (76)

Therefore,R®{a(l)} = \/% [w; (1) — R{w;(7)}] which is used in (75) to obtain:

= > [uln) = R{w()}[§(-KT) + R} (77)

=1

Now, sinceE{R{dy(7)}} = E{R{wx(7)}} = 0 and since the RV§w,(7)}, are mutually independent,

it follows that:

E{iiy(7)|ur(r)} = +ZE{ul )} ([1—K]T). (78)
l;ék
But owing to (76) and (64), it immediately follows that:

E{u(r)} = VEE{R{a(1)}} = VE: opa (79)
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Using (79) in (78) and then plugging the obtained result batk (74), we obtain:

e{umiatoll — o {un i) vpe { fapuo) }Zampg 4T) (80)
l#k

Fk,zp(uk(T)) Fk,Qp(uk(T)) Fi.2p Uk(T
As done previously, the two expectations in (80) are derivedlosed-form by integration over the

distribution,p[uk(r)}, already established in (51). The final results are given by:

F, (uk(T))}
E h2p =2 , 81
{u"”(T)Fk 2 (un(7)) Pk (81)
Fp o (U(k)) } VEs
EQ —2er L4 = Voo , 82
{ Fopo (uk (7—)) = ak72p ( )
which are used in (80) to yield:
o (w@) . .
R < dig (1) 20" 0 b = 2| weay §(0) +okay ¥ auy §([1 = KIT) | (83)
Fk,2p< k(T)) l;ﬁk
Finally, by injecting (66), (67), (73), and (83) back into5§5 the analytical expression of; ,(7) is
obtained as:
2
Tap(T) = 4p? [WMp—‘I’kzp } [Z(wmp al?p) (L~ <Zal2pg ([—k >]
=1
—2p {\I]k 2 (P) — oy, 2pZOél 2p9 l — )} (84)
£k

Due to the apparent symmetries between the distributiotiseofwo RVsu,(7) andv,(7), the analytical

expression ofy, 5,_1(7) can be directly deduced from the one-gf,,(7) by easy identifications as:

Vrap—1(T) =4p° [wk,zp—l - ‘Ifmp—l(p)} [i (Wl,zp—l - al2,2p—1)92([l —k|T) + (i 2p—1 ([l—k‘]T)>
=1

=1

=2 Wy s(4)5(0) + s 3z 51— KT 9
12k

The closed-form expression for the TD CA CRLB is then obtdias the inverse of the Fisher information
given by (48), i.e.:

1
CRLB = . 86
R o S— (89)

It is worth mentioning here that the turbo-code setup is regded in our derivations and that the new

CA CRLB expression (86) is actually valid for any coded syst@ general. In fact, we have so far
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only exploited the fact that the constellation is Gray-ab@&d we have expressed the CA TD CRLBs
explicitly in terms of the coded bitsa priori LLRs. Yet, we will explain in the next subsection how
these unknown LLRs are obtained from the output of the SISédkrs in a turbo-coded system. Yet,
they can also be obtained from LDPC-coded systems in the samye way if the latter are decoded
with the turbo principle [37], [38] (i.e., MAP or BCJR decatleln this case, the so-called check nodes
(C-nodes) and variable nodes (V-nodes) [37] play the vergeseole as SISO decoders in turbo-coded

systems.

E. Evaluation of the analytical CA CRLBs

In order to compute and plot the new CA CRLBs, one needs taatalthe coefficients;, , and oy,
for ¢ = 2p andq = 2p — 1. These coefficients are, however, functions of ¢hpriori LLRs, L;(k), as
seen from (56) and (57). In the sequel, we briefly explain hbasé¢ LLRs can be obtained from the
output of the SISO decoders at the convergence of the BCIRithligp. First, the MF returns a sequence

of K symbol-rate samples:

y(r) = [n1(m), (1), yx ()], (87)
where (cf. Appendix A):
w(r)=[ YOh(t— KT — 7)dt = v/Ex a(k) + (7). (88)

