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Abstract

This paper introduces a new maximum likelihood (ML) solution for the code-aided (CA) timing recovery

problem in square-QAM transmissions and derives, for the very first time, its CA Cramér-Rao lower bounds

(CRLBs) in closed-form expressions. By exploiting the fullsymmetry of square-QAM constellations and further

scrutinizing the Gray-coding mechanism, we express the likelihood function (LF) of the system explicitly in terms

of the code bits’a priori log-likelihood ratios (LLRs). The timing recovery task is then embedded in the turbo

iteration loop wherein increasingly accurate estimates for such LLRs are computed from the output of the soft-

input soft-output (SISO) decoders and exploited at a per-turbo-iteration basis in order to refine the ML time delay

estimate. The latter is then used to better re-synchronize the system, through feedback to the matched filter (MF),

so as to obtain more reliable symbol-rate samples for the next turbo iteration. In order to properly benchmark the

new CA ML estimator, we also derive for the very first time the closed-form expressions for the exact CRLBs

of the underlying turbo synchronization problem. Computersimulations will show that the new closed-form

CRLBs coincide exactly with their empirical counterparts evaluated previously using exhaustive Monte-Carlo

simulations. They will also show unambiguously the remarkable performance improvements of CA estimation
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against the traditional non-data-aided (NDA) scheme; thereby highlighting the potential performance gains in time

synchronization that can be achieved owing to the decoder assistance. Over a wide range of practical SNRs,

CA estimation becomes even equivalent to thecompletely data-aided (DA) scheme in which all the transmitted

symbols are perfectly known to the receiver. Moreover, the new CA ML estimator almost reaches the underlying

CA CRLBs, even for small SNRs, thereby confirming its statistical efficiency in practice. It also enjoys significant

improvements in computational complexity as compared to the most powerful existing ML solution, namely the

combined sum-product and expectation-maximization (SP-EM) algorithm.

I. INTRODUCTION

IN order to provide high quality of service while satisfying the ever-increasing demand in high

data rates, the use of powerful error-correcting codes in conjunction with high-spectral-efficiency

modulations is advocated. Indeed, turbo codes along with high-order quadrature amplitude modulations

(QAMs) are two key features of current and future wireless communication standards such as 4G long-

term evolution (LTE), LTE-advanced (LTE-A) and beyond (LTE-B) [1, 2]. As a crucial task in any

digital receiver [3], accurate time synchronization remains a challenging problem especially for turbo-

coded systems since they are intended to operate at very low signal-to-noise ratios (SNRs). In fact, the

widespread adoption of turbo codes is in part fueled by theirability to operate in the near-Shannon

limit even under such adverse SNR conditions [4]. Yet, the salutary performance of these powerful

error-correcting codes is prone to severe degradations if the system is not accurately synchronized in

time, phase or frequency. The goal of time synchronization,in particular, consists in estimating and

compensating for the unknown time delay introduced by the channel so as to provide the decision device

with symbol-rate samples of lowest possible inter-symbol interference (ISI) corruption [3].

The problem of timing recovery for linearly-modulated transmissions has been heavily investigated over

the last few decades. A plethora of time delay estimators (TDEs) have been introduced in the open

literature and the vast majority of existing TDEs are intended to operate withcomplete unawareness of

the code structure (see [5-14] and references therein). In other words, the TD estimate is acquired just
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after oversampling the continuous-time signal and then provided to a discrete-time MF in order to output

the symbol-rate samples. The latter are then used by the turbo decoder, once for all, to decode the data

bits. Therefore, the fact that a large portion of the data bits is to become almost perfectly known (i.e.,

correctly decoded) is systematically ignored by those estimators. The latter are referred to asnon-code-

aided (NCA) or simply NDA TDEs since noa priori knowledge about the transmitted symbols is used

during the estimation process and, as such, they suffer fromsevere performance degradations under harsh

SNR conditions. Being more accurate and usually less computationally expensive, DA methods require,

however, the regular transmission of a completely known (i.e., pilot) sequence thereby limiting the whole

throughput of the system.

It sounds reasonable then to conceive a third alternative asa middle ground between these two extreme

NDA and DA estimation schemes. Indeed, rather than relying on perfectly known or completely unknown

symbols, CA estimation takes advantage of thesoft information delivered by the decoder at each turbo

iteration. In plain English, the decoder assistance is called upon in an attempt to enhance the timing

recovery capabilities yet with no impact on the spectral efficiency of the system. In fact, from one turbo

iteration to another, more refined soft information about the conveyed bits are delivered by the two

soft-input soft-output (SISO) decoders. These arei) the a posteriori LLRs of the code bits andii) their

extrinsic information. According to the turbo principle, the latter are iteratively exchanged between the

two SISO decoders until achieving a steady state whosea posteriori LLRs are used as decision metrics for

data detection. In a nutshell, CA estimation consists simply in leveraging those soft outputs, by embedding

the timing recovery task into the decoding process, in an attempt to enhance the estimation performance

and vice versa. In the context of timing, phase, and frequency recovery, such CA estimation scheme is

usually referred to asturbo synchronization [26]. A number of CA timing recovery algorithms have been

proposed over the last decade [15-27] and, to the best of the authors’ knowledge, only two approaches

are derived from ML theory. The first one [19] is based on the well-known expectation maximization
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(EM) algorithm whereas the second [25] is a combined sum-product (SP) and EM algorithm approach

(i.e., an improvement of [19]). The SP-EM-based ML estimator offers indeed significant performance

improvements over the original EM-based estimator but at the cost of increased computational complexity.

In the SP-EM-based ML approach, an EM iteration loop is required in each turbo iteration wherein the

algorithm stwitches between the so-called expcetation step (E-STEP) and maximization step (M-STEP).

Roughly speaking, in each turbo iteration, the algorithm performs the following main four steps for each

EM iteration:

• Obtain new symbol-rate samples (via MF) using the TD estimate of the previous EM iteration;

• Update the symbols’a posteriori probabilities (APoPs) using those new symbol-rate samples;

• Marginalizeempirically the conditional (on the transmitted symbols) likelihood function with respect

to those APoPs (E-STEP) ;

• Maximize the marginalized LF with respect to the working TD variable (M-STEP).

At the convergence of the EM algorithm, the obtained TD estimate is used to acquire new ISI-reduced

(symbol-rate) samples which will serve as input for the nextturbo iteration where all the aforementioned

EM-related steps are repeated.

In this paper, we re-consider the problem of CA time synchronization from both the “performance bounds”

and “algorithmic” point of views. By exploiting the full symmetry of square-QAM constellations and

further scrutinizing the Gray coding mechanism, we are ableto derive a closed-form and very simple

expression for the system’s LF. Typically, marginalization of the conditional LF with respect to transmitted

symbols is carried-out analytically and thea priori LLRs of the elementary code bits are explicitly

incorporated in the LF expression. We propose thereof a moresystematic framework to their direct

integration in the CA estimation process, thereby eliminating completely the need for the EM iteration

loop under each turbo iteration. In other words, the new LF needs to be maximized only once per-turbo

iteration (contrarily to SP-EM) after being updated by the associateda priori LLRs which are computed
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from the output of the SISO decoders. Consequently, the proposed CA timing recovery algorithm offers

significant improvements in computational complexity as compared to the existing SP-EM. As a matter

of fact, the new algorithm is 35 and 70 times less computationally complex than SP-EM for 64 and 256

QAMs, respectively. It also enjoys an advantage in terms of estimation accuracy for low SNR levels and

higher-order modulations.

From the “performance bounds” point of view, we also tackle the analytical derivation of thestochastic

CRLBs for the underlying CA estimation problem. Actually, unlike many other loose bounds, the

stochastic1 CRLB is a fundamental lower bound that reflects the actual achievable performance in practice

[36]. Yet, even under uncoded transmissions, the complex structure of the LF makes it extremely hard,

if not impossible, to derive analytical expressions for this practical bound, especially with high-order

modulations. Therefore, in the specific context of timing recovery, the stochastic CRLBs were previously

evaluated using exhaustive Monte-Carlo simulations (i.e., empirically) in [30] and [29] for both NCA

and CA estimations, respectively. Just recently though were their analytical expressions established [31]

but only in the NCA (i.e., NDA) case.

In this paper, we succeed in factorizing the LF of the coded system as the product of two analogous

terms involving two random variables that arealmost identically distributed, i.e., their probability density

functions (pdfs) have the same expression but parametrizeddifferently. We then capitalize on this

interesting property to derive, for the very first time, the closed-form expressions for the TD CA CRLBs

from arbitrary turbo-coded square-QAM-modulated transmissions. The new closed-form expressions

corroborate the previous attempts reported in [29] to evaluate the TD CA CRLBsempirically and offer a

way to their immediate evaluation in practice. Moreover, aswill be shown later, the previously published

closed-form NDA CRLBs [31] boil down to a very special case ofthe new closed-form CA CRLBs by

simply setting all the code bits’a priori LLRs to zero.