Then, the soft demapper extracts the so-caliedikelihoods:

s, (PO =1]

for all the code bits and feed them as inputs to the turbo dac®y exchanging the so-callestrinsic

information between the two SISO decoders, #hgosteriori LLRs of the code bits:

P@fzﬂyﬁﬂ)
Plby =0ly(r)] }

L®=m< (90)
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are updated iteratively according to the turbo principle tié¢note their values at th&" turbo iteration
as Tl(”(k;). After say R turbo iterations, a steady state is achieved Wheﬁéﬁ?(k) ~ T,(k), for every

[ and k, and their signs are used to detect the bits. Yet, owing toabk-known Bayes’ formula, we

have:
P[of =1]y(r)] = ply(IY = P = 1] (91)
: ply(7)] ’
and
Ptk = ofy(r)] = PO =PI = 0] (92)

ply(7)]
Therefore, by taking the ratio of (91) and (92) and applyimg natural logarithm, it immediately follows

that:
Li(k) = Tu(k) — M(k) = T (k) — Ay(k), (93)

meaning that the requirea priori LLRs of the code bits can be easily obtained from their stestdie

a posteriori LLRs andA;(k) already computed by theoft demapper prior to data decoding.

V. NEw TIME DELAY CA ML ESTIMATOR

As mentioned previously, the timing recovery task is in&gd within the turbo iteration loop. But in
order to initiate the turbo decoding process itself, theetateeds some preliminary information-bearing
symbol-rate samples. The latter can be obtained at the batghe MF (corrected With?ML_NDA) where

TmLnpa IS the NDA MLE for the TD parameter estimated as:

?ML-NDA = argmax ,C(O) (7'), (94)

where £()(.) is the NDA LLF obtained directly from its CA counterpart in54by setting L;(k) = 0

for all [ andk, i.e.:
£O(r) = 3 [m (P () +1n (F (x(7)) |. (95)

“In the NDA case (i.e., before starting data decoding),anpriori information about the bits is available at the receiver erel,

Plbf = 0] = P[bf = 1] = 1/2 and thusL;(k) = 0 for all  and k.
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in which F'(.) is simply given by:

op—1
F(x) 226_”N“d123[2"_”2 cosh (725[22‘—;]2\/1\7_@% x)

i=1

The iterative algorithm that maximize&® () with respect tor in (94) will be detailed at the end of this
section. Note also that,(7) andv,(7) involved in (95) are the real and imaginary parts of a digctehe
MF output that is obtained as follows. At the receiver sigg) is upsampled using a sampling period

T, <T/(1+ ) with g being the roll-off factor to obtain:
K
y(IT,) = /E, Y a(k) h(IT, — kT — 1) + w(ITy).
k=1
These high-rate samples are then passed through a disonetddF to obtain the symbol-rate samples:
ye(7) =y x h(IT,—kT—7) =Yy h(IT,— kT —7)dt,
l

from which we obtainu(7) = R{yx(7)} andv,(7) = S{yx(7)} which are used in (95). Onc&u-npa
is acquired, the corresponding sequence of symbol-rat@lsam

~ ~ ~ ~ T
y(TmLnDA) = [yl(TML-NDA)ay2<7'ML-NDA>7 cee ,yK(TML-NDA)] )

is passed to the soft demapper in order to findlidikelihoods required to start the decoding process.
To exploit the output of the decoder and better re-synclaettie system, at per-turbo-iteration basis,

we modify (93) as follows:
L7 (k) = 17 (k) = AV (k), (96)

in order to obtain a more refined TD estima%‘é’t)_CA, after each-’" turbo iteration as will be explained
shortly. Note here thatl(’"‘l)(k:) are the bit likelihoods that are obtained after re-syncizing the system
with ﬁ(,ff_cli\, i.e., the TD estimate corresponding to the previous tutdr@iion. These are fed to the SISO
decoders to compute an update for thposteriori LLRs, Y\"(k), at the current*" turbo iteration. The

refined TD MLE is thereof obtained as:

?,\(,lrl_)_CA = argmax ,C(T)(T), (97)

T
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where £()(7) is the CA LLF in (45) evaluated using” (k) instead ofL,(k), i.e.:

L£O(r Zln( oo (uk (T ))) +In (sz)p (ve(r ))>,

in which Fk(fq)(.) is given by:

op—1

. (r)
F (@) Z@ e P21 ol <\/E*S{iz2—11dpx L (k)))

2

T

for ¢ = 2p and2p—1. Here, 0}, (i) and ), (i) are also obtained by using” (k) instead ofL; (k)

in (41) and (42), respectively.

A key detail that is still missing needs to be addressed herow the NDA and CA LLFs are maximized
in (94) and (97). Actually, since these LLFs were derived iosed-form expressions, they can be
easily maximized using any of the popular iterative techagsuch as the well-known Newton-Raphson

algorithm:

9L (r)\ L (7)
( ot2 ) or ] ’ (%8)

T = 7':1.(1‘)1
in which 7, r )is the TD update pertaining to thi& Newton-Raphson iteration. The algorithm stops once

the convergence criterign” -7, | < e is mef to produce?l\(ﬂ’”L) ca as the CA TD MLE during the' turbo

iteration. Note, however, that the Newton-Raphson algorittself is iterative in nature and, therefore,
requires a reliable initial gues&@, to ensure its convergence to the global maximum of the lyidgr
objective LLF. At eachr™ turbo iteration, the algorithm is initialized bfé’") = ﬁ(,l’f_cli\ (i.e., by the TD
MLE pertaining to the previous turbo iteration). At the veingt turbo iteration, however, the algorithm
is initialized with the NDA MLE, 7 .npa, Obtained in (94). The latter is obtained by maximizi&§ (r)
itself via the very same Newton-Raphson algorithm and theesponding initial guess is obtained by
a broad line search ovet. For better illustration, Fig. 1 depicts the architectufeéh® newly proposed

CA ML timing recovery algorithm.

SNote here that is a predefined threshold that governs the required estmaitcuracy.
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' Turbo Decoding iteration

Fig. 1. Flowchart of the new CA TD ML estimator.

VI. SIMULATION RESULTS

In this section, we provide some graphical representataintie new TD CA CRLBs for different
modulation orders and different coding rates. We also aeailyy computational complexity and compare
it to that of the existing sum-product expectation-maxatian (SP-EM) timing recovery algorithm [25].
The encoder is composed of two identical RSCs concatenatpdrallel, having generator polynomials
(2,0,1,1) and (1,1,0,1), and a systematic rate= % each. The output of the turbo encoder is punctured
in order to achieve the desired code rateFor the tailing bits, the size of the RSC encoders memory is
fixed to4. We consider a root-raised-cosine (RRC) signal with réflifactor o = 0.2. We also consider
QPSK and 16-QAM, as two representative examples of squald-Qonstellations, and two different
coding rates, namely = % andR = %

We begin by verifying in Figs. 2 and 3 that the new analyticAl CRLBs coincide with theirempirical

counterparts obtained previously in [29] from exhaustiverté-Carlo simulations. In fact, unlike our
closed-form solution, an extremely large number of noisgestations was generated in [29] in order
to find an empirical value for the expectation involved in #isher information (47). Hence, our new
analytical expression corroborates these previous atgetopevaluate the underlying TD CA CRLBs

empirically and allow their immediate evaluation for any square-QANMbdtucoded signal.
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Comparison between the empirical and analytical GALBs for different code ratesR, as function of the SNR: QPSK, rolloff

=== NDA CRLB
—O—CA CRLB (emprirical)
—e—CA CRLB (analytical)
DA CRLB

R=1/3

R=1/2

Fig. 3. Comparison between the empirical and analytical GALBs for different code ratesR, as function of the SNR: 16-QAM, rolloff

=0.2.