1In linearly-modulated transmissions, thestochastic model refers to estimation under the assumption of unknown and random transmitted

symbols. This to be opposed to thedeterministic model wherein the symbols are assumed to be unknown butnot random [5].
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The rest of this paper is structured as follows. In section II, we present the system model. In section III,

we derive the expression of the log-likelihood function (LLF) and express it explicitly as function of the

coded bits’a priori LLRs. in Section IV, we establish the new closed-form expressions for the TD CA

CRLBs. In Section V, we introduce the new CA ML time delay estimator. In Section VI, we discuss

the simulation results of the proposed CA ML estimator and closed-form CRLBs. Finally, we draw out

some concluding remarks in section VII.

We also mention beforehand that some of the common notationswill be used in this paper. Vectors and

matrices are represented in lower- and upper-case bold fonts, respectively.IN and0N denote, respectively,

theN×N identity matrix and theN−dimensional all-zero vector. The shorthand notationx ∼ N (m,R)

means that the vectorx follows a normal (i.e., Gaussian) distribution with meanm and auto-covariance

matrix R. Moreover, {.}T and {.}H denote the transpose and the Hermitian (transpose conjugate)

operators, respectively. The operatorsℜ{.} andℑ{.} return, respectively, the real and imaginary parts of

any complex number. The operators{.}∗ and|.| return its conjugate and its amplitude, respectively, andj

is the pure complex number that verifiesj2 = −1. The Kronecker and Dirac delta functions are denoted,

respectively, asδm,n and δ(t). We will also denote the probability mass function (PMF) fordiscrete

random variables (RVs) byP [.] and the pdf for continuous RVs byp[.] The statistical expectation is

denoted asE{.} and the notation, is used for definitions.

II. SYSTEM MODEL

Consider a turbo-coded system where a binary sequence of information bits is fed into a turbo encoder

consisting of two identical recursive and systematic convolutional codes (RSCs) which are concatenated

in parallel via an inner interleaverΠ1. The resulting code bits are fed into a puncturer which selects an

appropriate combination of the parity bits, from both encoders, in order to achieve a desired code rate

R. The entire code bit sequence is then scrambled with an outerinterleaver,Π2, and divided intoK

subgroups of2p bits each for some integerp ≥ 1. The kth subgroup of code bits,bk1b
k
2 · · · bkl · · · bk2p, is
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conveyed by a symbola(k) that is selected from a fixed alphabet,Cp = {c0, c1, · · · , cM−1}, of aM−ary

(with M = 22p) QAM constellation (i.e., square-QAM). In fact, each point, cm ∈ Cp, is mapped onto a

unique sequence oflog2(M) = 2p bits denoted here as̄bm1 b̄
m
2 · · · b̄ml · · · b̄m2p, according to the Gray coding

mechanism, and the pointcm is selected to convey thekth code bits subgroup [i.e.,a(k) = cm] if and

only if bkl = b̄ml for l = 1, 2, · · · , 2p. We also define thea priori LLR of the lth code bit,bkl , conveyed

by a(k) as follows:

Ll(k) , ln

(
P [bkl = 1]

P [bkl = 0]

)
. (1)

Using (1) and the fact thatP [bkl = 0] + P [bkl = 1] = 1, it can be easily shown that:

P [bkl = 1] =
eLl(k)

1 + eLl(k)
and P [bkl = 0] =

1

1 + eLl(k)
. (2)

For mathematical convenience, the two identities in (2) canbe merged together to yield the following

common generic expression:

P [bkl = b̄ml ]=
1

2 cosh
(
Ll(k)/2

)e(b̄
m
l −1)

Ll(k)

2 , (3)

in which b̄ml is either0 or 1 depending on which of the symbolscm is transmitted, at time instantk,

and of course on the Gray mapping associated to the constellation. The obtained information-bearing

symbols,{a(k)}Kk=1, are then pulse-shaped and the resulting continuous-time signal:

x(t) =

K∑

k=1

a(k) h(t− kT ), (4)

is transmitted over the communication channel withT being the symbol duration andh(t) a unit-energy

square-root shaping pulse. Being completely unknown to thereceivera priori, the transmitted symbols

{a(k)}k are drawn from a givenM-ary Gray-coded (GC) square-QAM constellation whose alphabet is

denoted asCp = {c0, c1, · · · , cM−1}. Here, bysquare QAM we meanM = 22p for some integerp ≥ 1

(
i.e., QPSK,16−QAM, 64−QAM, etc...

)
. The Nyquist pulseg(t) obtained fromh(t) is defined as:

g(t) =

∫ +∞

−∞
h(x)h(t + x)dx, (5)
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and satisfies the first Nyquist criterion [3]:

g(nT ) = 0, for any integern 6= 0. (6)

At the receiver side, assuming perfect frequency and phase synchronizations, the (delayed) continuous-

time received signal before matched filtering is expressed as:

y(t) =
√
Es x(t− τ) + w(t), (7)

whereEs is the transmit signal energy andτ is the unknown time delay parameter to be estimated.

Moreover,w(t) is a proper complex additive white Gaussian noise (AWGN) with independent real and

imaginary parts, each of varianceσ2 (i.e., with overall noise powerN0 = 2σ2). The SNR of the channel

is also denoted as:

ρ ,
Es

N0

=
Es

2σ2
. (8)

An integral step in the derivation ofstochastic ML estimators and CRLBs consists in finding the LLF

of the system. This requires marliginalizing the conditional (on the unknown symbols) LF over the

constellation alphabet. Incompletely NDA estimation (or before data detection), noa priori information

is available about the transmitted symbols. Therefore, thelatter are usually assumed to be equally likely,

i.e., with equala priori probabilities (APPs). That is to say∀ cm ∈ Cp:

P [a(k) = cm] =
1

M
for k = 1, 2, · · · , K. (9)

In CA estimation, however, the actual APPs of the transmitted symbols must be used in order to enhance

the estimation performance as done in the next section. By doing so, we will ultimately express the

LLF explicitly as function of thea priori LLRs of the individual coded bits. As will be explained later

in Section IV-E, accurate estimates for the underlying LLRscan be obtained in practice from the soft

outputs of the two SISO decoders at the convergence of the BCJR algorithm [32].
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III. D ERIVATION OF THE LLF

As widely known, the set of finite-energy signals usually denoted as:

L2
R
=

{
s(t) such that

∫

R

|s(t)|2dt < +∞
}
,

form an infinite-dimension Hilbert subspace [35] that can beendowed with an orthonormal basis{ϕn(t)}n

and an inner product as follows:

〈s1(t), s2(t)〉 =
∫

R

s1(t)s2(t)
∗dt, ∀ s1(t), s2(t) ∈ L2

R
. (10)

Therefore, an exact discrete representation for any continuous-time signals(t) ∈ L2
R

requires an infinite-

dimensional vector,s, that contains its expansion coefficients,
{
sn = 〈s(t), ϕn(t)〉

}
n
, in the basis

{ϕn(t)}n. To sidestep this problem, we first consider theN-dimensional truncated representation vectors:

yN = [y1, y2, . . . , yN ]
T, (11)

wN = [w1, w2, . . . , wN ]
T, (12)

xN(τ) = [x1(τ), x2(τ), . . . , xN(τ)]
T. (13)

that contain the orthogonal projection coefficients ofy(t), w(t), andx(t− τ), respectively, over the first

N basis functions{ϕn(t)}Nn=1 (for anyN ≥ 1), i.e.:

yn=
〈
y(t), ϕn(t)

〉
=

∫

R

y(t)ϕn(t)
∗dt, (14)

wn=
〈
w(t), ϕn(t)

〉
=

∫

R

w(t)ϕn(t)
∗dt, (15)

xn(τ) =
〈
x(t− τ), ϕn(t)

〉
=

∫

R

x(t− τ)ϕn(t)
∗dt, (16)

Using (7) and (14) to (16), it follows that:

yN =
√

Es xN(τ) +wN . (17)

Due to the orthogonality of the basis functions, it can be shown that the noise projection coefficients,

{wn}Nn=1, explicitly given by (15) are uncorrelated, i.e,E
{
wnw

∗
m

}
= 2σ2δn,m. Hence, they are independent
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since they are also Gaussian-distributed2 leading towN ∼ N (0N , 2σ
2IN). Therefore, the pdf of the

vectoryN in (17) conditioned on the sequence of transmitted symbols,a = [a(1), a(2), . . . , a(K)]T , and

parametrized byτ is given by:

p(yN |a; τ) =
N∏

n=1

1
2πσ2 exp

{
− 1

2σ2

∣∣yn−√
Esxn(τ)

∣∣2
}
. (18)

Note here that, although we do not show it explicitly, the transmitted symbols are indeed involved in

(18) via the coefficients{xn(τ)}n. After dropping the constant terms that do not depend explicitly on τ

in (18), we obtain the simplifiedtruncated LF:

Λ(yN |a; τ) = exp

{
√
Es

σ2

N∑

n=1

ℜ{ynxn(τ)
∗} − Es

2σ2

N∑

n=1

∣∣xn(τ)
∣∣2
}
. (19)

The conditional LF which incorporates all the information contained in thenon-truncated vectory
[
or

equivalently the received continuous-time signaly(t)
]
, is obtained by makingN tend to infinity in (19).

By doing so and using the Plancherel equality, we obtain the following conditional LF:

Λ(y|a; τ) = exp

{√
Es

σ2

∫

R

ℜ
{
y(t)x(t−τ)∗

}
dt− Es

2σ2

∫

R

|x(t−τ)|2dt
}
. (20)

Now, replacing the transmitted signalx(t) by its expression given in (4), and exploiting the fact that the

shaping pulse,g(t), in (5) verifies the first-order Nyquist criterion (6), it canbe shown that:

Λ(y|a; τ)=
K∏

k=1

Ωτ

(
a(k), y(t)

)
, (21)

where

Ωτ

(
a(k), y(t)

)
, exp

{√
Es

σ2

∫

R

ℜ
{
y(t)a(k)∗

}
h(t−kT−τ)dt− Es

2σ2

∣∣a(k)
∣∣2
}
. (22)

The unconditional LF, Λ(y; τ), is obtained by averaging (21) over all possible transmitted symbol

sequences of sizeK, i.e.,Λ(y; τ) = Ea{Λ(y|a; τ)} leading to:

Λ(y; τ)=
∑

ci∈CK
p

P [a = ci]Λ(y|a = ci; τ). (23)

2This is because they are obtained by some linear transformations (i.e., the orthogonal projection) of the original continuous-time white

Gaussian random processw(t).
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Under coded digital transmissions, a simplifying assumption is usually used in estimation practices,

whether CA or NCA, in order to allow for tractable mathematical derivations of CRLBs and ML estimators

of any parameter. This assumption postulates that the transmitted symbols are independent (cf. [15-30]

and references therein) in spite of the statistical dependence between the coded bits that is introduced by

channel coding. In fact, before even initiating the decoding process itself, the system needs to be fully

synchronized by estimating the time delay, as well as, the phase and frequency offsets. Moreover, the

decoder itself needs some estimates for other key channel parameters, e.g., the channel coefficient, noise

variance, SNR, etc. All those estimates are obtained by applying traditional NDA estimators directly

on the symbol-rate samples that are delivered by the matchedfilter before starting data decoding. As a

matter of fact, in digital transmissions, all state-of-the-art NDA estimators (for any parameter, whether

maximum likelihood or moment-based) are indeed based on theassumption of independent symbols

although the latter are actually dependent due to channel coding.

We emphasize, however, that exploitation of this assumption does not imply denying to exploit the

dependence of the coded bits during the decoding process itself. Indeed, such dependence is exploited

by the SISO decoders in order to output the estimates for the coded bits’a posteriori LLRs. The latter

are then used to decode the bits and also to compute theira priori LLRs (as explained later in Section

IV-E) which are in turn used to evaluate the CA CRLBs and to findthe CA TD ML estimate. Yet, even

by assuming independent symbols (both in this paper and all existing works), it turns out that no much

information is lost from the estimation point of view. In fact, the resulting CA estimation schemes achieve

the ideal data-aided one (where all the symbols are perfectly known) over a wide range of practical SNRs

where the completely NDA schemes do not (cf. Figs. 4 and 5 in this paper and the reported simulation

results in other researchers’ works). Using the assumptionof independent symbols it follows that:

P
[
a = ci

]
=

K∏

k=1

P
[
a(k) = ci(k)

]
. (24)
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Plugging (21) and (24) in (23), it can be shown that:

Λ(y; τ)=
∑

ci∈CK
p

K∏

k=1

P
[
a(k) = ci(k)

]
Ωτ

(
ci(k), y(t)

)

=

K∏

k=1

∑

cm∈Cp

P
[
a(k) = cm

]
Ωτ

(
cm, y(t)

)
. (25)

Therefore, theunconditional log-likelihood function (LLF) defined asL(y; τ) , ln
(
Λ(y; τ)

)
, is given

by:

L(y; τ)=
K∑

k=1

ln
(
Ω̄k

(
τ, y(t)

))
, (26)

in which Ω̄k

(
τ, y(t)

)
is simply the average ofΩτ

(
a(k), y(t)

)
over the constellation alphabet, i.e.:

Ω̄k

(
τ, y(t)

)
,
∑

cm∈Cp

P
[
a(k) = cm

]
Ωτ

(
cm, y(t)

)
. (27)

For ease of notations, we will hereafter no longer show the dependence of̄Ωk

(
τ, y(t)

)
on the received

signal,y(t), and denote it simply as̄Ωk(τ). Next, we will further manipulate this term and ultimately

factorize it into two analogous terms which involve two independent andalmost identically distributed

RVs. In fact, by further denoting the top-right quadrant of the constellation as̃Cp, it follows that Cp =

C̃p ∪ (−C̃p) ∪ C̃∗
p ∪ (−C̃∗

p ). Thus, the sum overcm ∈ Cp in (27) can be equivalently replaced by a sum

over each̃cm ∈ C̃p and its three symmetrical points in the other quadrants. By doing so and noticing that

|c̃m|= |−c̃m|= |c̃∗m|= |−c̃∗m|, we obtain from (22) and (27):

Ω̄k

(
τ
)

=
∑

c̃m∈C̃p

e−
Es
2σ2 |c̃m|2×

(
P
[
a(k)= c̃m

]
exp

{√
Es

σ2

∫

R

ℜ{c̃∗my(t)}h(t−kT−τ)dt

}

+ P
[
a(k)=−c̃m

]
exp

{√
Es

σ2

∫

R

ℜ{−c̃∗my(t)}h(t−kT−τ)dt

}

+ P
[
a(k)= c̃∗m

]
exp

{√
Es

σ2

∫

R

ℜ{c̃my(t)}h(t−kT−τ)dt

}

+ P
[
a(k)=−c̃∗m

]
exp

{√
Es

σ2

∫

R

ℜ{−c̃my(t)}h(t−kT−τ)dt

})
. (28)
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Using a simple recursive scheme that allows the construction of arbitrary square-QAM constellations, it

has been recently shown in [33] that the APPs for each symbolx(k) are expressed as follows (∀ c̃m ∈ C̃p):

P [x(k)= c̃m]=βk µk,p(c̃m) e
L2p−1(k)

2 e
L2p(k)

2 , (29)

P [x(k)= c̃∗m]=βk µk,p(c̃m) e
−L2p−1(k)

2 e
L2p(k)

2 , (30)

P [x(k)=−c̃m]=βk µk,p(c̃m) e
−L2p−1(k)

2 e−
L2p(k)

2 , (31)

P [x(k)=−c̃∗m]=βk µk,p(c̃m) e
L2p−1(k)

2 e−
L2p(k)

2 , (32)

in which µk,p(c̃m) andβk are given by:

µk,p(c̃m) ,

2p−2∏

l=1

e(2b̄
m
l −1)

Ll(k)

2 , ∀ c̃m ∈ C̃p (33)

βk ,

2p∏

l=1

1

2 cosh
(
Ll(k)/2

) . (34)

Plugging (29)-(32) back into (28) and using the trivial identity ex + e−x = 2 cosh(x), it can be shown

that:

Ω̄k(τ) = 2βk

∑

c̃m∈C̃p

µk,p(c̃m)e
−ρ|c̃m|2×

[
cosh

{√
Es

σ2

∫

R

ℜ{c̃my(t)}h(t−kT−τ)dt+
L2p(k)−L2p−1(k)

2

}
+

cosh

{√
Es

σ2

∫

R

ℜ{c̃∗my(t)}h(t−kT−τ)dt+ L2p(k)+L2p−1(k)

2

}]
. (35)

Furthermore, by using the relationshipcosh(x) + cosh(y) = 2 cosh(x+y

2
) cosh(x−y

2
) along with the two

identities c̃m + c̃∗m = 2ℜ{c̃m} and c̃m − c̃∗m = 2jℑ{c̃m}, it can be shown that (35) can be rewritten as

follows:

Ω̄k(τ) = 4βk

∑

c̃m∈C̃p

µk,p(c̃m)e
−ρ|c̃m|2cosh

{√
Esℜ{c̃m}

σ2 uk(τ)+
L2p(k)

2

}
× cosh

{√
Esℑ{c̃m}

σ2 vk(τ) +
L2p−1(k)