As expected, we also see from both figures that the CA CRLBsragdler than their NDA counterparts.

This highlights the performance improvements that can éeged by a coded system over an uncoded

one by exploiting the information about the transmitted lifiat is obtained from the SISO decoders.

Additionally and most prominently, the CA CRLBs decreasadly and reach the DA CRLBs which are

the best bounds ever one would be able to achieve if all tmesimdated symbols were perfectly known
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to the receiver, hypothetically.
In the sequel, we also assess the performance of the new TD CAdWmator using the normalized

(by T?) mean square error (NMSE) as a performance measure:

2
M. ~|m _
1 E:nnﬂ_(ﬂ&dCA "7)

NMSE = —
T2 M, ’

(99)

~[m]

where7,," ¢4 is the estimate of generated from the:” Monte-Carlo run form = 1,2..., M.. In Figs.

4 and 5, we plot the NMSE of the new estimator for QPSK and 18/Qfansmissions obtained from
M, = 5000 Monte-Carlo trials, and benchmark the resulting perforoeacurves against the corresponding
new CA CRLBs. To illustrate the performance advantage dnobyg CA estimation as compared to NCA
estimation (from the algorithmic point of view), we also pio the same figures the NMSE of the NDA
TD ML estimator (94). Figs. 4 and 5 show that the potentiahestion performance gains (attributed to the
decoder’s assistance) made predictable timoretically by the CA CRLBs can be achieved practically
by the newly proposed CA ML estimator. More interestinghg thew estimator almost reaches the CA

CRLB over the entire practical SNR range confirming therdbystatistical efficiency.

- O-NDA ML
= = NDA CRLB
—O—New CA ML
—*—CA CRLB
—DA CRLB

NMSE

Fig. 4. NMSE of the new CA ML estimator for different code |t&, as function of the SNR: QPSK, rolloft 0.2.

In the same figures, we can also observe unambiguously te effthe coding rate, on CA estimation

performance. Even though the same NMSE levels are achidgvedasively high SNRs forR = % and
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- O-NDA ML
- - - NDA CRLB
—O—New CA ML
—*—CA CRLB
——DA CRLB

NMSE

Fig. 5. NMSE of the new CA ML estimator for different code ®t&, as function of the SNR: 16-QM, rollofE 0.2.

R

%, the estimator performs quite differently for the two ratgghe same SNR values. In fact, with
smaller coding rates, more redundancy is introduced by tleeder and, hence, the decoder becomes
more likely able to correctly detect the transmitted bitereby enhancing the estimation performance.
Now, if we turn the tables and assess the effect of moduladioler on estimation performance at the
same coding rate, we observe without any surprise that é@rideates with larger constellations at any
given SNR level. This typical behavior was already obseimeldDA estimation and, as a matter of fact,
in any parameter estimation problem involving linearlydulated signals. Indeed, when the modulation
order increases, the inter-symbol distance decrease®foratized-energy constellations. As such, at the
same SNR level, noise components have a relatively worsadtmgm symbol detection and parameter
estimation in general.

Finally, we compare the new CA ML TDE to the existing SP-EM Mased algorithm both in terms
of estimation performance and computational complexit¥igs. 6 and 7, respectively.
In Fig. 6, even though both estimators perform nearly theesauith QPSK signals over the entire SNR
range, we observe with 16-QAM a clear advantage of the new QAT estimator over SP-EM at
low SNR levels. The superiority of the proposed estimatardP-EM can be even better appreciated

when it comes to computational complexity. In fact, we ploHg. 7-(a) the total number of operations
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Fig. 6.
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6
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NMSE of the new CA ML estimator and SP-EM for differemutde rates and modulation orders, rolleff0.2.
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Fig. 7.

operations, and (b) complexity ratio.

o

64
Modulation order (M)

416 256

complexity of the new CA ML estimator and SP-EM forfelient code rates versus the modulation order: (a) totalbeurof

(i.e., additions, multiplications, and divisions) readrby both estimators versus the modulation order.