2

}]
,(36)

in which uk(τ) andvk(τ) are the matched-filteredin-phase andquadrature components of the received

signal given by:

uk(τ) =

∫ +∞

−∞
ℜ
{
y(t)

}
h(t− kT − τ)dt, (37)

vk(τ) =

∫ +∞

−∞
ℑ
{
y(t)

}
h(t− kT − τ)dt. (38)
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Since in the Cartesian coordinate system of the constellation eachc̃m ∈ C̃p can be written3 as c̃m =

[2i−1]dp+j[2n−1]dp for some1 ≤ i, n ≤ 2p−1, then the single sum over̃cm in (36) can be equivalently

replaced by a double sum over the two countersi andn as follows:

Ω̄k(τ) = 4βk

2p−1∑

i=1

2p−1∑

n=1

[
µk,p

(
[2i− 1]dp + j[2n− 1]dp

)

× e−ρ[2i−1]2d2p cosh

(√
Es[2i− 1]dp

σ2
uk(τ) +

L2p(k)

2

)

× e−ρ[2n−1]2d2p cosh

(√
Es[2n− 1]dp

σ2
vk(τ)+

L2p−1(k)

2

)]
. (39)

We also recall the following decomposition recently shown in [33] for each̃cm = [2i−1]dp+j[2n−1]dp ∈

C̃p:

µk,p

(
[2i− 1]dp + j[2n− 1]dp

)
= θk,2p(i)θk,2p−1(n) , (40)

where

θk,2p(i) ,

p−1∏

l=1

e(2b̄
(i)
2l −1)

L2l(k)

2 , (41)

θk,2p−1(n) ,

p−1∏

l=1

e(2b̄
(n)
2l−1−1)

L2l−1(k)

2 . (42)

After using (40) in (39) and splitting the two sums, we obtainthe following much useful factorization

for Ω̄k(τ):

Ω̄k(τ) = 4βkFk,2p

(
uk(τ)

)
Fk,2p−1

(
vk(τ)

)
, (43)

where

Fk,q(x) =

2p−1∑

i=1

θk,q(i)e
−ρ[2i−1]2d2p cosh

(√
Es[2i−1]dp

σ2 x+ Lq(k)
2

)
, (44)

in which q is a generic counter that is used from now on to refer to2p or 2p − 1 depending on the

context. Finally, by using (43) back in (26) and dropping theconstant term4βk that do not depend on

3Note here thatdp is half the minimum inter-symbol distance whose expressionis given in [33, eq. (30)] explicitly as function ofp for

normalized-energy constellations.
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τ , the useful LLF develops into:

L(y; τ) =
K∑

k=1

ln
(
Fk,2p

(
uk(τ)

))
+

K∑

k=1

ln
(
Fk,2p−1

(
vk(τ)

))
. (45)

We succeeded here in decomposing the LLF into two analogous terms [the two sums in (45)] involving

each either RVsuk(τ) or uk(τ) that will be shortly shown to have almost the same distributions. This

is actually the cornerstone result upon which we will establish the analytical expressions for the CA TD

CRLBs in the next section.

IV. DERIVATION OF THE CA CRLBS

As an overall benchmark, the CRLB lower bounds the variance of any unbiased estimator,̂τ , of the

time delay parameter, i.e.,E
{
(τ̂ − τ)2

}
≥ CRLB(τ). It is explicitly given by [36]:

CRLB(τ) =
1

I(τ)
, (46)

whereI(τ) is the so-called Fisher information for the received data which is given by:

I(τ) = −E

{
∂2L(y; τ)

∂τ 2

}
. (47)

Using (45) in (47) and owing to the linearity of the partial derivative and expectation operators, it

immediately follows that:

I(τ) =
K∑

k=1

[
γk,2p(τ) + γk,2p−1(τ)

]
, (48)

where

γk,2p(τ) , −E
{
∂2 ln

(
Fk,2p

(
uk(τ)

))
/∂τ 2

}
, (49)

γk,2p−1(τ) , −E
{
∂2 ln

(
Fk,2p−1

(
vk(τ)

))
/∂τ 2

}
. (50)

Before delving too much into details, we state the followingresult that is extremely useful to the derivation

of the analytical expressions of the two termsγk,2p(τ) andγk,2p−1(τ).
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LEMMA 1: uk(τ) andvk(τ) are twoindependent RVs whose distributions are given by:

p
[
uk(τ)

]
=

2βk,2p√
2πσ2

Fk,2p

(
uk(τ)

)
e−

uk(τ)
2

2σ2 , (51)

p
[
vk(τ)

]
=

2βk,2p−1√
2πσ2

Fk,2p−1(vk(τ))e
− vk(τ)

2

2σ2 . (52)

whith

βk,2p ,

p−1∏

l=1

1

2 cosh
(
L2l(k)/2

) , (53)

βk,2p−1 ,

p−1∏

l=1

1

2 cosh
(
L2l−1(k)/2

) . (54)

Proof: see Appendix A.

As seen from (51) and (52), the two RVsuk(τ) andvk(τ) arealmost identically distributed (i.e., their pdfs

have the same structure, but they are parametrized differently). Therefore, when evaluating the required

expectation with respect to eitheruk(τ) or vk(τ), equivalent derivation steps can be followed to find

either γk,2p(τ) or γk,2p−1(τ). As such, we will only deriveγk,2p(τ) and later deduce the expression of

γk,2p−1(τ) by easy identification. To that end, we denote the first and second derivatives ofFk,2p(x) in

(44), with respect to the working variablex, by F ′
k,2p(x) andF ′′

k,2p(x), respectively. We therefore establish

the second partial derivative ofln
(
Fk,2p

(
uk(τ)

))
with respect to the time delay parameter,τ , as follows:

∂2

∂τ2
ln
(
Fk,2p(uk(τ))

)
= u̇2

k(τ)

[
F ′′
k,2p(uk(τ))

Fk,2p(uk(τ))
− F ′ 2

k,2p(uk(τ))

F 2
k,2p(uk(τ))

]
+ ük(τ)

F ′
k,2p(uk(τ))

Fk,2p(uk(τ))
,

in which u̇k(τ) , ∂uk(τ)/∂τ and ük(τ) , ∂2uk(τ)/∂τ
2. We further show in Appendix A thaṫuk(τ)

anduk(τ) are two independent RVs as well. Thus, by applying the expectation operator to the previous

equation, we obtainγk,2p(τ) as follows:

γk,2p(τ) = E
{
u̇2
k(τ)

} [
E

{
F ′ 2
k,2p(uk(τ))

F 2
k,2p(uk(τ))

}
− E

{
F ′′
k,2p(uk(τ))

Fk,2p(uk(τ))

}]
− E

{
ük(τ)

F ′
k,2p(uk(τ))

Fk,2p(uk(τ))

}
. (55)

In the sequel, we will derive analytical the expressions forthe four expectations involved in (55) separately.

For convenience, we define beforehand the following two quantities (for q = 2p and 2p − 1) that will
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appear repeatedly in the obtained expressions:

ωk,q , 2 βk,q cosh
(
Lq(k)

2

) 2p−1∑

i=1

θk,q(i)d
2
p(2i−1)2, (56)

αk,q , 2 βk,q sinh
(
Lq(k)

2

) 2p−1∑

i=1

θk,q(i)dp(2i− 1). (57)

A. Derivation of E
{
u̇2
k(τ)

}

In Appendix A, we show that :

u̇k(τ) =
√

Es

K∑

k′=1

ℜ
{
a(k′)

}
ġ
(
[k − k′]T

)
+ ℜ

{
ẇk(τ)

}
, (58)

where

ẇk(τ) = −
∫ +∞

−∞
w(t)ḣ(t− kT − τ)dt. (59)

Recall here that the transmitted symbols are assumed mutually independent. As they are also independent

from the derivative noise components and exploiting the fact thatE
{
ẇk(τ)

}
= 0

(
sinceE

{
w(t)

}
= 0
)
,

it can be shown thatE
{
u̇2
k(τ)

}
is given by:

E
{
u̇k(τ)

2
}

= Es

[
K∑

l=1

E

{
ℜ
{
a(l)
}2}

ġ
(
[k − l]T

)2

+

K∑

l=1

K∑

n=1
n 6=l

E

{
ℜ
{
a(l)
}}

E

{
ℜ
{
a(n)

}}
ġ
(
[k − l]T

)
ġ
(
[k − n]T

)

+ E

{
ℜ
{
ẇk(τ)

}2}
. (60)

The expected values ofℜ
{
a(k)

}
andℜ

{
a(k)

}2
involved in (60) are obtained by averaging them over all

the points in the constellation alphabet,Cp, i.e.:

E

{
ℜ
{
a(k)

}2}
=
∑

cm∈Cp

P
[
a(k)=cm

]
ℜ
{
cm
}2
. (61)

E

{
ℜ
{
a(k)

}}
=
∑

cm∈Cp

P
[
a(k)=cm

]
ℜ
{
cm
}
. (62)

Starting form (61) and resorting to some algebraic manipulations, we show in Appendix B that:

E

{
ℜ
{
a(k)

}2}
=ωk,2p. (63)
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Using equivalent derivations, it can be also shown that:

E

{
ℜ
{
a(k)

}}
=αk,2p. (64)

In order to find the noise contribution through the derivative term in (60), we recall that the original

continuous-time noise is assumed to be white, i.e.,E
{
ℜ
{
w(t1)

}
ℜ
{
w(t2)

}}
= σ2δ(t1 − t2). Therefore,

starting from the expression oḟwk(τ) in (59) and resorting to equivalent manipulations as in (109) of

Appendix A, we obtain:

E

{
ℜ
{
ẇk(τ)

}2}
=σ2

∫

R

ḣ
(
t− kT − τ

)2
dt,

=−σ2

∫

R

h
(
t− kT − τ

)
ḧ
(
t− kT − τ

)
dt,

=−σ2g̈(0). (65)

Note here that, in line with the left-hand side of (65), the right-hand side of the same equation is indeed

positive sincëg(0) < 0. This is because the filterg(.) is convex in the vicinity of zero where it also

attains its maximum. Now, using (63) to (65) in (60), it can beeasily shown that:

E
{
u̇k(τ)

2
}
=Es

K∑

l=1

(
ωl,2p − α2

l,2p

)
ġ2
(
[l − k]T

)
+ Es

(
K∑

l=1

αl,2p ġ
(
[l−k]T

)
)2

− σ2g̈(0). (66)

B. Derivation of E
{(

F ′
k,2p

(
uk(τ)

)/
Fk,2p

(
uk(τ)

))2}

This is nothing but the expected value of a known transformation of the RV,uk(τ), whose distribution

was already established in (51). Therefore, it can be evaluated in closed form by integration overp
[
uk(τ)

]

as follows:

E

{(
F ′
k,2p

(
uk(τ)

)

Fk,2p

(
uk(τ)

)
)2
}
=

∫

R

F ′2
k,2p

(
uk(τ)

)

F 2
k,2p

(
uk(τ)

)p[uk(τ)]duk(τ)

=
2βk,2p√
2πσ2

∫

R

F ′2
k,2p

(
uk(τ)

)

Fk,2p

(
uk(τ)

)e
−uk(τ)

2

2σ2 duk(τ).

After using the explicit expression ofF ′
k,2p

(
uk(τ)

)
, the last equality is further simplified by using the

variable substitutiont =
√
2uk(τ)/σ to obtain:

E

{(
F ′
k,2p

(
uk(τ)

)

Fk,2p

(
uk(τ)

)
)2
}

=
2ρ

σ2
Ψk,2p(ρ), (67)
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whereΨk,2p(.) in the last equality is given by:

Ψk,2p(ρ) =
βk,2p d2p√

π

∫ +∞

−∞

λ2
k,2p(t, ρ)

δk,2p(t, ρ)
e−

t2

4 dt, (68)

with

λk,2p(t, ρ) =
2p−1∑

i=1

(2i− 1)θk,2p(i)e
−[2i−1]2d2pρ × sinh

(
√
ρ[2i−1]dpt+

L2p(k)

2

)
,

δk,2p(t, ρ) =

2p−1∑

i=1

θk,2p(i)e
−[2i−1]2d2pρcosh

(
√
ρ[2i−1]dpt+

L2p(k)

2

)
.

C. Derivation of E
{
F ′′
k,2p

(
uk(τ)

)/
Fk,2p

(
uk(τ)

)}

This expectation can also be explicitly found by integrating overp
[
uk(τ)

]
in (51) to yield:

E

{
F ′′
k,2p

(
u(k)
)

Fk,2p

(
uk(τ)

)
}

=

∫

R

F ′′
k,2p

(
uk(τ)

)

Fk,2p

(
uk(τ)

)p[uk(τ)]duk(τ)

=
2βk,2p√
2πσ2

∫

R

F ′′
k,2p

(
uk(τ)

)
e

−uk(τ)2

2σ2 duk(τ), (69)

in which the second derivative of the functionFk,2p(.) defined in (44) is given by:

F ′′
k,2p(x) =

Esd
2
p

σ4

2p−1∑

i=1

(2i− 1)2θk,2p(i)e
−ρ[2i−1]2d2p × cosh

(
√

Es[2i−1]dp

σ2 x+
L2p(k)

2

)
. (70)

After expanding (70) using the identitycosh(x + y) = cosh(x) cosh(y) + sinh(x) sinh(y), plugging the

result back into (69) and then using the fact thatsinh(x)e−
x2

2 is an odd function (i.e., its integral is

identically zero), it follows that (69) is explicitly givenby:

E

{
F ′′
k,2p

(
u(k)
)

Fk,2p

(
uk(τ)

)
}

=
2βk,2pEsd

2
p√

2πσ2σ4
cosh

(
L2p(k)

2

) 2p−1∑

i=1

(2i− 1)2θ
(i)
k,2pe

−ρ[2i−1]2d2p

∫ +∞

−∞
cosh

(√
Es[2i−1]dp

σ2 uk(τ)

)
e

−uk(τ)
2

2σ2 duk(τ).

(71)

Moreover, we show via “integration by parts”, the followingequality for anya > 0 and b ∈ R:

∫ +∞

0

cosh
(
b x
)
e−ax2

dx = 1
2

√
π
a
e

b2

4a , (72)
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which is used in (71), with the appropriate identifications,to yield the following closed-form expression

for the expectation in (69):

E

{
F ′′
k,2p

(
uk(τ)

)

Fk,2p

(
uk(τ)

)
}
=

2ωk,2p

σ2
ρ. (73)

D. Derivation of E
{
ük(τ)F

′
k,2p

(
uk(τ)

)/
Fk,2p

(
uk(τ)

)}

To find this expectation, we use a standard approach in which we first find the expectation conditioned

on uk(τ) and then average the obtained result with respect touk(τ). By doing so, we obtain:

E

{
ük(τ)

F ′
k,2p

(
uk(τ)

)

Fk,2p

(
uk(τ)

)
}

= Euk

{
E

{
ük(τ)

∣∣uk(τ)
}

F ′
k,2p

(
uk(τ)

)

Fk,2p

(
uk(τ)

)
}
. (74)

In order to findEük|uk

{
ük(τ)

∣∣uk(τ)
}

in (74), we must find the explicit expression ofük(τ) as function of

uk(τ). In fact, it is easy to show that:

ük(τ) =

∫ +∞

−∞
ℜ
{
y(t)

}
ḧ(t− kT − τ)dt

=
√
Es

K∑

l=1

ℜ
{
a(l)

}
g̈
(
[l − k]T

)
+ ℜ

{
ẅk(τ)

}
. (75)

Moreover, from (100) and (102) in Appendix A, we readily have:

ul(τ) =
√
Es ℜ{a(l)}+ ℜ{wl(τ)}. (76)

Therefore,ℜ{a(l)} = 1√
Es

[ul(τ)− ℜ{wl(τ)}] which is used in (75) to obtain:

ük(τ) =

K∑

l=1

[
ul(τ)−ℜ

{
wl(τ)

}]
g̈
(
[l−k]T

)
+ ℜ

{
ẅk(τ)

}
. (77)

Now, sinceE
{
ℜ{ẅk(τ)}

}
= E

{
ℜ{wk(τ)}

}
= 0 and since the RVs{ul(τ)}l are mutually independent,

it follows that:

E
{
ük(τ)

∣∣uk(τ)
}

= uk(τ)g̈(0) +

K∑

l=1
l 6=k

E
{
ul(τ)

}
g̈
(
[l−k]T

)
. (78)

But owing to (76) and (64), it immediately follows that:

E
{
ul(τ)

}
=

√
Es E

{
ℜ{a(l)}

}
=

√
Es αk,2p. (79)
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Using (79) in (78) and then plugging the obtained result backinto (74), we obtain:

E

{
ük(τ)

F ′
k,2p

(
uk(τ)

)

Fk,2p

(
uk(τ)

)
}

= g̈
(
0
)
E

{
uk(τ)

F ′
k,2p

(
uk(τ)

)

Fk,2p

(
uk(τ)

)
}
+
√
Es E

{
F ′
k,2p

(
uk(τ)

)

Fk,2p

(
uk(τ)

)
} K∑

l=1
l 6=k

αl,2p g̈
(
[l − k]T

)
.(80)

As done previously, the two expectations in (80) are derivedin closed-form by integration over the

distribution,p
[
uk(τ)

]
, already established in (51). The final results are given by:

E

{
uk(τ)

F ′
k,2p

(
uk(τ)