There we can see that the new CA ML estimator entails muchrl@emputational load. The ratio of

complexities depicted in Fig. 7-(b) suggests, indeed, tthaproposed estimator is about 30 and 70 times

computationally less expensive than SP-EM for 64- and 2B6AQrespectively.
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VIlI. CONCLUSION

In this paper, we derived for the first time the closed-fornpressions of the Cramér-Rao lower
bounds for code-aided symbol timing estimation from tudooded square-QAM transmissions. The new
CA CRLBs revealed the huge performance improvements ingeriming recovery are achievable by
exploiting the soft information delivered by SISO decodatsach turbo iteration. The new analytical
CRLBs coincide exactly with their empirical counterparssablished in previous pioneering works on the
subject but from exhaustive Monte-Carlo simulations. Vé® aleveloped a new code-aided ML time delay
estimator that is able to achieve the potential performgages made thoroughly and instantly predictable
by the new closed-form CA CRLBs. The new estimator also et remarkable advantage in terms
of computational complexity as compared to the most powevi-type algorithm that exists in the
literature, namely SP-EM. Simulations results also sh@aintuitively expected, that the CA estimation

performance improves by decreasing the coding rate, nereasing the amount of redundancy.

APPENDIX A

A.1) Proof of LEMMA 1:

In order to find the pdfs ofu.(7) and v;(7) defined in (37) and (38), respectively, and prove that

they are two independent RVs, we define the following propenmex RV:
+00

yul(r) 2 / y(t) h(t — KT — 1)t = u(r) + jou(r), (100)

which verifiesp [y ()] = p[u(7),vs(7)]. Moreover, replacing(t) by its expression given by (4) in

(100) and resorting to some easy algebraic manipulatioasphtain:

() = VE, Y a(k) / Ooh(x)h(x + [K — K] T)dt + wi(7),

7

o([k kT
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wherewy(7) is the filtered noise component, i.e.:

wi(1) £ /_+Oow(t)h(t — kT — 7)dt. (101)

[e.e]

Recall that the shaping pulsgt) verifies the first Nyquist criterion stated in (6), i.@([k' — k|T) =

0(k" — k), thereby leading to:

\/7a )+ wi(T (102)

Further, it can be verified from (101) that,(7) is Gaussian distributed with zero-mean and variance

202, Hence, the pdf ofj.(7) conditioned omu(k) is also Gaussian; i.evc,, € C, we have:

plye(T)]a(k) = ¢ ] = s exp{ o ‘yk(f)—\/Ecm‘z} .

After expanding the modulus in the exponential argumentait be easily shown that ¢,, € C, we
have:

Cyp()?

p[yk(7)|a(k) = cm] = 273026 202 (). (cm, y(t)), (103)

where QT(cm,y(t)) is given in (22). Then, by averaging over all the constalatpoints inC, and

recalling the expression @t (7) in (27), the pdf ofy,(7) is obtained as:

\uk(T)\

plun(7)] = e 27 (7). (104)

Finally, using the factorization of),(7) obtained in (43) along withy,(7)|? = u2(7) + v3(7) and
Bk = Br.2pBrk2p—1, it follows that:
2 2
_uk(T)+Uk(T)
p[yk(T)} — 461@,221)7?;2,21:716 202—Fk,2p (uk(T))Fk,zp—l(Uk(T))
2
e _ %)
= 261@,21’ e 202 Fk?,2p(uk:(7-)) 251’;’%6 202 ij72p—1(vk(7—))

plun(r)] ploe ()]

J/

From the last equality, we obtaimy,(7)] = p[ur(7)]p[vk(7)]. But since from (100) we already have
ye(7) = (1) + jue(7), then we also have[y,(t)] = pluy(7),ve(r)]. Therefore, it follows that

plu(r), ve(7)] = p[ur()]p[vk(7)], meaning that the two RV&, () andu,(7) are actually independent
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and their distributions are, respectively, given by (519 #62).