)

Fk,2p

(
uk(τ)

)
}

= 2ρ ωk,2p, (81)

E

{
F ′
2p,α

(
u(k)
)

F2p,α

(
uk(τ)

)
}

=
√
Es

σ2 αk,2p, (82)

which are used in (80) to yield:

E

{
ük(τ)

F ′
k,2p

(
uk(τ)

)

Fk,2p

(
uk(τ)

)
}

= 2ρ

[
ωk,2p g̈

(
0
)
+αk,2p

∑

l 6=k

αl,2p g̈
(
[l − k]T

)]
. (83)

Finally, by injecting (66), (67), (73), and (83) back into (55), the analytical expression ofγk,2p(τ) is

obtained as:

γk,2p(τ) = 4ρ2
[
ωk,2p −Ψk,2p(ρ)

]



K∑

l=1

(
ωl,2p − α2

l,2p

)
ġ2
(
[l − k]T

)
+

(
K∑

l=1

αl,2p ġ
(
[l−k]T

)
)2



− 2ρ

[
Ψk,2p(ρ) g̈

(
0
)
− αk,2p

∑

l 6=k

αl,2p g̈
(
[l − k]T

)]
.(84)

Due to the apparent symmetries between the distributions ofthe two RVsuk(τ) andvk(τ), the analytical

expression ofγk,2p−1(τ) can be directly deduced from the one ofγk,2p(τ) by easy identifications as:

γk,2p−1(τ) = 4ρ2
[
ωk,2p−1 −Ψk,2p−1(ρ)

]



K∑

l=1

(
ωl,2p−1 − α2

l,2p−1

)
ġ2
(
[l − k]T

)
+

(
K∑

l=1

αl,2p−1 ġ
(
[l−k]T

)
)2



− 2ρ

[
Ψk,2p−1(ρ) g̈

(
0
)
+ αk,2p−1

∑

l 6=k

αl,2p−1 g̈
(
[l − k]T

)]
. (85)

The closed-form expression for the TD CA CRLB is then obtained as the inverse of the Fisher information

given by (48), i.e.:

CRLB(τ) =
1

∑K

k=1 γk,2p(τ) + γk,2p−1(τ)
. (86)

It is worth mentioning here that the turbo-code setup is not needed in our derivations and that the new

CA CRLB expression (86) is actually valid for any coded system in general. In fact, we have so far
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only exploited the fact that the constellation is Gray-coded and we have expressed the CA TD CRLBs

explicitly in terms of the coded bits’a priori LLRs. Yet, we will explain in the next subsection how

these unknown LLRs are obtained from the output of the SISO decoders in a turbo-coded system. Yet,

they can also be obtained from LDPC-coded systems in the verysame way if the latter are decoded

with the turbo principle [37], [38] (i.e., MAP or BCJR decoder). In this case, the so-called check nodes

(C-nodes) and variable nodes (V-nodes) [37] play the very same role as SISO decoders in turbo-coded

systems.

E. Evaluation of the analytical CA CRLBs

In order to compute and plot the new CA CRLBs, one needs to evaluate the coefficientsωk,q andαk,q

for q = 2p and q = 2p − 1. These coefficients are, however, functions of thea priori LLRs, Ll(k), as

seen from (56) and (57). In the sequel, we briefly explain how these LLRs can be obtained from the

output of the SISO decoders at the convergence of the BCJR algorithm. First, the MF returns a sequence

of K symbol-rate samples:

y(τ) =
[
y1(τ), y2(τ), . . . , yK(τ)

]T
, (87)

where (cf. Appendix A):

yk(τ) =

∫ +∞

−∞
y(t)h(t− kT − τ)dt =

√
Es a(k) + wk(τ). (88)

Then, the soft demapper extracts the so-calledbit likelihoods:

Λl(k) , ln

(
p
[
y(τ)

∣∣bkl = 1
]

p
[
y(τ)

∣∣bkl = 0
]
)
, (89)

for all the code bits and feed them as inputs to the turbo decoder. By exchanging the so-calledextrinsic

information between the two SISO decoders, thea posteriori LLRs of the code bits:

Υl(k) = ln

(
P
[
bkl = 1

∣∣y(τ)
]

P
[
bkl = 0

∣∣y(τ)
]
)
. (90)
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are updated iteratively according to the turbo principle. We denote their values at therth turbo iteration

asΥ(r)
l (k). After sayR turbo iterations, a steady state is achieved whereinΥ

(R)
l (k) ≈ Υl(k), for every

l and k, and their signs are used to detect the bits. Yet, owing to thewell-known Bayes’ formula, we

have:

P
[
bkl = 1

∣∣y(τ)
]
=

p
[
y(τ)

∣∣bkl = 1
]
P
[
bkl = 1

]

p[y(τ)]
, (91)

and

P
[
bkl = 0

∣∣y(τ)
]
=

p
[
y(τ)

∣∣bkl = 0
]
P
[
bkl = 0

]

p[y(τ)]
. (92)

Therefore, by taking the ratio of (91) and (92) and applying the natural logarithm, it immediately follows

that:

Ll(k) = Υl(k)− Λl(k) ≈ Υ
(R)
l (k)− Λl(k), (93)

meaning that the requireda priori LLRs of the code bits can be easily obtained from their steady-state

a posteriori LLRs andΛl(k) already computed by thesoft demapper prior to data decoding.

V. NEW TIME DELAY CA ML ESTIMATOR

As mentioned previously, the timing recovery task is integrated within the turbo iteration loop. But in

order to initiate the turbo decoding process itself, the latter needs some preliminary information-bearing

symbol-rate samples. The latter can be obtained at the output of the MF
(
corrected witĥτML-NDA

)
where

τ̂ML-NDA is the NDA MLE for the TD parameter estimated as:

τ̂ML-NDA = argmax
τ

L(0)(τ), (94)

whereL(0)(.) is the NDA LLF obtained directly from its CA counterpart in (45) by setting4 Ll(k) = 0

for all l andk, i.e.:

L(0)(τ) =
K−1∑

k=0

[
ln
(
F
(
uk(τ)

))
+ln

(
F
(
vk(τ)

))]
, (95)

4In the NDA case (i.e., before starting data decoding), noa priori information about the bits is available at the receiver end,i.e.,

P [bkl = 0] = P [bkl = 1] = 1/2 and thusLl(k) = 0 for all l andk.
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in which F (.) is simply given by:

F (x)=
2p−1∑

i=1

e−ρNad
2
p[2i−1]2 cosh

(
2S[2i−1]

√
Nadp

σ2 x
)
.

The iterative algorithm that maximizesL(0)(τ) with respect toτ in (94) will be detailed at the end of this

section. Note also thatuk(τ) andvk(τ) involved in (95) are the real and imaginary parts of a discrete-time

MF output that is obtained as follows. At the receiver side,y(t) is upsampled using a sampling period

Ts < T/(1 + β) with β being the roll-off factor to obtain:

yl , y(lTs) =
√
Es

K∑

k=1

a(k) h(lTs − kT − τ) + w(lTs).

These high-rate samples are then passed through a discrete-time MF to obtain the symbol-rate samples:

yk(τ)= yl ⋆ h(lTs−kT−τ) =
∑

l

yl h(lTs−kT−τ)dt,

from which we obtainuk(τ) = ℜ{yk(τ)} andvk(τ) = ℑ{yk(τ)} which are used in (95). OncêτML-NDA

is acquired, the corresponding sequence of symbol-rate samples:

y(τ̂ML-NDA ) =
[
y1(τ̂ML-NDA ), y2(τ̂ML-NDA ), . . . , yK(τ̂ML-NDA )

]T
,

is passed to the soft demapper in order to find thebit likelihoods required to start the decoding process.

To exploit the output of the decoder and better re-synchronize the system, at aper-turbo-iteration basis,

we modify (93) as follows:

L
(r)
l (k) = Υ

(r)
l (k)− Λ

(r−1)
l (k), (96)

in order to obtain a more refined TD estimate,τ̂
(r)
ML-CA , after eachrth turbo iteration as will be explained

shortly. Note here thatΛ(r−1)
l (k) are the bit likelihoods that are obtained after re-synchronizing the system

with τ̂
(r−1)
ML-CA , i.e., the TD estimate corresponding to the previous turbo iteration. These are fed to the SISO

decoders to compute an update for thea posteriori LLRs, Υ(r)
l (k), at the currentrth turbo iteration. The

refined TD MLE is thereof obtained as:

τ̂
(r)
ML-CA = argmax

τ

L(r)(τ), (97)
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whereL(r)(τ) is the CA LLF in (45) evaluated usingL(r)
l (k) instead ofLl(k), i.e.:

L(r)(τ) =
K∑

k=1

ln
(
F

(r)
k,2p

(
uk(τ)

))
+ ln

(
F

(r)
k,2p−1

(
vk(τ)

))
,

in which F
(r)
k,q (.) is given by:

F
(r)
k,q (x) =

2p−1∑

i=1

θ
(r)
k,q(i)e

−ρd2p[2i−1]2 cosh

(√
Es[2i−1]dp

σ2 x+
L
(r)
q (k)

2

)
,

for q = 2p and 2p−1. Here, θ̂(r)k,2p(i) and θ̂
(r)
k,2p−1(i) are also obtained by usingL(r)

l (k) instead ofLl(k)

in (41) and (42), respectively.

A key detail that is still missing needs to be addressed here as how the NDA and CA LLFs are maximized

in (94) and (97). Actually, since these LLFs were derived in closed-form expressions, they can be

easily maximized using any of the popular iterative techniques such as the well-known Newton-Raphson

algorithm:

τ̂
(r)
i = τ̂

(r)
i−1 −

[(
∂2L(r)(τ)

∂τ 2

)−1
∂L(r)(τ)

∂τ

]

τ = τ̂
(r)
i−1

, (98)

in which τ̂
(r)
i is the TD update pertaining to theith Newton-Raphson iteration. The algorithm stops once

the convergence criterion|τ̂ (r)i −τ̂
(r)
i−1| ≤ ǫ is met5 to producêτ (r)ML-CA as the CA TD MLE during therth turbo

iteration. Note, however, that the Newton-Raphson algorithm itself is iterative in nature and, therefore,

requires a reliable initial guess,τ̂ (r)0 , to ensure its convergence to the global maximum of the underlying

objective LLF. At eachrth turbo iteration, the algorithm is initialized bŷτ (r)0 = τ̂
(r−1)
ML-CA (i.e., by the TD

MLE pertaining to the previous turbo iteration). At the veryfirst turbo iteration, however, the algorithm

is initialized with the NDA MLE,τ̂ML-NDA , obtained in (94). The latter is obtained by maximizingL(0)(τ)

itself via the very same Newton-Raphson algorithm and the corresponding initial guess is obtained by

a broad line search overτ . For better illustration, Fig. 1 depicts the architecture of the newly proposed

CA ML timing recovery algorithm.

5Note here thatǫ is a predefined threshold that governs the required estimation accuracy.
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Fig. 1. Flowchart of the new CA TD ML estimator.

VI. SIMULATION RESULTS

In this section, we provide some graphical representationsof the new TD CA CRLBs for different

modulation orders and different coding rates. We also analyze its computational complexity and compare

it to that of the existing sum-product expectation-maximization (SP-EM) timing recovery algorithm [25].

The encoder is composed of two identical RSCs concatenated in parallel, having generator polynomials

(1,0,1,1) and (1,1,0,1), and a systematic rateR0 =
1
2

each. The output of the turbo encoder is punctured

in order to achieve the desired code rateR. For the tailing bits, the size of the RSC encoders memory is

fixed to 4. We consider a root-raised-cosine (RRC) signal with roll-off factor α = 0.2. We also consider

QPSK and 16-QAM, as two representative examples of square-QAM constellations, and two different

coding rates, namelyR = 1
2

andR = 1
3
.

We begin by verifying in Figs. 2 and 3 that the new analytical CA CRLBs coincide with theirempirical

counterparts obtained previously in [29] from exhaustive Monte-Carlo simulations. In fact, unlike our

closed-form solution, an extremely large number of noisy observations was generated in [29] in order

to find an empirical value for the expectation involved in theFisher information (47). Hence, our new

analytical expression corroborates these previous attempts to evaluate the underlying TD CA CRLBs

empirically and allow their immediate evaluation for any square-QAM turbo-coded signal.
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Fig. 2. Comparison between the empirical and analytical CA CRLBs for different code rates,R, as function of the SNR: QPSK, rolloff

= 0.2.
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Fig. 3. Comparison between the empirical and analytical CA CRLBs for different code rates,R, as function of the SNR: 16-QAM, rolloff

= 0.2.

As expected, we also see from both figures that the CA CRLBs aresmaller than their NDA counterparts.

This highlights the performance improvements that can be achieved by a coded system over an uncoded

one by exploiting the information about the transmitted bits that is obtained from the SISO decoders.

Additionally and most prominently, the CA CRLBs decrease rapidly and reach the DA CRLBs which are

the best bounds ever one would be able to achieve if all the transmitted symbols were perfectly known



28

to the receiver, hypothetically.

In the sequel, we also assess the performance of the new TD CA ML estimator using the normalized

(by T 2) mean square error (NMSE) as a performance measure:

NMSE =
1

T 2

∑Mc

m=1

(
τ̂
[m]
ML-CA − τ̄

)2

Mc

, (99)

whereτ̂ [m]
ML-CA is the estimate ofτ generated from themth Monte-Carlo run form = 1, 2 . . . ,Mc. In Figs.

4 and 5, we plot the NMSE of the new estimator for QPSK and 16-QAM transmissions obtained from

Mc = 5000 Monte-Carlo trials, and benchmark the resulting performance curves against the corresponding

new CA CRLBs. To illustrate the performance advantage brought by CA estimation as compared to NCA

estimation (from the algorithmic point of view), we also plot in the same figures the NMSE of the NDA

TD ML estimator (94). Figs. 4 and 5 show that the potential estimation performance gains (attributed to the

decoder’s assistance) made predictable nowtheoretically by the CA CRLBs can be achieved practically

by the newly proposed CA ML estimator. More interestingly, the new estimator almost reaches the CA

CRLB over the entire practical SNR range confirming thereby its statistical efficiency.
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S
E
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NDA ML

NDA CRLB

New CA ML

CA CRLB

DA CRLB

R = 1/3

R = 1/2

Fig. 4. NMSE of the new CA ML estimator for different code rates, R, as function of the SNR: QPSK, rolloff= 0.2.

In the same figures, we can also observe unambiguously the effect of the coding rate,R, on CA estimation

performance. Even though the same NMSE levels are achieved at relatively high SNRs forR = 1
2

and
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Fig. 5. NMSE of the new CA ML estimator for different code rates, R, as function of the SNR: 16-QM, rolloff= 0.2.

R = 1
3
, the estimator performs quite differently for the two ratesat the same SNR values. In fact, with

smaller coding rates, more redundancy is introduced by the encoder and, hence, the decoder becomes

more likely able to correctly detect the transmitted bits, thereby enhancing the estimation performance.

Now, if we turn the tables and assess the effect of modulationorder on estimation performance at the

same coding rate, we observe without any surprise that it deteriorates with larger constellations at any

given SNR level. This typical behavior was already observedin NDA estimation and, as a matter of fact,

in any parameter estimation problem involving linearly-modulated signals. Indeed, when the modulation

order increases, the inter-symbol distance decreases for normalized-energy constellations. As such, at the

same SNR level, noise components have a relatively worse impact on symbol detection and parameter

estimation in general.

Finally, we compare the new CA ML TDE to the existing SP-EM ML-based algorithm both in terms

of estimation performance and computational complexity inFigs. 6 and 7, respectively.

In Fig. 6, even though both estimators perform nearly the same with QPSK signals over the entire SNR

range, we observe with 16-QAM a clear advantage of the new CA ML TD estimator over SP-EM at

low SNR levels. The superiority of the proposed estimator over SP-EM can be even better appreciated

when it comes to computational complexity. In fact, we plot in Fig. 7-(a) the total number of operations
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Fig. 7. complexity of the new CA ML estimator and SP-EM for different code rates versus the modulation order: (a) total number of

operations, and (b) complexity ratio.

(i.e., additions, multiplications, and divisions) required by both estimators versus the modulation order.

There we can see that the new CA ML estimator entails much lower computational load. The ratio of

complexities depicted in Fig. 7-(b) suggests, indeed, thatthe proposed estimator is about 30 and 70 times

computationally less expensive than SP-EM for 64- and 256-QAM, respectively.
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VII. CONCLUSION

In this paper, we derived for the first time the closed-form expressions of the Cramér-Rao lower

bounds for code-aided symbol timing estimation from turbo-coded square-QAM transmissions. The new

CA CRLBs revealed the huge performance improvements in terms of timing recovery are achievable by

exploiting the soft information delivered by SISO decodersat each turbo iteration. The new analytical

CRLBs coincide exactly with their empirical counterparts established in previous pioneering works on the

subject but from exhaustive Monte-Carlo simulations. We also developed a new code-aided ML time delay

estimator that is able to achieve the potential performancegains made thoroughly and instantly predictable

by the new closed-form CA CRLBs. The new estimator also exhibits a remarkable advantage in terms

of computational complexity as compared to the most powerful ML-type algorithm that exists in the

literature, namely SP-EM. Simulations results also show, as intuitively expected, that the CA estimation

performance improves by decreasing the coding rate, i.e., increasing the amount of redundancy.