A.2) Statistical Independence of.(7) and 1 (7):

First, it follows from (100) that:

M /§R{y )} h(t — kT — 7)d. (105)

uk(T)

Again, we replacey(t) by its expression given in (4) and then we use the factdhatis an odd function

to show that:

Z R{a(k) }g([k — K1T) + R{an (1)}, (106)
wherewy(7) is the derivative ofw,(7) with respect tor, which is obtained by replacin(t — kT — 1)
by —A(t — kT — 7) back in (101). Recall also th&t0) = 0 (since the maximum of(x) is located at
0), leading to:

\FZ%{@ )V ha(lk — KT) + R{w(r)}. (107)

k;ﬁk

Recall also from (100) thai,(7) = R{yx(7)} and, therefore, we have from (102) :

= VER{a(k)} + R{uwn(r)}. (108)

Notice from (107) thaty, () involves the contribution of all the symbols except tieone [i.e.,a(k)] that

is, in turn, the only one involved in,(7) as seen from (108). Since the symbols are mutually indepgnde
then in order to show the independence.pfr) and,(7), it suffices to show the independenceugf( )
and @y (7). These are actually two RVs that are obtained from linearsfmations (i.e., integral and

derivative) of the same Gaussian proces$) and, hence, they are also Gaussian distributed. Their
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cross-correlation is given by:

E {wy(r)in(r)} — / / E{w(ty)w(ts) Yt — KT — 7)i(ts — KT — 7)dtydts
— 2 //+OO (11 — ta)h(t)) R(te)dtrdts
= 20%(0
_ o (109)

meaning that the two Gaussian-distributed RVjg7) andw(7) are uncorrelated and, therefore, inde-

pendent as well. Consequently,(7) and,(7) are also independent.

APPENDIX B
Using the decompositiodl, = C, U (—C,) U 5; U (—5;) and noticing that:
2 - 2 e 12 e 12 - 5
%{cm} :%{—cm} zéR{cm} :%{—cm} ., YV ém €l
we rewrite (61) as follows:

E{R{a(k)}’} = Z%{cm}( k) =] +Pla(k) =—Gn] + Pla(k) =] + Pla(k) = —,]).(110)

Cm ECP

Moreover, by using the explicit expressions of the symbélBPs given in (29)-(32), along with the
identity cosh(z) + cosh(y) = 2 cosh(£5) cosh(%5¥), we obtain:
Prla(k)=2¢,]+Prla(k)=—¢y]+Prla(k)=c;, ]+ Prla(k)=—c,]

= 2B3pk,p(Cim) [COSh <—L2p(k +2LQ” dt )) +cosh <—L2”(k ZLQ’H(MH ;

= 4Bk p(Cm)cosh (LQ” )cosh (LQ”%W), (112)

Now, plugging (111) back into (110), rewriting the sum ovgre ép as a double sum over the counters

i andn [whereé,, = (2i — 1)d, + j(2n — 1)d, as done in (39)], and using the decomposition in (40), it
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can be shown that:

2p—1 gp—1
E{é)%{a(k)f} = 4B ; ; [(21 - 1)2d§9k,2p(i)9k,2p—1(n) X cosh <L2PTUC)> cosh (LQP;(’“))}
op—1 op—1
= 20k 2pcosh (LQPTUC)> Z@Z — 1)2d205 2 (i) X 2B 2p—1c0sh (L’;l(k)) Z Or,2p-1(1),
i=1 !

(112)

where the decompositiofl, = 2,0k 2,—1 Was used in the last equality as well. Moreover, it has been

recently shown in [34LEMMA 3] that for¢ = 2p and2p — 1:

2p—1
26 ,cosh (LT““) S bg(n) = 1, (113)
n=1
which is used back in (112) to obtain the following result:
E{?R{a(k)}2} = Wi (114)
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