APPENDIX A

A.1) Proof of LEMMA 1:

In order to find the pdfs ofuk(τ) and vi(τ) defined in (37) and (38), respectively, and prove that

they are two independent RVs, we define the following proper complex RV:

yk(τ),

∫ +∞

−∞
y(t) h(t− kT − τ)dt = uk(τ) + jvk(τ), (100)

which verifiesp
[
yk(τ)

]
= p

[
uk(τ), vk(τ)

]
. Moreover, replacingy(t) by its expression given by (4) in

(100) and resorting to some easy algebraic manipulations, we obtain:

yk(τ) =
√

Es

K∑

k′=1

a(k′)

∫ +∞

−∞
h(x)h

(
x+ [k′ − k]T

)
dt

︸ ︷︷ ︸
g([k′−k]T )

+ wk(τ),
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wherewk(τ) is the filtered noise component, i.e.:

wk(τ) ,

∫ +∞

−∞
w(t)h(t− kT − τ)dt. (101)

Recall that the shaping pulseg(t) verifies the first Nyquist criterion stated in (6), i.e.,g([k′ − k]T ) =

δ(k′ − k), thereby leading to:

yk(τ) =
√
Esa(k) + wk(τ). (102)

Further, it can be verified from (101) thatwk(τ) is Gaussian distributed with zero-mean and variance

2σ2. Hence, the pdf ofyk(τ) conditioned ona(k) is also Gaussian; i.e.,∀cm ∈ Cp we have:

p
[
yk(τ)|a(k) = cm

]
= 1

2πσ2 exp
{
− 1

2σ2

∣∣yk(τ)−
√
Escm

∣∣2
}
.

After expanding the modulus in the exponential argument, itcan be easily shown that∀ cm ∈ Cp we

have:

p
[
yk(τ)|a(k) = cm

]
= 1

2πσ2e
− |yk(τ)|

2

2σ2 Ωτ

(
cm, y(t)

)
, (103)

where Ωτ

(
cm, y(t)

)
is given in (22). Then, by averaging over all the constellation points inCp and

recalling the expression of̄Ωk(τ) in (27), the pdf ofyk(τ) is obtained as:

p
[
yk(τ)

]
= 1

2πσ2e
− |yk(τ)|

2

2σ2 Ω̄k(τ). (104)

Finally, using the factorization of̄Ωk(τ) obtained in (43) along with|yk(τ)|2 = u2
k(τ) + v2k(τ) and

βk = βk,2pβk,2p−1, it follows that:

p
[
yk(τ)

]
=

4βk,2pβk,2p−1

2πσ2 e−
u2k(τ)+v2k(τ)

2σ2 Fk,2p

(
uk(τ)

)
Fk,2p−1

(
vk(τ))

=
2βk,2p√
2πσ2

e−
u2k(τ)

2σ2 Fk,2p

(
uk(τ)

)
︸ ︷︷ ︸

p[uk(τ)]

2βk,2p−1√
2πσ2

e−
v2k(τ)

2σ2 Fk,2p−1

(
vk(τ)

)
︸ ︷︷ ︸

p[vk(τ)]

.

From the last equality, we obtainp
[
yk(τ)

]
= p
[
uk(τ)

]
p
[
vk(τ)

]
. But since from (100) we already have

yk(τ) = uk(τ) + jvk(τ), then we also havep
[
yk(τ)

]
= p

[
uk(τ), vk(τ)

]
. Therefore, it follows that

p
[
uk(τ), vk(τ)

]
= p
[
uk(τ)

]
p
[
vk(τ)

]
, meaning that the two RVsuk(τ) andvk(τ) are actually independent
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and their distributions are, respectively, given by (51) and (52).

A.2) Statistical Independence ofuk(τ) and u̇k(τ):

First, it follows from (100) that:

u̇k(τ) =
∂ℜ{yk(τ)}

∂τ
= −

∫

R

ℜ
{
y(t)

}
ḣ(t− kT − τ)dt. (105)

Again, we replacey(t) by its expression given in (4) and then we use the fact thatġ(.) is an odd function

to show that:

u̇k(τ) =
√

Es

K∑

k′=1

ℜ
{
a(k′)

}
ġ
(
[k − k′]T

)
+ ℜ

{
ẇk(τ)

}
, (106)

whereẇk(τ) is the derivative ofwk(τ) with respect toτ , which is obtained by replacingh(t− kT − τ)

by −ḣ(t− kT − τ) back in (101). Recall also thatġ(0) = 0
(
since the maximum ofg(x) is located at

0), leading to:

u̇k(τ) =
√

Es

K∑

k′=1
k′ 6=k

ℜ
{
a(k′)

}
ġ
(
[k − k′]T

)
+ ℜ

{
ẇk(τ)

}
. (107)

Recall also from (100) thatuk(τ) = ℜ{yk(τ)} and, therefore, we have from (102) :

uk(τ) =
√
Esℜ

{
a(k)

}
+ ℜ

{
wk(τ)

}
. (108)

Notice from (107) thaṫuk(τ) involves the contribution of all the symbols except thekth one
[
i.e.,a(k)

]
that

is, in turn, the only one involved inuk(τ) as seen from (108). Since the symbols are mutually independent,

then in order to show the independence ofuk(τ) andu̇k(τ), it suffices to show the independence ofwk(τ)

and ẇk(τ). These are actually two RVs that are obtained from linear transformations (i.e., integral and

derivative) of the same Gaussian processw(t) and, hence, they are also Gaussian distributed. Their
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cross-correlation is given by:

E {wk(τ)ẇk(τ)} =

∫∫ +∞

−∞
E
{
w(t1)w(t2)

}
h(t1 − kT − τ)ḣ(t2 − kT − τ)dt1dt2

= 2σ2

∫∫ +∞

−∞
δ(t1 − t2)h(t1)ḣ(t2)dt1dt2

= 2σ2ġ(0)

= 0, (109)

meaning that the two Gaussian-distributed RVswk(τ) and ẇk(τ) are uncorrelated and, therefore, inde-

pendent as well. Consequently,uk(τ) and u̇k(τ) are also independent.

APPENDIX B

Using the decompositionCp = C̃p ∪ (−C̃p) ∪ C̃∗
p ∪ (−C̃∗

p) and noticing that:

ℜ
{
c̃m
}2

= ℜ
{
− c̃m

}2
= ℜ

{
c̃∗m
}2

= ℜ
{
− c̃∗m

}2
, ∀ c̃m ∈ C̃p,

we rewrite (61) as follows:

E

{
ℜ
{
a(k)

}2}
=

∑

c̃m∈C̃p

ℜ
{
c̃m
}2(

P
[
a(k)= c̃m

]
+P

[
a(k)=−c̃m

]
+ P

[
a(k)= c̃∗m

]
+P

[
a(k)=−c̃∗m

])
.(110)

Moreover, by using the explicit expressions of the symbols’APPs given in (29)-(32), along with the

identity cosh(x) + cosh(y) = 2 cosh(x+y

2
) cosh(x−y

2
), we obtain:

Pr
[
a(k)= c̃m

]
+Pr

[
a(k)=−c̃m

]
+Pr

[
a(k)= c̃∗m

]
+Pr

[
a(k)=−c̃∗m

]

= 2βkµk,p(c̃m)
[
cosh

(
L2p(k)+L2p−1(k)

2

)
+cosh

(
L2p(k)−L2p−1(k)

2

)]
,

= 4βkµk,p(c̃m)cosh
(

L2p(k)

2

)
cosh

(
L2p−1(k)

2

)
, (111)

Now, plugging (111) back into (110), rewriting the sum overc̃m ∈ C̃p as a double sum over the counters

i andn [where c̃m = (2i− 1)dp + j(2n− 1)dp as done in (39)], and using the decomposition in (40), it
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can be shown that:

E

{
ℜ
{
a(k)

}2}
= 4βk

2p−1∑

i=1

2p−1∑

n=1

[
(2i− 1)2d2pθk,2p(i)θk,2p−1(n)× cosh

(
L2p(k)

2

)
cosh

(
L2p−1(k)

2

)]

= 2βk,2pcosh
(
L2p(k)

2

) 2p−1∑

i=1

(2i− 1)2d2pθk,2p(i)× 2βk,2p−1cosh
(
L2p−1(k)

2

) 2p−1∑

n=1

θk,2p−1(n),

(112)

where the decompositionβk = βk,2pβk,2p−1 was used in the last equality as well. Moreover, it has been

recently shown in [34,LEMMA 3] that for q = 2p and2p− 1:

2βk,qcosh
(

Lq(k)
2

) 2p−1∑

n=1

θk,q(n) = 1, (113)

which is used back in (112) to obtain the following result:

E

{
ℜ
{
a(k)

}2
}

= ωk,2p. (114)
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